六年级奥数分数大小的比较
小学数学奥数基础教程(六年级)目30讲全[1]
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
小学五六年级奥数培优——分数的问题(word解析版)
小学五六年级奥数培优——分数的问题【知识点梳理】1.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2.分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
【教学重难、点】一、分数与除法的关系,真分数和假分数1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。
2、真分数和假分数:①分子比分母小的分数叫做真分数,真分数小于1。
②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。
③由整数部分和分数部分组成的分数叫做带分数。
2、假分数与带分数的互化:①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。
②把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
二、分数的基本性质分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
2、分数的大小比较:①同分母分数,分子大的分数就大,分子小的分数就小;②同分子分数,分母大的分数反而小,分母小的分数反而大。
③异分母分数,先化成同分母分数(分数单位相同),再进行比较。
(依据分数的基本性质进行变化)三、约分(最简分数)1、最简分数:分子和分母只有公因数1的分数叫做最简分数。
2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
(并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。
五、分数和小数的互化:1、小数化分数:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几??,能约分的必须约成最简分数;2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。
(一般保留三位小数。
)3、分数和小数比较大小:一般把分数变成小数后比较更简便。
六、分数的加法和减法 1、真分数加减法(1)同分母分数加、减法(分母不变,分子相加减)(2)异分母分数加、减法(通分后再加减)(3)分数加减混合运算:同整数。
小学六年级奥数-第四章-分数的比较大小
第四章分数大小的比较知识要点分数大小的比较方法有很多,主要有通分、倒数比较、相减比较、相除比较、交叉相乘等。
通分:(1)统一分母,比较分子,分子越大分数越大。
(2)统一分子,比较分母,分母越小分数越大.倒数比较:倒数大的分数小于倒数小的分数。
相减比较:有两个分数ba与dc,若ba-dc>0,则ba>dc;若ba-dc<0,则ba<dc。
相除比较:分数ba与dc,若ba÷dc的商为真分数,则ba<dc;若商为假分数,则ba>dc。
交叉相乘:分数ba与dc,若bc>ad,则ba>dc。
除了以上几种方法,还有用“1”减法、公式法、化小数比较等等。
典例巧解例1 有五个分数23,58,1523,1017,1219,请按从小到大的顺序排列。
点拨此题若统一分母比较麻烦,而分子的最小公倍数很容易找出为60,故统一分子。
解23=6090,58=6096,1523=6092,1017=60102,1219=6095,因为60102<6096<6095<6092<6090,所以1017<58<1219<1523<23.例2 比较99999959999997和66666616666663的大小。
点拨一可利用求倒数的方法比较。
解99999959999997的倒数是99999979999995=1+29999995,66666616666663的倒数是66666636666661=1+26666661比较倒数右边的结果知1+26666661>1+29999995,所以66666636666661>99999979999995,即99999959999997>66666616666663。
点拨二由于这两个分数的分子和分母都很接近,且都相差2,可以找到一个标准数。
这两个分数的大小都比1略小,则可用“1”做减法.解99999959999997=1-29999997,66666616666663=1-26666663。
由于29999997<26666663,在被减数相同的情况下,减数越小,说明差越大,所以99999959999997>66666616666663。
小学奥数教程-等差数列计算题1 (含答案)
本讲是在分数计算方面技巧的基础上,进一步认识小数、分数,只是从比较大小方面认识它们,这一讲主要介绍一些比较较为复杂的小数、分数大小的方法,主要有通分子、通分母、倒数法、放缩法等。
一、小数的大小比较常用方法为方便比较,往往把这些小数排成一个竖列,并在它们的末尾添上适当的“0”,使它们都变成小数位数相同的小数.(如果是循环小数,就把它改写成一般写法的形式)二、分数的大小比较常用方法⑴通分母:分子小的分数小. ⑵通分子:分母小的分数大. ⑶比倒数:倒数大的分数小.⑷与1相减比较法:分别与1相减,差大的分数小.(适用于真分数) ⑸重要结论:①对于两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大; ②对于两个假分数,如果分子和分母相差相同的数,则分子和分母都小的分数比较大. ⑹放缩法在实际解题的过程中,我们还会用到其它一些思路!同学们要根据具体情况展开思维!三、数的估算时常用方法(1)放缩法:为求出某数的整数部分,设法放大或缩小.使结果介于某两个接近数之间,从而估算结果. (2)变换结构:将原来算式或问题变形为便于估算的形式.模块一、两个数的大小比较【例 1】 如果a =20052006,b = 20062007,那么a ,b 中较大的数是 【考点】两个数的大小比较 【难度】2星 【题型】填空 【关键词】希望杯,五年级,一试 【解析】 方法一:<与1相减比较法>1- 20052006= 12006;1- 20062007= 12007.因为12006> 12007,所以b 较大;方法二:<比倒数法>因为1120052006>,所以2006200720052006>,进而2005200620062007<,即a b <; 方法三:两个真分数,如果分子和分母相差相同的数,分子和分母都大的分数比较大,所以b 大【答案】b 例题精讲知识点拨教学目标比较与估算【巩固】试比较19951998和19461949的大小【考点】两个数的大小比较【难度】2星【题型】填空【解析】19951998>19461949【答案】19951998>19461949【巩固】比较444443444445和555554555556的大小【考点】两个数的大小比较【难度】2星【题型】填空【解析】因为44444321444445444445-=,55555421555556555556-=,显然22444445555556>,根据被减数一定,减数越大差越小的道理,有:444443555554 444445555556<【答案】444443555554 444445555556<【例 2】如果A=111111110222222221,B=444444443888888887,A与B中哪个数较大?【考点】两个数的大小比较【难度】3星【题型】填空【关键词】迎春杯,决赛【解析】方法一:观察可以发现A、B都很接近12,且比它小.我们不防与12比较.1 2-A12222222221=⨯,12-B=12888888887⨯,12-B<12-A,即B比A更接近12,换句话说B>A .方法二:11111111011111111044444444404444444432222222212222222214888888884888888887A B⨯===<=⨯,即A B<.方法三:112111111110A=,112444444443B=显然11A B>,则A B<【答案】B【巩固】如果222221333331,222223333334A B==,那么A和B中较大的数是.【考点】两个数的大小比较【难度】2星【题型】填空【关键词】祖冲之杯【解析】222221666663666662333331222223666669666668333334A B==>==,即A大【答案】A【巩固】试比较1111111和111111111的大小【考点】两个数的大小比较【难度】3星【题型】填空【解析】方法一:观察可知,这两个分数的分母都比分子的10倍多1.对于这样的分数,可以利用它们的倒数比较大小.1111111的倒数是1÷1111111=110111,111111111的倒数是1÷11111111110=11111,我们很容易看出101111>1011111,所以1111111<111111111;方法二:111111101110111111*********⨯==⨯,两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大,所以11101111,1111011111<即1111111.111111111< 【答案】1111111.111111111<【例 3】 在 a =20032003×2002和 b =20022003×2003中,较大的数是______ ,比较小的数大______ 。
六年级上册数学试题-奥数拔高专题《分数》全国通用版
小学六年级奥数拔高专题《分数》1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
一、分数与除法的关系,真分数和假分数1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。
2、真分数和假分数:①分子比分母小的分数叫做真分数,真分数小于1。
②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。
③由整数部分和分数部分组成的分数叫做带分数。
2、假分数与带分数的互化:①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。
②把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
二、分数的基本性质分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
2、分数的大小比较:①同分母分数,分子大的分数就大,分子小的分数就小;②同分子分数,分母大的分数反而小,分母小的分数反而大。
③异分母分数,先化成同分母分数(分数单位相同),再进行比较。
(依据分数的基本性质进行变化)三、约分(最简分数)1、最简分数:分子和分母只有公因数1的分数叫做最简分数。
2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
(并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。
五、分数和小数的互化:1、小数化分数:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几??,能约分的必须约成最简分数;2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。
(一般保留三位小数。
)3、分数和小数比较大小:一般把分数变成小数后比较更简便。
六、分数的加法和减法 1、真分数加减法(1)同分母分数加、减法(分母不变,分子相加减)(2)异分母分数加、减法(通分后再加减)(3)分数加减混合运算:同整数。
分数大小比较方法口诀
分数大小比较方法口诀在学习数学的过程中,我们经常会遇到分数的大小比较问题。
分数的大小比较是数学中的一个基础知识点,也是我们学习数学的重要内容之一。
下面,我将为大家介绍一些分数大小比较的方法口诀,希望能够帮助大家更好地掌握这一知识点。
一、同分母比较。
1. 同分母比较大小,分子大,分数大。
当两个分数的分母相等时,我们只需要比较它们的分子大小即可。
分子大的分数就是大的分数。
例如,比较1/4和3/4的大小,由于它们的分母相等,所以只需要比较它们的分子大小,3/4大于1/4,所以3/4大于1/4。
二、同分子比较。
1. 同分子比较大小,分母大,分数小。
当两个分数的分子相等时,我们只需要比较它们的分母大小即可。
分母大的分数就是小的分数。
例如,比较2/5和2/7的大小,由于它们的分子相等,所以只需要比较它们的分母大小,2/5小于2/7,所以2/5小于2/7。
三、异分母比较。
1. 通分后比较大小,分子大,分数大。
当两个分数的分母不相等时,我们需要先将它们通分,然后再比较它们的分子大小。
分子大的分数就是大的分数。
例如,比较1/3和2/5的大小,我们先将它们通分为5分之15和6分之15,然后再比较它们的分子大小,6分之15大于5分之15,所以2/5大于1/3。
2. 通分后比较大小,分子小,分数小。
同样是异分母比较,如果分子小的话,那么分数就小。
例如,比较2/7和3/8的大小,我们先将它们通分为16分之112和14分之112,然后再比较它们的分子大小,14分之112小于16分之112,所以3/8小于2/7。
以上就是关于分数大小比较的方法口诀,希望对大家有所帮助。
通过掌握这些方法口诀,我们可以更快地比较分数的大小,提高解题效率。
在学习数学的过程中,我们还需要多做练习,加深对分数大小比较的理解,从而更好地掌握这一知识点。
希望大家能够认真学习,取得更好的成绩。
小学六年级奥数 第四章 分数的比较大小
第四章分数大小的比较知识要点分数大小的比较方法有很多,主要有通分、倒数比较、相减比较、相除比较、交叉相乘等。
通分:(1)统一分母,比较分子,分子越大分数越大。
(2)统一分子,比较分母,分母越小分数越大。
倒数比较:倒数大的分数小于倒数小的分数。
相减比较:有两个分数ba与dc,若ba-dc>0,则ba>dc;若ba-dc<0,则ba<dc。
相除比较:分数ba与dc,若ba÷dc的商为真分数,则ba<dc;若商为假分数,则ba>dc。
交叉相乘:分数ba与dc,若bc>ad,则ba>dc。
除了以上几种方法,还有用“1”减法、公式法、化小数比较等等。
典例巧解例1 有五个分数23,58,1523,1017,1219,请按从小到大的顺序排列。
点拨此题若统一分母比较麻烦,而分子的最小公倍数很容易找出为60,故统一分子。
解23=6090,58=6096,1523=6092,1017=60102,1219=6095,因为60102<6096<6095<6092<6090,所以1017<58<1219<1523<23。
例2 比较99999959999997和66666616666663的大小。
点拨一可利用求倒数的方法比较。
解99999959999997的倒数是99999979999995=1+29999995,66666616666663的倒数是66666636666661=1+26666661比较倒数右边的结果知1+26666661>1+29999995,所以66666636666661>99999979999995,即99999959999997>66666616666663。
点拨二由于这两个分数的分子和分母都很接近,且都相差2,可以找到一个标准数。
这两个分数的大小都比1略小,则可用“1”做减法。
解99999959999997=1-29999997,66666616666663=1-26666663。
由于29999997<26666663,在被减数相同的情况下,减数越小,说明差越大,所以99999959999997>66666616666663。
小学六年级奥数专项练习24 比较大小
小学六年级奥数专项练习专题24 比较大小【理论基础】我们已经掌握了基本的比较整数、小数、分数大小的方法。
本周将进一步研究如何比较一些较复杂的数或式子的值的大小。
解答这种类型的题目,需要将原题进行各种形式的转化,再利用一些不等式的性质进行推理判断。
如:a >b >0,那么a 的平方>b 的平方;如果a >b >0,那么1a <1b ;如果ab >1,b >0,那么a >b等等。
比较大小时,如果要比较的分数都接近1时,可先用1减去原分数,再根据被减数相等(都是1),减数越小,差越大的道理判断原分数的大小。
如果两个数的倒数接近,可以先用1分别除以这两个数。
再根据被除数相等,商越小,除数越大的道理判断原数的大小。
除了将比较大小转化为比差、比商等形式外,还常常要根据算式的特点将它作适当的变形后再进行判断。
例1比较777773777778 和888884888889的大小。
这两个分数的分子与分母各不相同,不能直接比较大小,使用通分的方法又太麻烦。
由于这里的两个分数都接近1,所以我们可先用1分别减去以上分数,再比较所得差的大小,然后再判断原来分数的大小。
因为1-777773777778 =5777778 ,1-888884888889 =58888895777778 >5888889 所以777773777778 <888884888889。
练习11、 比较77777757777777 和66666616666663的大小。
2、 将9876598766 ,98769877 ,987988 ,9899 按从小到大的顺序排列出来。
3、 比较235861235862 和652971652974的大小。
例2比较1111111 和111111111哪个分数大?可以先用1分别除以这两个分数,再比较所得商的大小,最后判断原分数的大小。
因为1÷1111111 =1111111 =1011111÷111111111 =111111111 =1011111101111 >1011111 所以1111111 <111111111练习21、 比较A =3331666 和B =33166 的大小2、 比较111111110222222221 和444444443888888887 的大小3、 比较88888878888889 和99999919999994 的大小。
六年级比较与估值(奥数拓展)-运算第5讲
比较与估值(奥数拓展)1.小数之间的大小比较在小数的末尾添上适当的“0”,使它们都变成小数位数相同的小数(如果是循环小数,就把它改写成一般写法的形式),从高位比起。
2.分数之间的大小比较常见方法:1、通分法(通分子、通分母)2、比倒数:与1相减比较法(1)真分数:与1相减,差大的分数小(2)假分数:与1相减,差大的分数大4、两数相除进行比较5、化成小数进行比较3.估值常用方法1)放缩法:为求出某数的整数部分,设法放大或缩小,将结果确定在两个接近数之间,从而估算出结果。
2)变换结构:将算式变形为便于估算的形式。
3)估值步骤(估算和式整数部分):a.找出和式中最小的项和最大的项,并找出项数。
b.令和式结果等于Ac.最小的数×个数 < A < 最大的数×个数d.求出A的整数部分。
例1、典型例题【针对练习1.1】【针对练习1.2】【针对练习1.3】例2、【针对练习2.1】【针对练习2.2】【针对练习2.3】例3、如果A=20012002.2003×20002001.2002,B=20012002.2002×20002001.2003,比较A和B大小。
关系是A_____B(填“>”=“<”).【针对练习3.1】如果M=10011002.1003×10001001.1002,N=10011002.1002×10001001.1003,那么M和N的大小关系是M____N(填“>”,“=”,“<”).A.>B.=C.<D.不确定【针对练习3.2】已知A=1798.57×634.98,B=1798.56×634.99,试比较A和B的大小关系是A____B(填“>”,“=”,“<”).A.>B.=C.<D.不确定例4、【针对练习4.2】【针对练习4.2】例5、【针对练习5.1】【针对练习5.1】比2/7大比1/3小的分数有无数多个,则分子为27的分数有多少个?【针对练习5.2】要使不等式:成立5/9 <9/□<1,方框内的最大自然数可以是多少?例6、【针对练习6.1】【针对练习6.2】【针对练习6.3】A=8.8+8.98+8.998+8.9998+8.99998,A的整数部分是________.例7、有15个正整数,去掉最大的数后平均数等于2.5,去掉最小的数后平均数等于3.0,最大数与最小数之差为______.【针对练习7.1】有30个正整数,去掉最大的数后平均数等于10.8,去掉最小的数后平均数等于12.8,最大数与最小数之差为_________.【针对练习7.2】有51个正整数,去掉最大的数后平均数等于17.8,去掉最小的数后平均数等于20.1,最大数与最小数之差为________.例8、有一道题目要求17个自然数的平均数,结果保留两位小数,冬冬的计算结果是11.28,老师说这个数百分位上的数字错了,其他数位上的数都正确,请问:正确答案是多少?【针对练习8.1】老师在黑板上写了七个自然数,让小明计算它们的平均数(保留小数点后面两位).小明计算出的答数是14.73,老师说:“除最后一位数字外其它都对了.”那么,正确的得数应是__________.【针对练习8.2】小东在计算11个整数的平均数(保留两位小数时),得数为15.33,老师说最后一位数字错了,那么正确的得数是多少?【针对练习8.3】老师在黑板上写了13个自然数,让小明计算平均数(保留两位小数)。
小学六年级奥数教程题目
奥数教程(六年级)第一讲 分数的计算例1 计算:4.3695.3)5.3694.3(2009-⨯+⨯⨯ (提示:转化成分母相同) 例2 计算:1341321318428.44.22.113913313118628.106.32.1⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯ (提示:找分子分母共同点,变形)例3 计算:10241195121172561151281136411132191617815413211+++++++++(提示:先合并再相加) 例4 计算:)1099()988()877()766()655()544()433()322()211(-⨯-⨯-⨯-⨯-⨯-⨯-⨯-⨯-(提示:先求差)例5 计算:23191713111917132223171311132613117455⨯⨯+⨯⨯+⨯⨯+⨯⨯(分子分解质因数,约分) 例6 计算:()123...891098...32199...531)100...642(22222222++++++++++++++++-++++第二讲 分数的大小比较例1 分数75、1715、94、12440、309103中,哪一个最大?(提示:化简,统一分子)例2 在□内填上相同的自然数,使不等式3619613111>++++ 成立,此时□内的数的最大值是几?例3 若A=12009200912+-, B=2220082009200820091+⨯-,比较A 与B 的大小。
(提示:比较分母)例4 不求和,比较200520022004200420032005+与200520022003200420032006+的大小。
例5 在下列□内填两个相邻的整数,使不等式成立。
□<10191817161514131211+++++++++<□ 例6 已知A=21771 (21611216011)+++,求A 的整数部分是多少?第三讲 巧算分数的和例1 计算:50491...431321211⨯++⨯+⨯+⨯ 例2 计算:100981...861641421⨯++⨯+⨯+⨯ 例3 计算:10099981...43213211⨯⨯++⨯⨯+⨯⨯ 例4 计算:10099...3211...4321132112111++++++++++++++++例5 计算:2019...4321...54321432132121++++++++++++++++ 例6 计算:⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++9911...311211991 (41131121141)3112113121121 第四讲 繁分数例1 计算:20072008200820091200920092009122⨯+-+-÷ 例2 计算:41322111+++例3 规定□表示选择两数中较大的数的运算,△表示选择两数中较小的数的运算。
小学六年级奥数《比较分数的大小》课件+习题
比较分数的大小
2021年3月17日
你有多少种比较分数大小的方法呢?
常用的比较分数大小的方法:
一、通分比较法
• 先统一分母,再比较分子, 分子越大分数越大。
• 先统一分子,再比较分母, 分母越小分数越大。
比较 7 与 3 的大小 94
① 先 统 一 分 母 :① 先 统 一 分 子 :
7 4 28 9 4 36
666667
777778
①先化为倒数
666667 1 2 666665 666665 777778 1 2 777776 777776
②倒数大的,小于倒数小的分数 666665< 777776 666667 777778
常用的比较分数大小的方法:
三、相减比较法
• 比较两个分数的大小,可先计算它们的差: • 差大于0,则前者大于后者; • 差小于0,则后者大于前者。
7 3 21 9 3 27
3 9 27 4 9 36
3 7 21 4 7 28
②比较大小: ②比较大小:
7> 27 9 36
7> 27 9 36
练习:
比较 5 、15 、4 、40 、103 的大小 7 17 9 124 309
能约分的先约分: 40 10 、103 1 124 31 309 3
分子5、15、4、10、1,最小公倍数是60。
常用的比较分数大小的方法:
二、倒数比较法
• 倒数大的分数, 小于倒数小的分数。
比较 111 与 1111 的大小 1111 11111
①化为倒数
111 的倒数:1111 1110 1 10 1
1111
111 111
111
1111 的倒数是:11111 11110 1 10 1
六年级奥数分数大小的比较含答案
1六年级奥数随堂检测第二讲:分数的大小比较出卷人:邓虹 总分100分 姓 名: 得分:比较分数大小的一般方法:⑴通分母:分子小的分数小. ⑵通分子:分母小的分数大. ⑶比倒数:倒数大的分数小.⑷与1相减比较法:分别与1相减,差大的分数小.(适用于真分数) ⑸重要结论:①对于两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大;②对于两个假分数,如果分子和分母相差相同的数,则分子和分母都小的分数比较大.在实际解题的过程中,我们还会用到其它一些思路!同学们要根据具体情况展开思维! 一、 温故1.34567455667788945678⨯+⨯+⨯+⨯+⨯2.1389121127 2.59102251717252⎛⎫⎛⎫+⨯++⨯ ⎪ ⎪⎝⎭⎝⎭ 知识点拨2二、 知新(3-10写出计算过程) 1.3. 如果a = 20052006,b = 20062007,那么a ,b 中较大的数是4. 试比较1111111和111111111的大小5. 比较444443444445和555554555556的大小6. 在13,27,311中,最小的数是______。
7.把下列各数按照从小到大的顺序排列:37 ,513,916,15288.把下列分数用“<”号连接起来:1017 ,1219,1523,2033,60919. 请把6565226798,,,6575326809这4个数从大到小排列。
10在175、3.04、133四个小数中,第二小的数是____3第二讲:分数的大小比较答案1.【考点】分数混合运算原式345674(5)5(6)6(7)7(8)8(9)45678=⨯++⨯++⨯++⨯++⨯+453564675786897=⨯++⨯++⨯++⨯++⨯+ 245=2. 1389121127 2.59102251717252⎛⎫⎛⎫+⨯++⨯ ⎪ ⎪⎝⎭⎝⎭1389122.5127910251717252.540100⎛⎫=⨯+++ ⎪⎝⎭=⨯= 1. 知新3. 方法一:<与1相减比较法>1-20052006= 12006;1- 20062007= 12007.因为12006> 12007,所以b 较大; 方法二:<比倒数法>因为1120052006>,所以2006200720052006>,进而2005200620062007<,即a b <; 4. 方法一:观察可知,这两个分数的分母都比分子的10倍多1.对于这样的分数,可以利用它们的倒数比较大小.1111111的倒数是1÷ 1111111= 110111 ,111111111的倒数是1÷ 11111111110= 11111,我们很容易看出10 1111>10 11111,所以1111111<111111111; 方法二:111111101110111111*********⨯==⨯,两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大,所以11101111,1111011111<即1111111.111111111<5.因为44444321444445444445-=,55555421555556555556-=,显然22444445555556>,根据被减数一定,减数越大差越小的道理,有:444443555554444445555556<6. 12222213367777711=>=>=所以最小的是3117.8通分子⑴531591372816<<< ⑵1017<2033<1219<1523<60919. 将1与这四个分数依次做差,得1657、153、12680、19,显然有1111<<<2680657539,被减数相同,差小的数反而大,所以2679656528>>>2680657539. 10.由于17 3.45=,13 3.3333333=,可以看出,其中第二小的数为133。
小学六年级奥数比较分数的大小
小学六年级奥数:比较分数大小的方法对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
一“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
二万能方法.化为小数。
三.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
四.根据倒数比较大小。
倒数大的原分数小。
五.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
,六.借助第三个数进行比较。
有以下几种情况:(1)对于分数m和n,若m>k,k>n,则m>n。
(2)对于分数m和n,若m-k>n-k,则m>n。
前一个差比较小,所以m<n。
(3)对于分数m和n,若k-m<k-n,则m>n。
注意,(2)与(3)的差别在于,(2)中借助的数k小于原来的两个分数m和n;(3)中借助的数k大于原来的两个分数m和n。
(4)把两个已知分数的分母、分子分别相加,得到一个新分数。
新分数一定介于两个已知分数之间,即比其中一个分数大,比另一个分数小。
例题:已知自然数m ,n满足3/4<m/n<4/5,z则m+n的最小值是多少?分析:3/4<(3+4)/(4+5)<4/5,m =7, n=9,m+n的最小值是16.利用这一点,当两个已知分数不容易比较大小,新分数与其中一个已知分数容易比较大小时,就可以借助于这个新分数。
小学数学奥数基础教程(六年级)目30讲全
小学数学奥数基础教程(六年级)目30讲全小学奥数基础教程(六年级) - 1 - 小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一) 第6讲工程问题(二) 第7讲巧用单位“1” 第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一) 第14讲立体图形(二) 第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
小学奥数基础教程(六年级) - 2 - 如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
(完整版)小学数学奥数基础教程(六年级)目30讲全
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
奥数六年级--第2讲--分数的比较大小
第2讲分数的大小比较课堂例题例1.分数511,613,116231,3064,153305中,哪个数最小?例2.将7384,4657,89100,2536和5162分别填入下列空格中,使不等式成立:< < < <随堂练习1.分数57,1517,49,40124,103309中,哪个数最大?2.从小到大排列下列分数,排在第三个的是哪一个?715,512,56,910,1118,1730,2245;3.用“>”把下列分数连接起来8695,1726,4049,2837,1423例3.若A=120132+2014−1,B=120132−2014×2013+20142,比较A与B的大小。
1/ 6例4.不求和,比较201320112012+201220092013与201420112012+201120092013的大小。
练习4.已知:a×1100÷153.75÷123=b÷100×56×0.375,比较a,b的大小。
练习5.若A=120132−2014−1,B=120132+2014×2013−20142,比较A和B的大小。
练习6.不求差,比较201320112012−201220092013与201420112012−201120092013的大小。
例5.在下列中填两个相邻的整数,使不等式成立。
< 1+12+13+14+15+16+17+18+19+110<例6.已知A=112160+12161+∙∙∙+12177,求A的整数部分是多少?2/ 63 / 6练习7.在横线上填入两个相邻的自然数,使不等式成立。
< (1101+1102+1103+∙∙∙+1150)×3 <练习8.求与(1+1797×1)+(1+1797×2)+(1+1797×3)+∙∙∙+(1+1797×15)最接近的整数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数大小的比较
同学们已经熟悉了整数、小数的大小比较的方法,而对于两个不同的分数,有分母相同、分子相同以及分子、分母都不相同三种情况,其中前两种情况下的分数大小的比较比较简单,方法是:分母相同的两个分数,分子大的那个分数较大;分子相同的两个分数,分母小的那个分数较大。
第三种情况,即分子、分母都不相同的两个分数的大小比较,我们可以应用分数的基本性质,把分母通分,化成分母相同但大小不变的两个分数来进行比较。
但有时候用分母通分的方法比较大小,计算起来很复杂,这时候我们就可以考虑应用分数的基本性质,把这些分数化成分子相同但大小不变的分数来比较大小,这就是分子通分法。
在实际的计算中我们还会遇到一些分数,无论是用通分子还是通分母的方法比较都不简单,那我们会选择倒数比较法。
倒数越大,原分数越小;倒数越小,原分数越大。
在比较分数大小时还有一种作差(和)比较法。
做差比较时,如果减去的这个分数小,那么所得的差就大,原来这个分数的值就大;作和比较时,如果加上的这个分数小,则和小,这个分数就小,加上的这个分数大,则和大,这个分数就大。
例1、比较分数
和
的大小
例2、将下列分数按由大到小的顺序排列。
,
,
练习一:
1、比较下列各组分数的大小
(1)
和
(2)
和
2、四个分数
,
,
,
中,哪个分数最大?哪个分数最小?
3、把下面的分数按照从小到大的顺序排列。
,
,
,
4、将下面的分数按照从大到小的顺序排列。
,
,
,
,
5、若A=12344×98766,B=12345×98765,比较A和B的大小
6、将下列分数按照从小到大的顺序连接起来。
,
,
,
例3、比较
和
的大小
例4、比较下列三个分数的大小。
,
,
练习2、
1、选用适当的方法,比较下列各组分数的大小
(1)
和
(2)
和
(3)
和
(4)
和
2、比较分数
和
的大小
3、把下面的几个分数按照从大到小的顺序排列。
,
,
,
4、比较下列三个分数的大小。
,
,
5、用倒数比较法比较
和
的大小。
6、原乘式是4.75×N,误写成4.75×N后,与原结果相差0.5。
问:原结果是什么值?
例5、比较分数
和
的大小。
例6、比较分数
和
的大小。
练习3、
1、比较分数
和
的大小。
2、比较分数
和
的大小。
3、比较下列每组分数的大小。
(1)
和
(2)
和
(3)
和
(4)
和
4、把下面的分数按照从大到小的顺序排列。
2
,2
,2
5、比较
×
×
×
×…×
与
的大小。
继续阅读。