第三章3.2静定结构支座反力的计算
结构力学第三章静定结构受力分析
MA
0, FP
l 2
YB
l
0,YB
FP 2
()
Fy
0,YA
YB
0,YA
YB
Fp 2
()
例2: 求图示刚架的约束力 q
C
A
ql
l
l
l
B
A
ql
ql
C
XC
YC
FNAB
解:
Fy 0,YC 0
MA
0, ql
l 2
XC
l
0,
XC
1 2
ql()
弹性变形,而附属部分上的荷载可使其自身和基本部分均产生内力和 弹性变形。因此,多跨静定梁的内力计算顺序也可根据作用于结构上 的荷载的传力路线来决定。
40k N
80k N·m
20k N/m
AB
CD
EF
G
H
2m 2m 2m 1m 2m 2m 1m
4m
2m
50构造关系图 40k N
C 20 A B 50
Fy 0,YA YB 2ql 0,YA ql() 3)取AB为隔离体
2)取AC为隔离体
Fy 0, YC YA ql 0
Fx 0, XB X A ql / 2()
l MC 0, X A l ql 2 YB l 0, X A ql / 2()
A
B
C D E FG
1m 1m 2m 2m 1m 1m
A C D E FG B
13 17
26 8
7 15 23 30
工程中常见静定结构的支座反力计算(工程力学课件)
之矩的代数和
最常用的应用形式
Fy
F
o
l
Fx
求力矩的两种方法
(1)定义
MO(F) F d
F
o
l
d
(2)合力矩定理
M O (F ) M O (Fx ) M O (Fy )
Fy
F
o
l
Fx
【例 1 】 解: (1)直接按定义 (2)按合力矩定理
【例 2】 求土压力使挡土墙倾覆的力矩?
(求力FR对A点的力矩)
力偶的表示符号
M F d
力偶的等效性
只要保持M不变,可任意改变F和d的大小 只要保持力偶矩M不变,力偶可在其作用面内任意移动和转动
力偶的性质
力偶在任一轴上的投影的代数和恒等于零 力偶对其作用面内任一点之矩恒等于力偶矩
y
o
F O
x
F’
MO (F ) MO (F ) F (x d ) F x Fd
F4x F4 cos 45 250 cos 45 176.78 (N)
F4
y
F4 sin 45 250 sin 45 176.78
(N)
平面汇交力系的平衡
y
FR F 0
Fx 0
Fy 0
x
平衡方程
【例 2】
平面三角支架,F=100kN, 求AB、AC杆的受力?
都是二力构件 的物体系统
FA
Fx Fy
0 0
MFx Fy
O00 0
MO 0
FBx FBy
平面力系平衡计算总结
平面 力系
平面汇交力系 平面
基本力系
平面力偶系
平面 特殊力系
平面平行力系
平面一般力系
第三章 静定结构的内力计算
FAy
1 3a 4 FP a M q 3a 3a 2 5
第三章
静定结构的内力计算
M
B
0
3a 4 FAy 3a M q 3a FP a 0 2 5 1 3a 4 FAy FP a M q 3a 3a 2 5
第三章
无荷载 平行轴线
Q图
静定结构的内力计算
均布荷载
集中力 发生突变
P
集中力偶
无变化 发生突变
m
斜直线
M图
二次抛物线 凸向即q指向
出现尖点
两直线平行 备 注
Q=0区段M图 Q=0处,M 平行于轴线 达到极值
集中力作用截 集中力偶作用 面剪力无定义 面弯矩无定义
在自由端、铰支座、铰结点处,无集中力偶作用,截面弯矩 等于零,有集中力偶作用,截面弯矩等于集中力偶的值。
第三章 静定结构的内力计算
第三章
静定结构的内力计算
§3-1单跨静定梁
一、静定结构概述 1.概念:是没有多余约束的几何不变体系。 2.特点:在任意荷载作用下,所有约束反力和内力都 可由静力平衡方程唯一确定。 平衡方程数目 = 未知量数目 3.常见的静定结构 常见的静定结构有:单跨静定梁、多跨静定梁、静 定平面刚架、三铰拱、静定平面桁架、静定组合结构等 (如下图)。
0 FYA FYA 0 FYB FYB
A
x
C
L
斜梁的反力与相应简支 梁的反力相同。
第三章
(2)内力
静定结构的内力计算
求斜梁的任意截面C的内力,取隔离体AC: a FP1 A
FYA x Fp1 FYA
0
MC
第三章3静定结构受力分析(平面刚架)
MA= qa2+2qa2-2aYB=0 (1)
2) 对中间铰C建立矩平衡方程 qa
MB=0.5qa2+2aXB -aYB=0 (2) 解方程(1)和(2)可得
a
XB=0.5qa YB=1.5qa 3) 再由整体平衡 X=0 解得 XA=-0.5qa Y=0 解得 YA=0.5qa
qa/X2 A YA
1/2qa2
↓↓↓↓↓↓↓↓↓↓↓↓↓↓
C
1/2qa2
A
a
a
qa2 q
B XqBa/2 YB
2 绘制弯矩图
注意:三铰刚架绘制弯矩图往往只须求一水平反力,然后由 支座作起!!
画三铰刚架弯矩图
CM
O M
M/2
M/2
a
C
A
B
a
a
Mo=m-2a×XB=0, 得 XB=M/2a
注意:
A
RA
B
XB
YB
1、三铰刚架仅半边有荷载,另半边为二力体,其反力沿两铰连线,
§3-3 静定平面刚架
一. 刚架的受力特点
梁
1 8
ql2
l
1 ql2 8
刚架
桁架
弯矩分布均匀 可利用空间大
§3-3 静定刚架受力分析
一. 刚架的受力特点 二. 刚架的支座反力计算
静定刚架的分类:
三铰刚架 (三铰结构)
简支刚架 悬臂刚架
单体刚架 (联合结构)
复合刚架 (主从结构)
1.单体刚架(联合结构)的支座反力(约束力)计算
三. 刚架指定截面内力计算
四.刚架的内力分析及内力图的绘制
①分段:根据荷载不连续点、结点分段。 ②定形:根据每段内的荷载情况,定出内力图的形状。 ③求值:由截面法或内力算式,求出各控制截面的内力值。
3静定结构的内力计算
①简支梁
②外伸梁
③悬臂梁
3
二、梁的内力
1、内力计算法——截面法
P1
A
m
FAx
K
n
P2 B
8
斜梁介绍
工程中,斜梁和斜杆是常遇到的,如楼梯梁、刚架中的斜杆等。斜梁 受均布荷载时有两种表示方法: (1)按水平方向分布的形式给出(人群、雪荷载等),用 q 表示。 (2)按沿轴线方向分布方式给出(自重),用 q’ 表示。
q 与 q’间的转换关系:
qdx = qds q = q
cos
dM dx
= FQ
无荷载区段 平行轴线
FQ图
M图
斜直线
均布荷载区段 集中力作用处 集中力偶作用处
↓↓↓↓↓↓
+ -
二次抛物线
凸向即q指向
发生突变
+P -
出现尖点
尖点指向即P的指向
无变化
发生突变
m
两直线平行
注备
FS=0区段M图 FS=0处,M 平行于轴线 达到极值
12
三、叠加法作弯矩图
1. 叠加原理: 几个载荷共同作用的效果,等于各个载荷单独
吊杆
带拉杆的三铰拱
拉杆折线形
拉杆
花篮螺丝
带吊杆的三铰拱
3、三铰拱的内力计算
1)、拱的内力计算原理仍然是截面法。 2)、拱通常以受压为主,因此规定轴力以受压为正。 3)、计算时常将拱与相应简支梁对比,通过对比完成计算。
45
第三章 静定结构的受力分析
第三章静定结构的受力计算1. 教学内容从几何构造分析的角度看,结构必须是几何不变体系。
根据多余约束n ,几何不变体系又分为:有多余约束( n > 0)的几何不变体系——超静定结构;无多余约束( n = 0)的几何不变体系——静定结构。
从求解内力和反力的方法也可以认为:静定结构:凡只需要利用静力平衡条件就能计算出结构的全部支座反力和杆件内力的结构。
超静定结构:若结构的全部支座反力和杆件内力,不能只有静力平衡条件来确定的结构。
2. 教学目的进一步巩固杆件受力分析和内力分析的特点;理解多跨静定梁、静定平面刚架、静定桁架的概念;熟练掌握多跨静定梁、静定平面刚架、静定桁架内力的计算方法,能够画出内力图;理解截面法、结点法、联合法,熟练求出静定桁架的内力。
3. 主要章节第一节、单跨静定梁第二节、多跨静定梁第三节静定平面刚第四节、三铰拱架第五节、静定平面桁架第六节、组合结构4. 学习指导本章所学内容的基础是以前所学的“隔离体和平衡方程”,但是不能认为已经学过了,就有所放松。
其实,在静定结构的静力分析中,虽然基本原理不多,平衡方程只有几种形式,但是其变化是无穷的,因此重要的是知识的应用能力。
为了能够熟中生巧,在学习时应多做练习。
5. 参考资料《建筑力学教程》P21~P57第一节、单跨静定梁一. 教学目的复习材料力学中的内力概念和计算方法,梁的内力图的画法;熟练掌握各种荷载作用下的梁的内力图画法;掌握叠加法画弯矩图。
二. 主要内容1. 内力的概念和表示2. 内力的计算方法3. 内力图与荷载的关系4. 分段叠加法三. 参考资料《建筑力学》P21~P26各种《材料力学》教材3.1.1 内力的概念和表示在平面杆件的任意截面上,将内力一般分为三个分量:轴力F N、剪力F Q 和弯矩M(图3-1)。
轴力----截面上应力沿轴线方向的合力,轴力以拉力为正。
剪力----截面上应力沿杆轴法线方向的合力,剪力以截开部分顺时针转向为正。
建筑力学与结构第三章
V=12KN/m 2 2 3m
1.5m
B RA =15KN RB =29KN RB
P=8KN
V1 M1
根据1-1截面左侧的外力计算V1 、 M1
V1=+RA-P =15-8 =+7KN
根据1-1截面右侧的外力计算V1 、 M1
RA
M1 =+RA· (2-1.5) =15· 0.5 =+26 KN· 2-P· 2-8· m
求图示简支梁1-1、2-2截面的剪力和弯矩. P=8KN V=12KN/m
2 1
A
2m 1.5m
1
2 3m
B
1.5m
RA
1.5m
解:由 M B 0得 由 M A 0得
RB
RA =15KN RB =29KN
请思考: RB还可如何简便算出?
P=8KN
A RA
2m 1.5m
1 1 1.5m
M
各种形式荷载作用下的剪力、弯矩图
载荷情况
无载荷(q=0)
剪力图
V﹥0 V﹤0
弯矩图
V﹥0 V﹤0 尖角 突变m V﹤0 V﹥ 0
均布载荷(q=c)
V﹤0 V﹥0
P m
C
突变P C 无变化
C
简易法绘制内力图的一般步骤:
(1)求支反力。 (2)分段:凡外力不连续处均应作为分段点, 如集中力和集中力偶作用处,均布荷载两端点等。 (3)定点:据各梁段的内力图形状,选定控 制截面。如 集中力和 集中力偶作用点两侧的截面、 均布荷载起迄点等。用截面法求出这些截面的内力 值,按比例绘出相应的内力竖标,便定出了内力图 的各控制点。 (4)联线:据各梁段的内力图形状,分别用 直线和曲线将各控制点依次相联,即得内力图。
结构力学 第三章 静定结构
MBC=1kN· m
B
MBE= 4kN· m
MBA=5kN· m
FP1=1kN FP2=4kN
• 用计算中未使 用过的隔离体平衡 条件校核结构内力 计算是否正确。
5kN· m
1kN
3kN
FP3=1kN
2、简支刚架
• 解: • (1)、求支座 反力 • ∑y=0 • FCy =80kN(↑) • ∑m0=0 • FAx=120kN(←) •∑x=0 •FBx=80kN(→)
§3-2 静定多跨梁
•
由中间铰将若干根梁(简单梁) 联结在一起而构成的静定梁,称为静 定多跨梁。
1、几何组成:
• 基本部分+附属部分。 • (1)、基本部分:不依赖其它部分, 本身能独立承受荷载并维持平衡。 • (2)、附属部分:依赖于其它部分而 存在。
2、层叠图和传力关系
(1)、附属部分荷载 传 基本部分或 支撑它的附属部分。 • (2)、基本部分的荷载对附属部分无 影响,从层叠图上可清楚的看出来。 •
练习: 分段叠加法作弯矩图
q
A B
C
1 2 ql 4
l
q
1 ql 2
ql
l l l
例题
4kN· m
4kN
3m
3m
(1)集中荷载作用下
6kN· m
(2)集中力偶作用下
4kN· m 2kN· m
(3)叠加得弯矩图
4kN· m
4kN· m
例题
3m
8kN· m
2kN/m
3m
2m
(1)悬臂段分布荷载作用下
FP2=4kN
q=0.4kN/m
3静定结构的受力分析-梁结构力学
1 结构力学多媒体课件◆几何特性:无多余约束的几何不变体系◆静力特征:仅由静力平衡条件可求全部反力和内力◆常见静定结构:梁、刚架、三铰拱、桁架和组合结构。
◆静定结构受力分析的内容:反力和内力的计算,内力图的绘制和受力性能分析。
◆静定结构受力分析的基本方法:选取脱离体,建立平衡方程。
◆注意静力分析(拆)与构造分析(搭)的联系◆学习中应注意的问题:多思考,勤动手。
本章是后面学习的基础,十分重要,要熟练掌握!容易产生的错误认识:“静定结构内力分析无非就是选取隔离体,建立平衡方程,以前早就学过了,没有新东西”一、反力的计算4kN1kN/mDCBA2m2m 4mCB A20kN/m 4m4m2m6mDCB A(1)上部结构与基础的联系为3个时,对整体利用3个平衡方程,就可求得反力。
(2)上部结构与基础的联系多于三个时,不仅要对 整体建立平衡方程,而且必须把结构打开, 取隔离体补充方程。
1、内力分量及正负规定轴力F N :截面上应力沿杆轴法线方向的合力。
以拉力为正,压力为负。
剪力F Q :截面上应力沿杆轴切线方向的合力。
以绕隔离体顺时针转为正,反之为负。
弯矩M :截面应力对截面中性轴的力矩。
不规定正负,但弯矩图画在受拉侧。
在水平杆中, 当弯矩使杆件下部纤维受拉时为正。
A 端B 端杆端内力 F Q ABF N ABM AB正 F N BA F Q BAM BA 正2、内力的计算方法K截面法:截开、代替、平衡。
内力的直接算式(截面内力代数和法)=截面一边所有外力沿截面法线方向投影的代数和。
轴力FN外力背离截面投影取正,反之取负。
剪力F=截面一边所有外力沿截面切线方向投影代数和。
Q外力绕截面形心顺时针转动,投影取正,反之取负。
弯矩M =截面一边所有外力对截面形心的外力矩之和。
外力矩和弯矩使杆同侧受拉时取正,反之取负。
2、内力的计算方法【例】如图所示简支梁,计算截面C 、D 1、D 2的内力。
2m 4m 2mA2kN/mCBD 1 D 210kN0.2m10kN3.75kN0.25kN3、绘制内力图的规定内力图是表示结构上各截面的内力各杆件轴线分布规律的图形, 作图规定:弯矩图一律绘在受拉纤维一侧,图上不注明正负号;剪力图和轴力图可绘在杆轴线的任一侧(对水平杆件通常把正号的剪力和轴力绘于上方),但必须注明正负号,且正负不能绘在同一侧。
第3章静定结构的受力分析
M0
1 2 ql 8
弯矩图的叠加指纵坐标的叠加, 不是图形的简单拼合。
任意直段杆的弯矩图:以(a)中的AB端为例,其隔离体如图(b)。
与图(c)中的简支梁相比, 显然二者的弯矩图相同。
因此:作任意直杆段弯矩图
就归结为作相应简支 梁的弯矩图。 AB段的弯矩图如图(d)。
M0 1 2 ql 8
§3-5 静定平面桁架
武汉长江大桥
1
桁架的特点和组成 由杆件组成的格构体系, 荷载作用在结点上, 各杆内力主要为轴力。
钢筋混凝土组合屋架
优点:重量轻,受力合理,能承受较大荷载,可作成较大 跨度。
武汉长江大桥采用的桁架形式
第3 章
静定结构的内力分析
§3-1 杆件内力计算 §3-2 静定梁 §3-3 静定刚架 §3-4 三铰拱 §3-5 静定桁架 §3-6 静定结构的内力分析和受力特点
第3章 静定结构的内力分析
本章讨论静定结构。 内容:静定结构的内力分析。 静定结构分析的要点: 1、如何选择“好的”隔离体; 2、怎样建立比较简单而又恰当的平衡方程, 计算最为简捷。
FQB FQA q y dx xA xB M B M A FQ dx xA
xB
积分关系的几何意义: B端的剪力=A端的剪力-该段荷载qy图的面积
B端的弯矩=A端的弯矩+此段剪力图的面积
5. 分段叠加法作弯矩图
图(a)结构荷载有两部分: 跨间荷载q和端部力偶MA、MB 端部力偶单独作用时,弯 矩图为直线,如图(b): 跨间荷载q单独作用时,弯 矩图如图(c): 总弯矩图为图(b)基础上叠加图 (c),如图(d):
FQ >0 F <0 增函数 降函数 Q 自左向右折角 斜直线 曲线
第三章:静定梁和静定刚架
二.多跨静定梁 多跨静定梁
第三章 静定梁与静定钢架 二.多跨静定梁 多跨静定梁 基本部分--能独立 基本部分--能独立 1.多跨静定梁的组成 承载的部分。 1.多跨静定梁的组成 承载的部分。 附属部分--不能独 附属部分--不能独 立承载的部分。 立承载的部分。
基、附关系层叠图
练习:区分基本部分和附属部分并画出关系图 练习 区分基本部分和附属部分并画出关系图 第三章 静定梁与静定钢架
ql 2 / 2
Q=0的截面为抛 Q=0的截面为抛 物线的顶点. 物线的顶点.
ql / 2
ql
2
M图 Q图
第三章 静定梁与静定钢架
例: 作内力图
ql 2 / 2
M图 Q图
第三章 静定梁与静定钢架
1.无荷载分布段(q=0),Q图为水平线,M图为斜直线. 1.无荷载分布段 无荷载分布段(q=0),Q图为水平线 图为斜直线 图为水平线,M图为斜直线. 2.均布荷载段(q=常数),Q图为斜直线,M图为抛物线, 2.均布荷载段 常数 图为斜直线 图为抛物线 均布荷载段(q=常数),Q图为斜直线,M图为抛物线, 且凸向与荷载指向相同. 且凸向与荷载指向相同. 3.集中力作用处,Q图有突变,且突变量等于力值; M 3.集中力作用处 图有突变 且突变量等于力值; 集中力作用处,Q图有突变, 图有尖点,且指向与荷载相同. 图有尖点,且指向与荷载相同.
P
1 Pl 4 1 Pl 4
P 1 Pl
4
l/2
q
l/2
l/2
1 2 ql 4
l/2
l/2
ql 1 ql 2 4
l/2
l/2
l 静定梁与静定钢架
§3-2 静定刚架受力分析
一. 刚架的受力特点
求多跨静定梁的支座反力
求多跨静定梁的支座反力多跨静定梁是指由多个跨度组成的梁,在力学中属于静定结构,其支座反力的计算是工程设计中的重要环节。
本文将以多跨静定梁的支座反力为主题,介绍支座反力的计算方法和相关注意事项。
我们需要了解多跨静定梁的基本概念。
多跨静定梁由两个或多个跨度组成,每个跨度之间都有支点或支座连接。
在设计中,我们通常要求每个跨度的长度、截面形状和材料性质均相同,以便简化计算。
支座反力是指每个支点或支座上的反力,它们的大小和方向对梁的受力分布起着重要作用。
在计算多跨静定梁的支座反力时,我们需要考虑以下几个要点。
首先,梁的受力平衡条件必须满足。
根据力学原理,对于静定结构,支座反力和外力的合力必须为零。
因此,我们可以通过受力平衡方程来计算支座反力。
其次,由于多跨静定梁存在多个支点或支座,我们需要分别计算每个支点或支座上的反力。
最后,由于梁的受力分布是由支座反力决定的,因此支座反力的计算对于梁的结构和性能具有重要影响。
在计算多跨静定梁的支座反力时,我们可以采用不同的方法。
其中一种常用的方法是力法。
力法是一种基于力平衡原理的计算方法,它通过假设每个支点或支座上的反力大小和方向来建立受力平衡方程,然后利用这些方程求解未知量。
另一种常用的方法是位移法。
位移法是一种基于位移相容性原理的计算方法,它通过假设梁的位移和变形情况来建立位移相容性方程,然后利用这些方程求解未知量。
无论采用哪种方法,我们都需要根据具体情况选择合适的计算方法,以确保计算结果的准确性和可靠性。
在进行多跨静定梁的支座反力计算时,我们还需要注意以下几个问题。
首先,要正确确定梁的边界条件和受力情况。
边界条件包括支点或支座的固定方式和约束条件,受力情况包括外力的大小、方向和作用点。
其次,要考虑梁的自重和荷载对支座反力的影响。
自重是指梁本身的重量,荷载是指施加在梁上的外力。
对于多跨静定梁来说,自重和荷载的分布是不均匀的,因此我们需要根据具体情况对其进行合理估计和计算。
支座反力的计算
支座反力计算简单的静定结构可以通过力的平衡和力矩的平衡来建立两个方程式,每个方程是可以求一个未知量,就是说,简单的静定结构只能求两个未知力;对于超静定结构计算就复杂了,不过还是要用到平衡和力矩的平衡来建立方程,此外根据具体的情况增加其他方程联合求解,就是说,有多少个未知力就需要多少个方程式;例如:一条简支梁长为L,两头AB简支,从左到右在1/3L处有个P向下的集中力,求两端支座反力;这就是简单的静定结构,解题如下:设两端的支座反力分别为:Ra和Rb根据垂直方向力的平衡条件得:Ra + Rb = P根据垂直方向力矩的平衡条件,以A为原点,得:RbL=P1/3L顺时针力矩等于逆时针力矩,A的支座反力过原点,力矩为零联立两个方程组解得:Ra =2/3PRb =1/3P图解在这里是用不上,所有结构力学的书都有计算的方法的,最好就是找来看看,比我们在这里费尽心思的讲解要好得多;例题:简支梁的支座反力计算杆件长5米,离A端头米有集中荷载为100N,问A,B两支座的反力为多少最佳答案RA=70KN RB=30KN1.1.5支座反力计算在静定结构的受力分析中,通常须预先求出支座反力,再进行内力计算;求支座反力时,首先应根据支座的性质定出支座反力包括个数和方位,然后假定支座反力的方向,再由整体或局部的平衡条件确定其数值和实际指向;以图1-6a所示多跨刚架为例,讨论支座反力计算;图1-6此刚架有五个支座反力:、、、和;由整体的三个平衡方程,加上铰D和铰C处弯矩分别为零的平衡条件,即可求出这五个支座反力;从几何组成的角度看,D 以右部分为三铰刚架,是基本部分;D以左部分是支承在地基和三铰刚架上的附属部分;首先,取附属部分为隔离体图1-6b,由平衡方程求、和;a然后,将D铰处的约束反力反向加在基本部分上,取D以右三铰刚架为隔离体图1-6c,利用平衡方程求和;bc再取C以右半刚架为隔离体图1-6d,由铰C处弯矩为零的平衡方程求;d最后,由三铰刚架ABC第三个整体平衡方程求;e。
结构力学第三章静定结构受力分析1-6
45° 141kN
125kN.m
5m
Q1= 50 +5×5-141×0.707 =-25kN M1=125 +141×0.707×10-50×5 -5/2×5² =812.5kNm (下拉)
6
§3.2 荷载与内力之间的关系
1 ) 微分关系 ↓↓↓↓↓↓↓ Q+d dN/dx= - q x qx N+d N Q dQ/dx=-qy , qy向下为正 →→→→→ N x M+d dM/dx=Q M M 微分关系给出了内力图的形状特征 dx y A B 2) 增量关系 Q Q+ΔQ
6
C
三铰刚架的反 力计算方法二 (双截面法) O1 a
↓↓↓↓↓↓↓↓↓↓↓
q
29
a
a q
a
a
Y1
a O2
↓↓↓↓↓↓↓↓↓↓↓
19
斜梁的弯矩图也可用叠加法绘制,但叠加的是相应水平 简支梁的弯矩图,竖标要垂直轴线。
q ↓↓↓↓↓↓↓↓↓↓↓↓↓↓ MB
斜梁的内力除 弯矩和剪力外 还有轴力,内 力图中要包括 轴力图。
MA
l
MB MA
ql2/8
20
§3.5多跨静定梁(statically determinate multi-span beam)
25
§3.6 静定平面刚架受力分析
(statically determinate frame)
几何可 变体系 桁架 刚架
一、刚架的定义:若干直杆全部或部分用刚节点联结而成的结构 二、刚架的特点 ①内部空间大,便于使用。 ② 弯矩分布较为均匀,节省材料。 ③刚结点将梁柱联成一整体,增大了结构的刚度,变形小。
《结构力学》第三章 静定梁和静定刚架.
返19回
§3—4 少求或不求反力绘制弯矩图
弯矩图的绘制,以后应用很广,它是本课最 重要的基本功之一。
静定刚架常常可少求或不求反力绘制弯矩图。
例如:1. 悬臂部分及简支梁部分,弯矩图可先绘出。
2. 充分利用弯矩图的形状特征(直线、零值)。
3.刚结点处的力矩平衡条件。
4. 用叠加法作弯矩图。
5. 平行于杆轴的力及外力偶产生的弯矩为常数。 6. 与杆轴重合的力不产生弯矩等。
满足投影平衡条件。
0 24kN C 0
22kN
24kN 22kN (返1b8 回)
例题 3—6 作三铰刚架的内力图
→HA VA↑ 26.7 20 6.7
解(:1)求反力
←HB
↑VB
由(∑2Y由)=V刚0A求VH作得架=AA杆=弯整1=30H体端矩0Bk8平4=弯图N6衡↑矩.,66,以,7kV∑D3NMB0C(=kBN杆1=→0o↑为k可←N例得↑)
M图: 通常检查刚结点处是否满足力矩的平衡条件。
例如取结点C为隔离体(图a),有:
∑MC=48-192+144=0 满足这一平衡条件。
48kN·m
C
192kN·m
Q(N)图:可取刚架任何一部分为隔
离体,检查∑X=0 和 ∑Y=0 是否满足。 144kN·m (a)
例如取结点C为隔离体(图b), 有: ∑X=24-24=0 ∑Y=22-22=0
dQ q(x) dx
dM Q dx
d2M dx2
q(x)
据此,得直梁内力图的形状特征
梁上情况 q=0
q=常数
q↓ q↑
P 作用处
m 铰或
作用处 自由端 (无m)
水平线
学习情境二静定结构的支座反力计算[56页]
tan Rx Y
Ry
X
应用力学
二.平面汇交力系合成的解析法
i 1
计算力矩常用下述两种方法:
(1) 直接计算力臂,由定义求力矩。 (2) 应用合力矩定理求力矩。此时应注意: 将一个力恰当地分解为两个相 互垂直的分力,利用分力取矩,并注意取矩方向。
三.力偶
实例:汽车司机用双手转动方向盘 工人师傅用双手去拧丝攻扳手 人们用手指旋转钥匙或水龙头
应用力学
应用力学
mO(P1)= 2×5Sin30°= 5 kNm
mO(P2)= 3×0 = 0
mO(P 3)= - 4×5Sin60° = -17.3kNm
应用力学
二.合力矩定理
在计算力系的合力矩时,常用到所谓的合力矩
定理:平面汇交力系的合力对其平面内任一
点之矩等于所有各分力对同一点之矩的代数
和。即:
n
Mo (FR ) Mo (Fi )
❖ 平面任意力系——若作用在刚体上各力的作用线都在 同一平面内,且任意分布,该力系称为平面任意力系 。
应用力学
一.平面汇交力系合成的几何法 1.力多边形法则——连续应用力的平行四边形法
则,依次两两合成各力,最后求得一个作用线也通过力系
汇交点的合力 R 。 R = F1+ F 2+ F 3+…+ F n=ΣFn
应用力学
2.力偶的三要素
❖ 力偶对物体的作用效果由以下三个因素决定: (1)力偶矩的大小; (2)力偶的转向; (3)力偶作用面的方位。
3.力偶的基本性质
(1)力偶无合力。即力偶不能用一个力来代替。 (2)力偶对其作用面内任一点之矩恒等于力偶矩,而与矩心
位置无关。 (3)力偶的等效性——在同一平面内的两个力偶,如果它们
结构力学支座反力的求解
BB E
2F2NmFBNB4m
FF
44mmFFN22NCmCmCC
((dd))
FFNNDDDD
1100mm
( 2 ) 研 究 AB 杆 :
1100mm (aa))
6600kkNN
1100mm
MB 0
-
FA
10
505
FNEE ((bb))
60
FFNNFF
2
0
FA 13
列平衡方程
X 0
MA
FAy M
q
F F cos 60 F sin 30 0
Ax
B
FAx A
C
Y 0
F F sin 60 2ql F cos 30 0
Ay
B
l
l
M AF 0
M M 2ql 2l F sin 60 3l F cos 30 4l 0
A
B
30
F
B 60 D
FB
独立方程数目<未知数数目时,是静不定问题(超静定问题
以提高结构的刚度和坚固性)
1
二、物系的构成与分类
1、有主次之分的物系 a)、主要部分(基本部分),是指在自身部分外力作用下能独 立承受荷载并能维持平衡的部分。
b)、次要部分(附属部分),是指在自身部分外力作用下不能 独立承受荷载,不能维持平衡的部分。必须依赖内约束、主 要部分或其它附属部分连接才能承受荷载的部分
((aa))
60kN
60kN
1100mm
F NE
FNE
FN ' E
FN ' E
F NB
(b)
(b)
97FNB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X 0
3.2 静定结构支座反力的计算
例2 试求结构的支座反力。
解:
35kN
40kN · m
(1)取整体为研究对象(半独立体)
M
A
0 ,YB· 6-35×4-40=0
4m XB
XA
YB=30kN
Y 0,YA= -30kN
YA XC
40kN · m
YB
(2)取BEC为研究对象(变成了新的独立体)
,YB· 3-XB· 4-40=0 XB=12.5kN
(3)取整体为研究对象 ,XA+35-XB=0 X 0
C
YC
E
XB
XA= -22.5kN
YB
3.2 静定结构支座反力的计算
思考题:试计算图示结构的支座反力。
根据几何组成判断: 结构属于(复杂的)三 铰结构。
O1
O2
Ⅱ
Ⅲ
Ⅰ
3.2 静定结构支座反力的计算
例 1 试求结构的支反力。 q=10KN/m
A
P=20KN 2m C
YB
C
XC YC
XA
4m
YA
B
4m
D
2m E
YD
D
YD
解:
(1)取CDE为研究对象 (独立体)
M
E
C
0
YD 30KN
(2)取整体为研究对象 (变成了新的独立体)
M 0 Y 0 X 0
A
YB 5KN
YA 25KN
O1
1.整体为研究对象
Y1
∑MO1=0 Y2 XB YB Y3 Y4
2.BC为研究对象
∑MB=0
Y3
Y4
3.2 静定结构支座反力的计算
五、作 业
试求下列结构的支反力。
4 10kN/m m
l
3m
l
l
P
A
l l
P
B
l
q
D E
l/2
C
l l
第三章 静定梁、静定平面刚架和 三铰拱的计算
建筑工程系
3.2 静定结构支座反力的计算
静定结构内力计算分两大步:
1、求支反力
2、内力计算
3.2 静定结构支座反力的计算
一、静定结构内力计算目的
1. 解决静定结构强度校核问题。 2. 静定结构位移计算的必要基础。 3. 超静定结构内力计算必要基础。
二、静定结构的特点
XA 0
或(2)取ABC为研究对象
3.2 静定结构支座反力的计算
三、静定结构的分类及支反力的计算
4.三铰结构 半独立体
结构体系(不含基础)有两个刚片,与基础的联结满 足三刚片组成规律的结构。
XA YA YB
XB
MA 0 或 MB 0 (1 )以整体为研究对象,列二个平衡方程。 计算特点: Y 0 一般先整体,后局部。 M C 0 (补充方程) (2 )以中间铰 C一侧为研究对象,列一个平衡方程。
B
YB
C
XALeabharlann DYDYA
E
XB YB
目的:求出特殊未知反力
3.2 静定结构支座反力的计算
3.选取原则:优先选择独立体、半独立体; 再依次研究新出现的独立体,半独立体。
二、列平衡方程
1.思考方法
排除法:把尽可能多的其余力排除于平衡方程之外。
2.措 施
“求谁不管谁”,即不考虑待求未知力,观察其 它未知力的分布特点:
(1)如果其余未知力平行,则在其垂直方向投影。 (2)如果其余未知力汇交于一点,则对该点取矩。
3.2 静定结构支座反力的计算
三、静定结构的分类及支反力的计算
按照几何组成情况将静定结构分为4类: 1.悬臂结构 与基础用一个固定支座刚性联结的结构。
P
以结构内力计算为目 的时,无需求支反力。
XA
YA
MA
1. 几何组成:无多余约束
2. 受力分析:只需平衡条件
3.2 静定结构支座反力的计算
一、选取研究对象
1.独立体 能应用自身的平衡条件,求出所有未知力的体系。
满足:(1)对承受平面一般力系者, 未知力不多于3个 (2)对承受平面汇交力系者, 未知力不多于2个 另一种提法:与外界的联结满足两刚片规则的体系。
计算特点: 不用求解支反力
3.2 静定结构支座反力的计算
三、静定结构的分类及支反力的计算
2.简支结构 与基础的联结满足两刚片组成规律的结构。
A B A
独立体系
YA
C
P
B
YC
XB
X 0 M 0 Y 0
A
A
B
计算特点: 简单
3.2 静定结构支座反力的计算
三、静定结构的分类及支反力的计算
A B
XA
YA
YB
3.2 静定结构支座反力的计算
一、选取研究对象
2.半独立体 能应用自身的平衡条件,求出部分未知力的体系。
对承受一般力系的体系,未知力虽多于3个,但未知力 作用线满足下述条件之一: (1)除一个特殊未知力外,其余的未知力平行 (2)除一个特殊未知力外,其余的未知力汇交
P
P
XA
A
YA
3.主、从结构 特点:结构的一部分先与基础联结成几何不
变体系(基本部分),基本部分又能与另一部分(附属部分) 联结成新的几何不变体系。 半独立体
XA
计算特点:先附属后基本。
P
C D
YD P
q
A
YA
B
YB
E
附属部分 q 基本部分
XA YA
C
XC YC
D
YD
E
先分析 后分析
A B
YB
3.2 静定结构支座反力的计算