数形结合解决平面向量问题

合集下载

数形结合思想在初中数学解题中的应用

数形结合思想在初中数学解题中的应用

数形结合思想在初中数学解题中的应用数形结合思想是指在解决数学问题时,通过将数学概念与几何图形相互结合,相互转化和应用的思考方法。

在初中数学的教学中,数形结合思想被广泛地应用。

本文将从初中数学的各个章节对其应用进行探讨。

1. 直线与圆在初中数学的直线与圆章节中,学生需要掌握直线与圆之间的基本关系,如切线、割线等,并学习如何运用这些关系解决问题。

数形结合思想在这一章节的应用体现在,通过将直线与圆相互结合,将抽象的数学概念转化为具体的几何图形,从而帮助学生更好地理解题意和解决问题。

例如,解决“过圆O外一点P作切线,过点P作另一条直线割圆于A、B两点,连接OP 并延长交圆于C点,求证:∠OAC=∠OBC”的问题时,我们可以通过画图,在圆上标出切线和割线,将几何图形与数学概念相互联系来解决问题。

2. 三角函数在初中数学的三角函数章节中,学生需要学习正弦、余弦、正切等三角函数的基本概念和运用。

例如,在解决“证明:sin2A+cos2A=1”的问题时,我们可以画出一个以A为顶点的直角三角形,将正弦、余弦与三角形的边相互对应,从而帮助学生理解三角函数的定义和性质。

3. 平面向量例如,在解决“ABCD为平行四边形,设向量AB=a,向量AD=b,求向量AC的坐标表示”的问题时,我们可以画出平行四边形ABCD的几何图形,并通过图形将向量的定义和运算法则转化为数学表示式。

4. 二次函数例如,在解决“已知二次函数y=x²+px+q的图像过点(1,3),且在x轴上的零点为-2和3,求p、q”的问题时,我们可以通过画出二次函数的图像,并通过图像求出零点和顶点,进而求出p、q的值。

结语数形结合思想在初中数学的教学中具有重要的应用价值,可以帮助学生更好地理解数学知识,提高解题能力和思维能力。

教师在教学中应该注重将数学概念与几何图形相互联系,设计具体、形象的教学案例,引导学生积极思考、用图解题,从而达到提高教学质量和学生学习水平的目的。

微重点 平面向量的最值与范围问题

微重点 平面向量的最值与范围问题

微重点 平面向量的最值与范围问题平面向量中的最值与范围问题,是高考的热点与难点问题,主要考查求向量的模、数量积、夹角及向量的系数等的最值、范围.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数”与“形”的双重身份,数形结合也是解决平面向量中的最值与范围问题的重要方法.考点一 求参数的最值(范围)例1 (1)(2022·沈阳质检)在正六边形ABCDEF 中,点G 为线段DF (含端点)上的动点,若CG →=λCB →+μCD →(λ,μ∈R ),则λ+μ的取值范围是________. 答案 [1,4]解析 根据题意,不妨设正六边形ABCDEF 的边长为23,以O 为原点建立平面直角坐标系,如图所示,则F (-23,0),D (3,3),C (23,0),B (3,-3), 设点G 的坐标为(m ,n ),则CG →=(m -23,n ), CB →=(-3,-3),CD →=(-3,3), 由CG →=λCB →+μCD →可得,m -23=-3λ-3μ,即λ+μ=-33m +2, 数形结合可知m ∈[-23,3], 则-33m +2∈[1,4],即λ+μ的取值范围为[1,4]. (2)设非零向量a ,b 的夹角为θ,若|a |=2|b |,且不等式|2a +b |≥|a +λb |对任意θ恒成立,则实数λ的取值范围为( ) A .[-1,3] B .[-1,5] C .[-7,3] D .[5,7]答案 A解析 ∵非零向量a ,b 的夹角为θ,若|a |=2|b |, a ·b =|a ||b |cos θ=2|b |2cos θ,不等式|2a +b |≥|a +λb |对任意θ恒成立, ∴(2a +b )2≥(a +λb )2,∴4a 2+4a ·b +b 2≥a 2+2λa ·b +λ2b 2, 整理可得(13-λ2)+(8-4λ)cos θ≥0恒成立, ∵cos θ∈[-1,1],∴⎩⎪⎨⎪⎧13-λ2+8-4λ≥0,13-λ2-8+4λ≥0, ∴⎩⎪⎨⎪⎧-7≤λ≤3,-1≤λ≤5,∴-1≤λ≤3. 规律方法 利用共线向量定理及推论 (1)a ∥b ⇔a =λb (b ≠0).(2)OA →=λOB →+μOC →(λ,μ为实数),则A ,B ,C 三点共线⇔λ+μ=1.跟踪演练1 (2022·滨州模拟)在△ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN →=λAB →+μAC →(λ,μ∈R ),则λ+μ的取值范围是( ) A.⎣⎡⎦⎤0,13 B.⎣⎡⎦⎤13,12 C .[0,1] D .[1,2]答案 C解析 由题意,设AN →=tAM →(0≤t ≤1),如图.当t =0时,AN →=0, 所以λAB →+μAC →=0,所以λ=μ=0,从而有λ+μ=0;当0<t ≤1时,因为AN →=λAB →+μAC →(λ,μ∈R ), 所以tAM →=λAB →+μAC →, 即AM →=λt AB →+μt AC →,因为M ,B ,C 三点共线,所以λt +μt =1,即λ+μ=t ∈(0,1].综上,λ+μ的取值范围是[0,1].考点二 求向量模、夹角的最值(范围)例2 (1)已知e 为单位向量,向量a 满足:(a -e )·(a -5e )=0,则|a +e |的最大值为( ) A .4 B .5 C .6 D .7 答案 C解析 可设e =(1,0),a =(x ,y ), 则(a -e )·(a -5e )=(x -1,y )·(x -5,y ) =x 2-6x +5+y 2=0, 即(x -3)2+y 2=4, 则1≤x ≤5,-2≤y ≤2, |a +e |=(x +1)2+y 2=8x -4, 当x =5时,8x -4取得最大值为6, 即|a +e |的最大值为6.(2)在平行四边形ABCD 中,AB →|AB →|+2AD →|AD →|=λAC→|AC →|,λ∈[2,2],则cos ∠BAD 的取值范围是________. 答案 ⎣⎡⎦⎤-34,-14 解析 因为AB →|AB →|+2AD →|AD →|=λAC→|AC →|,且AB →+AD →=AC →,所以|AB →|∶|AD →|∶|AC →|=1∶2∶λ, 不妨设|AB →|=1,则|AD →|=2,|AC →|=λ, 在等式AB →|AB →|+2AD →|AD →|=λAC→|AC →|两边同时平方可得5+4cos ∠BAD =λ2,则cos ∠BAD =λ2-54,因为λ∈[2,2],所以cos ∠BAD =λ2-54∈⎣⎡⎦⎤-34,-14.易错提醒 找两向量的夹角时,要注意“共起点”以及向量夹角的取值范围是[0,π]; 若向量a ,b 的夹角为锐角,包括a ·b >0和a ,b 不共线,同理若向量a ,b 的夹角为钝角,包括a ·b <0和a ,b 不共线.跟踪演练2 (2022·马鞍山模拟)已知向量a ,b 满足|a -3b |=|a +3b |,|a +b |=4,若向量c =λa +μb (λ+μ=1,λ,μ∈R ),且a ·c =b ·c ,则|c |的最大值为( ) A .1 B .2 C .3 D .4 答案 B解析 由|a -3b |=|a +3b |得a ·b =0, 所以a ⊥b .如图,设OA →=a ,OB →=b ,|OA →|=m ,|OB →|=n , 由a ⊥b 可知OA ⊥OB , 所以|AB →|=|b -a |=|a +b |=4,即m 2+n 2=16,所以2mn ≤16,则mn ≤8,当且仅当m =n 时取得等号.设OC →=c , 由c =λa +μb (λ+μ=1), 可知A ,B ,C 三点共线,由a ·c =b ·c 可知(a -b )·c =0,所以OC ⊥AB , 由等面积法可得, 12|OA →|·|OB →|=12|AB →|·|OC →|, 得|OC →|=|OA →|·|OB →||AB →|=mn 4≤2,所以|c |的最大值为2.考点三 求数量积的最值(范围)例3 (1)(2022·福州质检)已知平面向量a ,b ,c 均为单位向量,且|a -b |=1,则(a -b )·(b -c )的最大值为( ) A.14 B.12 C .1 D.32答案 B解析 ∵|a -b |2=a 2-2a ·b +b 2 =2-2a ·b =1, ∴a ·b =12,∴(a -b )·(b -c )=a ·b -a ·c -b 2+b ·c =12-1-(a -b )·c =-12-|a -b |·|c |cos 〈a -b ,c 〉=-12-cos 〈a -b ,c 〉,∵cos 〈a -b ,c 〉∈[-1,1], ∴(a -b )·(b -c )∈⎣⎡⎦⎤-32,12, 即(a -b )·(b -c )的最大值为12.(2)(2022·广州模拟)已知菱形ABCD 的边长为2,∠ABC =60°,点P 在BC 边上(包括端点),则AD →·AP →的取值范围是________. 答案 [-2,2]解析 如图所示,以C 为原点,BC →为x 轴正方向,过点C 垂直向上的方向为y 轴,建立平面直角坐标系.因为菱形ABCD 的边长为2,∠ABC =60°, 则B (-2,0),C (0,0),D (1,3),A (-1,3). 因为点P 在BC 边上(包括端点), 所以设P (t ,0),其中t ∈[-2,0]. 所以AD →=(2,0),AP →=(t +1,-3), 所以AD →·AP →=2t +2∈[-2,2].规律方法 向量数量积最值(范围)问题的解题策略(1)形化:利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断.(2)数化:利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.跟踪演练3 已知AB 是半圆O 的直径,AB =2,等腰△OCD 的顶点C ,D 在半圆弧AB ︵上运动,且∠COD =120°,点P 是半圆弧AB ︵上的动点,则PC →·PD →的取值范围为( ) A.⎣⎡⎦⎤-34,34 B.⎣⎡⎦⎤-34,1 C.⎣⎡⎦⎤-12,1 D.⎣⎡⎦⎤-12,12 答案 C解析 以点O 为原点,AB 为x 轴,垂直于AB 的直线为y 轴,建立平面直角坐标系,如图所示,不妨取C (1,0),则D ⎝⎛⎭⎫-12,32,设P (cos α,sin α)(α∈[0,π]), PC →·PD →=(1-cos α,-sin α)·⎝⎛⎭⎫-12-cos α,32-sin α =12-32sin α-12cos α=12-sin ⎝⎛⎭⎫α+π6. 因为α∈[0,π],所以α+π6∈⎣⎡⎦⎤π6,7π6, 所以sin ⎝⎛⎭⎫α+π6∈⎣⎡⎦⎤-12,1, 所以12-sin ⎝⎛⎭⎫α+π6∈⎣⎡⎦⎤-12,1,即PC →·PD →的取值范围为⎣⎡⎦⎤-12,1. 专题强化练1.(2022·山东省实验中学诊断)设向量OA →=(1,-2),OB →=(a ,-1),OC →=(-b ,0),其中O 为坐标原点,a >0,b >0,若A ,B ,C 三点共线,则1a +2b 的最小值为( )A .4B .6C .8D .9 答案 C解析 由题意得,AB →=OB →-OA →=(a -1,1), AC →=OC →-OA →=(-b -1,2),∵A ,B ,C 三点共线,∴AB →=λAC →且λ∈R ,则⎩⎪⎨⎪⎧a -1=-λ(b +1),2λ=1,可得2a +b =1, ∴1a +2b =⎝⎛⎭⎫1a +2b (2a +b )=4+b a +4ab ≥4+2b a ·4ab=8, 当且仅当b =2a =12时,等号成立.∴1a +2b的最小值为8. 2.设A ,B ,C 是半径为1的圆O 上的三点,且OA →⊥OB →,则(OC →-OA →)·(OC →-OB →)的最大值为( ) A .1+ 2 B .1- 2 C.2-1 D .1答案 A解析 如图,作出OD →,使OA →+OB →=OD →, 则(OC →-OA →)·(OC →-OB →)=OC →2-OA →·OC →-OB →·OC →+OA →·OB → =1-(OA →+OB →)·OC →=1-OD →·OC → =1-2cos 〈OD →,OC →〉,当cos 〈OD →,OC →〉=-1时,(OC →-OA →)·(OC →-OB →)取得最大值为1+ 2.3.(2022·杭州模拟)平面向量a ,b 满足|a |=1,⎪⎪⎪⎪b -32a =1,记〈a ,b 〉=θ,则sin θ的最大值为( )A.23B.53C.12D.32 答案 A解析 因为|a |=1,⎪⎪⎪⎪b -32a =1, 所以⎪⎪⎪⎪b -32a 2=|b |2-3a ·b +94|a |2=1, |b |2-3|a |·|b |cos θ+94-1=0,即|b |2-3|b |cos θ+54=0,所以cos θ=|b |2+543|b |=|b |3+512|b |≥2536=53, 当且仅当|b |=52时,等号成立, 因为〈a ,b 〉=θ,θ∈[0,π], 所以sin θ=1-cos 2θ≤1-59=23, 即sin θ的最大值为23.4.如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =1,BC =2,P 是线段AB 上的动点,则|PC →+4PD →|的最小值为( )A .35B .6C .25D .4答案 B解析 如图,以点B 为坐标原点,BC ,BA 所在直线为x 轴、y 轴,建立平面直角坐标系,设AB =a ,BP =x (0≤x ≤a ),因为AD =1,BC =2,所以P (0,x ),C (2,0),D (1,a ), 所以PC →=(2,-x ),PD →=(1,a -x ), 4PD →=(4,4a -4x ),所以PC →+4PD →=(6,4a -5x ),所以|PC →+4PD →|=36+(4a -5x )2≥6,所以当4a -5x =0,即x =45a 时,|PC →+4PD →|的最小值为6.5.(多选)已知向量a ,b ,单位向量e ,若a ·e =1,b ·e =2,a ·b =3,则|a +b |的可能取值为( ) A .3 B.10 C.13 D .6答案 CD解析 设e =(1,0),a =(x 1,y 1),b =(x 2,y 2), 由a ·e =1得x 1=1, 由b ·e =2得x 2=2,由a ·b =x 1x 2+y 1y 2=3,可得y 1y 2=1, 则|a +b |=(a +b )2=(x 1+x 2)2+(y 1+y 2)2=11+y 21+y 22≥11+2y 1y 2=13,当且仅当y 1=y 2=1时取等号.6.(多选)(2022·武汉模拟)正方形ABCD 的边长为2,E 是BC 的中点,如图,点P 是以AB 为直径的半圆上任意一点,AP →=λAD →+μAE →(λ,μ∈R ),则( )A .λ的最大值为12B .μ的最大值为1 C.AP →·AD →的最大值为2 D.AP →·AE →的最大值为5+2 答案 BCD解析 如图,以AB 的中点O 为原点建立平面直角坐标系,则A (-1,0),D (-1,2),E (1,1), 连接OP ,设∠BOP =α(α∈[0,π]), 则P (cos α,sin α), AP →=(cos α+1,sin α), AD →=(0,2),AE →=(2,1), 由AP →=λAD →+μAE →,得2μ=cos α+1且2λ+μ=sin α,α∈[0,π], 所以λ=14(2sin α-cos α-1)=54sin(α-θ)-14≤5-14,故A 错误; 当α=0时,μmax =1,故B 正确; AP →·AD →=2sin α≤2,故C 正确; AP →·AE →=sin α+2cos α+2=5sin(α+φ)+2≤5+2,故D 正确.7.(2022·广东六校联考)已知菱形ABCD 的边长为2,∠BAD =60°,E 是边CD 的中点,连接AE 并延长至点F ,使得AE =2EF ,若H 为线段BC 上的动点,则FH →·AH →的取值范围为______________. 答案 ⎣⎡⎦⎤-17764,-32 解析 方法一 连接AC ,BD 交于点O ,以点O 为坐标原点,以BD 所在直线为x 轴,AC 所在直线为y 轴,建立如图所示的平面直角坐标系,则A (0,3),B (-1,0),C (0,-3),D (1,0),E ⎝⎛⎭⎫12,-32. 设F (x 0,y 0),因为AE →=2EF →,所以⎝⎛⎭⎫12,-332=2⎝⎛⎭⎫x 0-12,y 0+32 =()2x 0-1,2y 0+3, 所以2x 0-1=12,2y 0+3=-332, 所以x 0=34,y 0=-534, 所以F ⎝⎛⎭⎫34,-534. 易知直线BC 的方程为y =-3x -3,设H (x ,-3x -3)(-1≤x ≤0),则AH →=(x ,-3x -23),FH →=⎝⎛⎭⎫x -34,-3x +34, 所以FH →·AH →=⎝⎛⎭⎫x -34x +⎝⎛⎭⎫3x -34(3x +23)=4x 2+92x -32, 因为-1≤x ≤0,所以FH →·AH →∈⎣⎡⎦⎤-17764,-32.方法二 设BH →=tBC →(0≤t ≤1),则AH →=AB →+BH →=AB →+tBC →=AB →+tAD →. 连接AC (图略),因为E 为CD 的中点, 所以AE →=12(AC →+AD →)=12(AB →+2AD →), AF →=AE →+EF →=32AE →=34(AB →+2AD →), 所以FH →·AH →=(AH →-AF →)·AH →=AH →2-AF →·AH →=(AB →+tAD →)2-34(AB →+2AD →)·(AB →+tAD →)=4+4t 2+4t -34(4+2t +4+8t ) =4+4t 2+4t -6-15t 2=4t 2-72t -2. 设y =4t 2-72t -2,0≤t ≤1,根据二次函数的图象与性质可知,函数y =4t 2-72t -2,0≤t ≤1的最小值在t =716处取得,为-17764,最大值在t =1处取得,为-32, 所以FH →·AH →的取值范围是⎣⎡⎦⎤-17764,-32. 8.已知向量a ,b 满足|a |=1,|b |=3,则|2a +b |+|2a -b |的最小值是________,最大值是________.答案 6 213解析 ∵|2a +b |+|2a -b |≥|2a +b +2a -b |=4|a |=4,且|2a +b |+|2a -b |≥|2a +b -2a +b |=2|b |=6,∴|2a +b |+|2a -b |≥6,当且仅当2a +b 与2a -b 反向时取等号.此时|2a +b |+|2a -b |的最小值为6.∵|2a +b |+|2a -b |2≤|2a +b |2+|2a -b |22 =|2a |2+|b |2=13, ∴|2a +b |+|2a -b |≤213,当且仅当|2a +b |=|2a -b |时取等号, ∴|2a +b |+|2a -b |的最大值为213.。

高中数学第二章平面向量向量应用举例例题与探究(含解析)

高中数学第二章平面向量向量应用举例例题与探究(含解析)

2.7 向量应用举例典题精讲例1用向量法证明平行四边形两对角线的平方和等于四条边的平方和。

思路分析:把平行四边形的边和对角线的长看成向量的长度,转化为证明向量长度之间的关系.基向量法和坐标法均可解决.答案:已知:四边形ABCD是平行四边形,求证:|AC|2+|BD|2=2|AB|2+2|AD|2。

证法一:如图2—7—1所示,设AB=a, AD=b,∴AC=AB+AD=a+b,BD=AD-AB=b-a。

图2-7—1∴|AC|2=(a+b)2=a2+2a·b+b2,|BD|2=(b—a)2=a2-2a·b+b2。

∴|AC|2+|BD|2=2a2+2b2.又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和.证法二:如图2—7-2所示,以A为原点,以AB所在直线为x轴,建立直角坐标系.设A(0,0)、D(a,b)、B(c,0),∴AC=AB+AD图2—7-2=OB+OD=(c,0)+(a,b)=(a+c,b),BD=AD—AB=OD—OB=(a,b)-(c,0)=(a-c,b)。

∴|AC|2=(c+a)2+b2,|BD|2=(a-c)2+b2.∴|AC|2+|BD|2=2a2+2c2+2b2。

又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2c2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和。

绿色通道:1。

向量法解决几何问题的步骤:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算(有基向量法和坐标法两种),研究几何元素之间的关系;③把运算结果“翻译”成几何关系。

这是用向量法解决平面几何问题的“三步曲”.又简称为:一建二算三译;也可说成为:捡便宜(建算译)。

平面向量的应用重难点解析版

平面向量的应用重难点解析版

突破6.4 平面向量的应用一、学情分析高考对本部分的考查主要涉及平面向量的数量积和向量的线性运算,以运算求解和数形结合为主,重点掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系,掌握向量加法、减法、数乘的运算及其几何意义等,注重转化与化归思想的应用.1.平面向量的数量积一直是高考的一个热点,尤其是平面向量的数量积,主要考查平面向量的数量积的 运算、向量的几何意义、模与夹角、两向量的垂直等问题.题型一般以选择题、填空题为主.2.平面向量的基本定理及坐标表示是高考中的一个热点内容,尤其是用坐标表示的向量共线的条件是高 考考查的重点内容,一般是通过向量的坐标表示,将几何问题转化为代数问题来解决,多以选择题或填空题的形式呈现,有时也作为解答题中的条件,应用向量的平行或垂直关系进行转换.二、学法指导与考点梳理考点一 向量在平面几何中的应用 (1)用向量解决常见平面几何问题的技巧: 问题类型 所用知识 公式表示线平行、点共线等问题共线向量定理a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0, 其中a =(x 1,y 1),b =(x 2,y 2),b ≠0 垂直问题数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0,其中a =(x 1,y 1),b =(x 2,y 2),且a ,b 为非零向量夹角问题数量积的定义cos θ=a ·b|a ||b |(θ为向量a ,b 的夹角),其中a ,b 为非零向量长度问题数量积的定义|a |=a 2=x 2+y 2,其中a =(x ,y ),a 为非零向量平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题。

考点二 正弦定理和余弦定理1.在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理 正弦定理余弦定理公式a sin A =b sin B =c sin C=2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C常见 变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin A ∶sin B ∶sin C ;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b a ≤b 解的个数一解两解一解一解无解重难点题型突破1 平面向量在平面几何中的应用(奔驰定理)例1、(1).(2022·四川西昌·高二期末(理))在平面上有ABC 及内一点O 满足关系式:0OBC OAC OAB S OA S OB S OC ⋅+⋅+⋅=△△△即称为经典的“奔驰定理”,若ABC 的三边为a ,b ,c ,现有0a OA b OB c OC ⋅+⋅+⋅=则O 为ABC 的( )A .外心B .内心C .重心D .垂心【答案】B 【解析】 【分析】利用三角形面积公式,推出点O 到三边距离相等。

数形结合在初中数学的应用

数形结合在初中数学的应用

数形结合在初中数学的应用
数形结合是初中数学中非常重要的一个概念,它是指在分析解决数学问题时,既可以运用数学知识,也可以利用几何图形来帮助解决问题。

数形结合在初中数学的应用非常广泛,例如:
1.求解面积和体积问题:我们可以通过利用几何图形来求解各种面积和体积问题,例如求解长方形、正方形、圆形、三角形等图形的面积,以及球、圆柱、圆锥等图形的体积。

2.利用相似三角形求解问题:我们可以通过数形结合的方法,利用相似三角形来解决各种数学问题,例如求解直角三角形的斜边长度、求解比例问题等等。

3.利用图形坐标系求解问题:我们可以通过建立图形坐标系,将数学问题转化为几何问题,利用几何图形来解决各种问题,例如求解直线方程、解决距离问题等。

4.利用平面向量求解问题:我们可以通过利用平面向量的性质和特点,来解决各种数学问题,例如求解向量的模长、向量的方向、向量的加减等等。

总之,数形结合在初中数学中的应用是非常广泛的,它能够帮助我们更好地理解和掌握各种数学知识,提高我们的数学思维和解决问题的能力。

- 1 -。

数形结合,巧学向量——《数学》第七章“平面向量”教学建议

数形结合,巧学向量——《数学》第七章“平面向量”教学建议
这 两个 方 面进 行 规 定 建 立 起 来 的 。

平 面 向量 的 内积
丽面
平 面 向 量 内 积 的运 算
三、 教 学 建 议 向量是现实世界的重要数学模型 。 教 学 过 程 中教 师
2 . 概念 核心 要素 : 向量是 既有 大小 又有 方 向 的量 。 “ 大 小” 反映 向量 “ 数” 的特 征 , “ 方 向” 反 映 向量 “ 形” 的特征 。 3 . 思 考交 流 ( 教材 第 3 4页 ) 能够得 到 的结论 是 : 向
第 2课 时
本课 学习基 于向量 的概 念及其 表示方 法等 内容的
学 习。
1 . 探究 : 在 对 现 实模 型 思 考 的基 础 上 引 出 和 向量 平 行四边形法则 , 通过实践 、 思 考 发 现 两 种 法 则 之 间 的 区
1 . 探究 : 通 过 探 究 表 示 运 动 各 过 程 向量 的 大小 与 方 向之 间 的 关 系 , 思考: ( 1 ) 当 两个 向量 大小 相 同 , 方 向相 同 与 相 反 这 两 种 不 同情 况 下 两 个 向 量 之 间 的 关 系 ; ( 2 )
自 由 向量 的 概 念 , 让 学生通过 探究 、 观察 、 类 比、 实 践 感 受 向量 在 保 持 大 小 和 方 向 不 变 的情 况 下 是 可 以 自由 移 动 的这 一 事 实 。 本 节 的 例 题 习 题 设计 注 重 学 生 动手 能 力 的培 养 , 通过 “ 练” 巩 固对 概 念 的 理 解 。运 用 探 究 、 发现、 归纳、 类 比等方法 , 让 学 生 发 现 向量 在 现 实 生 活 中 的 意 义 和作 用 , 激 发 学 生 学 习 向量 的 兴 趣 与 热 情 . 为 后 面 的 学 习奠 定 基 础 。

21 平面向量中最值、范围问题-备战2018高考技巧大全之高中数学黄金解题模板含解析

21 平面向量中最值、范围问题-备战2018高考技巧大全之高中数学黄金解题模板含解析

【高考地位】平面向量中的最值和范围问题,是一个热点问题,也是难点问题,这类试题的基本类型是根据给出的条件求某个量的最值、范围,如:向量的模、数量积、夹角及向量的系数.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数”与“形”的双重身份,解决平面向量最值、范围问题的另一个基本思想是数形结合.在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中高档题. 【方法点评】方法一 利用基本不等式求平面向量的最值使用情景:一般平面向量求最值问题解题模板:第一步 利用向量的概念及其基本运算将所求问题转化为相应的等式关系;第二步 运用基本不等式求其最值问题; 第三步 得出结论。

例1.已知点A 在线段BC 上(不含端点),O 是直线BC 外一点,且20OA aOB bOC --=,则221a ba b b+++的最小值是___________ 【答案】222例2 如右图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,N M 两点,且,AM x AB AN y AC ==,则2x y +的最小值为( )A .2B .13C .3223+ D .34【答案】C【变式演练1】如图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,M N 两点,且,AM x AB AN y AC ==,则x y +的最小值为( )A .2B .13C .43D .34【答案】CMNA BGQ考点:向量共线,基本不等式求最值【变式演练2】已知点A(1, 1),B(4,0),C(2,2).平面区域D由所有满足AP AB ACλμ=+(1≤≤a,1≤≤b)的点P(x,y)组成的区域.若区域D的面积为8,则a+b的最小值为.【答案】4考点:1、平面向量的线性运算;2、基本不等式. 【变式演练3】平行四边形ABCD 中,60,1,2,BAD AB AD P ∠===为平行四边形内一点,且22AP =,若),(R AD AB AP ∈+=μλμλ,则2u λ+的最大值为 . 6【解析】试题分析:对),(R AD AB AP ∈+=μλμλ两边平方可得()()22AP AB AD λμ=+可化为222222APAB AB AD ADλλμμ=+⋅⋅+,据已知条件可得22122λμ=+≥,即λμ≤,又()22212223λλμ=++=+≤,则λ+≤. 考点:向量的数量积运算;基本不等式方法二 利用向量的数量积m n m n ⋅≤求最值或取值范围使用情景:涉及数量积求平面向量最值问题解题模板:第一步 运用向量的加减法用已知向量表示未知向量;第二步 运用向量的数量积的性质求解; 第三步 得出结论。

专题平面向量常见题型与解题指导

专题平面向量常见题型与解题指导

平面向量常见题型与解题指导一、考点回顾1、本章框图2、高考要求1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。

2、掌握向量的加法和减法的运算法则及运算律。

3、掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件。

4、了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。

5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。

6、掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。

7、掌握正、余弦定理,并能初步运用它们解斜三角形。

8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。

3、热点分析对本章内容的考查主要分以下三类:1.以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题.2.以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主.3.向量在空间中的应用(在B类教材中).在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质.在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.分析近几年来的高考试题,有关平面向量部分突出考查了向量的基本运算。

对于和解析几何相关的线段的定比分点和平移等交叉内容,作为学习解析几何的基本工具,在相关内容中会进行考查。

本章的另一部分是解斜三角形,它是考查的重点。

总而言之,平面向量这一章的学习应立足基础,强化运算,重视应用。

考查的重点是基础知识和基本技能。

4、复习建议由于本章知识分向量与解斜三角形两部分,所以应用本章知识解决的问题也分为两类:一类是根据向量的概念、定理、法则、公式对向量进行运算,并能运用向量知识解决平面几何中的一些计算和证明问题;另一类是运用正、余弦定理正确地解斜三角形,并能应用解斜三角形知识解决测量不可到达的两点间的距离问题。

平面向量二级结论集合 (1)

平面向量二级结论集合 (1)

有关垂直的结论(数形结合):满足BD和CF垂直的时候,有下列的数量关系:向量绝对值不等式:求数量积的两个重要模型:后续再利用条件进行化简。

极化恒等式三角形模型:极化恒等式的作用主要在于:它可以将两个向量的数量积转化为这两个向量的“和向量”与“差向量”,因此,当两个向量的“和向量”或“差向量”为定向量时,常常可以考虑利用极化恒等式进行转化求解.公式变形:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的极化恒等式平行四边形模型:平行四边形两条对角线的平分和等于两条邻边平分和的两倍.矩形的两个小性质:对角线向量定理:需要说明的是,对角线向量定理①和后文所出现的式子②③既适用于平面向量也适用于空间向量。

当用于空间向量的适合,大家把这个图形想象成为三棱锥D-ABC即可,AC和BD成为三棱锥的一组对棱,如下图所示。

这就是对角线向量定理,它表明四边形的两条对角线对应向量的数量积可用四条边的长度表示。

推论1:式子②表明,当对角线相互垂直时,四边形两组对边的平方和相等。

推论2:向量中三点共线的结论:举个栗子:向量等和线(“爪”字型图及性质):之前基础上的拓展定比分点公式的向量表示与坐标表示:向量与三角形四心:(1)重心三角形三条中线交点。

三角形的重心分中线两段线段长度比为2:1,且分的三个三角形面积相等(2)垂心(3)内心(4)外心垂直平分线的交点,到三个顶点的距离相等。

(5)外心和垂心结合奔驰定理:梅涅劳斯(Menelaus)定理简介(作为平面几何内容对向量很有贡献):如果一直线顺次与三角形ABC的三边AB、BC、CA或其延长线交于M、N、K三点,则:证明:过顶点B作AC的平行线与截线交于E,则有:。

数形结合在高中数学教学中的巧妙应用

数形结合在高中数学教学中的巧妙应用

数形结合在高中数学教学中的巧妙应用数形结合是高中数学教学中的一个重要部分,它是数学与几何的深度融合,也是把具体图形化为数学概念的一种实用技巧。

数形结合在高中数学教学中的应用非常广泛,可以帮助学生深刻理解各种数学概念和定理,增强学生对数学的兴趣和学科钻研能力,下面将来介绍数形结合在高中数学教学中的详细应用。

1.平面向量与几何关系的数形结合平面向量是高中数学中的一个重要概念,它与几何关系的数形结合可以帮助学生更直观地理解平面向量的性质和作用。

例如,在解平面向量共线性问题时,我们可以将向量作为几何图形表示出来,通过数学分析这些图形之间的几何关系,来判断向量是否共线;在证明平面向量的一些基本定理时,我们也可以利用图形直观地验证定理的正确性。

这种数形结合的方法既可以提高学生的几何直观能力,又可以加深其对平面向量理论的认识和理解。

2.集合论中的数形结合集合论是高中数学中的重要分支,它研究集合和元素的关系,是数学中最基本和最抽象的概念之一。

在集合论中,我们可以利用数形结合来进一步深入理解集合和元素之间的关系。

例如,在研究集合的交、并、差等操作时,我们可以用图形表示出它们之间的集合关系,通过直观的方式来理解集合操作的本质。

同时,在研究包含问题时,我们也可以利用集合的图形来方便地表示出它们之间的元素关系。

3.函数图像的数形结合函数是高中数学中的重要概念,它是用来描述自变量和因变量之间的对应关系。

在研究函数图像时,我们可以利用数形结合方法来增加学生的视觉感受力,使得学生更加直观地理解函数的性质和特点。

例如,在研究一元一次和二次函数的图像时,我们可以用几何图形代表函数的性质和特点,来直观地理解函数的增减性、单调性、零点、极值以及对称轴等特征,从而提高学生的图像思维能力和实际应用能力。

立体几何是高中数学中的一项重要内容,它是数学与空间结合的一种具体体现。

在研究立体几何的问题时,我们可以利用数形结合的方法来进行分析和推理。

《平面向量的概念及线性运算》教学反思

《平面向量的概念及线性运算》教学反思

《平面向量的概念及线性运算》教学反思本节课主要是要让学生理解平面向量的基本概念:向量、有向线段、零向量、单位向量、平行(共线)向量、相等向量、相反向量;掌握基本方法:向量加法的三角形法则、平行四边形法则、向量的减法法则、数乘向量的运算法则。

因为向量知识比较抽象,就像学生说的有点“横空出世”,很难想到,学生容易产生厌烦的情绪。

建议:1、借助图形帮助学生理解,把抽象的问题转化为形象具体的问题;2、向量有两种表示方法:即有向线段和字母法,但是书写时必须加箭头,必须强调这一点。

7.2平面向量的坐标表示反思:本节课主要是要让学生理解向量坐标化的意义,并且能熟练掌握平面向量的坐标运算。

向量的坐标表示比较好理解,所以课上没有太多问题。

只是课上和学生的交流太少,几乎都是自己在讲,而且学生的呼应不够,有时候问他们,并没有多少人会回答。

建议:1.在表示向量时要注意与表示点的坐标的区别,前者有等号连接,后者无等号,这点要向学生强调;2.必须强化“数形结合”的思想;3.多和学生进行眼神交流。

4.讲解速度可以放慢一点。

7.3平面向量的内积反思:本节课主要是①通过物理中"功"等实例,理解平面向量数量积的含义及其物理意义;②理解平面向量夹角的定义和内积运算公式;③掌握数量积的坐标表达式,会进行平面向量数量积的运算;④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

由于公式比较多,学生有点消化良;学生对数量积的性质、运算律不够灵活应用。

建议:1、讲课速度放慢点,花多点时间放在练习上。

让学生熟练数量积的性质、运算律的应用,发展学生从特殊到一般的能力,培养学生学习的主动性和合作交流的学习习惯。

2、鼓励学生积极参与到课堂中来。

第七章反思和体会向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。

由于平面向量理论性强,内容抽象,解题方法独特。

广东省深圳市高级中学平面向量多选题试题含答案

广东省深圳市高级中学平面向量多选题试题含答案

广东省深圳市高级中学平面向量多选题试题含答案一、平面向量多选题1.对于给定的ABC ,其外心为O ,重心为G ,垂心为H ,则下列结论正确的是( ) A .212AO AB AB ⋅=B .OA OB OA OC OB OC ⋅=⋅=⋅C .过点G 的直线l 交AB AC 、于E F 、,若AE AB λ=,AF AC μ=,则113λμ+=D .AH 与cos cos AB AC AB BAC C+共线【答案】ACD 【分析】根据外心在AB 上的射影是AB 的中点,利用向量的数量积的定义可以证明A 正确;利用向量的数量积的运算法则可以OA OB OA OC =即OA BC ⊥,在一般三角形中易知这是不一定正确的,由此可判定B 错误;利用三角形中线的定义,线性运算和平面向量基本定理中的推论可以证明C 正确;利用向量的数量积运算和向量垂直的条件可以判定cos cos AB AC AB BAC C+与BC 垂直,从而说明D 正确.【详解】如图,设AB 中点为M,则OM AB ⊥,AO cos OAM AM ∴∠=()21·cos cos ?22ABAO AB AO AB OAB AB AO OAB AB AB ∴=∠=∠==,故A 正确;··OAOB OAOC =等价于()·0OA OB OC -=等价于·0OACB =,即OA BC ⊥,对于一般三角形而言,O 是外心,OA 不一定与BC 垂直,比如直角三角形ABC 中, 若B 为直角顶点,则O 为斜边AC 的中点,OA 与BC 不垂直.故B 错误;设BC 的中点为D ,则()211111133333AG AD AB AC AE AF AE AF λμλμ⎛⎫==+=+=+ ⎪⎝⎭, ∵E,F,G 三点共线,11133λμ∴+=,即113λμ+=,故C 正确; cos cos cos cos AB AC AB BC AC BC BC AB B AC C AB B AC C ⎛⎫⋅⋅ ⎪+⋅=+ ⎪⎝⎭()cos cos cos cos AB BC B AC BC C AB BAC Cπ⋅-⋅=+0BC BC =-+=, ∴cos cos AB AC AB BAC C+与BC 垂直,又AH BC ⊥,∴cos cos AB AC AB BAC C+与AH共线,故D 正确. 故选:ACD. 【点睛】本题考查平面向量线性运算和数量及运算,向量垂直和共线的判定,平面向量分解的基本定理,属综合小题,难度较大,关键是熟练使用向量的线性运算和数量积运算,理解三点共线的充分必要条件,进而逐一作出判定.2.设点A ,B 的坐标分别为()0,1,()1,0,P ,Q 分别是曲线x y e =和ln y x =上的动点,记12,I AQ AB I BP BA =⋅=⋅,则下列命题不正确的是( ) A .若12I I =,则()PQ AB R λλ=∈ B .若12I I =,则AP BQ = C .若()PQ AB R λλ=∈,则12I I = D .若AP BQ =,则12I I =【答案】ABD 【分析】作出两个函数的图象,利用图象结合平面向量共线知识和平面向量数量积的几何意义分析可得答案. 【详解】根据题意,在直线AB 上取点,P Q '',且满足||||AP BQ ''=,过,P Q ''分别作直线AB 的垂线,交曲线x y e =于1P ,2P ,交曲线ln y x =于12,Q Q ,在曲线xy e =上取点3P ,使13||||AP AP =,如图所示:1||||cos I AQ AB AQ AB QAB =⋅=⋅∠,令||cos ||AQ QAB AQ '∠=,则1||||I AQ AB '=⋅,2||||cos I BP BA BP BA PBA =⋅=⋅∠,令||cos ||BP PBA BP '∠=,则2||||I BP BA '=⋅,若||||AP BQ ''=,则||||AQ BP ''=,若12I I =,则||||AQ BP ''=即可,此时P 可以与1P 重合,Q 与2Q 重合,满足题意,但是()PQ AB R λλ=∈不成立,且||||AP BQ ≠,所以A 、B 不正确;对于选项C ,若PQ AB =λ,此时P 与1P 重合,且Q 与1Q 重合,或P 与2P 重合,且Q 与2Q 重合,所以满足12I I =,所以C 正确;对于D ,当P 与3P 重合时,满足13||||AP AP =,但此时3P 在直线AB 上的投影不在P '处,因而不满足||||AQ BP ''=,即12I I ≠,所以D 不正确. 故选:ABD 【点睛】关键点点睛:利用图象结合平面向量共线知识和平面向量数量积的几何意义求解是解题关键.3.下列命题中真命题的是( )A .向量a 与向量b 共线,则存在实数λ使a =λb (λ∈R )B .a ,b 为单位向量,其夹角为θ,若|a b -|>1,则3π<θ≤π C .A 、B 、C 、D 是空间不共面的四点,若AB •AC =0,AC •AD =0,AB •AD =0则△BCD 一定是锐角三角形D .向量AB ,AC ,BC 满足AB AC BC =+,则AC 与BC 同向 【答案】BC 【分析】对于A :利用共线定理判断 对于B :利用平面向量的数量积判断 对于C :利用数量积的应用判断 对于D :利用向量的四则运算进行判断 【详解】对于A :由向量共线定理可知,当0b =时,不成立.所以A 错误. 对于B :若|a b -|>1,则平方得2221a a b b -⋅+>,即12a b ⋅<,又1||2a b a b cos cos θθ⋅=⋅=<,所以3π<θ≤π,即B 正确.对于C :()()220BC BD AC AB AD AB AC AD AC AB AB AD AB AB ⋅=-⋅-=⋅-⋅-⋅+=>,0||BC BD cosB BC BD ⋅=⋅>,即B 为锐角,同理A ,C 也为锐角,故△BCD 是锐角三角形,所以C 正确.对于D :若AB AC BC =+,则AB AC BC CB -==,所以0CB =,所以则AC 与BC 共线,但不一定方向相同,所以D 错误. 故选:BC. 【点睛】(1)多项选择题是2020年高考新题型,需要要对选项一一验证;(2)要判断一个命题错误,只需举一个反例就可以;要证明一个命题正确,需要进行证明.4.如图,已知长方形ABCD 中,3AB =,2AD =,()01DE DC λλ→→=<<,则下列结论正确的是( )A .当13λ=时,1233E A A E D B →→→=+B .当23λ=时,cos ,AE BE →→= C .对任意()0,1λ∈,AE BE →→⊥不成立D .AE BE →→+的最小值为4 【答案】BCD 【分析】根据题意,建立平面直角坐标系,由DE DC λ→→=,根据向量坐标的运算可得()3,2E λ,当13λ=时,得出()1,2E ,根据向量的线性运算即向量的坐标运算,可求出2133AD AE BE →→→=+,即可判断A 选项;当23λ=时,()2,2E ,根据平面向量的夹角公式、向量的数量积运算和模的运算,求出cos ,AE BE →→=,即可判断B 选项;若AE BE →→⊥,根据向量垂直的数量积运算,即可判断C 选项;根据向量坐标加法运算求得()63,4AE BE λ→→+=-,再根据向量模的运算即可判断D 选项.【详解】解:如图,以A 为坐标原点,,AB AD 所在直线分别为x 轴、y 轴建立平面直角坐标系, 则()0,0A ,()3,0B ,()3,2C ,()0,2D ,由DE DC λ→→=,可得()3,2E λ,A 项,当13λ=时,()1,2E ,则()1,2AE →=,()2,2BE →=-, 设AD m AE n BE →→→=+,又()0,2AD →=,所以02222m n m n =-⎧⎨=+⎩,得2313m n ⎧=⎪⎪⎨⎪=⎪⎩,故2133AD AE BE →→→=+,A 错误;B 项,当23λ=时,()2,2E ,则()2,2AE →=,()1,2BE →=-,故cos 10,AE BE AE BE AE BE→→→→→→⋅===⋅,B 正确;C 项,()3,2AE λ→=,()33,2BE λ→=-,若AE BE →→⊥,则()2333229940AE BE λλλλ→→⋅=-+⨯=-+=, 对于方程29940λλ-+=,()2Δ94940=--⨯⨯<, 故不存在()0,1λ∈,使得AE BE →→⊥,C 正确;D 项,()63,4AE BE λ→→+=-,所以()226344AE BE λ→→+=-+≥,当且仅当12λ=时等号成立,D 正确. 故选:BCD.【点睛】关键点点睛:本题考查平面向量的坐标运算,数量积运算和线性运算,考查运用数量积表示两个向量的夹角以及会用数量积判断两个平面向量的垂直关系,熟练运用平面向量的数量积运算是解题的关键.5.如图,BC ,DE 是半径为1的圆O 的两条不同的直径,2BF FO =,则( )A .13BF FC = B .89FD FE ⋅=-C .41cos ,5FD FE -<<->≤ D .满足FC FD FE λμ=+的实数λ与μ的和为定值4 【答案】BCD【分析】A. 根据2BF FO =易得12BF FC =判断;B.由()()FD FE OD OF OE OF ⋅=-⋅-运算求解判断;,C.建立平面直角坐标系:设,0,2DOF παα⎡⎤∠=∈⎢⎥⎣⎦,则()()1cos ,sin ,cos ,sin ,,03D E F αααα⎛⎫--- ⎪⎝⎭,得到11cos ,sin ,cos ,sin 33FD FE αααα⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎭⎝⎭,由cos ,FD FE FD FE FD FE ⋅<>=⋅利用三角恒等变换和三角函数的性质判断;D. 将FC FD FE λμ=+,利用线性运算变形为()()4OF OD OF λμλμ-=--+判断;【详解】A. 因为2BF FO =,所以12BF FC =,故错误;B. ()()2FD FE OD OF OE OF OD OE OD OF OF OE OF ⋅=-⋅-=⋅-⋅-⋅+,()22181099OEOF OD OE OF=-+++=-++=-,故正确;C.建立如图所示平面直角坐标系:设,(0,]2DOF παα∠=∈,则()()1cos ,sin ,cos ,sin ,,03D E F αααα⎛⎫--- ⎪⎝⎭, 所以11cos ,sin ,cos ,sin 33FD FE αααα⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎭⎝⎭,所以222289cos ,11cos sin cos sin 33FD FE FD FE FD FEαααα-⋅<>==⋅⎛⎫⎛⎫-+⋅++ ⎪ ⎪⎝⎭⎝⎭,849(1,]5822cos2819α-=∈---⋅,故正确;D. 由FC FD FE λμ=+,得()()()()4OF OD OF OE OF OD OF λμλμλμ-=-+-=--+,所以4λμ+=,故正确; 故选:BCD 【点睛】本题主要考查平面向量的线性运算和数量积运算,还考查了运算求解的能力,属于中档题.6.在ABC 中,D ,E ,F 分别是边BC ,AC ,AB 中点,下列说法正确的是( ) A .0AB AC AD +-= B .0DA EB FC ++= C .若3||||||AB AC ADAB AC AD +=,则BD 是BA 在BC 的投影向量 D .若点P 是线段AD 上的动点,且满足BP BA BC λμ=+,则λμ的最大值为18【答案】BCD 【分析】对选项A ,B ,利用平面向量的加减法即可判断A 错误,B 正确.对选项C ,首先根据已知得到AD 为BAC ∠的平分线,即AD BC ⊥,再利用平面向量的投影概念即可判断C 正确.对选项D ,首先根据,,A P D 三点共线,设(1)BPtBA t BD ,01t ≤≤,再根据已知得到12tt λμ=⎧⎪⎨-=⎪⎩,从而得到21111()()2228tyt t ,即可判断选项D 正确. 【详解】 如图所示:对选项A ,20AB AC AD AD AD AD +-=-=≠,故A 错误. 对选项B ,111()()()222DA EB FC AB AC BA BC CA CB ++=-+-+-+111111222222AB AC BA BC CA CB=------111111222222AB AC AB BC AC BC=--+-++=,故B正确.对选项C,||ABAB,||ACAC,||ADAD分别表示平行于AB,AC,AD的单位向量,由平面向量加法可知:||||AB ACAB AC+为BAC∠的平分线表示的向量.因为3||||||AB AC ADAB AC AD+=,所以AD为BAC∠的平分线,又因为AD为BC的中线,所以AD BC⊥,如图所示:BA在BC的投影为cosBDBA B BA BDBA,所以BD是BA在BC的投影向量,故选项C正确.对选项D,如图所示:因为P在AD上,即,,A P D三点共线,设(1)BP tBA t BD,01t≤≤.又因为12BD BC=,所以(1)2tBP tBA BC.因为BP BA BCλμ=+,则12ttλμ=⎧⎪⎨-=⎪⎩,01t≤≤.令21111()2228t y tt , 当12t =时,λμ取得最大值为18.故选项D 正确. 故选:BCD 【点睛】本题主要考查平面向量的加法,减法的几何意义,数形结合为解决本题的关键,属于中档题.7.已知,a b 是单位向量,且(1,1)a b +=-,则( ) A .||2a b += B .a 与b 垂直C .a 与a b -的夹角为4πD .||1a b -=【答案】BC 【分析】(1,1)a b +=-两边平方求出||2a b +=;利用单位向量模长为1,求出0a b ⋅=;||a b -平方可求模长;用向量夹角的余弦值公式可求a 与a b -的夹角.【详解】由(1,1)a b +=-两边平方,得2222||21(12|)|a b a b ++⋅=+-=,则||2a b +=,所以A 选项错误;因为,a b 是单位向量,所以1122a b ++⋅=,得0a b ⋅=,所以B 选项正确; 则222||22a b a b a b -=+-⋅=,所以||2a b -=,所以D 选项错误;2()cos ,||||1a a b a a b a a b ⋅-〈-〉====-⨯, 所以,a 与a b -的夹角为4π.所以C 选项正确; 故选:BC. 【点睛】本题考查平面向量数量积的应用. 求向量模的常用方法:(1)若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式2+a x y =(2)若向量a b , 是以非坐标形式出现的,求向量a 的模可应用公式22•a a a a ==或2222||)2?(a b a b aa b b ==+,先求向量模的平方,再通过向量数量积的运算求解.判断两向量垂直:根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 解两个非零向量之间的夹角:根据公式121222221122•+?a b cos a b x y x y ==求解出这两个向量夹角的余弦值.8.已知正三角形ABC 的边长为2,设2AB a =,BC b =,则下列结论正确的是( ) A .1a b +=B .a b ⊥C .()4a b b +⊥D .1a b ⋅=-【答案】CD【分析】分析知1a =,2=b ,a 与b 的夹角是120︒,进而对四个选项逐个分析,可选出答案.【详解】分析知1a =,2=b ,a 与b 的夹角是120︒.由12cos12010a b ︒⋅=⨯⨯=-≠,故B 错误,D 正确; 由()22221243a b a a b b +=+⋅+=-+=,所以3a b +=,故A 错误;由()()2144440a b b a b b +⋅=⋅+=⨯-+=,所以()4a b b +⊥,故C 正确. 故选:CD【点睛】本题考查正三角形的性质,考查平面向量的数量积公式的应用,考查学生的计算求解能力,属于中档题.二、立体几何多选题9.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,090B F ∠=∠=,0060,45,A D BC DE ∠=∠==,现将两块三角形板拼接在一起,得三棱锥F CAB -,取BC 中点O 与AC 中点M ,则下列判断中正确的是( )A .BC FM ⊥B .AC 与平面MOF 所成的角的余弦值为3 C .平面MOF 与平面AFB 所成的二面角的平面角为45°D .设平面ABF平面MOF l =,则有//l AB 【答案】AD【分析】证明BC ⊥面FOM 可判断A ;根据AC 与平面MOF 所成的角为060CMO ∠=判断B ;利用特殊位置判断C ;先证明//AB 面MOF ,由线面平行的性质定理可判断D ;【详解】由三角形中位线定理以及等腰三角形的性质可得,,BC OF BC OM OMOF O ⊥⊥=,所以BC ⊥面FOM BC FM ⇒⊥,故A 正确;因为BC ⊥面FOM ,所以AC 与平面MOF 所成的角为060CMO ∠=,所以余弦值为12,故B 错误; 对于C 选项可以考虑特殊位置法,由BC ⊥面FOM 得面ABC ⊥面FOM ,所以点F 在平面ABC 内的射影在直线OM 上,不妨设点F 平面ABC 内的射影为M ,过点M 作//BC MN ,连结NF .易证AB ⊥面MNF ,则l ⊥面MNF ,所以MFN ∠为平面MOF 与平面AFB 所成的二面角的平面角,不妨设2AB =,因为060A ,所以23BC =,则13,12OF BC OM ===,显然MFN ∠不等于45°,故C 错误. 设面MOF 与平面ABF 的交线为l ,又因为//,AB OM AB ⊄面MOF ,OM ⊂面MOF ,所以//AB 面MOF ,由线面平行的性质定理可得://l AB ,故D 正确; 故选:AD.【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.10.如图,正方体1111ABCD A BC D -的棱长为1,线段11B D 上有两个动点E ,F ,且2EF =则下列结论正确的是( )A .三棱锥A BEF -的体积为定值B .当E 向1D 运动时,二面角A EF B --逐渐变小C .EF 在平面11ABB A 内的射影长为12D .当E 与1D 重合时,异面直线AE 与BF 所成的角为π4【答案】AC【分析】对选项分别作图,研究计算可得.【详解】选项A:连接BD ,由正方体性质知11BDD B 是矩形,11122122BEF S EF BB ∆∴=⋅== 连接AO 交BD 于点O由正方体性质知AO ⊥平面11BDD B ,所以,AO 是点A 到平面11BDD B 的距离,即2AO = 11221334212A BEF BEF V S AO -∆∴=⨯=⨯= A BEF V -∴是定值.选项B:连接11AC 与11B D 交于点M ,连接11,ADAB , 由正方体性质知11AD AB =,M 是11B D 中点,AM EF ∴⊥ ,又1BB EF ⊥,11//BB AAA EFB ∴--的大小即为AM 与1AA 所成的角,在直角三角形1AA M 中,12tan 2MAA ∠=为定值. 选项C:如图,作1111,,,FH A B EG A B ET EG ⊥⊥⊥在直角三角形EFT 中,221cos 45222FT EF =⨯=⨯= 12HG FT ∴== 选项D:当E 与1D 重合时,F 与M 重合,连接AC 与BD 交于点R ,连接1D R ,1//D R BM 异面直线AE 与BF 所成的角,即为异面直线1AD 与1D R 所成的角,在三角形1AD R 中,22111132,2AD D R MB BB M B ===+=22AR =由余弦定理得1cos 6AD R ∠=故选:AC【点睛】 本题考查空间几何体性质问题.求解思路:关键是弄清(1)点的变化,点与点的重合及点的位置变化;(2)线的变化,应注意其位置关系的变化;(3)长度、角度等几何度量的变化.求空间几何体体积的思路:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法;若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.。

平面向量常见题型汇编(含答案)

平面向量常见题型汇编(含答案)
变式11:如图, 为 的外心, 为钝角, 是边 的中点,则 的值为
解析:外心 在 上的投影恰好为它们的中点,分别设为 ,
所以 在 上的投影为 ,而 恰好为 中点,
故考虑 ,
所以
2.范围问题
例题8: 若过点 的直线 与 相交于 两点,则 的取值范围是_______
解析:本题中因为 位置不断变化,所以不易用数量积定义求解,可考虑利用投影,即过 作直线 的垂线,
,则 , ,
由 , 为中点可得: 为 中点,从而 在 方向上的投影分别为 ,由 即可求得 的范围为
3.综合问题
例题10:已知 为直角三角形 的外接圆, 是斜边 上的高,且 , ,点 为线段 的中点,若 是 中绕圆心 运动的一条直径,则 _________
解析:本题的难点在于 是一条运动的直径,所以很难直接用定义求解。
解析:由 可将三角形放入平面直角坐标系中,建立如图坐标系,
其中 , ,
∵ ∴
∵ ,即 当且仅当 时取等号

变式2:已知点A在线段BC上(不含端点),O是直线BC外一点,且 ,则 的最小值是___________
分析:本题主要考查了不等式,不等式求最值问题,属于中档题。解决此类问题,重要的思路是如何应用均值不等式或其他重要不等式,很多情况下,要根据一正、二定、三取等的思路去思考,本题根据条件构造 ,研究的式子分别加1后变形,即可形成所需条件,应用均值不等式.
解析: ,
变式9:在平面上, , ,若 ,则 的取值范围是
分析:以 为入手点,考虑利用坐标系求解,题目中用字母表示:设 ,则 ,所求 范围即为求 的范围。下一步将题目的模长翻译成 关系,再寻找关于 的不等关系即可
解析:如图以 为轴建立坐标系:设 ,

2014高考新课标数学考点总动员 考点4 数形结合,灵活多变,畅游平面向量的世界

2014高考新课标数学考点总动员 考点4 数形结合,灵活多变,畅游平面向量的世界

一.专题综述平面向量融数、形于一体,具有几何与代数的“双重身份”,从而它成为了中学数学知识交汇和联系其他知识点的桥梁.平面向量的运用可以拓宽解题思路和解题方法.在高考试题中,其一主要考查平面向量的性质和运算法则,以及基本运算技能,考查考生掌握平面向量的和、差、数乘和内积的运算法则,理解其几何意义,并能正确的进行计算;其二是考查向量的坐标表示,向量的线性运算;其三是和其它数学知识结合在一起,如和曲线、数列等知识结合.向量的平行与垂直,向量的夹角及距离,向量的物理、几何意义,平面向量基本定理,向量数量积的运算、化简与解析几何、三角、不等式、数列等知识的结合,始终是命题的重点.二.考纲解读1.理解平面向量的概念和向量相等的含义.理解向量的几何表示.掌握向量加法、减法的运算,并理解其几何意义.2.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.了解向量线性运算的性质及其几何意义.3.理解平面向量的基本定理及其意义.掌握平面向量的正交分解及其坐标表示.会用坐标表示平面向量的加法、减法与数乘运算.理解用坐标表示的平面向量共线的条件.4.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系.掌握数量积的坐标表达式,会进行平面向量数量积的运算.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题.6.会用向量方法解决简单的力学问题与其他一些实际问题.三.2012年高考命题趋向1.对向量的加减运算及实数与向量的积的考查向量的加减运算以及实数与向量的积是高考中常考查的问题,常以选择题的形式考查,特别是以平面几何为载体综合考查向量加减法的几何意义,以及实数与向量的积的问题经常出现在高考选择、填空题中,但是难度不大,为中、低档题.2.对向量与其他知识相结合问题的考查平面向量与三角、解析几何等知识相交汇的问题是每年高考的必考内容,并且均出现在解答题中,所占分值较高.其中向量与三角相结合的问题较容易,属中、低档题;而向量与解析几何等知识的结合问题则有一定难度,为中、高档题. 3.在复习中要把知识点、训练目标有机结合.重点掌握相关概念、性质、运算公式、法则等.明确平面向量具有几何形式和代数形式的双重身份,能够把向量的非坐标公式和坐标公式进行有机结合,注意“数”与“形”的相互转换.在复习中要注意分层复习,既要复习基本概念、基本运算,又要能把向量知识和其它知识(如曲线、数列、函数、三角等)进行横向联系,以体现向量的工具性.四.高频考点解读考点一向量的几何运算例1 [2011·四川卷] 如图1-2,正六边形ABCDEF 中,BA →+CD →+EF →=( )图1-2A .0 B.BE → C.AD → D.CF → 【答案】D【解析】 BA →+CD →+EF →=BA →+AF →-BC →=BF →-BC →=CF →,所以选D. 【解题技巧点睛】当向量以几何图形的形式出现时,要把这个几何图形中的一个向量用其余的向量线性表示,就要根据向量加减法的法则进行,特别是减法法则很容易使用错误,向量MN ON OM =-(其中O 为我们所需要的任何一个点),这个法则就是终点向量减去起点向量.考点三 向量平行与垂直例4[2011·广东卷] 已知向量a =(1,2),b =(1, 0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=( ) A.14 B.12C .1D .2 【答案】B【解析】 因为a +λb =(1,2)+λ(1,0)=(1+λ,2),又因为(a +λb )∥c ,所以(1+λ)×4-2×3=0,解得λ=12.例5[2011·课标全国卷] 已知a 与b 为两个不共线的单位向量,k 为实数,若向量a +b 与向量k a -b 垂直,则k =________. 【答案】1 【解析】 由题意,得(a +b )·(k a -b )=k ||a 2-a ·b +k a ·b -||b 2=k +(k -1)a ·b -1=(k -1)(1+a ·b )=0,因为a 与b 不共线,所以a ·b ≠-1,所以k -1=0,解得k =1.考点四 向量的数量积、夹角与模例6[2011·广东卷] 若向量a ,b ,c 满足a ∥b 且a ⊥c ,则c·(a +2b )=( )A .4B .3C .2D .0 【答案】D【解析】 因为a ∥b 且a ⊥c ,所以b ⊥c ,所以c·(a +2b )=c·a +2b·c =0.例7[2011·湖南卷] 在边长为1的正三角形ABC 中,设BC →=2BD →,CA →=3CE →,则AD →·BE →=________.【答案】-14【解析】 由题知,D 为BC 中点,E 为CE 三等分点,以BC 所在的直线为x 轴,以AD 所在的直线为y 轴,建立平面直角坐标系,可得A ⎝⎛⎭⎫0,32,D (0,0),B ⎝⎛⎭⎫-12,0,E ⎝⎛⎭⎫13,36,故AD →=⎝⎛⎭⎫0,-32,BE →=⎝⎛⎭⎫56,36,所以AD →·BE →=-32×36=-14.例8[2011·江西卷] 已知|a |=|b |=2,(a +2b )·(a -b )=-2,则a 与b 的夹角为________.【答案】 π3【解析】 设a 与b 的夹角为θ,由(a +2b )(a -b )=-2得|a |2+a ·b -2|b |2=4+2×2×cos θ-2×4=-2,解得cos θ=12,∴θ=π3.例9[2011·课标全国卷] 已知a 与b 均为单位向量,其夹角为θ,有下列四个命题:p 1:|a +b |>1⇔θ∈⎣⎡⎭⎫0,2π3;p 2:|a +b |>1⇔θ∈⎝⎛⎦⎤2π3,π p 3:|a -b |>1⇔θ∈⎣⎡⎭⎫0,π3;p 4:|a -b |>1⇔θ∈⎝⎛⎦⎤π3,π. 其中的真命题是( )A .p 1,p 4B .p 1,p 3C .p 2,p 3D .p 2,p 4 【答案】A【解析】 因为||a +b >1⇔||a 2+2a ·b +||b 2>1⇔a ·b >-12⇔||a ||b cos θ=cos θ>-12⇔θ∈⎣⎡⎭⎫0,2π3,所以p 1为真命题,p 2为假命题.又因为||a -b >1⇔||a 2-2a ·b +||b 2>1⇔a ·b <12⇔||a ||b cos θ=cos θ<12⇔θ∈⎝⎛⎦⎤π3,π,所以p 4为真命题,p 3为假命题. 【解题技巧点睛】求向量的数量积的公式有两个:一是定义式a ·b=|a||b|cos θ;二是坐标式a ·b=x 1x 2+y 1y 2.定义式的特点是具有强烈的几何含义,需要明确两个向量的模及夹角,夹角的求解方法灵活多样,一般通过具体的图形可确定,因此采用数形结合思想是利用定义法求数量积的一个重要途径.坐标式的特点是具有明显的代数特征,解题时需要引入直角坐标系,明确向量的坐标进行求解,即向量问题“坐标化”,使得问题操作起来容易、方便.考点五 向量的应用例10[2011·山东卷] 设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2,已知平面上的点C ,D 调和分割点A ,B ,则下面说法正确的是( ) A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点 C .C 、D 可能同时在线段AB 上D .C 、D 不可能同时在线段AB 的延长线上 【答案】D【解析】 若C 、D 调和分割点A ;B ,则AC →=λAB →(λ∈R ),AD →=μAB →(μ∈R ),且1λ+1μ=2.对于A :若C 是线段AB 的中点,则AC →=12AB →⇒λ=12⇒1μ=0,故A 选项错误;同理B 选项错误;对于C :若C 、A 同时在线段AB 上,则0<λ<1,0<μ<1⇒1λ+1μ>2,C 选项错误;对于D :若C 、D 同时在线段AB 的延长线上,则λ>1,μ>1⇒1λ+1μ<2,故C 、D 不可能同时在线段AB 的延长线上,D 选项正确.例11[2011·福建卷] 已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2,x ≤1,y ≤2上的一个动点,则OA →·OM →的取值范围是( ) A .[-1,0] B .[0,1] C .[0,2] D .[-1,2] 【答案】C【解析】 画出不等式组表示的平面区域(如图1-2), 又OA →·OM →=-x +y ,取目标函数z =-x +y ,即y =x +z ,作斜率为1的一组平行线,当它经过点C (1,1)时,z 有最小值,即z min =-1+1=0; 当它经过点B (0,2)时,z 有最大值,即z max =-0+2=2.∴ z 的取值范围是[0,2],即OA →·OM →的取值范围是[0,2],故选C. 例12[2011·陕西卷] 叙述并证明余弦定理.【解答】 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦之积的两倍.或:在△ABC 中,a ,b ,c 为A ,B ,C 的对边,有a 2=b 2+c 2-2bc cos A , b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C .证法一:如图1-9,a 2=BC →·BC →=(AC →-AB →)·(AC →-AB →) =AC →2-2AC →·AB →+AB →2 =AC →2-2|AC →|·|AB →|cos A +AB →2 =b 2-2bc cos A +c 2, 即a 2=b 2+c 2-2bc cos A .同理可证b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C .证法二:已知△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,以A 为原点,AB 所在直线为x 轴建立直角坐标系(如图1-10),则C (b cos A ,b sin A ),B (c,0),∴a 2=|BC |2=(b cos A -c )2+(b sin A )2 =b 2cos 2A -2bc cos A +c 2+b 2sin 2A =b 2+c 2-2bc cos A .同理可证b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C . 【解题技巧点睛】平面向量的综合运用主要体现在三角函数和平面解析几何中.在三角函数问题中平面向量的知识主要是给出三角函数之间的一些关系,解题的关键还是三角函数问题,这类问题可以和三角函数中的一些题型相互对比;解析几何中向量知识只要是给出一些几何量的位置和数量关系,在解题中要善于根据向量知识分析解析几何中的几何量之间的关系,最后的解题还得落实到解析几何方面.考点六 与向量相关的最值问题例12[2011·全国卷] 设向量a ,b ,c 满足|a |=|b |=1,a ·b =-12,〈a -c ,b -c 〉=60°,则|c |的最大值等于( )A .2 B. 3 C. 2 D .1 【答案】A 【解析】 设向量a ,b ,c 的起点为O ,终点分别为A ,B ,C ,由已知条件得,∠AOB =120°,∠ACB =60°,则点C 在△AOB 的外接圆上,当OC 经过圆心时,|c |最大,在△AOB 中,求得AB =3,由正弦定理得△AOB 外接圆的直径是3sin120°=2,||c 的最大值是2,故选A.例13[2011·辽宁卷] 若a ,b ,c 均为单位向量,且a·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( )A.2-1 B .1 C. 2 D .2 【答案】 B【解析】 |a +b -c |=(a +b -c )2=a 2+b 2+c 2+2a ·b -2a ·c -2b ·c ,由于a ·b =0,所以上式=3-2c ·(a +b ),又由于(a -c )·(b -c )≤0,得(a +b )·c ≥c 2=1,所以|a +b -c |=3-2c ·(a +b )≤1,故选B. 例14[2011·天津卷] 已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P是腰DC 上的动点,则|P A →+3PB →|的最小值为________. 【答案】5【解析】 建立如图1-6所示的坐标系,设DC =h ,则A (2,0),B (1,h ).设P (0,y ),(0≤y ≤h ) 则P A →=(2,-y ),PB →=(1,h -y ),∴||P A →+3PB →=25+(3h -4y )2≥25=5.例15[2011·浙江卷] 若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是________.【答案】⎣⎡⎦⎤π6,5π6【解析】 由题意得:||α||βsin θ=12,∵||α=1,||β≤1,∴sin θ=12||β≥12.又∵θ∈(0,π),∴θ∈⎣⎡⎦⎤π6,5π6.【解题技巧点睛】平面向量中的最值和范围问题,是一个热点问题,也是难点问题,这类试题的基本类型是根据给出的条件求某个量的最值、范围,如一个向量模的最值、两个向量夹角的范围等.最值和范围问题都是在变动的情况下,某个量在一个特殊情况上取得极端值,也就是在动态的情况下确定一个静态的情况,使得这个情况下某个量具有特殊的性质(如最大、最小、其余情况下都比这个量大等).在数学上解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,这个思想在平面向量的最值、范围问题中也是适用的,但平面向量兼具“数”与“形”的双重身份,解决平面向量最值、范围问题的另一个基本思想是数形结合.针对训练一.选择题1.【湖北省孝感市2011—2012学年度高中三年级第一次统一考试】设向量31(,cos ),(sin ,),//,23a b a b θθθ==向量且则锐角为 ( )A .60°B .30°C .75°D .45°答案:D .解析:31,cos sin 0,sin 2 1.(0,90),290,45.23a b θθθθθθ∴⨯-⨯=∴=∈∴=∴= ∥2.【2012届江西省重点中学协作体高三第一次联考】已知()()2,1,1,3-=-=,若()()k ++-∥2,则实数k 的值是( )A. -17B. 21- C. 1819 D.35 答案:B解析: 由已知得2(7,4)a b -+=- ,(3,12)a kb k k +=-+-,又因为两向量平行,所以7(12)4(3)k k -=--+,计算可得实数k 的值是12-。

必修四 2.2 平面向量的线性运算(教案)

必修四 2.2  平面向量的线性运算(教案)

人教版新课标普通高中◎数学④必修2.2 平面向量的线性运算教案 A第1课时教学目标一、知识与技能1.掌握向量的加减法运算,并理解其几何意义.2.会用三角形法则和平行四边形法则作两个向量的和向量和差向量,培养数形结合解决问题的能力.3.通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加减法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;二、过程与方法1.位移、速度和力这些物理量都是向量,可以合成,而且知道这些矢量的合成都遵循平行四边形法则,由此引入本课题.2.运用向量的定义和向量相等的定义得出向量加减法的三角形法则、平行四边形法则,并对向量加法的交换律、结合律进行证明,同时运用他们进行相关计算,这可让同学们进一步加强对向量几何意义的理解.三、情感、态度与价值观1.通过本节内容的学习,让学生认识事物之间的相互转化,培养学生的数学应用意识.2.体会数学在生活中的作用.培养学生类比、迁移、分类、归纳等能力.教学重点、难点教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量和差向量.教学难点:理解向量加减法的定义.教学关键:向量加法的三角形法则和平行四边形法则的探究引导.教学突破方法:由物理中力的合成与分解拓展延伸,引导学生探讨得到结论.教法与学法导航教学方法;启发诱导,讲练结合.学习方法:数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律.教学准备教师准备:多媒体或实物投影仪、尺规.1教师备课系统──多媒体教案2 学生准备:练习本、尺规.教学过程一、创设情境,导入新课上一节,我们一起学习了向量的有关概念,明确了向量的表示方法,了解了零向量、单位向量、平行向量、相等向量等概念,并接触了这些概念的辨析判断.数能进行运算,向量是否也能进行运算呢?这一节,我们将借助于物理中位移的合成、力的合成来学习向量的加法和减法.二、主题探究,合作交流提出问题:1.类比数的加法,猜想向量的加法,应怎样定义向量的加法?2.向量加法的法则是什么?3.与数的运算法则有什么不同?师生互动:向量是既有大小、又有方向的量,教师引导学生回顾物理中位移的概念,位移可以合成,如图.某对象从A点经B点到C点,两次位移AB、BC的结果,与A 点直接到C点的位移AC结果相同.力也可以合成,老师引导,让学生共同探究如下的问题.图(1)表示橡皮条在两个力的作用下,沿着G C的方向伸长了EO;图(2)表示撤去F1和F2,用一个力F作用在橡皮条上,使橡皮条沿着相同的方向伸长相同的长度.改变力F1与F2的大小和方向,重复以上的实验,你能发现F与F1、F2之间的关系吗?力F对橡皮条产生的效果与力F1与F2共同作用产生的效果相同,物理学中把力F 叫做F1与F2的合力.人教版新课标普通高中◎数学④必修合力F与力F1、F2有怎样的关系呢?由图(3)发现,力F在以F1、F2为邻边的平行四边形的对角线上,并且大小等于平行四边形对角线的长.数的加法启发我们,从运算的角度看,F可以认为是F1与F2的和,即位移、力的合成看作向量的加法.讨论结果:1.向量加法的定义:如下图,已知非零向量a、b,在平面内任取一点A,作AB=a,BC=b,则向量AC叫做a与b的和,记作a +b,即a+b=AB+BC=AC.求两个向量和的运算,叫做向量的加法.2.向量加法的法则:(1)向量加法的三角形法则在定义中所给出的求向量和的方法就是向量加法的三角形法则.运用这一法则时要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量的终点的向量即为和向量.位移的合成可以看作向量加法三角形法则的物理模型.(2)向量加法的平行四边形法则如图,以同一点O为起点的两个已知向量a、b为邻边作平行四边形,则以O为起点的对角线OC就是a与b的和.我们把这种作两个向量和的方法叫做向量加法的平行四边形法则.力的合成可以看作向量加法平行四边形法则的物理模型.对于零向量与任一向量a,我们规定a+0=0+a=a.提出问题1.两共线向量求和时,用三角形法则较为合适.当在数轴上表示两个向量时,它们的加法与数的加法有什么关系?2.思考|a+b|,|a|,|b|存在着怎样的关系?3.数的运算和运算律紧密联系,运算律可以有效地简化运算.类似地,向量的加法是否也有运算律呢?师生互动:观察实际例子,教师启发学生思考,并适时点拨,诱导,探究向量的加法在特殊情况下的运算,共线向量加法与数的加法之间的关系.数的加法满足交换律与3教师备课系统──多媒体教案结合律,即对任意a,b∈R,有a+b=b+a,(a+b)+c=a+(b+c).任意向量a,b的加法是否也满足交换律和结合律?引导学生画图进行探索.讨论结果:1.两个数相加其结果是一个数,对应于数轴上的一个点;在数轴上的两个向量相加,它们的和仍是一个向量,对应于数轴上的一条有向线段.2.当a,b不共线时,|a+b|<|a|+|b|(即三角形两边之和大于第三边);当a,b共线且方向相同时,|a+b|=|a|+|b|;当a,b共线且方向相反时,|a+b|=|a|-|b|(或|b|-|a|).其中当向量a的长度大于向量b的长度时,|a+b|=|a|-|b|;当向量a的长度小于向量b的长度时,|a+b|=|b|-|a|.一般地,我们有|a+b|≤|a|+|b|.3.如下左图,作AB=a,AD=b,以AB、A D为邻边作ABC D,则BC=b,DC=a.因为AC=AB+AD=a+b,AC=AD+DC=b+a,所以a+b=b+a.如上右图,因为AD=AC+CD=(AB+BC)+CD=(a+b)+c,AD=AB+BD=AB+(BC+CD)=a+(b+c),所以(a+b)+c=a+(b+c).综上所述,向量的加法满足交换律和结合律.提出问题①如何理解向量的减法?②向量的加法运算有平行四边形法则和三角形法则,那么,向量的减法是否也有类似的法则?师生互动:数的减法运算是数的加法运算的逆运算,数的减法定义即减去一个数等于加上这个数的相反数,因此向量的减法运算也可定义为向量加法运算的逆运算.可类比数的减法运算,我们定义向量的减法运算,也应引进一个新的概念,这个概念又该如何定义?引导学生思考,相反向量有哪些性质?由于方向反转两次仍回到原来的方向,因此a和-a互为相反向量.于是-(-a)=a.我们规定,零向量的相反向量仍是零向量.任一向量与其相反向量的和是零向量,即a+(-a)=(-a)+a=0.所以,如果a、b是互为相反的向量,那么4人教版新课标普通高中◎数学④必修a=-b,b=-a,a +b=0.A.平行四边形法则如上图,设向量AB=b,AC=a,则AD=-b,由向量减法的定义,知AE=a+(-b)=a-b.又b+BC=a,所以BC=a-b.由此,我们得到a-b的作图方法.B.三角形法则如上图,已知a、b,在平面内任取一点O,作OA=a,OB=b,则BA=a-b,即a-b 可以表示为从b的终点指向a的终点的向量,这是向量减法的几何意义.讨论结果:①向量减法的定义.我们定义a-b=a+(-b),即减去一个向量相当于加上这个向量的相反向量.规定:零向量的相反向量是零向量.②向量的减法运算也有平行四边形法则和三角形法则,这也正是向量的运算的几何意义所在,是数形结合思想的重要体现.三、拓展创新,应用提高例1如下左图,已知向量a、b,求作向量a+b.活动:教师引导学生,让学生探究分别用向量加法的三角形法则和平行四边形法则作两个向量的和向量.在向量加法的作图中,学生体会作法中在平面内任取一点O的依据——它体现了向量起点的任意性.在向量作图时,一般都需要进行向量的平移,用平行四边形法则作图时应强调向量的起点放在一起,而用三角形法则作图则要求首尾相连.5教师备课系统──多媒体教案 6 解:作法一:在平面内任取一点O (上中图),作OA =a ,AB =b ,则OB =a +b .作法二:在平面内任取一点O (上右图),作OA =a ,OB =b .以OA 、OB 为邻边作OACB ,连接OC ,则OC =a +b . 例2 长江两岸之间没有大桥的地方,常常通过轮渡进行运输.如下图所示,一艘船从长江南岸A 点出发,以5 k m/h 的速度向垂直于对岸的方向行驶,同时江水的速度为向东2 k m/h .(1)试用向量表示江水速度、船速以及船实际航行的速度(保留两个有效数字);(2)求船实际航行的速度的大小与方向(用与江水速度间的夹角表示,精确到度).活动:本例结合一个实际问题说明向量加法在实际生活中的应用.这样的问题在物理中已有涉及,这里是要学生能把它抽象为向量的加法运算,体会其中应解决的问题是向量模的大小及向量的方向(与某一方向所成角的大小).引导点拨学生正确理解题意,将实际问题反映在向量作图上,从而与初中学过的解直角三角形建立联系.解:如上右图所示,AD 表示船速,AB 表示水速,以A D 、AB 为邻边作ABC D ,则AC 表示船实际航行的速度.(2)在Rt △ABC 中,|AB |=2,|BC |=5,所以|AC |=2952|||AB |2222=+=+BC ≈5.4. 因为tan ∠CAB =229,由计算器得∠CAB =68°. 答:船实际航行速度的大小约为5.4 km/h ,方向与水的流速间的夹角为68°. 点评:用向量法解决物理问题的步骤为:先用向量表示物理量,再进行向量运算,最后回扣物理问题,解决问题.例3 如图(1)已知向量a 、b 、c 、d ,求作向量a -b ,c -d .活动:教师让学生亲自动手操作,引导学生注意规范操作,为以后解题打下良好基础;点拨学生根据向量减法的三角形法则,需人教版新课标普通高中◎数学④ 必修 7 要选点平移作出两个同起点的向量. 作法:如图(2),在平面内任取一点O ,作OA =a ,OB =b ,OC =c ,OD =d .则BA =a -b ,DC =c -d .例4 如图,ABC D 中, AB =a ,AD =b ,你能用a 、b 表示向量AC 、DB 吗?活动:本例是用两个向量表示几何图形中的其他向量,这是用向量证明几何问题的基础.要多注意这方面的训练,特别要掌握用向量表示平行四边形的四条边与两条对角线的关系.解:由向量加法的平行四边形法则,我们知道AC =a +b ,同样,由向量的减法,知DB =AB -AD =a -b .四、小结1.先由学生回顾本节学习的数学知识:向量的加法定义,向量加法的三角形法则和平行四边形法则,向量加法满足交换律和结合律,几何作图,向量加法的实际应用.2.教师与学生一起总结本节学习的数学方法:特殊与一般,归纳与类比,数形结合,分类讨论,特别是通过知识迁移类比获得新知识的过程与方法.课堂作业1.下列等式中,正确的个数是( )①a +b =b +a ②a -b =b ③0-a =-a ④-(-a )=a ⑤a +(-a )=0A .5B .4C .3D .22.如图,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则AF -DB 等于( )A .FDB .FC C .FED .BE3.下列式子中不能化简为AD 的是( )A .(AB +CD )+BC B .(AD +MB )+(BC +CM )C .BM AD MB -+ D .OC -OA +CD教师备课系统──多媒体教案8 4.已知A、B、C三点不共线,O是△ABC内一点,若OA+OB+OC=0,则O是△ABC的()A.重心B.垂心C.内心D.外心参考答案:1.C 2.D 3.C 4.A.第2课时教学目标一、知识与技能1.通过经历探究数乘运算法则及几何意义的过程,掌握实数与向量积的定义,理解实数与向量积的几何意义,掌握实数与向量的积的运算律.2.理解两个向量共线的等价条件,能够运用两向量共线条件判定两向量是否平行.二、过程与方法充分抓住本节教学中的学生探究、猜想、推证等活动,引导学生画出草图帮助理解题意和解决问题.先由学生探究向量数乘的结果还是向量(特别地0·a=0),它的几何意义是把向量a沿a的方向或a的反方向放大或缩小,当λ>0时,λa与a方向相同,当λ<0时,λa与a方向相反;向量共线定理用来判断两个向量是否共线.然后对所探究的结果进行运用拓展.三、情感、态度与价值观通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法,培养创新能力和积极进取精神.通过解决具体问题,体会数学在生活中的重要作用.教学重点、难点教学重点:实数与向量积的意义、两个向量共线的等价条件及其运用.教学难点:对向量共线的等价条件的理解运用.教学关键:两个向量共线的等价条件的探究过程的引导.教学突破方法:从向量共线的定义出发,引导学生分组讨论,得出结果.教法与学法导航教学方法:问题式教学,启发诱导.学习方法:合作探讨,在向量加减法的基础上进行推广.教学准备教师准备:多媒体、尺规.学生准备:练习本、尺规.教学过程一、创设情境,导入新课前一节课,我们一起学习了向量加减法运算,这一节,我们将在加法运算基础上研究相同向量和的简便计算及推广.在代数运算中,a+a+a=3a,故实数乘法可以看成是相人教版新课标普通高中◎数学④ 必修 9同实数加法的简便计算方法,那么相同向量的求和运算是否也有类似的简便计算.二、主题探究,合作交流 提出问题: ① 探究:已知非零向量a ,试一试作出a +a +a 和(-a )+(-a )+(-a ).② 你能说明它们的几何意义吗?③ 引入向量数乘运算后,你能发现数乘向量与原向量之间的位置关系吗?怎样理解两向量平行?与两直线平行有什么异同?师生互动:引导学生回顾相关知识并猜想结果,对于运算律的验证,点拨学生通过作图来进行.通过学生的动手作图,让学生明确向量数乘运算的运算律及其几何意义.教师要引导学生特别注意0·a =0,而不是0·a =0.这个零向量是一个特殊的向量,它似乎很不起眼,但又处处存在,稍不注意就会出错,所以要引导学生正确理解和处理零向量与非零向量之间的关系.实数与向量可以求积,但是不能进行加、减运算,比如λ+a ,λ-a 都无法进行.向量数乘运算的运算律与实数乘法的运算律很相似,只是数乘运算的分配律有两种不同的形式:(λ+μ)a =λa +μa 和λ(a +b )=λa +λb ,数乘运算的关键是等式两边向量的模相等,方向相同.判断两个向量是否平行(共线),实际上就是看能否找出一个实数,使得这个实数乘以其中一个向量等于另一个向量.一定要切实理解两向量共线的条件,它是证明几何中的三点共线和两直线平行等问题的有效手段.对问题①,学生通过作图可发现,OC =OA +AB +BC =a +a +a .类似数的乘法,可把a +a +a 记作3a ,即OC =3a .显然3a 的方向与a 的方向相同,3a 的长度是a 的长度的3倍,即|3a |=3|a |.同样,由下图可知,PN =MN QM PQ ++=(-a )+(-a )+(-a ),即(-a )+(-a )+(-a )=3(-a ).显然3(-a )的方向与a 的方向相反,3(-a )的长度是a 的长度的3倍,这样,3(-a )=-3a .对问题②,上述过程推广后即为实数与向量的积.我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1) |λa |=|λ||a |;(2) 当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反.由(1)可知,λ=0时,λa =0.根据实数与向量的积的定义,我们可以验证下面的运算律.实数与向量的积的运算律:教师备课系统──多媒体教案10 设λ、μ为实数,那么(1)λ(μa)=(λμ)a;(2)(λ+μ)a=λa+μa;(3)λ(a+b)=λa+λb.特别地,我们有(-λ)a=-(λa)=λ(-a),λ(a-b)=λa-λb.对问题③,向量共线的等价条件是:如果a(a≠0)与b共线,那么有且只有一个实数λ,使b=λa.推证过程教师可引导学生自己完成,推证过程如下:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由向量数乘的定义,知a与b共线.反过来,已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当a 与b同方向时,有b=μa;当a与b反方向时,有b=-μa.关于向量共线的条件,教师要点拨学生做进一步深层探究,让学生思考,若去掉a≠0这一条件,上述条件成立吗?其目的是通过0与任意向量的平行来加深对向量共线的等价条件的认识.在判断两个非零向量是否共线时,只需看这两个向量的方向是否相同或相反即可,与这两个向量的长度无关.在没有指明非零向量的情况下,共线向量可能有以下几种情况:(1)有一个为零向量;(2)两个都为零向量;(3)同向且模相等;(4)同向且模不等;(5)反向且模相等;(6)反向且模不等.讨论结果:①数与向量的积仍是一个向量,向量的方向由实数的正负及原向量的方向确定,大小由|λ|·|a|确定.②它的几何意义是把向量a沿a的方向或a的反方向放大或缩小.③向量的平行与直线的平行是不同的,直线的平行是指两条直线在同一平面内没有公共点;而向量的平行既包含没有交点的情况,又包含两个向量在同一条直线上的情形.三、拓展创新,应用提高例1计算:(1)(-3)×4a;(2)3(a+b)-2(a-b)-a;(3)(2a+3b-c)-(3a-2b+c).活动:本例是数乘运算的简单应用,可让学生自己完成,要求学生熟练运用向量数乘运算的运算律.教学中,点拨学生不能将本题看作字母的代数运算,可以让他们在代数运算的同时说出其几何意义,使学生明确向量数乘运算的特点.同时向学生点出,向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a、b,以及任意实数λ、μ1、μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b.解:(1)原式=(-3×4)a=-12a;(2)原式=3a+3b-2a+2b-a=5b;(3)原式=2a+3b-c-3a+2b-c=-a+5b-2c.点评:运用向量运算的运算律,解决向量的数乘.其运算过程可以仿照多项式运算中的“合并同类项”.例2如图,已知任意两个非零向量a、b,试作OA=a+b,OB=a+2b,OC=a+3b.你能判断A、B、C三点之间的位置关系吗?为什么?人教版新课标普通高中◎数学④ 必修11活动:本例给出了利用向量共线判断三点共线的方法,这是判断三点共线常用的方法.教学中可以先引导学生作图,通过观察图形得到A 、B 、C 三点共线的猜想,再将平面几何中判断三点共线的方法转化为用向量共线证明三点共线.本题只要引导学生理清思路,具体过程可由学生自己完成.另外,本题是一个很好的与信息技术整合的题材,教学中可以通过计算机作图,进行动态演示,揭示向量a 、b 变化过程中,A 、B 、C 三点始终在同一条直线上的规律.解:分别作向量OA 、OB 、OC 过点A 、C 作直线AC (如上图).观察发现,不论向量a 、b 怎样变化,点B 始终在直线AC 上,猜想A 、B 、C 三点共线.事实上,因为AB =OB -OA =a +2b -(a +b )=b , 而AC =OC -OA =a +3b -(a +b )=2b , 于是AC =2AB .所以A 、B 、C 三点共线.点评:关于三点共线问题,学生接触较多,这里是用向量证明三点共线,方法是必须先证明两个向量共线,并且有公共点.教师引导学生解完后进行反思,体会向量证法的新颖独特.例3 如图,ABC D 的两条对角线相交于点M ,且AB =a ,AD =b ,你能用a 、b 表示MA MB MC 、、和MD 吗?活动:本例的解答要用到平行四边形的性质.另外,用向量表示几何元素(点、线段等)是用向量方法证明几何问题的重要步骤,教学中可以给学生明确指出这一点.教师备课系统──多媒体教案12解:在ABC D 中,∵AC =AB +AD =a +b ,DB =AB -AD =a -b , 又∵平行四边形的两条对角线互相平分, ∴MA =21-AC =21-(a +b )=21-a -21b , MB =21DB =21(a -b )=21a -21b ,MC =21AC =21a +21b ,MD =MB -=-21DB =-21a +21b .点评:结合向量加法和减法的平行四边形法则和三角形法则,将两个向量的和或差表示出来,这是解决这类几何题的关键.四、小结1.让学生回顾本节学习的数学知识:向量的数乘运算法则,向量的数乘运算律,向量共线的条件.2.体会本节学习中用到的思想方法:特殊到一般、归纳、猜想、类比、分类讨论、等价转化.课堂作业1.31[21(2a +8b )-(4a -2b )]等于( ) A .2a -b B .2b -a C .b -a D .a -b2.设两非零向量e 1、e 2不共线,且k e 1+e 2与e 1+k e 2共线,则k 的值为( ) A .1 B .-1 C .±1 D .0 3.若向量方2x -3(x -2a )=0,则向量x 等于( )A .56a B .-6a C .6a D .56-a 4.在△ABC 中,AE =51AB ,EF ∥BC ,EF 交AC 于F ,设AB =a ,AC =b ,则BF用a 、b 表示的形式是BF =_________.5.在△ABC 中,M 、N 、P 分别是AB 、BC 、CA 边上的靠近A 、B 、C 的三等分点,O 是△ABC 平面上的任意一点,若OA +OC OB +=31e 1-21e 2,则OP ON OM ++=________.人教版新课标普通高中◎数学④ 必修136.已知△ABC 的重心为G ,O 为坐标原点,OA =a ,OB =b ,OC =c , 求证:OG =31(a +b +c ).参考答案:1.B2. C3. C 4.-a +51b 5.31e 1-21e 2. 6.连接A G 并延长,设A G 交BC 于M . ∵AB =b -a ,AC =c -a ,BC =c -b ,∴AM =AB +21BC =(b -a )+21(c -b )=21(c +b -2a ). ∴AG =32AM =31(c +b -2a ).∴OG =OA +AG =a +31(c +b -2a )=31(a +b +c ).教案 B第1课时教学目标一、知识与技能1.理解向量加减法的含义,并掌握加减法的三角形法则和平行四边形法则; 2.会用向量加法的交换律与结合律进行向量运算. 二、过程与方法经历向量加减法概念、法则的建构过程;通过观察、实验、类比、归纳等方法培养学生发现问题、分析问题、解决问题的能力.三、情感、态度与价值观经历运用数学来描述和刻画现实世界的过程;在动手探究、合作交流中培养学生勇于探索、敢于创新的个性品质. 教学重点、难点重点:运用向量加减法的三角形法则和平行四边形法则,作两个向量的和向量和差向量.难点: 理解向量的加减法法则及其几何意义.教师备课系统──多媒体教案14教学设想一、创设情境:类比是人类思维中最具创新的一部分,数能进行加减乘除的运算,向量也具有数的特征,那么向量也应该是可以进行运算的,那么向量的运算又如何呢?二、探究新知:(一)教师引导学生仔细阅读课本,分组讨论,归纳如下: 1.定义:求两个向量的和的运算,叫做向量的加法. 注意:两个向量的和仍旧是向量(简称和向量)2.三角形法则:强调:(1)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点. (2)可以推广到n 个向量连加.(3)a a a =+=+00.(4)不共线向量都可以采用这种法则——三角形法则. 3.已知向量a 、b ,求作向量a +b . 作法:在平面内取一点O , 作a OA = b AB =, 则b a OB +=.4.加法的交换律和平行四边形法则 上题中b +a 的结果与a +b 是否相同,验证结果相同.从而得到:(1)向量加法的平行四边形法则;(2)向量加法的交换律:a +b =b +a . 5. 向量加法的结合律:ABC Daca +b+c ba +bb+c ●A B a +b a +b a a b b a b a a +b b O ABaaa bb b人教版新课标普通高中◎数学④ 必修15(a +b ) +c =a + (b +c )证:作图:使a AB =, b BC =, c CD =,则(a +b ) +c =AD CD AC =+,a + (b +c ) =AD BD AB =+,∴(a +b ) +c =a + (b +c ).从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.(二)教师引导学生仔细阅读课本,类比向量加法的定义和运算法则,分组讨论,归纳如下:1.用“相反向量”定义向量的减法(1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a . (2) 规定:零向量的相反向量仍是零向量.-(-a )= a .任一向量与它的相反向量的和是零向量.a +(-a )= 0. 如果a 、b 互为相反向量,则a = -b , b = -a ,a + b = 0.(3) 向量减法的定义:.向量a 加上的b 相反向量,叫做a 与b 的差. 即:a - b = a +(-b ).求两个向量差的运算叫做向量的减法.2.用加法的逆运算定义向量的减法:向量的减法是向量加法的逆运算:若b + x = a ,则x 叫做a 与b 的差,记作a - b . 3.求作差向量:已知向量a 、b ,求作差向量. ∵(a -b )+ b = a +(-b )+ b = a + 0 = a .作法:在平面内取一点O , 作OA = a ,OB = b . 则BA = a - b .即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量.AOABaB ’b -bbBa + (-b )abO a bBa ba -b教师备课系统──多媒体教案16注意:(1)BA 表示a - b .强调:差向量“箭头”指向被减数.(2)用“相反向量”定义法作差向量,a - b = a + (-b ).显然,此法作图较繁,但最后作图可统一.4.探究:(1)如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b - a .(2)若a ∥b , 如何作出a - b ? 三、例题讲解例1 如图,O 为正六边形ABC D EF 的中心,作出下列向量:(1)OA +OC ;(2)BC +FE ;(3)OA +FE .解:(1)因四边形OABC 是以OA 、OC 为邻边的平行四边形,OB 是其对角线, 故OA +OC =OB .(2)因BC =FE ,故BC +EF 与BC 方向相同,长度为BC 的长度的2倍, 故BC +FE =AD . (3)因OD =FE , 故OA +FE =OA +OD =0.点评: 向量的运算结合平面几何知识,在长度和方向两个方面做文章.应深刻理解向a -b A A B B B ’ O a -b a a bb O A O B a -b a -b B A O -b。

专题11_平面向量(解析版)

专题11_平面向量(解析版)
16
= 3t 2
【漪漪点睛】本题考查的是平面向量基本定理与向量的拆分,需要选择合适的基底,再把其它向量都用
基底表示,同时利用向量共线转化为函数求最值.
8.【2018 年高考北京卷理数】设 a,b 均为单位向量,则“ a 3b 3a b ”是“a⊥b”的
A.充分而不必要条件
B.必要而不充分条件
件或结论是否定式的命题,一般运用等价法.
3.集合法:若 A ⊆ B ,则 A 是 B 的充分条件或 B 是 A 的必要条件;若 A = B ,则 A 是 B 的充要条件.
9.【2017 年高考全国 III 卷理数】在矩形 ABCD 中,AB=1,AD=2,动点 P 在以点 C 为圆心且与 BD 相切
的圆上.若 AP AB AD ,则 的最大值为
A.3
B.2 2
C. 5
D.2
【答案】A
【解析】如图所示,建立平面直角坐标系.
4
墨漪专属资料
设 A 0,1 , B 0,0 , C 2,0 , D 2,1 , P x, y ,
易得圆的半径 r
2
4
2
,即圆 C 的方程是 x 2 y 2 ,
5
5
AP x, y 1 , AB 0, 1 , AD 2,0 ,若满足 AP AB AD ,
x 2
x
x
, , 1 y ,所以 y 1 ,

夹角
a x12 y12
|a|= a a
cos
a b
ab
cos
x1 x2 y1 y2
x12 y12 x2 2 y2 2

平面向量基本定理教案

平面向量基本定理教案

平面向量基本定理教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、教学总结、教学计划、教学心得、教学反思、说课稿、好词好句、教案大全、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic sample essays for everyone, such as work summaries, teaching summaries, teaching plans, teaching experiences, teaching reflections, lecture notes, good words and sentences, lesson plans, essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!平面向量基本定理教案平面向量基本定理教案(精选10篇)作为一名为他人授业解惑的教育工作者,时常需要编写教案,教案是教学活动的依据,有着重要的地位。

平面向量5类解题技巧(解析版)

平面向量5类解题技巧(解析版)

平面向量5类解题技巧(“爪子定理”、系数和(等和线)、极化恒等式、奔驰定理与三角形四心问题、范围与最值问题)技法01“爪子定理”的应用及解题技巧“爪子定理”是平面向量基本定理的拓展,用“爪子定理”能更快速求解,需同学们重点学习掌握知识迁移形如AD =xAB +yAC条件的应用(“爪子定理”)“爪”字型图及性质:(1)已知AB ,AC 为不共线的两个向量,则对于向量AD ,必存在x ,y ,使得AD =xAB+yAC。

则B ,C ,D 三点共线⇔x +y =1当0<x +y <1,则D 与A 位于BC 同侧,且D 位于A 与BC 之间当x +y >1,则D 与A 位于BC 两侧x +y =1时,当x >0,y >0,则D 在线段BC 上;当xy <0,则D 在线段BC 延长线上(2)已知D 在线段BC 上,且BD :CD =m :n ,则AD =n m +n AB +m m +nAC1(全国·高考真题)设D 为△ABC 所在平面内一点,且BC =3CD,则()A.AD =-13AB+43ACB.AD =13AB-43AC C.AD =43AB +13ACD.AD =43AB -13AC 【解析】解析:由图可想到“爪字形图得:AC =14AB +34AD ,解得:AD =-13AB+43AC答案:A2(2023江苏模拟)如图,在△ABC 中,AN =13NC ,P 是BN 上的一点,若AP =mAB +211AC,则实数m 的值为()A.911B.511C.311D.211【解析】解:观察到B ,P ,N 三点共线,利用“爪”字型图,可得AP =mAB +nAN ,且m +n =1,由AN =13NC 可得AN =14AC ,所以AP =mAB +14nAC ,由已知AP =mAB +211AC 可得:14n =211⇒n =811,所以m =311答案:C1(2022·全国·统考高考真题)在△ABC 中,点D 在边AB 上,BD =2DA .记CA =m ,CD =n,则CB =()A.3m -2n B.-2m +3nC.3m +2nD.2m +3n【答案】B【分析】根据几何条件以及平面向量的线性运算即可解出.【详解】因为点D 在边AB 上,BD =2DA ,所以BD =2DA ,即CD -CB =2CA -CD,所以CB =3CD -2CA =3n -2m =-2m +3n .故选:B .2(全国·高考真题)在△ABC 中,AB =c ,AC =b .若点D 满足BD =2DC ,则AD=()A.23b +13c B.53c -23bC.23b -13cD.13b +23c【答案】A【详解】试题分析:AD =AB +BD =c +23AC -AB =c +23b -c =23b +13c,故选A .3(2020·新高考全国1卷·统考高考真题)已知平行四边形ABCD ,点E ,F 分别是AB ,BC 的中点(如图所示),设AB =a ,AD =b ,则EF等于()A.12a +bB.12a -bC.12b -aD.12a +b 【答案】A【分析】利用向量的线性运算,即可得到答案;【详解】连结AC ,则AC 为△ABC 的中位线,∴EF =12AC =12a +12b ,故选:A4(全国·高考真题)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =()A.34AB-14ACB.14AB-34ACC.34AB+14ACD.14AB+34AC【答案】A【分析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得BE =12BA +12BD ,之后应用向量的加法运算法则-------三角形法则,得到BC =BA +AC ,之后将其合并,得到BE=34BA+14AC ,下一步应用相反向量,求得EB =34AB -14AC ,从而求得结果.【详解】根据向量的运算法则,可得BE =12BA +12BD =12BA +14BC =12BA +14BA +AC =12BA+14BA +14AC =34BA +14AC ,所以EB =34AB -14AC ,故选A .【点睛】该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.5(江苏·高考真题)设D 、E 分别是ΔABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC . 若DE =λ1AB +λ2AC(λ1,λ2为实数),则λ1+λ2的值是【答案】12【详解】依题意,DE =DB +BE =12AB +23BC=12AB +23(AC -AB )=-16AB+23AC ,∴-16AB +23AC =λ1AB +λ2AC ,∴λ1=-16,λ2=23,故λ1+λ2=-16+23=12.【考点定位】平面向量的加法、减法法则.分析、计算能力.中等题.技法02系数和(等和线)的应用及解题技巧近年,高考、模考中有关“系数和(等和线)定理”背景的试题层出不穷,学生在解决此类问题时,往往要通过建系或利用角度与数量积处理,结果因思路不清、解题繁琐,导致得分率不高,而向量三点共线定理与等和线巧妙地将代数问题转化为图形关系问题,将系数和的代数运算转化为距离的比例运算,数形结合思想得到了有效体现,同时也为相关问题的解决提供了新的思路,大家可以学以致用知识迁移如图,P 为ΔAOB 所在平面上一点,过O 作直线l ⎳AB ,由平面向量基本定理知:存在x ,y ∈R ,使得OP =xOA +yOB下面根据点P 的位置分几种情况来考虑系数和x +y 的值①若P ∈l 时,则射线OP 与l 无交点,由l ⎳AB 知,存在实数λ,使得OP =λAB 而AB =OB -OA ,所以OP =λOB -λOA ,于是x +y =λ-λ=0②若P ∉l 时,(i )如图1,当P 在l 右侧时,过P 作CD ⎳AB ,交射线OA ,OB 于C ,D 两点,则ΔOCD ∼ΔOAB ,不妨设ΔOCD 与ΔOAB 的相似比为k 由P ,C ,D 三点共线可知:存在λ∈R 使得:OP =λOC +(1-λ)OD =kλOA +k (1-λ)OB 所以x +y =kλ+k (1-λ)=k(ii )当P 在l 左侧时,射线OP 的反向延长线与AB 有交点,如图1作P 关于O 的对称点P ,由(i )的分析知:存在存在λ∈R 使得:OP=λOC +(1-λ)OD =kλOA +(1-λ)OB所以OP=-kλOA +-(1-λ)OB于是x +y =-kλ+-k (1-λ)=-k综合上面的讨论可知:图中OP 用OA ,OB线性表示时,其系数和x +y 只与两三角形的相似比有关。

一体两翼蕴精彩,数形双飞显妙趣——基于知识内涵、思想方法的平面向量解题策略探析

一体两翼蕴精彩,数形双飞显妙趣——基于知识内涵、思想方法的平面向量解题策略探析

[k{x E - c) + ^-] - [ - k(x F - c) + ^-]a ak(x F + 珈)-2kc “ .亠-----------=匕从而得到:1性质1已知椭圆C :4 + 4 = l(a > 6 > 0)a b 12的焦距为2c,且过点若椭圆C 上的两个动a点 E 、F 满足 k PE + k PF = 0,那么 k EF = e.反思2:假设点P 的坐标变为(c,a结论怎样?a a反思3:椭圆有上述结论,双曲线、抛物线会不会也有类似的结论?学生经过探究,得到了如下性质:2 2性质2 已知双曲线C :筈-% = l(a >0,6 >a b0)的焦距为2c,且过点P(c ,—),若双曲线C 上的两a个动点E 、F 满足k PE + k PF 二0,那么A:丽二- e.性质3 已知抛物线C :犷=2p%(p > 0),点P (彳,P ),若抛物线c 上的两个动点E 、F 满足紡E +kpF = 0,那么丘童卩=—由上述结论可以得到圆锥曲线统一的一个优美性质.性质4已知点4是圆锥曲线C 上一个定点,点E 、F 是曲线C 上的两个动点,若点P 和曲线C 的一个焦点的连线与曲线C 的对称轴垂直,且紡g + k…=0,那么 I k EF I = e.通过层层递进式的反思,引导学生在探究中感 悟、内化解题经验,能使学生掌握的知识更具广度和深度,使知识产生“连锁反应”效应,并生成新的问题“生长点”,逐步培养学生运用数学抽象的思维方式思考并解决问题的良好习惯.毋容置疑,数学逻辑推理素养的发展不可能是一朝一夕之功,而是一个持久的系统工程,教师应为学生数学核心素养的发展创设时空,引导学生亲历 数学化的思维过程,感知数学魅力,从而积极主动参与数学学习活动,让数学逻辑推理素养落地开花!参考文献[1] 中华人民共和国教育部制定.普通高中数学课程标准 (2017年版)[M].北京:人民教育出版社,201&[2] 章建跃.树立课程意识,落实核心素养[J].数学通报, 2016(5) :39 -42.一体两翼蕴精彩,数形双飞显妙趣——基于知识内涵、思想方法的平面向量解题策略探析重庆市巴南区西南大学华南城中学(401346) 夏文涛《高中数学课程标准》指出向量是近代数学中 重要和基本的数学概念之一,它是沟通代数、几何与三角的一种工具,有着极其丰富的实际背景鉴 于此,在全国各地高考数学试卷中,平面向量成为了必考内容,其考查形式灵活多样,时常出现内容新颖 别致的题目,它们在考查基础知识和基本技能的同 时,注重对分析问题和解决问题能力的考查.向量进入中学数学课程是一个相对缓慢的过程,直达2003年我国颁布《高中数学课程标准》,平面向量才全面进入高中数学.此后初期高考中,平面向量的考查内容主要是向量的基本运算,突出向量 代数运算公式的运用.随着课程改革的推进,平面向 量的教学日益深入,平面向量广泛运用到代数、三 角、几何等领域,这不仅使我们加深了对向量的认识,也拓展了解决代数、三角、几何问题的思路.与此 同时,高考对平面向量的考查也逐渐发生变化,不仅 重视对向量的基本运算的考查,还注重对向量的几 何意义、向量应用、向量与其他知识的综合.对于这些问题的解决,我们运用向量的代数形式居多,特别是向量的坐标方法,因为向量具有完美的运算结构系统,能够使得问题的解决程序化,也正因如此,我们的向量教学和向量解题更多地围绕着基本运算公式、运算律而进行.其实,这样既不利于我们准确把握平面向量的知识内涵,也使得在学习向量的过程中失去了对数学思想方法的领悟.1.平面向量的知识内涵与数形结合的思想方法从向量的知识内涵上看,向量是一种具有方向的线段,集数与形为一体,既具有代数形式,又具有几何特征,即向量是数形的“一体”,而代数形式和几何特征是向量的“两翼”.一方面,作为代数的对象,向量可以运算,如向量的加法、减法、数乘、数量积等运算,并且在直角坐标系中存在坐标运算形式;另一方面,作为几何的对象,向量具有方向、大小,可以刻画角度、长度、面积、体积等几何度量问题.向量内涵上的数与形的特点,也为数形结合思想提供了良好的载体•平面向量的代数运算、几何意义是向量作为数形结合良好载体的两大形式,在认识向量时,我们就有了数学思想方法的理论支撑,这也为解决向量问题提供了数学思想方法层面的理论依据.2.平面向量代数运算和几何本质的融通性2.1向量加法、减法运算的原理是平行四边形定理如图1,设亦=a,OB=了,由平行四边形法则可得厉+OB=旋,即得旋=a+b.图1同理B4=OA-OB=a-b.这里通过几何图形一平行四边形,用对角线分别把向量代数运算形式的a+b^ -b直观地刻画出来.2.2向量的数乘运算的内涵是线段的伸缩理论如图2,设AABC的三边为a,b,c,记P C=a,AC=b,由平行四边形法则可得页=BC-AC=a-b.根据向量数量积运算公式(a-6尸=a2-2a•b+b2,于是c2=a2+b2-labcosC,此式即为余弦定理.3.平面向量的解题策略向量的数形特点沟通了代数和几何的联系,打通了向量与代数、几何、三角交汇的通道,也为高考向量的命题创新奠定了基础.数学解题策略是最高层次的数学解题方法,是对数学习题途径的概括性认识•戴再平教授认为就局部范围内的题目讨论,若涉及的知识有限,这个范围内题目的解题策略的个数将是有限的,我们可能通过逐一考虑这些题目策略,探索一般规律,归纳出一个逻辑化、模式化的方案,从而形成解题策略•⑷罗增儒教授在《数学解题引论》中指出解题策略具有四个基本特征:①普遍的适应性;②直接的可用性;③方法的二重性;④选择的最优性•⑴基于以上向量知识内涵和数形结合思想,结合最近几年高考平面向量部分试题的特点,我们不难总结出满足以上四个特征的两大策略:(1)从向量的代数形式出发,建立直角坐标系或选择恰当的公式,回归代数运算;(2)从向量的几何意义出发,构造恰当的几何图形,转化为几何问题.两大解题策略,各有优势,面对一个具体问题,可能要发挥向量的运算优势解题,而优势需要透过表象,揭示出问题的几何本质,以简化运算.这里,我们根据两大解题策略,通过对高考平面向量部分试题的分析和研究,总结出平面向量问题解决的基本思路和过程:设OA=a,不妨令I a I=a,Aa(A>0)表示与:同方向,大小是M的向量;Aa(A<0)表示与:反方向,大小是入a的向量.因向量可以自由平移,显然入:与:平行(共线),于是就得到共线定理:两个非零向量a和6共线有且只有存在非零“,使得6=/j,a.2.3向量的数量积运算的内涵是余弦定理⑸4.典型例题分析根据以上平面向量解题策略,我们从全国各地4图3bbD.B22图4•>所以C 的轨Tyy - sin0/久2 + y223 y -7b I cos45° +1 b 12 =10,1 b\2 -2^2 \ b6 = 0①,所以丨了 I = 3Q 或丨了 I = -Q (舍).27a - c , CB =b -c ,因<a-b,a-^>= 60。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


例1:
已知a是平面内的单位向量,若向量b 满足b a-b =0,求 b 的取值范围

变式1:已知a是平面内的单位向量, 且b与a-b的夹角为120,求 b 的取值范围
例2:
已知 :| a | |b|=1,且a, b的夹角为120 .问t 为何值时,

小结
• 1.可以考虑从数和形两方面出发解决 向量问题. • 2.数形结合关键(难点)是构造几何 图形 要关注向量的大小(模)、方向 (夹角)、可平移性
课后练互相垂直的单 位向量,若向量c满足 a-c b-c =0, 求 c 的最大值 2. 已知a, b是平面内两个单位向量, 1 a b=- ,若向量c满足 a-c, b-c >=60, 2 求 c 的最大值
一、引入
(1)已知a, b为非零向量,且a b, 求证: b a b a
(2)若a (cos ,sin ), b (cos ,sin ), 求证 a b a b



练习:
设向量a, b, c满足a b c 0, a b, | a | 1,| b | 2,则 c




|a-tb|值最小?
变式:已知向量a b, b =1,对任意t R, 恒有 a tb a b ,则( ) A. a b B. a (a b) C. b (a b) D.(a b) (a b)
相关文档
最新文档