高三数学下册单元测试题11

合集下载

人教版高三数学下学期平面向量多选题单元测试综合卷学能测试试卷

人教版高三数学下学期平面向量多选题单元测试综合卷学能测试试卷

人教版高三数学下学期平面向量多选题单元测试综合卷学能测试试卷一、平面向量多选题1.已知集合()(){}=,M x y y f x =,若对于()11,x y M ∀∈,()22,x y M ∃∈,使得12120x x y y +=成立,则称集合M 是“互垂点集”.给出下列四个集合:(){}21,1M x y y x ==+;(){2,M x y y ==;(){}3,xM x y y e ==;(){}4,sin 1M x y y x ==+.其中是“互垂点集”集合的为( )A .1MB .2MC .3MD .4M【答案】BD 【分析】根据题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥,结合函数图象即可判断.【详解】由题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥.在21y x =+的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以1M 不是“互垂点集”集合;对y =所以在2M 中的任意点()11,P x y ,在2M 中存在另一个P ',使得OP OP '⊥, 所以2M 是“互垂点集”集合;在xy e =的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以3M 不是“互垂点集”集合;对sin 1y x =+的图象,将两坐标轴绕原点进行任意旋转,均与函数图象有交点, 所以所以4M 是“互垂点集”集合, 故选:BD . 【点睛】本题主要考查命题的真假的判断,以及对新定义的理解与应用,意在考查学生的数学建模能力和数学抽象能力,属于较难题.2.已知a ,b 是平面上夹角为23π的两个单位向量,c 在该平面上,且()()·0a c b c --=,则下列结论中正确的有( )A .||1a b +=B .||3a b -=C .||3<cD .a b +,c 的夹角是钝角【答案】ABC 【分析】在平面上作出OA a =,OB b=,1OA OB ==,23AOB π∠=,作OC c =,则可得出C 点在以AB 为直径的圆上,这样可判断选项C 、D . 由向量加法和减法法则判断选项A 、B . 【详解】 对于A :()2222+2||+cos13a b a ba b a b π+=+=⨯⨯=,故A 正确; 对于B :设OA a =,OB b =,1OA OB ==,23AOB π∠=,则2222+c 32os3AB O OA O A O B B π-⋅==,即3a b -=,故B 正确; OC c =,由(a ﹣c )·(b ﹣c )=0得BC AC ⊥,点C 在以AB 直径的圆上(可以与,A B 重合).设AB 中点是M ,c OC =的最大值为13+32222+A b B O MC a M +==+<,故C 正确; a b +与OM 同向,由图,OM 与c 的夹角不可能为钝角.故D 错误. 故选:ABC .【点睛】思路点睛:本题考查向量的线性运算,考查向量数量积.解题关键是作出图形,作出OA a =,OB b =,OC c =,确定C 点轨迹,然后由向量的概念判断.3.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O 、G 、H 分别是ABC 的外心、重心、垂心,且M 为BC 的中点,则( )A .0GA GB GC ++= B .24AB AC HM MO +=- C .3AH OM =D .OA OB OC ==【答案】ABD【分析】向量的线性运算结果仍为向量可判断选项A ;由12GO HG =可得23HG HO =,利用向量的线性运算()266AB AC AM GM HM HG +===-,再结合HO HM MO =+集合判断选项B ;利用222AH AG HG GM GO OM =-=-=故选项C 不正确,利用外心的性质可判断选项D ,即可得正确选项. 【详解】因为G 是ABC 的重心,O 是ABC 的外心,H 是ABC 的垂心, 且重心到外心的距离是重心到垂心距离的一半,所以12GO HG =, 对于选项A :因为G 是ABC 的重心,M 为BC 的中点,所以2AG GM =, 又因为2GB GC GM +=,所以GB GC AG +=,即0GA GB GC ++=,故选项A 正确;对于选项B :因为G 是ABC 的重心,M 为BC 的中点,所以2AG GM =,3AM GM =,因为12GO HG =,所以23HG HO =, ()226663AB AC AM GM HM HG HM HO ⎛⎫+===-=- ⎪⎝⎭()646424HM HO HM HM MO HM MO =-=-+=-,即24AB AC HM MO +=-,故选项B 正确;对于选项C :222AH AG HG GM GO OM =-=-=,故选项C 不正确; 对于选项D :设点O 是ABC 的外心,所以点O 到三个顶点距离相等,即OA OB OC ==,故选项D 正确;故选:ABD. 【点睛】关键点点睛:本题解题的关键是利用已知条件12GO HG =得23HG HO =,利用向量的线性运算结合2AG GM =可得出向量间的关系.4.已知ABC 是边长为2的等边三角形,D ,E 分别是,AC AB 上的点,且AE EB =,2AD DC =,BD 与CE 交于点O ,则( )A .0OC EO +=B .0AB CE ⋅=C .3OA OB OC OD +++=D .ED 在BC 方向上的投影为76【答案】BD 【分析】可证明EO CE =,结合平面向量线性运算法则可判断A ;由AB CE ⊥结合平面向量数量积的定义可判断B ;建立直角坐标系,由平面向量线性运算及模的坐标表示可判断C ;由投影的计算公式可判断D. 【详解】因为ABC 是边长为2的等边三角形,AE EB =,所以E 为AB 的中点,且CE AB ⊥,以E 为原点如图建立直角坐标系,则()0,0E ,()1,0A -,()10B ,,(3C , 由2AD DC =可得222333AD AC ⎛== ⎝⎭,则1233D ⎛- ⎝⎭, 取BD 的中点G ,连接GE ,易得//GE AD 且12GE AD DC ==, 所以CDO ≌EGO △,EO CO =,则30,2O ⎛ ⎝⎭, 对于A ,0OC EO EC +=≠,故A 错误; 对于B ,由AB CE ⊥可得0AB CE ⋅=,故B 正确;对于C,1,OA ⎛=- ⎝⎭,1,OB ⎛= ⎝⎭,OC ⎛= ⎝⎭,13OD ⎛=- ⎝⎭,所以1,33OA OB OC OD ⎛+++=-- ⎝⎭,所以23OA OB OC OD +++=,故C 错误; 对于D ,(BC =-,13ED ⎛=- ⎝⎭,所以ED 在BC 方向上的投影为127326BC ED BC+⋅==,故D 正确.故选:BD. 【点睛】关键点点睛:建立合理的平面直角坐标系是解题关键.5.设a ,b ,c 是任意的非零向量,且它们相互不共线,给出下列选项,其中正确的有( )A .()a cbc a b c ⋅-⋅=-⋅ B .()()b c a c a b ⋅⋅-⋅⋅与c 不垂直 C .a b a b -<-D .()()22323294a b a b a b +⋅-=- 【答案】ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由a 与b 不共线,可分两类考虑:①若a b ≤,则a b a b -<-显然成立;②若a b >,由a 、b 、a b -构成三角形的三边可进行判断;D ,由平面向量的混合运算将式子进行展开即可得解. 【详解】选项A ,由平面向量数量积的运算律,可知A 正确; 选项B ,()()()()()()()()0b c a c a b c b c a c c a b c b c a c b c c a ⎡⎤⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⎣⎦, ∴()()b c a c a b ⋅⋅-⋅⋅与c 垂直,即B 错误;选项C ,∵a 与b 不共线,∴若a b ≤,则a b a b -<-显然成立; 若a b >,由平面向量的减法法则可作出如下图形:由三角形两边之差小于第三边,可得a b a b -<-.故C 正确;选项D ,()()22223232966494a b a b a a b a b b a b +⋅-=-⋅+⋅-=-,即D 正确. 故选:ACD 【点睛】本小题主要考查向量运算,属于中档题.6.已知数列{a n },11a =,25a =,在平面四边形ABCD 中,对角线AC 与BD 交于点E ,且2AE EC =,当n ≥2时,恒有()()1123n n n n BD a a BA a a BC -+=-+-,则( ) A .数列{a n }为等差数列 B .1233BE BA BC =+ C .数列{a n }为等比数列 D .14nn n a a +-=【答案】BD 【分析】 证明1233BE BA BC =+,所以选项B 正确;设BD tBE =(0t >),易得()114n n n n a a a a +--=-,显然1n n a a --不是同一常数,所以选项A 错误;数列{1n n a a --}是以4为首项,4为公比的等比数列,所以14nn n a a +-=,所以选项D 正确,易得321a =,选项C 不正确.【详解】因为2AE EC =,所以23AE AC =, 所以2()3AB BE AB BC +=+,所以1233BE BA BC =+,所以选项B 正确;设BD tBE =(0t >),则当n ≥2时,由()()1123n n n n BD tBE a a BA a a BC -+==-+-,所以()()111123n n n n BE a a BA a a BC t t-+=-+-, 所以()11123n n a a t --=,()11233n n a a t +-=, 所以()11322n n n n a a a a +--=-, 易得()114n n n n a a a a +--=-,显然1n n a a --不是同一常数,所以选项A 错误; 因为2a -1a =4,114n nn n a a a a +--=-,所以数列{1n n a a --}是以4为首项,4为公比的等比数列,所以14nn n a a +-=,所以选项D 正确,易得321a =,显然选项C 不正确. 故选:BD 【点睛】本题主要考查平面向量的线性运算,考查等比数列等差数列的判定,考查等比数列通项的求法,意在考查学生对这些知识的理解掌握水平.7.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ⋅≤B .若a b c b ⋅=⋅且0b ≠,则a c =C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭【答案】AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确,对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即22||||a b a b -⋅=,cos 1θ=-,则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得53λ>-, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒= 所以a 与a b λ+的夹角为锐角时53λ>-且0λ≠,故D 错误; 故选:AC. 【点睛】本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.8.已知向量()1,3OA =-,()2,1OB =-,()3,8OC t t =+-,若点A ,B ,C 能构成三角形,则实数t 可以为( ) A .-2 B .12C .1D .-1【答案】ABD 【分析】若点A ,B ,C 能构成三角形,故A ,B ,C 三点不共线,即向量,AB BC 不共线,计算两个向量的坐标,由向量共线的坐标表示,即得解 【详解】若点A ,B ,C 能构成三角形,故A ,B ,C 三点不共线,则向量,AB BC 不共线, 由于向量()1,3OA =-,()2,1OB =-,()3,8OC t t =+-,故(3,4)AB OB OA =-=-,(5,9)BC OC OB t t =-=+- 若A ,B ,C 三点不共线,则 3(9)4(5)01t t t ---+≠∴≠ 故选:ABD 【点睛】本题考查了向量共线的坐标表示,考查了学生转化划归,概念理解,数学运算能力,属于中档题.9.对于菱形ABCD ,给出下列各式,其中结论正确的为( ) A .AB BC =B .AB BC =C .AB CD AD BC -=+ D .AD CD CD CB +=-【答案】BCD 【分析】由向量的加法减法法则及菱形的几何性质即可求解. 【详解】菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的, 所以B 结论正确,A 结论错误;因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确; 因为AD CD BC CD BD +=+=,||||CD CB CD BC BD -=+=,所以D 结论正确.故选:BCD 【点睛】本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.10.在ABC 中,()2,3AB =,()1,AC k =,若ABC 是直角三角形,则k 的值可以是( )A .1-B .113C D 【答案】BCD 【分析】由题意,若ABC 是直角三角形,分析三个内有都有可能是直角,分别讨论三个角是直角的情况,根据向量垂直的坐标公式,即可求解. 【详解】若A ∠为直角,则AB AC ⊥即0AC AB ⋅=230k ∴+=解得23k =-若B 为直角,则BC AB ⊥即0BC AB ⋅=()()2,3,1,AB AC k == ()1,3BC k ∴=--2390k ∴-+-=解得113k =若C ∠为直角,则BC AC ⊥,即0BC AC ⋅=()()2,3,1,AB AC k == ()1,3BC k ∴=--()130k k ∴-+-=解得k =综合可得,k 的值可能为21133,,,3322+- 故选:BCD 【点睛】本题考查向量垂直的坐标公式,考查分类讨论思想,考察计算能力,属于中等题型.。

高三数学11月教学质量检测试题理高三数学11月教学质量检测试题理高三数学11

高三数学11月教学质量检测试题理高三数学11月教学质量检测试题理高三数学11

名校联盟2021届高三11月教学质量检测制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日理科数学本试题卷一共4页,23题〔含选考题〕。

全卷满分是150分。

考试用时120分钟。

考前须知:1.在答题之前,先将本人的姓名、准考证号填写上在答题卡上,并将准考证号条形码贴在答题卡上的规定的正确位置。

2.选择题的答题:每一小题在选出答案以后,需要用2B铅笔把答题卡上对应题目之答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.填空题和解答题的答题:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.选考题的答题:先把所选题目的题号在答题卡上指定的位置需要用2B铅笔涂黑。

答案写在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5.在在考试完毕之后以后,请将答题卡上交。

一、选择题:此题一共12小题,每一小题5分,一共60分。

在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的。

1.集合A={x|x-2<0},B={x|x2-x-2<0},那么A∩B=A.〔-∞,2〕 B.〔-∞,1〕C.〔-2,1〕 D.〔-1,2〕2.复平面内表示复数1212izi-=+的点位于A.第一象限 B.第二象限C.第三象限 D.第四象限3.设两个单位向量a,b的夹角为23π,那么|3a+4b|=A.1 B.13 C.37 D.74.设有不同的直线a,b和不同的平面α,β,给出以下四个命题:①假设a∥α,b∥α,那么a∥b;②假设a∥α,a∥β,那么α∥β;③假设a⊥α,b⊥α,那么a∥b;④假设a⊥α,a⊥β,那么α∥β.其中正确的个数是A.1 B.2 C.3 D.45.以下图是某10月1日至14日的空气质量指数趋势图,空气质量指数越小表示空气质量越好,空气质量指数小于100表示空气质量优良,以下表达中不正确的选项是A.这14天中有7天空气质量优良B.这14天中空气质量指数的中位数是103C.从10月11日到10月14日,空气质量越来越好D.连续三天中空气质量指数方差最大的是10月5日至10月7日6.甲、乙、丙三人中,一位是人,一位是人,一位是人,丙比人年龄大,甲和人不同岁,人比乙年龄小.由此可以推知:甲、乙、丙三人中A.甲不是人 B.人比甲年龄小C.人比人年龄大 D.人年龄最小7.数列{n a }对于任意正整数m ,n ,有m n a +=m a +n a ,假设20a =1,那么2020a =A .101B .1C .20D .20218.函数()3sin 3x f x x =+的图像大致为9.F 1,F 2分别为椭圆C :22221x y a b+=〔a >b >0〕的左、右焦点,P 是C 上一点,满足PF 2⊥F 1F 2,Q 是线段PF 1上一点,且1FQ =2QP ,1F P ·2F Q =0,那么C 的离心率为 A .622- B 21- C .22- D .62-10.函数f 〔x 〕的定义域为R ,假设f 〔x +1〕与f 〔x -1〕都是偶函数,那么A .f 〔x 〕是偶函数B .f 〔x 〕是奇函数C .f 〔x +3〕是偶函数D .f 〔x 〕=f 〔x +2〕11.将6名HY 员HY 分配到4个贫困村驻村扶贫,每个贫困村至少分配1名HY 员HY ,那么不同的分配方案一共有A .2640种B .4800种C .1560种D .7200种12.函数f 〔x 〕=sinx ·sin2x ,以下结论中错误的选项是A .y =f 〔x 〕的图像关于点〔2π,0〕对称 B .y =f 〔x 〕的图像关于直线x π=对称C .f 〔x 〕的最大值为32D .f 〔x 〕是周期函数二、填空题:此题一共4小题,每一小题5分,一共20分。

北京市东城区10-11下学期高三数学(理科)一模考试试卷

北京市东城区10-11下学期高三数学(理科)一模考试试卷

北京市东城区2010-2011学年第二学期高三综合练习(一)数 学(理科)本试卷分为第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.“x >2”是“x 2>4”的 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件2.已知数列{a n }为等差数列,且a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于 (A )40 (B )42 (C )43 (D )45 3.已知函数f (x )对任意的x ∈R 有f (x )+f (―x )=0,且当x >0时,f (x )=ln(x +1),则函数f (x )的图象大致为4.已知平面上不重合的四点P ,A ,B ,C 满足PA PB PC ++=0,且AB AC m A P +=,那么实数m 的值为(A )2 (B )3(C )4(D )55.若右边的程序框图输出的S 是126,则条件①可为 (A )n ≤5 (B )n ≤6(C )n ≤7 (D )n ≤86.已知(,)2παπ∈,1tan()47πα+=,那么sin α+cos α的值为 (A )15-(B )75 (C )75-(D )347.已知函数131()()2xf x x =-,那么在下列区间中含有函数f (x )零点的是 (A )1(0,)3(B )11(,)32(C )12(,)23(D )2(,1)38.空间点到平面的距离定义如下:过空间一点作平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离。

已知平面α,β,γ两两互相垂直,点A ∈α,点A 到平面β,γ的距离都是3,点P 是α上的动点,且满足P 到β的距离是P 到点A 距离的2倍,则点P 到平面γ的距离的最大值是(A )3(B(C )3(D )6第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分。

2021年高三数学下学期第十一次大练习 文(含解析)

2021年高三数学下学期第十一次大练习 文(含解析)

2021年高三数学下学期第十一次大练习 文(含解析)1.复数满足,则复数的实部与虚部之差为A .B .C .D .【答案】D【解析】由得,所以复数的实部与虚部之差为1-1=0. 2.已知集合,,则等于A .(-∞,5)B .(-∞,2)C . (1,2)D .【答案】C 【解析】因为集合,,所以=(1,2)。

3. 执行右边的程序框图,若输出的是,, 则判断框内的应是A .B .C .D . 【答案】C【解析】第一次循环:; 第二次循环:; 第三次循环:231111713,22228n n n s s =+==+=++=,此时应输出,故判断框内的应是4.4.如图是一个几何体的三视图,该几何体的体积是A .B .C .D . 【答案】B【解析】由三视图知:该几何体为底面边长是2,髙为1的正三棱柱,所以该几何体的体积为。

5. 已知数列的前项和为,且,则等于A.B. 1C. 2D. 4【答案】D【解析】当;。

6. 的值为A. B. C. D. 【答案】C【解析】222211sin140cos50sin(250)cos70sin70cos701222 cos155sin25cos25sin25cos50cos50 -==== --。

7. 函数的大致图像是A B C D【答案】B【解析】函数的图像是由函数向左平移一个单位,然后再把函数图像y轴左侧的去掉,并把右侧的对称到左侧去,所以答案选B。

8.设,把的图象按向量平移后,图象恰好为函数的图象,则的值可以为A. B. C. D.【答案】D【解析】因为,所以,又因为把的图象按向量平移后,图象恰好为函数的图象,则的值可以为。

9.过点P(4,2)作圆的两条切线,切点分别为A、B,0为坐标原点,则的外接圆方程是A. B.C. D.【答案】A【解析】由圆x2+y2=4,得到圆心O坐标为(0,0),∴的外接圆为四边形OAPB的外接圆,又P(4,2),∴外接圆的直径为|OP|,半径为外接圆的圆心为线段OP的中点是(2,1),所以的外接圆方程是。

高三数学理科统测试卷十一课标试题

高三数学理科统测试卷十一课标试题

官桥中学2021-2021学年度高三数学理科统测试卷十一制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日本套试卷一共150分,120分钟完成,答案写在答题卷上。

2007-4-7第一卷一、 选择题 (本大题一一共8小题,每一小题5分,一共40分) 1.以下能使θθθtan sin cos <<成立的θ所在区间是〔 〕A .)4,0(πB .)2,4(ππC.),2(ππD .)23,45(ππ 2.设2:x x f →是集合A 到集合B 的映射,假如B ={1,2},那么B A 等于 〔 〕A .φB .{1}C .φ或者{2}D .φ或者{1}3.数列1614,813,412,211,……的前n 项和为 〔 〕A .2212n n n ++B .2212nn n ++-C .12212+++-nn n D .22121nn n ++-+4.实数x 、y 满足约束条件y x z y x y x 42,622+=⎪⎩⎪⎨⎧≤+≥≥则的最大值为〔 〕A .24B .20C .16D .125.如图,一个空间几何体的主视图和左视图都是边长为1的正三角形, 俯视图是一个圆,那么这个几何体的侧面积...为 〔 〕 A. 4πB. 24C. 22D. 12π6.以下图给出了下一个算法流程图,该算法流程图的功能是〔 〕A .求a,b,c 三数的最大数B .求a,b,c 三数的最小数C .将a,b,c 按从小到大排列D .将a,b,c 按从大到小排列7.直线03=+y x 绕原点按顺时针方向旋转 30°所得直线与圆3)2(22=+-y x 的位置 关系是〔 〕A .直线与圆相切B .直线与圆相交但不过圆心C .直线与圆相离D .直线过圆心8.假设函数2()log (3)(01)a f x x ax a a =-+>≠且,满足对任意的1x 、2x ,当221ax x ≤<时,0)()(21>-x f x f ,那么实数a 的取值范围为〔 〕 A .)3,1()1,0( B .)3,1(C.)32,1()1,0(D .)32,1(第二卷二、填空题:本大题一一共7小题,每一小题5分,其中9—12为必做题,13—15为选做题,13—15题只需选做2小题,一共30分。

2020年人教版高中数学单元测试-概率初步(附答案)

2020年人教版高中数学单元测试-概率初步(附答案)

2020年人教版新课标高中数学模块测试卷概 率一、选择题(本大题共12小题,每小题5分,共60分)1.我校有高一学生850人,高二学生900人,高三学生1 200人,学校团委欲用分层抽样的方法抽取30名学生进行问卷调查,则下列判断正确的是( ) A .高一学生被抽到的概率最大 B .高二学生被抽到的概率最大 C .高三学生被抽到的概率最大D .每名学生被抽到的概率相等2.某人将一枚硬币连续抛掷了10次,正面朝上的情形出现了6次,则( ) A .正面朝上的概率为0.6 B .正面朝上的频率为0.6 C .正面朝上的频率为6D .正面朝上的概率接近于0.63.事件分为必然事件、随机事件和不可能事件,其中随机事件A 发生的概率的范围是( ) A .()0P A >B .()1P A <C .()01P A <<D .()01P A ≤≤4.同时抛掷两枚大小相同的骰子,用(),x y 表示结果,记A 为所得点数之和为8,则事件A 包含的样本点总数是( ) A .3B .4C .5D .65.袋内装有一个黑球与一个白球(除颜色外其他都相同),从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A .49B .51C .0.49D .0.516.把形状、质量、颜色等完全相同,标号分别为1,2,3,4,5,6的6个小球放入一个不透明的袋子中,从中任意抽取一个小球,记下号码为x ,把第一次抽取的小球放回去之后再从中抽取一个小球,记下号码为y ,设“6xy =”为事件A ,则()=P A ( )A .118B .112C .19D .167.某校高中三个年级人数统计图如图5-5-1所示,按年级用分层抽样的方法抽取一个样本,已知样本中高一年级学生有8人,则样本容量为( )A .24B .30C .32D .358.假设某运动员每次投篮命中的概率都为40%。

现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中,再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数: 907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为( ) A .720B .14C .15D .3209.关于图5-5-2的说法,错误的一个是( )A .甲的极差是29B .甲的中位数是25C .乙的众数是21D .甲的平均数比乙的大10.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110B .15C .310D .2511.甲、乙两名同学6次考试的成绩统计图如图5-5-3所示,两组数据的平均数分别为x 甲,x 乙,标准差分别为σ甲,σ乙,则( )A .x x 乙甲<,σσ乙甲<B .x x 乙甲<,σσ乙甲>C .x x 乙甲>,σσ乙甲<D .x x 乙甲>,σσ乙甲>12.甲、乙两人做游戏,下列游戏中不公平的是( )A .抛一枚骰子,向上的点数为奇数则甲胜,向上的点数为偶数则乙胜B .同时抛两枚相同的骰子,向上的点数之和大于7则甲胜,否则乙胜C .从一副不含大、小王的扑克牌中抽一张,扑克牌是红色则甲胜,是黑色则乙胜D .甲,乙两人各写一个数字,若是同奇或同偶则甲胜,否则乙胜 二、填空题(本大题共4小题,每小题5分,共20分) 13.对某班一次测验成绩进行统计,如下表所示:则(1)该班成绩在[]80,100内的概率为________; (2)该班成绩在[]60,100内的概率为________.14.若一个三位数的各位数字互不相同,且各位数字之和等于10,则称此三位数为“十全十美三位数”(如235),任取一个“十全十美三位数”,该数为奇数的概率为________.15.若以连续两次掷骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 落在圆2216x y +=内的概率为________.16.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且a ,{}0,1,2,,9b ∈.若||1a b -≤,则称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则两人“心有灵犀”的概率为________. 三、解答题(本大题共6小题,共70分)17.(10分)某公司随机收集了该公司所生产的四类产品的售后调查数据,经分类整理得到下表:使用满意率是指一类产品销售中获得用户满意评价的件数与该类产品的件数的比值.(1)从公司收集的这些产品中随机选取1件,求这件产品是获得用户满意评价的丙类产品的概率; (2)假设该公司的甲类产品共销售10 000件,试估计这些销售的甲类产品中,不能获得用户满意评价的件数.18.(12分)为了研究某种理财工具的使用情况,对[]20,70年龄段的人员进行了调查研究,将各年龄段人数分成5组:[)20,30,[)30,40,[)40,50,[)50,60,[]60,70,并整理得到频率分布直方图如图5-5-4: (1)求直方图中a 的值.(2)采用分层抽样的方法,从第二组、第三组、第四组中共抽取8人,则三个组中各抽取多少人?(3)在(2)中抽取的8人中,随机抽取2人,则这2人都来自第三组的概率是多少?19.(12分)已知某种高炮在它的控制区域内击中目标的概率为0.2.(1)假设有5门这种高炮控制某个区域,求目标进入这个区域后未被击中的概率;(2)要使目标一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?(参考值lg20.301≈)20.(12分)某教育集团为办好人民满意的教育,每年底都随机邀请8名学生家长代表对集团内甲、乙两所学校进行人民满意度的民主测评(最高110分,最低0分,分数越高说明人民满意度越高,分数越低说明人民满意度越低),去年测评的数据如下: 甲校:96,112,97,108,100,103,86,98; 乙校:108,101,94,105,96,93,97,106.(1)分别计算甲、乙两所学校去年人民满意度测评数据的平均数、中位数. (2)分别计算甲、乙两所学校去年人民满意度测评数据的方差. (3)根据以上数据,你认为这两所学校哪所学校人民满意度更高?21.(12分)一只口袋内装有形状、大小、质地等都相同的4个小球,这4个小球上分别标记着数字1,2,3,4.甲、乙、丙三名同学约定: ①每人不放回地随机摸取一个球; ②按照甲、乙、丙的次序依次摸取; ③谁摸取的球的数字最大,谁就获胜.用有序数组(),,a b c 表示这个试验的基本事件,例如:()1,4,3表示在一次试验中,甲摸取的是标记着数字1的小球,乙摸取的是标记着数字4的小球,丙摸取的是标记着数字3的小球. (1)列出基本事件,并指出基本事件的总数; (2)求甲获胜的概率;(3)求出乙获胜的概率,并指出甲、乙、丙三名同学获胜的概率与其摸球的次序是否有关.22.(12分)某种产品的质量按照其质量指标值M 进行等级划分,具体如下表:现从某企业生产的这种产品中随机抽取100件作为样本,对其质量指标值M 进行统计分析,得到如图5-5-5所示的频率分布直方图.(1)记A 表示事件“任取一件这种产品为二等品或一等品”,试估计事件A 的概率;(2)已知该企业的这种产品每件一等品、二等品、三等品的利润分别为10元、6元、2元,试估计该企业销售10 000件该产品的利润;(3)根据该产品质量指标值M 的频率分布直方图,求质量指标值M 的中位数的估计值(精确到0.01).2020年人教版新课标高中数学模块测试卷概 率·答案一、 1.【答案】D【解析】由抽样的定义知,无论哪种抽样,样本被抽到的概率都相同,故每名学生被抽到的概率相等,故选D 。

【人教A版】2012高三数学(文)《绿色通道》一轮复习:第11章测试11

【人教A版】2012高三数学(文)《绿色通道》一轮复习:第11章测试11

单元质量检测(11)一、选择题1.下列说法正确的有 ( )(1)随机事件A 的概率是频率的稳定值,频率是概率的近似值(2)一次试验中不同的基本事件不可能同时发生(3)任意事件A 发生的概率P (A )总满足0<P (A )<1(4)若事件A 的概率趋近于0,而P (A )>0,则A 是不可能事件A .0个B .1个C .2个D .3个解析:由概率的定义知(1)正确;由基本事件的概念知(2)正确,对任意事件A,0≤P (A )≤1,当A 是不可能事件时P (A )=0,当A 是必然事件时,P (A )=1,故(3)不正确;(4)中P (A )趋近于0,说明事件A 的概率很小,但仍有可能发生,不是不可能事件,故(4)不正确,综上应选C.答案:C2.根据某医疗研究所的调查,某地区居民血型的分布为:O 型50%,A 型15%,B 型30%,AB 型5%.现有一血液为A 型病人需要输血,若在该地区任选一人,那么能为病人输血的概率为 ( )A .15%B .20%C .45%D .65%答案:D3.从集合{a ,b ,c ,d ,e }的所有子集中任取一个,若这个集合不是集合{a ,b ,c }的子集的概率是34,则该子集恰是集合{a ,b ,c }的子集的概率是 ( ) A.35 B.25C.14D.18答案:C4.某城市100<T ≤150时,空气质量为轻微污染.该城市2008年空气质量达到良或优的概率为 ( )A.35B.1180C.119D.56解析:所求概率为110+16+13=35. 答案:A5.某产品的设计长度为20 cm ,规定误差不超过0.50 cm 为合格产品,今对一批产品进( ) A.580 B.780C.1720D.320答案:D6.从长度分别为1,2,3,4的四条线段中,任取三条的不同取法共有n 种.在这些取法中,以取出的三条线段为边可组成的三角形的个数为m ,则m n= ( ) A.12 B.14C.18D.116解析:n =4,在长度为1,2,3,4的四条线段中,由三角形的性质“两边之和大于第三边,两边之差小于第三边”知可组成三角形的线段长度为2,3,4一种,即m =1,所以m n =14. 答案:B7.袋中有红、黄、绿色球各一个,每次任取一个有放回的抽取三次,球的颜色全相同的概率是 ( )A.227B.19C.29D.127解析:有放回地取球三次,假设第一次取红球共有如下所示9种取法.同理,第一次取黄球,绿球分别也有9种情况,共计27种.而三次颜色全相同,共有3种情况,故颜色全相同的概率为327=19. 答案:B8.甲、乙、丙三名同学站成一排,甲站在中间的概率是 ( )A.16B.12C.13D.23解析:甲站在中间的情况有两种,而基本事件为6种,所以P =13. 答案:C9.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积不小于S 3的概率是( ) A.23 B.32C.12D .2 解析:如右图设点P 为AB 的三等分点,要使△PBC 的面积不小于S 3,则点P 只能在AP 上选取,由几何概型的概率公式得所求概率为|AP ||AB |=23|AB ||AB |=23. 答案:A10.集合A ={(x ,y )|y ≥|x -1|,x ∈N *},集合B ={(x ,y )|y ≤-x +5,x ∈N *}.先后掷两颗骰子,设掷第一颗骰子得点数记作a ,掷第二颗骰子得点数记作b ,则(a ,b )∈A ∩B 的概率等于 ( )A.14B.29C.736D.536解析:由于y ≥|x -1|⇔⎩⎪⎨⎪⎧x -y -1≤0x +y -1≥0,根据二元一次不等式表示平面的区域,可知A ∩B 对应如右图所示的阴影部分的区域中的整数点.其中整数点有(0,1),(0,2),(0,3),(0,4),(0,5),(1,0)(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,2),共14个.现先后抛掷2颗骰子,所得点数分别有6种,共会出现36种结果,其中落入阴影区域内的有8种,即(1,1),(1,2),(1,3)(1,4),(2,1),(2,2),(2,3),(3,2).所以满足(a ,b )∈A ∩B的概率为836=29. 答案:B11.已知M ={(x ,y )|x +y ≤6,x ≥0,y ≥0},N ={(x ,y )|x ≤4,y ≥0,x -2y ≥0},若向区域M 上随机投一点P ,则点P 落入区域N 的概率为 ( )A.13B.23C.19D.29解析:利用线性规划知识画出区域M 和区域N 表示的范围,可知两个都是直角三角形,易计算得区域M 的面积S △BOA =12×6×6=18,区域N 的面积S △COD =12×4×2=4.由几何概型知,点P (图中黑点表示)落入区域N 的概率=区域N 的面积区域M 的面积=29. 答案:D12.甲、乙两人相约10天之内在某地会面,约定先到的人等候另一个人,经过3天以后方可离开,若他们在限期内到达目的地的时间是随机的,则甲、乙两人能会面的概率为( )A.310B.710C.49100D.51100解析:本题考查几何概型,设x 表示甲到达该地点的时间,y 表示乙到达该地点的时间,则整个事件空间构成一个边长为10的正方形,其中两人能会面的条件是-3≤x -y ≤3,如右图,可知两人能会面的概率为约束条件对应的可行域的面积与正方形的面积的比,即P =100-49100=51100. 答案:D二、填空题13.利用简单随机抽样的方法,从n 个个体(n >13)中抽取13个个体,若第二次抽取时,余下的每个个体被抽取到的概率为13,则在整个抽样过程中,每个个体被抽取到的概率为________.解析:本题考查简单随机抽样的特点.每个个体在整个抽样过程中被抽到的概率都等于n N (其中n 为样本容量,N 为总体容量).由题意N =12÷13+1=37. 答案:133714.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是________.解析:由对立事件的概率知1-0.42-0.28=0.30.答案:0.3015.三人传球,由甲开始发球,并作第一次传球,经过3次传球后,球仍回到甲手中的概率是________.解析:所有可能传法有甲乙丙甲,甲乙丙乙,甲乙甲丙,甲乙甲乙,甲丙乙甲,甲丙乙丙,甲丙甲丙,甲丙甲乙共8种,回到甲手中有甲乙丙甲,甲丙乙甲共两种,所以所求事件的概率为28=14. 答案:1416.设有关于x 的一元二次方程x 2+2ax +b 2=0.若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率为________;若a 是从区间[0,3]内任取的一个数,b 是从区间[0,2]内任取的一个数,则上述方程有实根的概率为________.解析:本题以方程为背景考查古典概型和几何概型的概率计算.设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则基本事件共12个:(0,0)(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A发生的概率为P (A )=34. 若a 是从区间[0,3]内任取的一个数,b 是从区间[0,2]内任取的一个数,试验的全部结果构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2}.构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b }.所以所求的概率为3×2-12×223×2=23. 答案:34 23三、解答题17.一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是多少?(1)红灯;(2)黄灯;(3)不是红灯.解:在75秒内,每一时刻到达路口的时候是等可能的,属于几何概型.(1)P =亮红灯的时间全部时间=3030+40+5=25; (2)P =亮黄灯的时间全部时间=575=115; (3)P =不是红灯亮的时间全部时间=黄灯或绿灯亮的时间全部时间=4575=35. 18.某省是高中新课程改革实验省份之一,按照规定每个学生都要参加学业水平考试,全部及格才能毕业,不及格的可进行补考.某校有50名同学参加物理、化学、生物水平测试补考,已知只补考物理的概率为950,只补考化学的概率为15,只补考生物的概率为1150.随机选出一名同学,求他不止补考一门的概率.解:设“不止补考一门”为事件E ,“只补考一门”为事件F ,“只补考物理”为事件A ,则P (A )=950,“只补考化学”为事件B ,则P (B )=15,“只补考生物”为事件C ,则P (C )=1150,这三个事件为互斥事件,所以P (F )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=3050=0.6,又因为事件E 和事件F 互为对立事件,∴P (E )=1-P (F )=1-0.6=0.4.即随机选出一名同学,他不止补考一门的概率为0.4.19.(1)求x 的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少名?(3)已知y ≥245,z ≥245,求高三年级中女生不比男生多的概率.解:(1)∵x 2000=0.19,∴x =380.(2)高三年级人数为y +z =2000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在高三年级抽取的人数为:482000×500=12(名).(3)设高三年级女生不比男生多的事件为A ,高三年级女生男生数记为(y ,z ).由(2)知y +z =500,且y ,z ∈N ,基本事件空间包含的基本事件有:(245,255)、(246,254)、(247,253)、…、(255,245)共11个,事件A 包含的基本事件有6个.∴P (A )=611. 20.已知关于x 的二次函数f (x )=ax 2-4bx +1.(1)设集合P ={-1,1,2,3,4,5}和Q ={-2,-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f (x )在区间[1,+∞)上是增函数的概率;(2)设点(a ,b )是区域⎩⎪⎨⎪⎧ x +y -8≤0x >0y >0内的随机点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.解:(1)∵函数f (x )=ax 2-4bx +1的图象的对称轴为x =2b a,要使函数f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,当且仅当a >0且2b a≤1,即2b ≤a . 若a =1,则b =-2,-1;若a =2,则b =-2,-1,1;若a =3,则b =-2,-1,1;若a =4,则b =-2,-1,1,2;若a =5,则b =-2,-1,1,2;∴所求事件包含基本事件的个数是2+3+3+4+4=16.∴所求事件的概率为1636=49. (2)由(1)知当且仅当2b ≤a 且a >0时,函数f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,依条件可知试验的全部结果所构成的区域为⎩⎨⎧⎭⎬⎫(a ,b )⎪⎪⎪ ⎩⎪⎨⎪⎧ a +b -8≤0a >0b >0,构成所求事件的区域为如右图阴影部分.由⎩⎪⎨⎪⎧ a +b -8=0b =a 2得交点坐标为(163,83), ∴所求事件的概率为P =12×8×8312×8×8=13. 21.把一颗骰子投掷2次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,已知方程组⎩⎪⎨⎪⎧ax +by =3,x +2y =2,解答下列各题. (1)求方程组只有一个解的概率;(2)求方程组只有正解的概率.解:事件的基本事件有6×6=36(个),由方程组⎩⎪⎨⎪⎧ ax +by =3,x +2y =2 可得⎩⎪⎨⎪⎧(2a -b )x =6-2b ,(2a -b )y =2a -3. (1)方程组只有一个解,需满足b -2a ≠0,即b ≠2a .而b =2a 的事件有(1,2),(2,4),(3,6)共3个,故b ≠2a 的事件有33个.所以方程组只有一个解的概率为P =3336=1112.(2)方程组只有正数解,需满足b -2a ≠0且⎩⎪⎨⎪⎧ x =b -2a 2a -b >0,y =2a -32a -b >0,即⎩⎪⎨⎪⎧ 2a >b ,a >32,b <3或⎩⎪⎨⎪⎧ 2a <b ,a <32,b >3包含的事件有13个:(2,1),(3,1),(4,1),(5,1),(6,1),(2,2),(3,2),(4,2),(5,2),(6,2),(1,4),(1,5),(1,6).因此所求的概率为1316. 22.柜子里有4双不同的鞋,随机地取出4只,试求下列事件的概率:(1)取出的鞋都不成对;(2)取出的鞋恰好有两只是成对的;(3)取出的鞋至少有两只成对;(4)取出的鞋全部成对.解:(1)取出的鞋都不成对,也就是说在每一双鞋中取出一只:(1,3,5,7)(2,3,5,7)(1,4,5,7)(2,4,5,7)(1,3,6,7)(2,3,6,7)(1,4,6,7)(2,4,6,7)(1,3,5,8)(2,3,5,8)(1,4,5,8)(2,4,5,8)(1,3,6,8)(2,3,6,8)(1,4,6,8)(2,4,6,8),一共16种,P =1670=835. (2)取出的鞋恰好有两只成对的,则另两只不成对,包含下列基本事件:(12,57),(12,58),(12,67),(12,68),(12,36),(12,46),(12,37),(12,38),(12,47),(12,48),(12,35),(12,45),选第一双为12种,同样选第二双也为12种,那么一共4双,则为48种,P =4870=2435. (3)取出的鞋至少有两只成对,则有两种情况,一是两只成对,两只不成对;二是四只成对,第一种情况由(2)已经得出是48种,四只成对(12,34),(12,56),(12,78),(56,78),(56,34),(34,78),一共包含6个基本事件,P =48+670=2735. (4)全部成对,由(3)已经得出包含6个基本事件,P =670=335.高?考═试∷题)库。

全国100所名校单元测试示范卷(高三):数学 14数学全国教师11(文)

全国100所名校单元测试示范卷(高三):数学  14数学全国教师11(文)

全国100所名校单元测试示范卷·高三·数学卷(十一)第十一单元数列综合测试(120分钟150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知数列{a n}为等比数列,且a3a9=2a52,a2=2,则a1等于A.±√2B.√2C.-√2D.2解析:a3a9=a62=2a52,q=a6a5=±√2,故a1=a2q=±√2.答案:A2.在等差数列{a n}中,a1=0,公差d≠0,若a n=a2+a3+a6+a8,则n等于A.15B.16C.17D.18解析:a n=a2+a3+a6+a8=4a1+15d=a1+15d,故a n为等差数列{a n}的第16项,∴n=16.故选B.答案:B3.若等差数列{a n}满足递推关系a n+1=-a n+n,则a5等于A.92B.94C.114D.134解析:令n=4,则a5+a4=4,令n=5,则a6+a5=5,两式相加2a5+a4+a6=9,∴a5=9 4 .答案:B4.设S n为等比数列{a n}的前n项和,已知3S2013=a2014-2012,3S2012=a2013-2012,则公比q等于A.4B.3C.2D.8解析:由3S2013=a2014-2012,3S2012=a2013-2012得3a2013=a2014-a2013,∴q=a2014a2013=4.答案:A5.已知数列{a n}的通项公式是a n=-n2+bn+c,若a n+1<a n对n∈N+恒成立,则实数b的取值范围是A.b>0B.b≥-1C.b≤3D.b<3解析:∵a n+1<a n恒成立,∴a n+1-a n=b-(2n+1)<0,即b<2n+1恒成立,∴b<3.答案:D6.已知函数f(x)是R 上的单调增函数且为奇函数,数列{a n }是等差数列,a 11>0,则f(a 9)+f(a 11)+f(a 13)的值A.恒为正数B.恒为负数C.恒为0D.可正可负解析:因为f(a 11)>f(0)=0,a 9+a 13=2a 11>0,a 9>-a 13, 所以有f(a 9)>f(-a 13)=-f(a 13),f(a 9)+f(a 13)>0,故选A. 答案:A 7.已知等差数列{a n }的前n 项和为S n ,若m>1,2a m-1+2a m+1-a m 2-4=0,S 2m-1=38,则m等于A.7B.8C.9D.10解析:∵a m-1+a m+1=2a m ,∴2a m-1+2a m+1-a m 2-4=4a m -a m 2-4=0,∴a m =2.故S 2m-1=(a 1+a 2m -1)(2m -1)2=2a m (2m -1)2=2(2m-1)=38.∴m=10. 答案:D8.若数列{a n }满足a 1=12,a n+1=1+an 1-a n(n ∈N +),则该数列的前2014项的乘积a 1·a 2·a 3·…·a 2014等于A.3B.1C.32D.23解析:易求得a 1=12,a 2=3,a 3=-2,a 4=-13,a 5=12,…,这是一个周期为4的周期数列, 且每相邻四项a 1·a 2·a 3·a 4=1,故原式=12×3=32. 答案:C9.已知数列{a n }的通项公式a n =n 2+n,若数列{1a n}的前n 项和为S n ,则S n 的取值范围为A.[0,1]B.(2,1)C.[12,1) D.[12,1]解析:依题意1a n =1n(n+1)=1n -1n+1,∴S n =1a 1+1a 2+…+1a n =1-12+12-13+…+1n -1n+1=1-1n+1<1,∴当n=1时,S n 取最小值12,∴S n 值范围为[12,1).答案:C10.在数列{a n }中,对于任意的n ∈N +,都有a n+2-a n+1a n+1-a n=k(k为常数),则称{a n }为“等差比数列”.下面对“等差比数列”的判断:①等差数列一定是“等差比数列”;②等比数列一定是“等差比数列”;③通项公式为a n =a ·b n +c(a ≠0,b ≠0,1)的数列一定是“等差比数列”.其中正确的个数是A.0B.1C.2D.3解析:①②错误,对于①②只要举常数列即可验证它是错的;③正确,对于③,其中k=b.答案:B11.已知数列{a n }满足a 1=1,na n =(n+1)a n-1(n ≥2,且n ∈N +),则a n 2+14n取最小值的n 值为A.2B.3C.4D.5解析:∵na n =(n+1)a n-1,∴a n a n -1=n+1n ,∴a 2a 1·a 3a 2·…·a n a n -1=21·32·…·n+1n=n+1,即a n =n+1(n ≥2),∴a n 2+14n =n+15n +2,令f(x)=x+15x+2,∵f(x)在(0,√15)上单调递减,在(√15,+∞)上单调递增.故当n=3或4时,a n 2+14n取最小值, ∵a 32+143=3+153+2=10,a 42+144=4+154+2=394,故当n=4时取最小值,故选C. 答案:C12.对任意x ∈R ,函数f(x)满足f(x+1)=√2f(x)-[f(x)]2+1,设a n =[f(n)]2-2f(n),数列{a n }的前2013项的和为-1003,则f(2013)等于A.4B.3C.2D.1解析:因为[f(x+1)-1]2=[f(x+1)]2-2f(x+1)+1=2f(x)-[f(x)]2,所以有a n+1+a n =-1. 前2013项和S 2013=1006·(-1)+a 2013=-1003,由此可得a 2013=3,a 2012=-4. 因而f(2013)=√-a 2012+1=3,故选B. 答案:B第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d= . 解析:由题意知{a 1+2d =4,3a 1+3×22×d =6,解得d=2. 答案:214.设S n 是等差数列{a n }的前n 项和,若a 3+a 9=17S 7,且a 4,a 6为等比数列{b n }相邻的两项,则等比数列{b n }的公比q= .解析:∵a 3+a 9=17S 7,∴2a 6=17×7(a 1+a 7)2=a 4,∴q=12或2. 答案:12或215.数列{a n }中,a 1=1,a n+1=2a n +1,则通项a n = .解析:由题可得a n+1+1=2(a n +1),∴a n+1+1a n +1=2,数列{a n +1}为等比数列,∴a n +1=2n-1(a 1+1)=2n ,故a n =2n -1.答案:2n -116.数列{a n }中,对任意的m,n,p ∈N +,当m+n=p 时,都有a m ·a n =a p ,若a 1=12,则a 10的值为 .解析:∵a m ·a n =a p ,∴a 12=a 2,a 1·a 2=a 3, a 1·a 3=a 4, …… a 1·a 9=a 10,累乘得a 110=a 10=(12)10=11024. 答案:11024三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.(本小题满分10分)设{a n }是一个公差为d(d ≠0)的等差数列,它的前10项和S 10=110且a 1,a 2,a 4成等比数列,求数列{a n }的通项公式.解析:因a 1,a 2,a 4成等比数列,故a 22=a 1a 4,而{a n }是等差数列,有a 2=a 1+d,a 4=a 1+3d,于是(a 1+d)2=a 1(a 1+3d),即a 12+2a 1d+d 2=a 12+3a 1d,化简得a 1=d.5分∵S 10=10a 1+10×92d=110,∴10a 1+45d=110. 又∵a 1=d,∴55d=110,∴d=2,∴a n =a 1+(n-1)d=2n.10分18.(本小题满分12分)已知幂函数f(x)图象过点(-12,-2),数列{a n },{b n }满足a 1=1,b 1=1,且对任意n ∈N +,均有a n+1=a nf(a n )f(an )+3,b n+1-b n =1a n .(1)求函数f(x)的解析式; (2)试求数列{a n },{b n }的通项公式.解析:(1)由题意可知(-12)a =-2,所以a=-1,故f(x)=1x(x ≠0).4分 (2)由(1)可得a n+1=11a n +3=a n 3a n +1,所以有1a n+1=1a n +3,故a n =13n -2. b n =(b n -b n-1)+(b n-1-b n-2)+…+(b 2-b 1)+b 1=3[(n-1)+(n-2)+…+2+1]-2(n-1)+1=3·n -1+12(n-1)-2n+2+1=3n 2-7n+62.12分19.(本小题满分12分)设S n 是正项数列{a n }的前n 项和,且S n =13a n 2+12a n .(1)求a n ; (2)设√b n =34an +3(n ∈N +),且数列{b n }的前n 项和为T n ,试比较T n 与14的大小.解析:(1)由已知可得a 1=13a 12+12a 1,a 1>0,所以a 1=32. 当n ≥2时,有a n =S n -S n-1=13a n 2+12a n -(13a n -12+12a n-1) =13(a n 2-a n -12)+12(a n -a n-1),∴(a n +a n-1)(a n -a n-1-32)=0, 又a n >0,所以有a n -a n-1=32,数列{a n }为等差数列. 所以a n =32n.6分 (2)由(1)可知b n =1(2n+1)2=14n 2+4n+1<14n 2+4n <14(1n -1n+1), 所以有T n =b 1+b 2+…+b n <14[(11-12)+(12-13)+…+(1n -1n+1)]=14(1-1n+1)<14.12分 20.(本小题满分12分)已知{a n }是各项均为正数的等比数列,且a 1+a 2=2(1a 1+1a 2),a 3+a 4+a 5=64(1a 3+1a 4+1a 5).(1)求{a n }的通项公式;(2)设b n =(a n +1a n)2,求数列{b n }的前n 项和T n .解析:(1)设公比为q,则a n =a 1q n-1,易知q ≠1.由已知得{a 1+a 1q =2(1a 1+1a 1q ),a 1q 2+a 1q 3+a 1q 4=64(1a 1q 2+1a 1q3+1a 1q4), 化简得{a 12q =2,a 12q 6=64.又a 1>0,故q=2,a 1=1,∴a n =2n-1.6分(2)由(1)知b n =(a n +1a n )2=a n 2+1a n2+2=4n-1+14n -1+2,∴T n =b 1+b 2+b 3+…+b n =(1+4+…+4n-1)+(1+14+…+14n -1)+2n=4n -14-1+1-14n 1-14+2n=13(4n -41-n )+2n+1.12分21.(本小题满分12分)已知f(x)是定义在R 上不恒为零的函数,对于任意的x,y ∈R ,都有f(x ·y)=xf(y)+yf(x)成立.数列{a n }满足a n =f(2n )(n ∈N +),且a 1=2. (1) 试求数列{a n }的通项公式a n . (2)若b n =a nn(n+1)2,求数列{b n }的最小项.解析: (1)因为a 1=f(2)=2,令x=2n-1,y=2,则有f(2n )=2n-1f(2)+2f(2n-1) =2n +2[2n-2f(2)+2f(2n-2)]=2·2n +22f(2n-2)=2·2n +22[2n-3f(2)+2f(2n-3)]=3·2n +23f(2n-3)=…=(n-2)·2n +2n-2[2n-(n-1)f(2)+2f(2n-(n-1))]=n ·2n ,7分 即a n =n ·2n . (2)由(1)可知b n =2n (n+1)2,令b n+1b n =2·[n+1n+2]2>1得n 2>2,n>√2, 即当n ≥2,n ∈N ,都有b 2<b 3<…<b n ,而b 1=12>b 2=49,故(b n )min =b 2=49.12分22.(本小题满分12分)已知数列{a n }的前n(n ∈N +)项和为S n ,a 1=t,a 2=-1,点P n (a n ,S n ),若点P n (n=2,3,4,…)都在斜率为13的同一条直线上.(1)当t 为何值时,数列{a n }是等比数列?(2)在满足(1)的条件下,设b n =λa n -n 2,若数列{b n }中,有b 1>b 2,b 3>b 4,…,b 2n-1>b 2n ,…成立,求实数λ的取值范围.解析:(1)∵点P n ,P n+1(n=2,3,4,…)都在斜率为13的直线上, ∴S n+1-S n a n+1-a n =13. 又∵S n+1-S n =a n+1, ∴a n+1=13(a n+1-a n ),整理得a n+1a n =-12(n ≥2). 又∵当n ∈N +时,数列{a n }是等比数列, ∴只需要a 2a 1=-1t=-12, ∴t=2.6分(2)由(1)得a n =2·(-12)n-1, ∵b n =λa n -n 2, ∴b n =2λ(-12)n-1-n 2,由b 2n-1>b 2n 得,2λ(-12)2n-2-(2n-1)2>b 2n =2λ(-12)2n-1-(2n)2, 即2λ(-12)2n-2[1-(-12)]>(2n-1)2-(2n)2,∴λ>-(4n -1)·4n12, ∵-(4n -1)·4n 12单调递减, ∴当n=1时,-(4n -1)·4n12取最大值为-1, ∴λ>-1.12分。

西安市高新一中高三下学期第十一次大练习数学试题含答案

西安市高新一中高三下学期第十一次大练习数学试题含答案

2013届高三第十一次大练习数学试题一、选择题(每小题5分,满分60分) 1.(理)复数11iz i+=-等于 A .1 B .1- C .i -D .i(文)2009sin 4π等于 A .1B .1-C .22D .22-2.满足条件{1,2}{1,2,3}M =的所有集合M 的个数是 A .1B . 2C . 3D . 43.(理)函数ln 1(0)y x x =+>的反函数为A .1()x y e x R +=∈B .1()x y e x R -=∈C .1(1)x y e x +=>D .1(1)x y e x -=> (文)过点(1,2)P -且方向向量是(1,2)=-a 的直线方程是A .20x y +=B .20x y +=C .20x y -=D .20x y -= 4.若(0,1),x ∈则下列结论正确的是A .122lg xx x >> B .122lg xx x >> C .122lg xx x >> D .12lg 2x x x >>5.函数sin()y x ωϕ=+(,0,02)x ωϕπ∈>≤<R 的部分图象如图,则 A .,24ππωϕ==; B . ,36ππωϕ==;C . ,44ππωϕ==; D . 5,24ππωϕ==。

6.过正三棱锥的侧棱与底面中心作截面,如果截面是等腰三角形,则侧面与底面所成角的余弦值是 A .13B .66C .32 D .13或667.过点(4,4)P 且与双曲线221169x y -=只有一个交点的直线有A .1条B .2条C .3条D .4条 8.点O 在ABC ∆内,满足230OA OB OC ++=,那么AO B ∆与AOC ∆的面积之比是 A .2:1B .3:2C .3:1D .5:39.从单词“education ”中选取5个不同的字母排成一排,则含“at ”(“at ”相连且顺序不变)的概率为 A .118 B .1378 C .1432 D .175610.设二项式31(3)n x x的展开式的各项系数和为p ,所有二项式系数的和是s ,若272p s +=,则n =A .6B .5C .4D .8 11.已知函数(0),()(3)4(0)x a x f x a x a x ⎧<=⎨-+≥⎩满足对任意12x x ≠,都有1212()()0f x f x x x -<-成立, 则a 的取值范围是A .1(0,]4 B .(0,1) C .1[,1)4D .(0,3) 12.集合P 中的元素都是整数,并且满足条件:①P 中有正数,也有负数;②P 中有奇数,也有偶数;③1P -∉;④若,x y P ∈,则x y P +∈。

2021年高三数学下学期第十一次大练习 理(含解析)

2021年高三数学下学期第十一次大练习 理(含解析)

2021年高三数学下学期第十一次大练习 理(含解析)一、选择题:本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数满足,则复数的实部与虚部之差为A .B .C .D .【答案】D【解析】由得,所以复数的实部与虚部之差为1-1=0. 2.已知集合,,则等于A .(-∞,5)B .(-∞,2)C . (1,2)D .【答案】C【解析】因为集合,,所以=(1,2)。

3. 执行右边的程序框图,若输出的是, 则判断框内的应是A .B .C .D . 【答案】C【解析】第一次循环:; 第二次循环:; 第三次循环:231111713,22228n n n s s =+==+=++=,此时应输出,故判断框内的应是4.4.如图是一个几何体的三示图,该几何体的体积是A .B .C .D . 【答案】B【解析】由三视图知:该几何体为底面边长是2髙为1的正三棱柱,所以该几何体的体积为。

5. 函数的大致图像是A B C D【答案】B【解析】函数的图像是由函数向左平移一个单位,然后再把函数图像y 轴左侧的去掉,并把右侧的对称到左侧去,所以答案选B 。

6. 一支足球队每场比赛获胜(得3分)的概率为,与对手踢平(得1分)的概率为,负于对手(得0分)的概率为,已知该足球队进行一场比赛得分的期望是1,则的最小值为A .B .C .D . 【答案】A【解析】因为该足球队进行一场比赛得分的期望是1,所以3a+b=1, 所以,当且仅当取等号,故选A .7.设,把的图象按向量平移后,图象恰好为函数的图象,则的值可以为 A . B . C . D. 【答案】D【解析】因为,所以,又因为把的图象按向量平移后,图象恰好为函数的图象,则的值可以为。

8.过点P(4,2)作圆的两条切线,切点分别为A 、B ,0为坐标原点,则的外接圆方程是A .B .C .D . 【答案】A【解析】由圆x 2+y 2=4,得到圆心O 坐标为(0,0), ∴的外接圆为四边形OAPB 的外接圆,又P (4,2), ∴外接圆的直径为|OP|,半径为外接圆的圆心为线段OP 的中点是(2,1),所以的外接圆方程是。

2021年高三数学下学期第十一次大练习试题北师大版

2021年高三数学下学期第十一次大练习试题北师大版

2021年高三数学下学期第十一次大练习试题北师大版一、选择题(每小题5分,满分60分)1.(理)复数等于A. B. C. D.(文)等于A. B. C. D.2.满足条件的所有集合的个数是A.1B. 2C. 3D. 43.(理)函数的反函数为A. B.C. D.(文)过点且方向向量是的直线方程是A. B. C. D.4.若则下列结论正确的是A. B. C. D.5.函数的部分图象如图,则A.;B. ;C. ;D. 。

6.过正三棱锥的侧棱与底面中心作截面,如果截面是等腰三角形,则侧面与底面所成角的余弦值是A. B. C. D.或7.过点且与双曲线只有一个交点的直线有A.1条B.2条C.3条D.4条8.点在内,满足,那么与的面积之比是MPQNA. B. C. D.9.从单词“education ”中选取5个不同的字母排成一排,则含“at ”(“at ”相连且顺序不变)的概率为A. B. C. D.10.设二项式的展开式的各项系数和为,所有二项式系数的和是,若,则 A.6 B.5 C.4 D.8 11.已知函数满足对任意,都有成立, 则的取值范围是 A.B. C.D.12.集合中的元素都是整数,并且满足条件:①中有正数,也有负数;②中有奇数,也有偶数;③;④若,则。

下面判断正确的是 A. B. C. D. 二、填空题(每小题4分,满分16分)13.方程表示的曲线所围成区域的面积是 ; 14 .对2×2数表定义平方运算如下:222a b a b a b a bc ab bd c d c d c d ac cdbc d ⎛⎫++⎛⎫⎛⎫⎛⎫=⋅= ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭. 则 ; 15.如图,从点发出的光线沿平行于抛物线对称轴的方向射向此抛物线上的点,反射后经焦点又射向抛物线上的点,再反射后沿平行于抛物线的对称轴的方向射向直线上的点,再反射后又射回点,则= .16.若数列是等差数列,则数列也为等差数列,类比上述性质,若数列是等比数列,且,则有________也是等比数列. 三、解答题17.(本小题满分12分)已知向量,其中,记函数,已知的最小正周期为. (Ⅰ) 求;(Ⅱ)当时,试求的值域.18.(本小题满分12分)ABC 袋中装着标有数字1,2,3的小球各两个,从袋中任取两个小球,每个小球被取出的可能性都相等.(Ⅰ)求取出的两个小球上的数字互不相同的概率;(Ⅱ)(理)用表示取出的两个小球上的数字之和,求随机变量的分布列与数学期望.(文)求取出的两个小球上的数字之和为4的概率;19.(本小题满分12分)如右图,将一副三角板拼接,使它们有公共边,且使两个三角板所在平面互相垂直,若,,,.(Ⅰ)求证:平面平面.(Ⅱ)求二面角的平面角的余弦值. (Ⅲ)求到平面的距离.20(本小题满分12分)已知椭圆的两个焦点分别是,是椭圆在第一象限的点,且满足,过点作倾斜角互补的两条直,分别交椭圆于两点. (Ⅰ)求点的坐标; (Ⅱ)求直线的斜率;21.(本小题满分12分) (理)已知函数,(Ⅰ)若,试确定函数的单调区间;(Ⅱ)若,对于任意的,恒成立,求的取值范围; (文)已知在与时都取得极值. (Ⅰ)求的值;(Ⅱ)若,求的单调区间和极值;22.(本小题满分14分,文科只做Ⅰ,Ⅱ问,理科全做) 设对于任意的实数,函数,满足,且 ,,(Ⅰ)求数列和的通项公式;(Ⅱ)设,求数列的前项和(Ⅲ)已知,设,是否存在整数和。

2014届高考数学一轮复习 第十一章《算法框图及推理与证明》精编配套试题(含解析)理 新人教A版

2014届高考数学一轮复习 第十一章《算法框图及推理与证明》精编配套试题(含解析)理 新人教A版

2014届高考数学(理)一轮复习单元测试第十一章算法框图s 及推理与证明一、选择题(本大题共12小题,每小题5分,共60分.) 1、, 当输入x 为60时, 输出y 的值为( )A .25B .30C .31D .612.(2013年高考某某卷(理))阅读如下程序框图,如果输出5i =,那么在空白矩形框中应填入的语句为( )A .2*2S i =-B .2*1S i =-C .2*S i =D .2*4S i =+3.下列推理正确的是( )A .把a (b +c )与log a (x +y )类比,则有log a (x +y )=log a x +log a yB .把a (b +c )与sin(x +y )类比,则有sin(x +y )=sin x +sin yC .把(ab )n 与(x +y )n 类比,则有(x +y )n =x n +y nD .把(a +b )+c 与(xy )z 类比,则有(xy )z =x (yz ) 4、(2013高考某某理)设整数4n ≥,集合{}1,2,3,,X n =.令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A .(),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∈5、古希腊人常用小石子在沙滩上摆成各种形状来研究数。

比如:输入xIf x ≤50 Then y =0.5 * x Elsey =25+0.6*(x -50) End If 输出y他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数。

2021年高三(下)第11次月考数学试卷(文科) 含解析

2021年高三(下)第11次月考数学试卷(文科) 含解析

2021年高三(下)第11次月考数学试卷(文科)含解析一、选择题(本大题共10个小题,每小题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},A)∩B=()则(CuA. {2} B. {4,6} C. {l,3,5} D. {4,6,7,8}2.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A. 100 B. 150 C. 200 D. 2503.已知向量=(x,2),=(2,x),则“x=2”是“∥”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.实数m是[0,6]上的随机数,则关于x的方程x2﹣mx+4=0有实根的概率为()A.B.C.D.5.已知双曲线的离心率为,则双曲线的渐近线方程为()A.B.C.y=±2x D.6.三棱锥S﹣ABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为()A. 2 B. 4 C.D.167.执行如图所示的程序框图,若输出S的值是11,则输入n的值是()A.7 B. 6 C. 5 D. 48.在△ABC中,=3,D,则=()A.﹣1 B.C.D. 19.已知函数f(x)=lnx,x1,x2∈(0,),且x1<x2,则下列结论中正确的是()A.(x1﹣x2)[f(x1)﹣f(x2)]<0 B.f()<f()C.x1f(x2)>x2f(x1)D.x2f(x2)>x1f(x1)10.已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P向圆引切线PQ,且满足|PQ|=|PA|,若以P为圆心所作的圆P与圆O有公共点,则圆P半径的最小值为()A.﹣1 B. 1 C. 2 D.二、填空题(本大题共5个小题,每小题5分,共25分.把答案填在答题卡中对应题号后的横线上)11.复数z=的虚部为.12.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+2x,则f(﹣1)=.13.已知直线l1:(t为参数)与直线l2:(s为参数)垂直,则实数k=.14.设x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最大值为8,则ab的最大值为.15.记S k=1k+2k+3k+…+n k,当k=1,2,3,…时,观察下列等式:S1=n,S2=n,S3=,S4=n,S5=An6+,…可以推测,A﹣B=.三、解答题(本大题共6个小题,共75分.解答题应写出必要的文字说明、证明过程或演算步骤)16.已知数列{a n}是递增等比数列,且a1,a3是方程x2﹣10x+16=0的两根.(1)求数列{a n}的通项公式;(2)若数列b n=2log2a n﹣1,记数列的前n项和为S n,求使S n>成立的最小正整数n的值.17.已知某保险公司每辆车的投保金额均为2800元,公司利用简单随机抽样的方法,对投保车辆进行抽样,样本中每辆车的赔付结果统计如下:赔付金额(元)0 1000 xx 3000 4000车辆数500 150 200 100 50(1)试根据样本估计赔付金额大于投保金额的概率;(2)保险公司在赔付金额为xx元、3000元和4000元的样本车辆中,发现车主是新司机的比例分别为1%、2%和4%,现从新司机中任取两人,则这两人的赔付金额之和不小于投保金额之和的概率是多少?18.如图,在直角梯形ABCD中,BC∥AD,BC=CD=AD=2,E为AD中点,现将△ABE 沿BE折起,使平面ABE⊥平面BCDE.(1)求证:BE⊥AD(2)若F为AD的中点,求三棱锥B﹣ACF的体积.19.如图,在半径为,圆心角为60°的扇形的弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点N,M在OB上,设矩形PNMQ的面积为y,∠POB=θ.(Ⅰ)将y表示成θ的函数关系式,并写出定义域;(Ⅱ)在△ABC中,角A,B,C所对的边分别是a,b,c,若y取最大值时A=θ+,且a=,cosB=,D为AC中点,求BD的值.20.已知椭圆C:+=1(a>b>0)的右焦点F2是抛物线y2=4x的焦点,过点F2垂直于x轴的直线被椭圆C所截得的线段长度为3.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线l:y=kx+m与椭圆C有且只有一个公共点P,且与直线x=2相交于点Q.请问:在x轴上是否存在定点M,使得为定值?若存在,求出点M的坐标;若不存在,请说明理由.21.已知函数f(x)=mx﹣αlnx﹣m,g(x)=,其中m,α均为实数.(1)求g(x)的极值;(2)设m=1,α<0,若对任意的x1,x2∈[3,4](x1≠x2),|f(x2)﹣f(x1)|<|﹣|恒成立,求a的最小值;(3)设α=2,若对任意给定的x0∈(0,e],在区间(0,e]上总存在t1、t2(t1≠t2),使得f (t1)=f(t2)=g(x0)成立,求m的取值范围.xx学年湖南省株洲二中高三(下)第11次月考数学试卷(文科)参考答案与试题解析一、选择题(本大题共10个小题,每小题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则(C u A)∩B=()A.{2} B.{4,6} C.{l,3,5} D.{4,6,7,8}考点:交、并、补集的混合运算.专题:计算题.分析:由全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},知C U A={4,6,7,8},由此能求出(C u A)∩B.解答:解:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴C U A={4,6,7,8},∴(C u A)∩B={4,6}.故选B.点评:本题考查交、并、补集的混合运算,是基础题,解题时要认真审题,仔细解答,注意合理地进行等价转化.2.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100 B.150 C.200 D.250考点:分层抽样方法.专题:概率与统计.分析:计算分层抽样的抽取比例和总体个数,利用样本容量=总体个数×抽取比例计算n值.解答:解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,∴样本容量n=5000×=100.故选:A.点评:本题考查了分层抽样方法,熟练掌握分层抽样方法的特征是关键.3.已知向量=(x,2),=(2,x),则“x=2”是“∥”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:平面向量及应用;简易逻辑.分析:根据充分条件和必要条件的定义进行判断即可.解答:解:若∥,则2×2﹣x2=0,即x2=4,解得x=2或x=﹣2,即“x=2”是“∥”的充分不必要条件,故选:A点评:本题主要考查充分条件和必要条件的判断,根据向量关系的等价条件是解决本题的关键.4.实数m是[0,6]上的随机数,则关于x的方程x2﹣mx+4=0有实根的概率为()A.B.C.D.考点:几何概型.专题:概率与统计.分析:根据几何概型计算公式,首先求出方程有实根的m的范围,然后用符合题意的基本事件对应的区间长度除以所有基本事件对应的区间长度,即可得到所求的概率.解答:解:∵方程x2﹣mx+4=0有实根,∴判别式△=m2﹣16≥0,∴m≤﹣4或m≥4时方程有实根,∵实数m是[0,6]上的随机数,区间长度为6,[4,6]的区间长度为2,∴所求的概率为P==.故选:B.点评:本题着重考查了几何概型计算公式及其应用的知识,给出在区间上取数的事件,求相应的概率值.关键是明确事件对应的是区间长度或者是面积或者体积.5.已知双曲线的离心率为,则双曲线的渐近线方程为()A.B.C.y=±2x D.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线离心率为,根据双曲线的离心率公式算出b=a,结合双曲线的渐近线公式即可得到该双曲线的渐近线方程.解答:解:∵双曲线的方程为,∴c=,结合离心率为,得e===,化简得b=a∴该双曲线的渐近线方程为y=±,即故选:B点评:本题给出双曲线的离心率,求它的渐近线方程,着重考查了双曲线的标准方程与简单几何性质等知识,属于基础题.6.三棱锥S﹣ABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为()A. 2 B. 4 C.D.16考点:简单空间图形的三视图.专题:空间位置关系与距离.分析:由已知中的三视图可得SC⊥平面ABC,底面△ABC为等腰三角形,SC=4,△ABC 中AC=4,AC边上的高为2,进而根据勾股定理得到答案.解答:解:由已知中的三视图可得SC⊥平面ABC,且底面△ABC为等腰三角形,在△ABC中AC=4,AC边上的高为2,故BC=4,在Rt△SBC中,由SC=4,可得SB=4,故选B点评:本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键.7.执行如图所示的程序框图,若输出S的值是11,则输入n的值是()A.7 B. 6 C. 5 D. 4考点:程序框图.专题:算法和程序框图.分析:由已知中的程序框图,可知:该程序的功能是计算并输出变量S的值,模拟程序的运行过程,分析出各变量的变化情况,可得答案.解答:解:当i=1,S=1时,不满足输出条件,故进行循环,执行完循环体后,S=1,i=2;当i=2,S=1时,不满足输出条件,故进行循环,执行完循环体后,S=2,i=3;当i=3,S=2时,不满足输出条件,故进行循环,执行完循环体后,S=4,i=4;当i=4,S=4时,不满足输出条件,故进行循环,执行完循环体后,S=7,i=5;当i=5,S=7时,不满足输出条件,故进行循环,执行完循环体后,S=11,i=6;当i=6,S=11时,满足输出条件,故进行循环的条件应为:i≤5,即输入n的值是5,故选:C点评:本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.8.在△ABC中,=3,D,则=()A.﹣1 B.C.D. 1考点:平面向量数量积的运算.专题:平面向量及应用.分析:将,分别用,表示,然后进行平面向量的数量积运算求值.解答:解:由已知得到=1,=3,=,,则====﹣1;故选:A.点评:本题考查了平面向量的三角形法则以及数量积的运算;关键是正确利用向量表示所求,进行数量积的运算.9.已知函数f(x)=lnx,x1,x2∈(0,),且x1<x2,则下列结论中正确的是()A.(x1﹣x2)[f(x1)﹣f(x2)]<0 B.f()<f()C.x1f(x2)>x2f(x1)D.x2f(x2)>x1f(x1)考点:对数函数的单调性与特殊点.专题:函数的性质及应用.分析:根据函数的单调性可得A不正确;根据函数的图象是下凹的,可得B不正确;利用导数判断函数在(0,+∞)上是增函数,故有>,化简可得x1f(x2)>x2f(x1),故C正确、且D不正确.解答:解:由于已知函数f(x)=lnx在定义域(0,+∞)上是增函数,x1,x2∈(0,),且x1<x2 ,可得[f(x1)﹣f(x2)]<0,故(x1﹣x2)[f(x1)﹣f(x2)]>0,故A不正确.由于已知函数f(x)=lnx的增长速度较慢,图象是下凹型的,故有f()>f(),故B不正确.∵已知函数f(x)=lnx,x1,x2∈(0,),且x1<x2 ,则′==>0,∴函数在(0,+∞)上是增函数,故有>,化简可得x1f(x2)>x2f(x1),故C正确、且D不正确.故选C.点评:本题主要考查导数的运算法则的应用,利用导数研究函数的单调性,函数的单调性的应用,属于中档题.10.已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P向圆引切线PQ,且满足|PQ|=|PA|,若以P为圆心所作的圆P与圆O有公共点,则圆P半径的最小值为()A.﹣1 B. 1 C. 2 D.考点:圆的标准方程.专题:计算题;直线与圆.分析:由题意可得:|PQ|2=|PO|2﹣1=a2+b2﹣1,又PQ=PA,可得2a+b﹣3=0.因为以P为圆心所作的圆P和圆O有公共点,所以圆P与圆O外切时,可使圆P的半径最小.又因为PO=1+圆P的半径,所以当圆P的半径最小即为PO最小,即点O到直线2a+b﹣3=0的距离最小,进而解决问题.解答:解:由题意可得:过圆O外一点P(a,b)向圆O引切线PQ,切点为Q,所以|PQ|2=|PO|2﹣1=a2+b2﹣1.又因为|PA|2=(a﹣2)2+(b﹣1)2,并且满足PQ=PA,所以整理可得2a+b﹣3=0.因为以P为圆心所作的圆P和圆O有公共点,所以两圆相切或相交,即圆P与圆O外切时,可使圆P的半径最小.又因为PO=1+圆P的半径,所以当圆P的半径最小即为PO最小,即点O到直线2a+b﹣3=0的距离最小,并且距离的最小值为,所以圆P的半径的最小值为﹣1.故选:A.点评:解决此类问题的关键是熟练掌握直线与圆、圆与圆的位置关系,以及两点之间的距离公式.二、填空题(本大题共5个小题,每小题5分,共25分.把答案填在答题卡中对应题号后的横线上)11.复数z=的虚部为4.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接由复数代数形式的除法运算化简,求得z后即可求出虚部.解答:解:由题意得,z===3+4i,∴复数z=的虚部为4,故答案为:4.点评:本题考查了复数代数形式的除法运算:分母实数化,是基础题.12.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+2x,则f(﹣1)=﹣3.考点:函数奇偶性的性质;函数的值.专题:函数的性质及应用.分析:结合函数的奇偶性先求出函数f(x)在x<0时的解析式,再将x=﹣1代入即可.解答:解:令x<0,则﹣x>0,∴f(﹣x)=(﹣x)2+2(﹣x)=x2﹣2x,又∵f(x)是奇函数,∴f(﹣x)=﹣f(x),∴f(x)=﹣x2+2x,(x<0),∴f(﹣1)=﹣1﹣2=﹣3,故答案为:﹣3.点评:本题考查了求函数的解析式,函数的奇偶性问题,求出函数的解析式是解题的关键,本题是一道基础题.13.已知直线l1:(t为参数)与直线l2:(s为参数)垂直,则实数k=﹣1.考点:直线的参数方程.专题:坐标系和参数方程.分析:把直线l1、l2的参数方程化为普通方程,再由l1与l2垂直,斜率之积为﹣1,求出k 的值.解答:解:直线l1的参数方程(t为参数)化为普通方程是y=﹣x+2;直线l2的参数方程(s为参数)化为普通方程是y=﹣2x+5;又l1与l2垂直,所以,﹣•(﹣2)=﹣1解得k=﹣1.故答案为:﹣1.点评:本题考查了直线的参数方程的应用问题,也考查了直线垂直的应用问题,是基础题目.14.设x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最大值为8,则ab的最大值为4.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用z的几何意义确定取得最大值的条件,然后利用基本不等式进行求则ab的最大值.解答:解:由z=ax+by(a>0,b>0)得,∵a>0,b>0,∴直线的斜率,作出不等式对应的平面区域如图:平移直线得,由图象可知当直线经过点A时,直线的截距最大,此时z最大.由,解得,即A(1,4),此时目标函数z=ax+by(a>0,b>0)的最大值为8,即a+4b=8,∴8=a+4b=4,∴即ab≤4,当且仅当a=4b=4,即a=4,b=1时取等号.故答案为:4点评:本题主要考查线性规划的基本应用,以及基本不等式的应用,利用数形结合求出目标函数取得最大值的条件是解决本题的关键.15.记S k=1k+2k+3k+…+n k,当k=1,2,3,…时,观察下列等式:S1=n,S2=n,S3=,S4=n,S5=An6+,…可以推测,A﹣B=.考点:归纳推理.专题:计算题;压轴题.分析:通过观察归纳出:各等式右边各项的系数和为1;最高次项的系数为该项次数的倒数;列出方程求出A,B的值,进一步得到A﹣B.解答:解:根据所给的已知等式得到:各等式右边各项的系数和为1;最高次项的系数为该项次数的倒数;所以A=,解得B=,所以A﹣B=,故答案为:点评:本题考查通过观察、归纳猜想结论,并据猜想的结论解决问题,属于基础题.三、解答题(本大题共6个小题,共75分.解答题应写出必要的文字说明、证明过程或演算步骤)16.已知数列{a n}是递增等比数列,且a1,a3是方程x2﹣10x+16=0的两根.(1)求数列{a n}的通项公式;(2)若数列b n=2log2a n﹣1,记数列的前n项和为S n,求使S n>成立的最小正整数n的值.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(1)由x2﹣10x+16=0,解得x=2,8,可得a1,a3,再利用等比数列的通项公式即可得出;(2)数列b n=2log2a n﹣1=2n﹣1,可得==,再利用“裂项求和”、不等式的性质、数列的单调性即可得出.解答:解:(1)由x2﹣10x+16=0,解得x=2,8.∵a1,a3是方程x2﹣10x+16=0的两根,且a1<a3.∴a1=2,a3=8.设等比数列{a n}的公比为q>0,则8=2q2,解得q=2.∴.(2)数列b n=2log2a n﹣1=2n﹣1,∴==,∴数列的前n项和为S n=++…+=1﹣.由使S n>,可得,化为2n+1>6,解得,其最小正整数n=3.∴使S n>成立的最小正整数n的值为3.点评:本题考查了递推式的应用、等比数列的通项公式、“裂项求和”、不等式的性质、数列的单调性,考查了推理能力与计算能力,属于中档题.17.已知某保险公司每辆车的投保金额均为2800元,公司利用简单随机抽样的方法,对投保车辆进行抽样,样本中每辆车的赔付结果统计如下:赔付金额(元)0 1000 xx 3000 4000车辆数500 150 200 100 50(1)试根据样本估计赔付金额大于投保金额的概率;(2)保险公司在赔付金额为xx元、3000元和4000元的样本车辆中,发现车主是新司机的比例分别为1%、2%和4%,现从新司机中任取两人,则这两人的赔付金额之和不小于投保金额之和的概率是多少?考点:互斥事件的概率加法公式.专题:概率与统计.分析:(1)设A表示事件“赔付金额为3000元,”B表示事件“赔付金额为4000元”,以频率估计概率,求得P(A),P(B),再根据投保额为2800元,赔付金额大于投保金额得情形是3000元和4000元,问题得以解决.(2)先计算从新司机中任取两人的方法总数,及这两人的赔付金额之和不小于投保金额之和方法个数,代入古典概型概率计算公式,可得答案.解答:解:(1)设A表示事件“赔付金额为3000元,”B表示事件“赔付金额为4000元”,以频率估计概率得P(A)==0.1,P(B)==0.05,由于投保额为2800元,赔付金额大于投保金额得情形是3000元和4000元,所以其概率为P(A)+P(B)=0.1+0.05=0.15.(2)由已知,样本车辆中车主为新司机的有1%×200+2%×100+4%×50=6人,计赔付金额为xx元、3000元和4000元的分别为:A,B,C,D,E,F,则从新司机中任取两人共有=15种不同的取法,分别为:AB,AC,AD,AE,AF,BC,BD,BD,BF,CD,CE,CF,DE,DF,EF,其中这两人的赔付金额之和不小于投保金额之和的事件有:CD,CE,CF,DE,DF,EF,共6种,故这两人的赔付金额之和不小于投保金额之和的概率P==点评:本题主要考查了用频率来表示概率,古典概率的概率计算公式,难度不大,属于基础题.18.如图,在直角梯形ABCD中,BC∥AD,BC=CD=AD=2,E为AD中点,现将△ABE 沿BE折起,使平面ABE⊥平面BCDE.(1)求证:BE⊥AD(2)若F为AD的中点,求三棱锥B﹣ACF的体积.考点:棱柱、棱锥、棱台的体积;直线与平面垂直的性质.专题:综合题;空间位置关系与距离.分析:(1)证明BE⊥平面AED,即可证明⊥AD(2)若F为AD的中点,利用等体积转换,即可求三棱锥B﹣ACF的体积.解答:(1)证明:∵AE⊥DE,BE⊥ED,AE∩DE=E∴BE⊥平面AED,∵AD⊂平面AED,∴BE⊥AD(2)解:△ABC中,AB⊥BC,AB=2,BC=2,∴S△ABC==2∵E到平面ABC的距离为,F为AD的中点,∴F到平面ABC的距离为,∴三棱锥B﹣ACF的体积==.点评:本题考查线面垂直的判定与性质,考查三棱锥B﹣ACF的体积,正确转化是关键.19.如图,在半径为,圆心角为60°的扇形的弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点N,M在OB上,设矩形PNMQ的面积为y,∠POB=θ.(Ⅰ)将y表示成θ的函数关系式,并写出定义域;(Ⅱ)在△ABC中,角A,B,C所对的边分别是a,b,c,若y取最大值时A=θ+,且a=,cosB=,D为AC中点,求BD的值.考点:函数模型的选择与应用.专题:三角函数的图像与性质;解三角形.分析:(Ⅰ)在Rt△PON中,PN=OPsinθ=,ON=cosθ.在Rt△OQM中,=sinθ.可得MN=0N﹣0M=.可得矩形PNMQ的面积y=PN•NM=,再利用倍角公式、两角和差的正弦公式即可得出.(Ⅱ)当=时,y取得最大值,θ=.可得A=.由cosB=,可得.由正弦定理可得:.利用两角和差的正弦公式可得sinC=sin(A+B)=sinAcosB+cosAsinB.由正弦定理可得:.在△ABD 中,由余弦定理可得:BD2=AB2+AD2﹣2AB•ADcosA.解答:解:(Ⅰ)在Rt△PON中,PN=OPsinθ=,ON=cosθ.在Rt△OQM中,==sinθ.∴MN=0N﹣0M=.∴矩形PNMQ的面积y=PN•NM==3sinθcosθ﹣==﹣,.(Ⅱ)当=时,y取得最大值,θ=.∴A==.∵cosB=,∴=.由正弦定理可得:,∴==2.sinC=sin(A+B)=sinAcosB+cosAsinB=+=.由正弦定理可得:,∴==.在△ABD中,由余弦定理可得:BD2=AB2+AD2﹣2AB•ADcosA=+12﹣2××=13.∴BD=.D为AC中点,求BD的值.点评:本题综合考查了直角三角形的边角关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理余弦定理,考查了推理能力与计算能力,属于难题.20.已知椭圆C:+=1(a>b>0)的右焦点F2是抛物线y2=4x的焦点,过点F2垂直于x 轴的直线被椭圆C所截得的线段长度为3.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线l:y=kx+m与椭圆C有且只有一个公共点P,且与直线x=2相交于点Q.请问:在x轴上是否存在定点M,使得为定值?若存在,求出点M的坐标;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题;椭圆的简单性质.专题:平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程.分析:(Ⅰ)求得抛物线的焦点,由题意可得,椭圆C过点(1,±),代入椭圆方程,解方程可得a,b,进而得到椭圆方程;(Ⅱ)假设在x轴上存在定点M(x1,0)满足条件,设P(x0,y0),则Q(2,2k+m),联立直线l方程和椭圆方程,运用判别式为0,求得m,k的关系,再由向量的数量积的坐标表示,化简整理,即可得到定值.解答:解:(Ⅰ)抛物线y2=4x的焦点坐标为(1,0),则由题意可得,椭圆C过点(1,±),则,解得,∴椭圆C的方程为+=1;(Ⅱ)假设在x轴上存在定点M(x1,0)满足条件,设P(x0,y0),则Q(2,2k+m),由,得(3+4k2)x2+8kmx+4m2﹣12=0,∴△=64k2m2﹣4(3+4k2)(4m2﹣12)=0,即3+4k2=m2,m≠0.此时x0=﹣=﹣,y0=kx0+m=,则P(﹣,),∴=(﹣﹣x1,),=(2﹣x1,2k+m),∴=(﹣﹣x1)(2﹣x1)+(2k+m)=(4x1﹣2)•+x12﹣2x1+3,∴当4x1﹣2=0即x1=时,x12﹣2x1+3=.∴存在点M(,0),使得为定值.点评:本题考查椭圆的方程和性质,主要考查椭圆的焦点和点满足椭圆方程,同时考查直线方程和椭圆方程联立,运用判别式为0和向量数量积的坐标表示,考查运算能力,属于中档题.21.已知函数f(x)=mx﹣αlnx﹣m,g(x)=,其中m,α均为实数.(1)求g(x)的极值;(2)设m=1,α<0,若对任意的x1,x2∈[3,4](x1≠x2),|f(x2)﹣f(x1)|<|﹣|恒成立,求a的最小值;(3)设α=2,若对任意给定的x0∈(0,e],在区间(0,e]上总存在t1、t2(t1≠t2),使得f (t1)=f(t2)=g(x0)成立,求m的取值范围.考点:利用导数研究函数的极值;利用导数研究函数的单调性.专题:导数的概念及应用.分析:(1)对于第一问非常简单,只需按求解极值的定义求解即可.(2)在所给式子中含绝对值,一般考虑去掉绝对值,x1,x2是任给的两个数,所以可考虑用函数单调性.去掉绝对值之后,注意观察式子,你会发现,只要做适当变形,便可利用函数单调性的定义,得到一个新的函数的单调性,再结合导数求a的范围即可.(3)通过第三问的条件,你会得到f(x)在区间(0,e]不是单调函数的结论,并要求f(x)的值域需包含g(x)的值域便可.接下来就是看怎样让f(x)的值域包含g(x)的值域,即能求出m的范围.解答:解:(1)g′(x)=,令,解得x=1,∵e x>0,∴x∈(﹣∞,1)时,g′(x)>0;x∈(1,+∞)时,g′(x)<0,根据极大值的定义知:g(x)极大值是g(1)=1,无极小值.(2)当m=1,a<0时,f(x)=x﹣alnx﹣1,所以在[3,4]上f′(x)=>0,所以f(x)在[3,4]上是增函数.设h(x)=,所以在[3,4]上h′(x)=>0,所以h(x)在[3,4]上为增函数.设x2>x1,则恒成立,变成恒成立,即:f(x2)﹣f(x1)<h(x2)﹣h(x1)恒成立,即:f(x2)﹣h(x2)<f(x1)﹣h(x1).设u(x)=f(x)﹣h(x)=,则u(x)在[3,4]上为减函数.∴u′(x)=1﹣≤0在[3,4]上恒成立.∴恒成立.设v(x)=x﹣,所以v′(x)=1﹣=,因为x∈[3,4],所以,所以v′(x)<0,所以v(x)为减函数.∴v(x)在[3,4]上的最大值为v(3)=.∴a≥,∴a的最小值为:.(3)由(1)知g(x)在(0,1]上单调递增,在(1,e]单调单调递减,又g(0)=0,g (e)=,所以g(x)的值域是(0,1].∵f(x)=mx﹣2lnx﹣m;∴当m=0时,f(x)=﹣2lnx,在(0,e]为减函数,由题意知,f(x)在(0,e]不是单调函数;故m=0不合题意;当m≠0时,f′(x)=,由于f(x)在(0,e]上不单调,所以,即;①此时f(x)在(0,)递减,在(,e]递增;∴f(e)≥1,即me﹣2﹣m≥1,解得;②所以由①②,得;∵1∈(0,e],∴f()≤f(1)=0满足条件.下证存在t∈(0,]使得f(t)≥1;取t=e﹣m,先证,即证2e m﹣m>0;③设w(x)=2e x﹣x,则w′(x)=2e x﹣1>0在[,+∞)时恒成立;∴w(x)在[,+∞)上递增,∴w(x)≥>0,所以③成立;再证f(e﹣m)≥1;∵f,∴时,命题成立.所以m的取值范围是:[,+∞).点评:本题用到的知识点有:1.极值的定义.2.用倒数求函数单调区间,判断单调性的方法.3.单调函数定义的运用.4.会对式子做适当变形,从而解决问题.A28022 6D76 浶34719 879F 螟37845 93D5 鏕l 25789 64BD 撽r28468 6F34 漴38738 9752 青37760 9380 鎀27660 6C0C 氌27213 6A4D 橍23195 5A9B 媛U。

2019年最新(统考)陕西省高三下学期第十一次模考数学(文)试题及答案解析

2019年最新(统考)陕西省高三下学期第十一次模考数学(文)试题及答案解析
高三年级第十一次模考试题
数学(文科)
注意事项: 1.本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 答案均写在答题纸上,满分 150 分,时间 120 分钟. 2.学生领到试卷后,请检查条形码信息是否正确. 并按规定在答题纸上填写姓名、准考 证号,及填涂对应的试卷类型信息. 3.答卷必须用 0.5mm 的黑色签字笔书写, 字迹工整, 笔迹清晰. 并且必须在题号所指示 的答题区内作答,超出答题区域的书写无效. 4.只交答题纸,不交试题卷.
2 ,若将其沿 BD 折起使平
)
A. 4
B. 8
C. 16
D. 2
第 Ⅱ 卷(非选择题 共 90 分)
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分,把答案填在答题卷中相应的横线上.) 13.平面向量 a 与 b 的夹角为
2 ,且 a 1, 0 , b 1 则 a 2b 3

2 2 14. 从 集合 {( x, y ) x y 4, x R, y R} 内 任 选 一 个 元素 ( x , y ) , 则满 足 x y 2 的 概 率


15. 设 公 比 为 q 的 等 比 数 列 {an } 的 前
n 项 和 为 Sn , 若 S2 3a2 2 , S4 3a4 2 , 则
)
的左、右焦点,若 PF 1 6 ,则 PF2 (
A. 2 或 10
C. 10
B. 2
D. 9
)
1
正视图
4 2 2
6.某几何体的三视图如右图所示,其中俯视图为扇形,则该几何体的体积为(
侧视图
A.
2 3
B.
3
俯视图

2021《单元滚动检测卷》高考复习数学(理)(北师大全国)精练十 统计与统计案例

2021《单元滚动检测卷》高考复习数学(理)(北师大全国)精练十 统计与统计案例

高三单元滚动检测卷·数学考生留意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。

2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上。

3.本次考试时间120分钟,满分150分。

单元检测十 统计与统计案例第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.为规范学校办学,省训练厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名同学,现将该班同学随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应为( ) A .13 B .19 C .20 D .512.从N 个编号中抽取n 个号码入样,若接受系统抽样方法进行抽取,则分段间隔应为( ) A.Nn B .n C .[N n]D .[Nn]+13.已知一组数据:a 1,a 2,a 3,a 4,a 5,a 6,a 7构成公差为d 的等差数列,且这组数据的方差等于1,则公差d 等于( ) A .±14B .±12C .±128D .无法求解4.高二其次学期期中考试,依据甲、乙两个班级同学数学考试成果优秀和不优秀统计后,得到如下列联表: 班级与成果列联表优秀 不优秀 总计 甲班 11 34 45 乙班 8 37 45 总计197190则随机变量χ2的值约为( )A .0.600B .0.828C .2.712D .6.0045.从某项综合力气测试中抽取100人的成果,统计如下表,则这100人成果的标准差为( )分数 5 4 3 2 1 人数2010303010A. 3 B .3 C.2105 D.856.如图是一次选秀节目上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数为85,则a 2+b 2的最小值是( )A .24B .32C .36D .487.(2022·重庆)已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( ) A .y =0.4x +2.3 B .y =2x -2.4 C .y =-2x +9.5D .y =-0.3x +4.48.某校为了争辩同学的性别和对待某一活动的态度(支持和不支持)的关系,运用2×2列联表进行独立性检验,经计算χ2=7.069,则所得到的统计学结论是:有多大的把握认为“同学性别与支持该活动有关系.”( ) 附:P (χ2≥k 0)0.100 0.050 0.025 0.010 0.001 k 02.7063.8415.0246.63510.828A.0.1% B .1% C .99%D .99.9%9.一个频率分布表(样本容量为30)不当心被损坏了一部分(如图),只记得样本中数据在[20,60)上的频率为0.8,则估量样本分别在[40,50),[50,60)上的数据个数可能是( )A .7和6B .6和9C .8和9D .9和1010.对四组数据进行统计,获得图所示的散点图,关于其相关系数的比较,正确的是( )A .r 2<r 4<0<r 3<r 1B .r 4<r 2<0<r 1<r 3C .r 4<r 2<0<r 3<r 1D .r 2<r 4<0<r 1<r 311.(2021·驻马店模拟)中心电视台为了调查近三年的春晚节目中各类节目的受欢迎程度,用分层抽样的方法,从2011年至2021年春晚的50个歌舞类节目,40个戏曲类节目,30个小品类节目中抽取样本进行调查,若样本中的歌舞类和戏曲类节目共有27个,则样本容量为( ) A .36 B .35 C .32 D .30 12.(2021·蚌埠模拟)给出以下命题: ①若p 或q 为假命题,则p 与q 均为假命题;②对具有线性相关关系的变量x ,y 有一组观测数据(x i ,y i ) (i =1,2,…,8),其线性回归方程是y =13x +a ,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a =14;③对于分类变量X 与Y 的随机变量χ2来说,χ2越小,“X 与Y 有关联”的把握程度越大; ④已知x -12-x ≥0,则函数f (x )=2x +1x 的最小值为16.其中真命题的个数为( ) A .0 B .1 C .2 D .3 第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.从某中学高一班级中随机抽取100名同学,将他们的成果(单位:分)数据绘制成频率分布直方图(如图).则这100名同学成果的平均数,中位数分别为________.14.某企业三月中旬生产A 、B 、C 三种产品共3 000件,依据分层抽样的结果,该企业统计员制作了如下的统计表格:产品类别 A B C 产品数量(件) 1 300 样本容量(件)130由于不当心,表格中A 、C 产品的有关数据已被污染看不清楚,统计员记得A 产品的样本容量比C 产品的样本容量多10,依据以上信息,可得C 产品的数量是________件.15.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:时间x 1 2 3 4 5 命中率y0.40.50.60.60.4小李这5天的平均投篮命中率为________;用线性回归分析的方法,猜想小李该月6号打6小时篮球的投篮命中率为________.16.关于统计数据的分析,有以下几个结论: ①一组数不行能有两个众数;②将一组数据中的每个数据都减去同一个数后,方差没有变化;③调查剧院中观众观看感受时,从50排(每排人数相同)中任意抽取一排的人进行调查,属于分层抽样; ④一组数据的方差确定是正数;⑤如图是随机抽取的200辆汽车通过某一段大路时的时速频率分布直方图,依据这个直方图,可以得到时速在[50,60)的汽车大约是60辆,则这五种说法中错误的是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)(2021·济南模拟)从某高校高三班级800名男生中随机抽取50名同学测量其身高,据测量,被测同学的身高全部在155 cm 到195 cm 之间,将测量结果按如下方式分成8组:第一组[155,160),其次组[160,165),…,第八组[190,195],下图是按上述分组得到的频率分布直方图的一部分.已知第一组与第八组的人数相同,第七组与第六组的人数差恰好为第八组与第七组的人数差.求下列频率分布表中所标字母的值,并补充完成频率分布直方图.频率分布表:分组频数频率频率/组距…………[180,185)x y z[185,190)m n p…………18.(12分)(2021·江西八所重点中学联考)“双节”期间,高速大路车辆较多,某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速大路的车速(km/h)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(1)求这40辆小型汽车车速的众数和中位数的估量值;(2)若从车速在[60,70)内的车辆中任抽取2辆,求车速在[65,70)内的车辆恰有一辆的概率.19.(12分)(2022·课标全国Ⅱ)某地区2007年至2021年农村居民家庭人均纯收入y(单位:千元)的数据如下表:年份2007200820092010201120222021年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程,分析2007年至2021年该地区农村居民家庭人均纯收入的变化状况,并猜想该地区2021年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估量公式分别为:b=∑i=1n(t i-t)(y i-y)∑i=1n(t i-t)2,a=y-b t.20.(12分)为使同学更好地了解中华民族宏大复兴的历史学问,某校组织了一次以“我的梦,中国梦”为主题的学问竞赛,每班选25名同学参与竞赛,成果分为A,B,C,D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将某班级的一班和二班的成果整理并绘制成统计图:请依据以上供应的信息解答下列问题:(1)把一班竞赛成果统计图补充完整;(2)写出下表中a,b,c的值.平均数(分)中位数(分)众数(分)一班a b90二班87.680c(3)①从平均数和中位数方面来比较一班和二班的成果;②从平均数和众数方面来比较一班和二班的成果;③从B级以上(包括B级)的人数方面来比较一班和二班的成果.21.(12分)某个体服装店经营某种服装,一周内获纯利y(元)与该周每天销售这种服装的件数x之间的一组数据如下:已知:∑7i =1x 2i =280,∑7i =1y 2i =45 309,∑i =1x i y i =3 487. (1)求x ,y ;(2)推断纯利润y 与每天销售件数x 之间是否线性相关,假如线性相关,求出线性回归方程.22.(12分)(2021·沈阳质量监测二)在一次数学测验后,班级学委对选答题的选题状况进行统计,如下表:(1)以得到如下2×2列联表:(2)在原统计结果中,假如不考虑性别因素,按分层抽样的方法从选做不同选做题的同学中随机选出7名同学进行座谈,已知这名学委和两名数学课代表都在选做“不等式选讲”的同学中. (i)求在这名学委被选中的条件下,两名数学课代表也被选中的概率; (ii)记抽取到数学课代表的人数为X ,求X 的分布列及均值EX . 下面临界值表仅供参考:(参考公式:χ2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ))答案解析1.C [抽样间隔为46-33=13,故另一位同学的编号为7+13=20,选C.] 2.C3.B [这组数据的平均数为a 1+a 2+a 3+a 4+a 5+a 6+a 77=7a 47=a 4.又由于这组数据的方差等于1,所以17[(a 1-a 4)2+(a 2-a 4)2+(a 3-a 4)2+(a 4-a 4)2+(a 5-a 4)2+(a 6-a 4)2+(a 7-a 4)2]=(-3d )2+(-2d )2+(-d )2+0+(d )2+(2d )2+(3d )27=1.即4d 2=1, 解得d =±12.]4.A [由题意知a =11,b =34,c =8,d =37,n =90, 则χ2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )的值约为0.600,故选A.]5.C [x =20×5+10×4+30×3+30×2+10×1100=3,s =1100[20×(5-3)2+10×(4-3)2+30×(3-3)2+30×(2-3)2+10×(1-3)2] =1100(80+10+30+40)= 160100=41010=2105.] 6.B [依据题意,得4+a +6+b +75=5,得a +b =8.方法一 由b =8-a ,得a 2+b 2=a 2+(8-a )2=2a 2-16a +64, 其中a ,b 满足0≤a ≤9,0≤b ≤9, 所以0≤a ≤9,0≤8-a ≤9, 即0≤a ≤8且a 是整数,设函数f (a )=2a 2-16a +64,分析知当a =4时, f (a )取得最小值32,所以a 2+b 2的最小值是32.故选B.方法二 由a +b =8,且a ,b ≥0, 得8≥2ab ,故ab ≤16,则a 2+b 2=(a +b )2-2ab ≥64-32=32, 当且仅当a =b =4时等号成立, 所以a 2+b 2的最小值是32.]7.A [由于变量x 和y 正相关,则回归直线的斜率为正,故可以排解选项C 和D.由于样本点的中心在回归直线上,把点(3,3.5)分别代入选项A 和B 中的直线方程进行检验,可以排解B ,故选A.]8.C [由于7.069与附表中的6.635最接近,所以得到的统计学结论是:有1-0.010=0.99=99%的把握认为“同学性别与支持该活动有关系”,选C.] 9.B [因样本中数据在[20,60)上的频率为0.8, 则样本中数据在[20,60)上的频数为30×0.8=24. 又由于样本中数据在[20,40)上的频数为4+5=9, 所以样本在[40,60)上的数据的个数为24-9=15. 由选项知B 符合.]10.A [易知题中图(1)与图(3)是正相关,图(2)与图(4)是负相关,且图(1)与图(2)中的样本点集中分布在一条直线四周,则r 2<r 4<0<r 3<r 1.]11.A [设从30个小品类节目中抽取x 个,则有x 30=2750+40,解得x =9.则27+9=36,所以样本容量为36.]12.B [①正确.②中a =18,所以②不正确.③中χ2越小,“X 与Y 有关联”的把握程度越小,所以③不正确.由x -12-x ≥0可得1≤x <2,由于f (x )=2x +1x ≥22=4,当且仅当x =1时取等号,所以④不正确.]13.125,124解析 由图可知(a +a -0.005)×10=1-(0.010+0.015+0.030)×10,解得a =0.025, 则x =105×0.1+115×0.3+125×0.25+135×0.2+145×0.15=125. 中位数在120~130之间,设为x ,则0.01×10+0.03×10+0.025×(x -120)=0.5,解得x =124. 14.800解析 设C 产品的数量为x ,C 产品的样本容量为a , 则A 产品的数量为1 700-x , A 产品的样本容量为10+a ,由分层抽样的定义可知:1 700-x a +10=x a =1 300130,∴x =800.15.0.5 0.53解析 平均投篮命中率y =15(0.4+0.5+0.6+0.6+0.4)=0.5,而x =3.∑i =15(x i -x )(y i -y )=(-2)×(-0.1)+(-1)×0+0×0.1+1×0.1+2×(-0.1)=0.1,∑i =15(x i -x )2=(-2)2+(-1)2+02+12+22=10,于是b =0.01,a =y -b x =0.47,∴y =0.01x +0.47,令x =6,得y =0.53. 16.①③④解析 一组数中可以有两个众数,故①错误;依据方差的计算法可知②正确;③属于简洁随机抽样,错误;④错误,由于方差可以是零;⑤正确.17.解 由频率分布直方图可知前五组的频率和是 (0.008+0.016+0.04+0.04+0.06)×5=0.82, 第八组的频率是0.008×5=0.04,所以第六、七组的频率和是1-0.82-0.04=0.14,所以第八组的人数为50×0.04=2,第六、七组的总人数为50×0.14=7. 由已知得x +m =7,m -x =2-m , 解得x =4,m =3.所以y =0.08,n =0.06,z =0.016,p =0.012.补充完成频率分布直方图如图所示.18.解 (1)众数的估量值为77.5,设中位数的估量值为x ,则0.01×5+0.02×5+0.04×5+0.06×(x -75)=0.5,解得x =77.5,即中位数的估量值为77.5.(2)从题图中可知,车速在[60,65)内的车辆数为0.01×5×40=2,车速在[65,70)内的车辆数为0.02×5×40=4,记车速在[60,65)内的两辆车为a ,b ,车速在[65,70)内的四辆车为c ,d ,e ,f ,则全部基本大事有 (a ,b ),(a ,c ),(a ,d ),(a ,e ),(a ,f ), (b ,c ),(b ,d ),(b ,e ),(b ,f ), (c ,d ),(c ,e ),(c ,f ), (d ,e ),(d ,f ), (e ,f ), 共15个,其中车速在[65,70)内的车辆恰有一辆的大事有:(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),共8个.所以若从车速在[60,70)内的车辆中任抽取2辆,则车速在[65,70)内的车辆恰有一辆的概率为P =815.19.解 (1)由所给数据计算得t =17(1+2+3+4+5+6+7)=4,y =17(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑i =17(t i -t )2=9+4+1+0+1+4+9=28,∑i =17(t i -t )(y i -y )=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b =∑i =17(t i -t )(y i -y )∑i =17(t i -t )2=1428=0.5, a =y -bt =4.3-0.5×4=2.3, 所求线性回归方程为 y =0.5t +2.3.(2)由(1)知,b ^=0.5>0,故2007年至2021年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2021年的年份代号t =9代入(1)中的回归方程,得y =0.5×9+2.3=6.8,故猜想该地区2021年农村居民家庭人均纯收入为6.8千元. 20.解 (1)25-6-12-5=2(人).(2)a =87.6,b =90,c =100.(3)①一班和二班平均数相等,一班的中位数大于二班的中位数,故一班的成果好于二班. ②一班和二班平均数相等,一班的众数小于二班的众数,故二班的成果好于一班; ③B 级以上(包括B 级)一班18人,二班12人, 故一班的成果好于二班.21.解 (1)x =17(3+4+5+6+7+8+9)=6,y =17(66+69+73+81+89+90+91)≈79.86.(2)依据已知∑7i =1x 2i =280,∑7i =1y 2i =45 309, ∑7i =1x i y i =3 487,得相关系数r =3 487-7×6×79.86(280-7×62)(45 309-7×79.862)≈0.973.由于0.973>0.75,所以纯利润y 与每天销售件数x 之间具有显著的线性相关关系. 利用已知数据可求得线性回归方程为 y =4.75x +51.36. 22.解 (1)由题意得 χ2=42×(16×12-8×6)224×18×20×22=25255≈4.582>3.841. 所以,据此统计有95%的把握认为选做“几何类”或“代数类”与性别有关. (2)由题意可知在“不等式选讲”的18位同学中,要选取3位同学. (i)令大事A 为“这名学委被选中”;大事B 为“两名数学课代表被选中”, 则P (A ∩B )=C 33C 318,P (A )=C 217C 318.所以P (B |A )=P (A ∩B )P (A )=C 33C 217=217×16=1136.另解:令大事A 为“在这名学委被选中的条件下,两名数学课代表也被选中”,则P (A )=C 22C 217=217×16=1136.(ii)由题意知X 的可能取值有0,1,2, 依题意P (X =0)=C 316C 318=3551,P (X =1)=C 216C 12C 318=517,P (X =2)=C 116C 22C 318=151.从而X 的分布列为于是EX =0×3551+1×517+2×151=1751=13.。

陕西省高三下册第二学期第十一次模考数学(理)试题含答案【推荐】

陕西省高三下册第二学期第十一次模考数学(理)试题含答案【推荐】

陕师大附中高三年级第十一次模考试题数学(理科)注意事项:1.本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 答案均写在答题纸上,满分150分,时间120分钟.2.学生领到试卷后,请检查条形码信息是否正确. 并按规定在答题纸上填写姓名、准考证号,及填涂对应的试卷类型信息.3.答卷必须用0.5mm 的黑色签字笔书写,字迹工整,笔迹清晰. 并且必须在题号所指示的答题区内作答,超出答题区域的书写无效.4.只交答题纸,不交试题卷.第 Ⅰ 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分, 在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{||2}A x x =<,2{430}B x x x =-+<,则A B I 等于( ).A {21}x x -<<.B {12}x x << .C {23}x x <<.D {23}x x -<<2.设复数2z i =+,则z z -=( ).A 4.B 0 .C 2 .D 3.在等差数列{}n a 中,39a a =且公差0d <,则使前n 项和n S 取得最大值时的n 的值为( ).A 4或5.B 5或6 .C 6或7 .D 不存在4.已知位于坐标原点的一个质点P 按下述规则移动,质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,则质点P 移动六次后位于点(4,2)的概率是( ).A 61()2.B 2661()2C.C 4461()2C.D 426661()2C C5.P 是双曲线22219x y a -=上一点,双曲线的一条渐近线为320x y -=,12F F 、分别是双曲线的左、右焦点,若16PF =,则2PF =( ).A 2或10 .B 2.C 10.D 96.某几何体的三视图如右图所示,其中俯视图为扇形,则该几何体的体积为.A 23π.B 3π.C 29π .D 169π7.函数()f x 部分图象如图所示,则()f x 的解析式可能是( )侧视图.A ()sin f x x x =+.B cos ()xf x x=.C 3()()()22f x x x x ππ=-- .D ()cos f x x x =8.函数()f x 在定义域R 内可导,若()(2)f x f x =-,且(1)()0x f x '-<,若(0),a f =1()2b f = ,(3)c f =,则,,a b c 的大小关系是( ).A a b c >> .B b a c >> .C c b a >> .D a c b >> 9.阅读程序框图,为使输出的数据为31,则①处应填的数字为( ) .A 4 .B 5.C 6 .D 710.如图,抛物线2:4W y x =与圆22:(1)25C x y -+=交于,A B两点,点P 为劣弧AB 上不同于,A B 的一个动点,与x 轴平行的直线PQ 交抛物线W 于点Q ,则PQC ∆的周长的取值范围是( ).A (10,14) .B (12,14) .C (10,12) .D (9,11)11.曲线3y x =上一点B 处的切线l 交x 轴于点A ,(OAB O ∆为原点)是以A 为 顶点的等腰三角形,则切线l 的倾斜角为( ).A 30o .B 45o .C 60o .D 120o12.在平行四边形ABCD 中,0AB BD ⋅=u u u r u u u r ,22240AB BD +-=u u u r u u u r ,若将其沿BD 折成直二面角 A BD C --,则三棱锥A BDC -的外接球的表面积为( ).A 4π .B 8π .C 16π .D 2π第 Ⅱ 卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷中相应的横线上.) 13.平面向量a r 与b r的夹角为23π,且()1,0a =r ,1b =r 则2a b +=r r .14.在41()2x x+的展开式中,2x 的系数为 . 15.设公比为q 的等比数列{}n a 的前n 项和为n S ,若2232S a =+,4432S a =+,则q = .16.若实数,x y 满足约束条件1122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,目标函数2z ax y =+仅在点(1,0)处取得最小值,则实数a 的取值范围是 .三、解答题:本大题共6小题,共70分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若cos ,cos ,cosC c A b B a 成等差数列.开始输出 结束是 否 1i i =+1,1S i ==i <①2iS S =+S(1)求B ; (2)若33a c +=,3b =,求ABC ∆的面积.18.(本小题满分12分)在四棱锥P ABCD -中,PA ⊥平面ABCD ,ABC ∆是正三角形,AC 与BD 的交点为M ,又4PA AB ==,AD CD =,120CDA ∠=o ,点N 是CD 的中点. (1)求证:平面PMN ⊥平面PAB ; (2)求二面角A PC B --的余弦值.19.(本小题满分12分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如下:每名快递员完成一件货物投递可获得的劳务费情况如下: 甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(1)根据表中数据写出甲公司员工A 在这10天投递的快递件数的平均数和众数;(2)为了解乙公司员工B 的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X (单位:元),求X 的分布列和数学期望;(3)根据表中数据估算两公司的每位员工在该月所得的劳务费.20.(本小题满分12分)定义:若两个椭圆的离心率相等,则称两个椭圆是“相似”的.如图,椭圆1C 与椭圆2C 是相似的两个椭圆,并且相交于上下两个顶点.椭圆22122:1(0)x y C a b a b+=>>的长轴长是4,椭圆 22222:1(0)y x C m n m n+=>>短轴长是1,点12,F F 分别是椭圆1C 的左焦点与右焦点.(1)求椭圆1C 与2C 的方程;(2)过1F 的直线交椭圆2C 于点,M N ,求2F MN ∆面积的最大值.21.(本小题满分12分)设函数()(1)()xf x ax e a R -=+∈.(1)当0a >时,求函数()f x 的单调递增区间;(2)对任意[0,)x ∈+∞,()1f x x ≤+恒成立,求实数a 的取值范围.请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分. 并请考生务必将答题卡中对所选试题的题号进行涂写.22.(本小题满分10分)选修44-:坐标系与参数方程选讲.在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos()13πρθ-=,,M N 分别为曲线C 与x 轴,y 轴的交点.(1)写出曲线C 的直角坐标方程,并求,M N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.23.(本小题满分10分)选修45-:不等式选讲. 已知函数()2f x x x a =+-+. (1)当3a =时,解不等式1()2f x ≤; (2)若关于x 的不等式()f x a ≤解集为R ,求a 的取值范围.陕师大附中高三年级第十一次模考试题答案(理科)一、选择题(本大题共12小题,每小题5分,共60分)题1 2 3 4 5 6 7 8 9 10 11 12 号答B C B B A D D B B C C A 案二、填空题(本大题共4小题,每小题5分,共20分)题号13 14 15 16或答案三、解答题(本大题共6小题,共70分)17. (1)因为,,成等差数列.所以,由正弦定理得,即,而,所以,由,得(2)因为,所以,又,,所以,即,所以.18.(1)在正中,,在中,因为,易证,所以为的中点,因为点是的中点,所以.因为,所以,因为,所以,因为,所以,即,因为,所以,所以,又,所以.(2)分别以直线,,为轴,轴,轴建立空间直角坐标系,如图所示,,,,.由(1)可知,为平面的一个法向量,,,设平面的法向量为,则即令,解得,,则平面的一个法向量为,,由题知二面角为锐二面角,所以二面角的余弦值为.19.(1)甲公司员工投递快递件数的平均数为,众数为.(2)设为乙公司员工投递件数,则当时,元,当时,元,的可能取值为,的分布列为(元)(3)根据图中数据,可估算甲公司的员工该月收人为元,乙公司的员工该月收入元.20. (1)由已知,,.因为椭圆与椭圆的离心率相等,即,所以.所以椭圆的方程是,椭圆的方程是.(2)显然直线的斜率不为,故可设直线的方程为.联立得,即,所以设,,则,,所以又的高即为点到直线的距离所以的面积因为,当且仅当,即时等号成立.所以,即的面积的最大值为.21. (1).由,,令得:.所以当时,单调递增区间是.(2)令,则成立等价于.(i)若,当,则,,而,即成立.(ii)若时,则.当,由是减函数,,又,所以,在上是减函数,此时当,.(iii)当时,,.所以在有零点.在区间,设,所以在上是减函数,即在有唯一零点,且在上,.在为增函数,即在上所以,不合题意.综上可得,符合题意的的取值范围是.22. (1)由,得.曲线的直角坐标方程为.时,,所以;时,,所以.(2)点的直角坐标为,点的直角坐标为,所以点的直角坐标为,则点的极坐标为,所以直线的极坐标方程为,.23. (1)当时,,等价于,即或或即或或解得或或,故不等式的解集为:;(2)由的不等式解集为,得函数,因为(当且仅当取“”),所以,所以或解得.。

2024届安徽省合肥十一中高三下第一次测试数学试题

2024届安徽省合肥十一中高三下第一次测试数学试题

2024届安徽省合肥十一中高三下第一次测试数学试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}2230A x x x =--≤{}2B x x =<,则A B =( )A .()1,3B .(]1,3C .[)1,2-D .()1,2-2.一个几何体的三视图及尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是 ( )A .16216πB .1628πC .8216πD .828π3.已知平面向量,,a b c ,满足||2,||1,b a b c a b λμ=+==+且21λμ+=,若对每一个确定的向量a ,记||c 的最小值为m ,则当a 变化时,m 的最大值为( ) A .14B .13C .12D .14.已知点2F 为双曲线222:1(0)4x y C a a -=>的右焦点,直线y kx =与双曲线交于A ,B 两点,若223AF B π∠=,则2AF B 的面积为( )A .22B .23C .42D .435.已知数列{}n a 满足:12125 1,6n n n a a a a n -≤⎧=⎨-⎩()*n N ∈)若正整数()5k k ≥使得2221212k k a a a a a a ++⋯+=⋯成立,则k =( ) A .16B .17C .18D .196.已知向量(1,2)a =,(4,1)b λ=-,且a b ⊥,则λ=( ) A .12B .14C .1D .27.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A .15B .625C .825D .258.若函数()xf x e =的图象上两点M ,N 关于直线y x =的对称点在()2g x ax =-的图象上,则a 的取值范围是( ) A .,2e ⎛⎫-∞ ⎪⎝⎭B .(,)e -∞C .0,2e ⎛⎫ ⎪⎝⎭D .(0,)e9.记M 的最大值和最小值分别为max M 和min M .若平面向量a 、b 、c ,满足()22a b a b c a b c ==⋅=⋅+-=,则( ) A .max37a c+-=B .max37a c-+=C .min37a c+-= D .min37a c-+=10.若数列{}n a 为等差数列,且满足5383a a a ++=,n S 为数列{}n a 的前n 项和,则11S =( ) A .27B .33C .39D .4411.设全集U =R ,集合{}02A x x =<≤,{}1B x x =<,则集合A B =( )A .()2,+∞B .[)2,+∞C .(],2-∞D .(],1-∞12.若双曲线E :22221x y a b-=(0,0a b >>)的一个焦点为(3,0)F ,过F 点的直线l 与双曲线E 交于A 、B 两点,且AB 的中点为()3,6P --,则E 的方程为( )A .22154x y -=B .22145x y -=C .22163x y -=D .22136x y -=二、填空题:本题共4小题,每小题5分,共20分。

2021届山西省孝义市高三下学期理数第十一次模拟试卷及答案

2021届山西省孝义市高三下学期理数第十一次模拟试卷及答案

高三下学期理数第十一次模拟试卷一、单项选择题1.集合,非空集合A满足,那么符合条件的集合A的个数为〔〕2.复数满足,那么〔〕A. B. C. D.3.某街道甲,乙、丙三个小区的太极拳爱好者人数如下的条形图所示.该街道体协为普及群众健身养生活动,准备举行一个小型太极拳表演,假设用分层抽样的方法从这三个小区的太极拳爱好者中抽取12名参加太极拳表演;那么丙小区应抽取的人数为〔〕4.椭圆的左、右焦点分别为为椭圆的上顶点,假设.那么〔〕5.在平面直角坐标系中,点和圆,在圆上任取一点,连接,那么直线的斜率大于的概率是〔〕A. B. C. D.6.数学中有各式各样富含诗意的曲线,螺旋线就是其中比较特别的一类.螺旋线这个名词来源于希腊文,它的原意是“旋卷〞或“缠卷〞.小明对螺旋线有着浓厚的兴趣,用以下方法画出了如以下列图的螺旋线.具体作法是:先作边长为1的正三角形ABC,分别记射线AC,BA,CB为l1,l2,l3,以C为圆心、CB为半径作劣弧BC1交l1于点C1;以A为圆心、AC1为半径作劣弧C1A1交l2于点A;以B为圆心、BA1为半径作劣弧A1B1交l3于点B11的长,劣弧C1A1的长,劣弧A1B1的长,…依次为那么〔〕7. 是边长为4的等边三角形,为的中点,点在边上;且;设与交于点,当变化时,记,那么以下说法正确的选项是〔〕A.随的增大而增大B.先随的增大而增大后随的增大而减少C.随的增大而减少D.为定值8.设是给定的平面,和是不在内的任意两点,给定以下命题:①在内存在直线与直线异面②在内存在直线与直线相交③存在过直线的平面与垂直④存在过直线的平面与平行以上一定正确的选项是〔〕A. ②③B. ①④C. ②④D. ①③开展极大地满足了人们的购物需求,也提供了大量的就业岗位,出现了大批快递员.某快递公司接到甲、乙两批快件,根本数据如下表:快递员小马接受派送任务;小马的送货车载货的最大容积为350立方分米,最大截重量为250千克,小马一次送货可获得的最大工资额为〔〕A. 150元B. 170元C. 180元D. 200元10.函数那么方程的所有实根之和为〔〕A. 2B. 3C. 4D. 111.函数,假设在区间上不存在零点,那么的取值范围是〔〕A.B.C.D.12.双曲线的左、右焦点分别为,过作圆的切线,切点为,延长交双曲线的左支于点.假设,那么双曲线的离心率的取值范围是〔〕A.B.C.D.二、填空题13.展开式中的常数项等于________.14.设为等比数列的前项和,且,那么的值是________.15.曲线和直线,点在曲线上,点在直线上,那么的最小值是________.16.四面体的棱长均为分别为棱上靠近点的三等分点,过三点的平面与四面体的外接球的球面相交,得圆,那么球的半径为________,圆的面积为________.三、解答题17.在中,角A,B,C的对边分别为a,b,c,且.〔1〕求角B的大小;〔2〕设D为边AC上一点,,,求面积的最小值.18.张先生到一家公司参加面试,面试的规那么是;面试官最多向他提出五个问题,只要正确答复出三个问题即终止提问,通过面试根据经验,张先生能够正确答复面试官提出的任何一个问题的概率为,假设答复各个问题正确与否互不干扰.〔1〕求张先生通过面试的概率;〔2〕记本次面试张先生答复以下问题的个数为,求的分布列及数学期望19.如图;在梯形中,为的中点;为的中点,沿将三角形折起〔1〕证明:在折起过程中,平面平面,〔2〕当折起到平面平面时,求二面角的余弦值,20.抛物线的焦点为,准线为,以为圆心的圆与相切;与抛物线相交于两点,且〔1〕求抛物线的方程〔2〕不与坐标轴垂直的直线与抛物线交于两点:与轴交于点;线段的垂直平分线与轴交于点,假设,求点的坐标21.函数〔1〕当时,判定有无极值,并说明理由;〔2〕假设对任意的恒成立,求的最小值22.在平面直角坐标系xOy中,直线l的方程为,曲线C的参数方程为(t为参数).以O点为极点,x轴的非负半轴为极轴建立极坐标系.〔1〕求直线l和曲线C的极坐标方程;〔2〕设射线与直线l和曲线C分别交于点M,N,求的最小值.23.函数.〔1〕求不等式的解集;〔2〕记的最小值为m,正实数a,b满足,证明:.答案解析局部一、单项选择题1.【解析】【解答】根据题意,得,即求的非空子集个数,,的非空子集个数是,所以集合A的个数是3.故答案为:A.【分析】由集合之间的关系结合交集的定义即可求出集合A的个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津新人教版数学高三单元测试11《空间向量与立体几何》
( 时间:60分钟 满分100分)
一、选择题(每小题5分,共50分)
1. 在下列命题中:
①若向量,a b 共线,则向量,a b 所在的直线平行;
②若向量,a b 所在的直线为异面直线,则向量,a b 一定不共面;
③若三个向量,,a b c 两两共面,则向量,,a b c 共面;
④已知是空间的三个向量,,a b c ,则对于空间的任意一个向量p 总存
在实数x,y,z 使得p xa yb zc =++;其中正确的命题的个数是 ( )
(A )0 (B )1 (C )2 (D )3
2. 与向量(-3,-4,5)共线的单位向量是 ( )
(A 和(); (B ));
(C )()和(); (D )
(); 3. 已知A 、B 、C 三点不共线,点O 为平面ABC 外的一点,则下列条件中,能得到M ∈平面ABC 的充分条件是 ( )
(A )111222OM OA OB OC =
++; (B )1133
OM OA OB OC =-+; (C )OM OA OB OC =++; (D )2OM OA OB OC =-- 4. 已知点B 是点A (3,7,-4)在xOz 平面上的射影,则2()OB 等于 ( )
(A )(9,0,16) (B )25 (C )5 (D )13
5. 设平面α内两个向量的坐标分别为(1,2,1)、(-1,1,2),则下
列向量中是平面的法向量的是( )A (-1,-2,5) B (-1,1,-1)
C (1, 1,1)
D (1,-1,-1)
6. 如图所示,在正三棱柱ABC ——A
1B 1C 1中,若BB 1,则
AB 1与C 1B 所成的角的大小为 ( )(A )60° (B )
90° (C )105° (D )75°
7. 到定点()1,0,0的距离小于或等于1的点集合为( )
A.()(){}222,,|11x y z x y z -++≤
B.()(){}
222,,|11x y z x y z -++=
C.()(){},,|11x y z x y z -++≤
D.(){}222,,|1x y z x y z ++≤
8. 已知,a b 均为单位向量,它们的夹角为60︒,那么3a b +等于( )
A
B
C
D .4
9. 在平面直角坐标系中, (2,3),(3,2)A B --,沿x 轴把平面直角坐标系折
成120︒的二面角后,则线段AB 的长度为( ) A

B
. C
. D

10. 已知α,β表示两个不同的平面,m 为平面α内的一条直线,
则“αβ⊥”是“m β⊥”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不
充分也不必要条件
二、填空题(每小题4分,共16分.把答案填在题中的横线上)
11. 若空间三点A (1,5,-2),B (2,4,1),C (p,3,q+2)共线,则p=______,q=______。

12. 设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如图).现将△ADE 沿DE 折起,使二面角A -DE -B 为45°,此时点A 在平面BCDE 内的射影恰为点B ,则M 、N 的连线与AE 所成角的大小等于_________.
13. 如图,PA ⊥平面ABC ,∠ACB=90°且PA=AC=BC=a 则异面直线PB 与AC 所成角的余弦值等于________;
14.已知123F i j k =++,223F i j k =-+-,3345F i j k =-+,若123,,F F F 共同
作用于一物体上,使物体从点M (1,-2,1)移动到N (3,1,2),则合力所作的功是 .
三、解答题(本大题共四个小题,15题11分,16题11分,17题12分,共24分.解答应写出文字说明,证明过程或演算过程)
15. 设向量()()3,5,4,2,1,832,,a b a b a b =-=-⋅,计算并确定,λμ的关系,使
D C B
A E N M
a b z λμ+与轴垂直
16. 如图,正方体ABCD-A 1B 1C 1D 1棱长为1,P 、Q
分别是线段AD 1和BD 上的点,且D 1P :PA=DQ :
QB=5:12,
(1) 求线段PQ 的长度;
(2) 求证P Q ⊥AD ;
(3) 求证:PQ//平面CDD 1C 1;
17. 如图,在四棱锥P-ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD,AP=AB=2,BC=2 2,E ,F 分别是AD ,PC 的中点 (Ⅰ)证明:PC ⊥平面BEF ;(Ⅱ)求平面BEF 与平面BAP 夹角的大小。

18. 如图,四棱锥S-ABCD 的底面是矩形,AB=a,AD=2,SA=1,且SA ⊥
底面ABCD,若边BC 上存在异于B,C 的一点P,使得PS PD ⊥.
(1)求a 的最大值;
(2)当a 取最大值时,求异面直线AP 与SD 所成角的大小;
(3)当a 取最大值时,求平面SCD 的一个单位法向量n
及点P 到平面SCD 的距离.
参考答案
1-5 AABBB 6-10 BACBB
11. 3,2 12. 2π 13. 14. 14
15. 解:323(3,5,4)2(2,1,8)a b -=--=(9,15,-12)-(4,2,16)=(5,13,-28) a b ⋅=(3,5,-4)⋅(2,1,8)=6+5-32=-21
由()(0,0,1)(32,5,48)a b λμλμλμλμ+⋅=++-+(0,0,1)⋅480λμ=-+=
即当,λμ满足48λμ-+=0即使a b λμ+与z 轴垂直.
16. 解:以D 为坐标原点。

DA 、DC 、DD 1分别为x,y,z 轴建立如图所示的空间直角坐标系。

由于正方体的棱长为1,所以D (0,0,0),D 1(0,0,1),B (1,1,0),A (1,0,0),∵P 、Q 分别是线段AD 1和BD 上的点,且D 1P :PA=DQ :QB=5:12,∴P 512(
,0,)1717
,Q (55,,01717),∴512(0,,)1717PQ =-,所以
(1)∴13||17
PQ PQ ==; (2)∵(1,0,0)DA =,∴0PQ DA ⋅=,∴P Q ⊥AD ;
(3)∵(0,1,0)DC =,1(0,0,1)DD =,∴15121717
PQ DC DD =-,又1,DD DC ⊂平面CDD 1C 1,PQ ⊄平面CDD 1C 1,∴PQ//平面CDD 1C 1;
17. 解法一 (Ⅰ)如图,以A 为坐标原点,AB ,AD ,AP 算在直线分别为x ,y ,z 轴建立空间直角坐标系。

∵AP=AB=2,BC=AD=2√ 2,四边形ABCD 是矩形。

∴A ,B ,C ,D 的坐标为A(0,0,0),B(2,0,0),C(2, 2 √ 2,0),D(0,2 √ 2,0),P(0,0,2)
又E ,F 分别是AD ,PC 的中点,∴E(0,√ 2,0),F(1,√ 2,1)。

∴PC =(2,2 √ 2,-2)BF =(-1,√ 2,1)EF =(1,0, 1),∴PC ·BF =-2+4-2=0,PC ·EF =2+0-2=0,
∴PC ⊥BF ,PC ⊥EF ,∴PC ⊥BF,PC ⊥EF,BF ∩ EF=F,∴PC ⊥平面BEF
(II )由(I )知平面BEF 的法向量
平面BAP 的法向量
设平面BEF 与平面BAP 的夹角为 θ ,

∴ θ=45℃, ∴ 平面BEF 与平面BAP 的夹角为45
解法二 (I )连接PE ,EC 在
PA=AB=CD, AE=DE,
∴ PE= CE, 即 △PEC 是等腰三角形,
又F 是PC 的中点,∴EF ⊥PC,

,F 是PC 的中点,
∴BF ⊥PC.

18. 解:建立如图所示的空间直角坐标系,则各点坐标分别为: A(0,,0,0),B(a,0,0),C(a,2,0),D(0,2,0),S(0,0,1),
设P(a,x,0).
(0<x<2)
(1) ∵(),,1,PS a x =--(),2,0PD a x =--
∴由PS PD ⊥得: 2(2)0a x x --=
即: 2(2)(02)a x x x =-<<
∴当且仅当x=1时,a 有最大值为1.此时P 为BC 中点;
(2) 由(1)知: (1,1,0),(0,2,1),AP SD ==- ∴10cos ,,25AP SD
AP SD AP SD ===⨯⨯
∴异面直线AP 与SD
所成角的大小为cos 5
arc (3) 设()1,,n x y z =是平面SCD 的一个法向量,∵(1,0,0),(0,2,1),SD ==-DC
∴由1111000201021x x n DC n DC y z y n SD n SD z y ==⎧⎧⎧⎧⊥=⎪⎪⎪⎪⇒⇒-=⇒=⎨⎨⎨⎨⊥=⎪⎪⎪⎪⎩⎩==⎩⎩
取得1(0,1,2),n = ∴平面SCD 的一个单位法向量(
)110,1,25
n n n ==⋅= 又
(0,1,0),=-CP 在n 方向上的投影为55,15
n n -⋅==-CP ∴点P 到平面SCD 的距离为5。

相关文档
最新文档