地球上两点的经纬度计算他们距离的公式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.所谓的 “东经为正,西经为负,北纬为正,南纬为负 ”是为了计算的 方便。
比如某点为西京145°,南纬36°,那么计算时可用(-145°,-36°)
3.AB对球Hale Waihona Puke Baidu所张角的球法实际上是求<0A>和<0B>两向量的夹角
K。
用公式<OA>*<OB>=|OA|*|OB|*cosK
可以得到 其中地球平均半径为6371.004km
而每一分又有60秒,每一秒就代表1855.3m/60=30.92m
任意两点距离计算公式为
d=111.12cos{1/[sin①Asin①十cos①Acos①Bcos(入B—入A)]}
其中A点经度,纬度分别为入A和①A,B点的经度、纬度分别为入B和①B,d为距离。
至于比例尺计算就不废话了
假设地球是个标准的球体:半径可以查出来,假设是 如图:
关于用经纬度计算距离:
地球赤道上环绕地球一周走一圈共40075.04公里,而@一圈分成360°而每1°度)有60,每
一度一秒在赤道上的长度计算如下:
40075.04km/360°=111.31955km
111.31955km/60=1.8553258km=1855.3m
假设地球是一个标准球体,半径为R,并且假设东经为正,西经为负,
北纬为正,南纬为负,则A(x,y)的坐标可表示为(R*cosy*cosx, R*cosy*sinx,R*siny)
B(a,b)可表示为(R*cosb*cosa ,R*cosb*sina,R*sinb)
于是,AB对于球心所张的角的余弦大小为
cosb*cosy*(cosa*cosx+sina*sinx)+sinb*siny=cosb*cosy*cos(a-x)+s inb*siny
因此AB两点的球面距离为
R*{arccos[cosb*cosy*cos(a-x)+sinb*siny]}
注:1.x,y,a,b都是角度,最后结果中给出的arccos因为弧度形式。
相关文档
最新文档