与三角形有关的线段教案

合集下载

《与三角形有关的线段》优质教案教学设计

《与三角形有关的线段》优质教案教学设计

本节课是本单元中,对知识的理解和贯彻最重要的一堂课。

在高效课堂模式中,一堂课的紧凑性和教师活动的多少,决定着课堂容量的高低。

但在实际教学中,教师应尽可能少地利用讲授法进行教学,多与学生进行交流,增加学生的实际操练和练习时间,对于一堂课来讲,是至关重要的。

对于课堂环节的布置,应该力求简练,语言应用尽量通俗易懂。

对于一名教师而言,教学质量的高低,与备课的充足与否有很大关系。

而教案作为这一行为的载体,巨大作用是不言而喻的。

本节课的准备环节,就充分地说明了这个道理。

2.1.2 与三角形有关的线段预设目标1、掌握三角形的角平分线、中线、高线的概念,2、会画出任意三角形的角平分线、中线、高线,特别注意钝角三角形高的画法。

让学生从实践中得到三角形的三条中线、角平分线、高分别交于一点,直角三角形三条高的交点就是直角顶点,钝角三角形有两条高位于三角形的外部。

教学重难点 1.重点:三角形角平分线、中线、高的概念及其画法。

2.难点:钝角三角形高的画法。

教具准备三角尺、纸片教法学法讲授、讨论、练习教学过程一、复习提问1.什么叫角平分线?如何画一个角的平分线?2.已知A、B分别是直线l上和直线l外一点,分别过点A、点B 画直线l的垂线。

·B·lA二、新授今天我们要学习三角形中的三种重要线段——中线、角平分线和高。

1.三角形的中线:三角形的一个顶点与它的对边中点的连线叫三角形的中线。

如图,点D是BC边的中点,即AD是△ABC的中线。

AB D C问:三角形有几条中线?若已知AD是三角形的中线,你可得到什么结论?2.三角形的角平分线:三角形内角的平分线与对边的交点和这个内角顶点之间的线段叫三角形的角平分线。

如图,∠1=∠2,那么CE是△ABC的角平分线。

AE ∠2B C∠1问:三角形有几条角平分线?三角形的角平分线和角平分线有什么不同?3.三角形的高:过三角形顶点作对边的垂线,垂足与顶点间的线段叫三角形的高。

人教版初中数学八年级上册11.1与三角形有关的线段(教案)

人教版初中数学八年级上册11.1与三角形有关的线段(教案)
3.培养学生的数据分析能力,使学生能够运用三角形的性质和定理解决实际问题,提高解题能力;
4.增强学生的合作意识,通过小组讨论、交流,培养学生的团队协作能力,共同解决问题;
5.培养学生的创新意识,鼓励学生运用所学知识,探索三角形相关的新问题,激发学生的求知欲和创造力。
本节课将紧密围绕核心素养目标,注重培养学生的综合能力,使学生在掌握知识的同时,提高学科素养。
6.三角形相似的条件:SS、SAS、AA;
7.三角形中位线定理及其应用。
本节课将围绕以上内容,结合实际例题,帮助学生掌握与三角形有关的线段的基本性质和应用。
二、核心素养目标
1.培养学生的逻辑推理能力,通过探索三角形的基本性质和定理,使学生能够运用逻辑思维分析、解决问题;
2.提升学生的空间想象力,通过观察、操作三角形模型,让学生在脑海中形成清晰的三角形形象,为后续几何学习打下基础;
三、教学难点与重点
1.教学重点
-三角形的定义及其内角和定理:使学生明确三角形的定义,掌握三角形的三个内角和为180°的定理,并能应用于实际问题。
-三角形全等的条件:重点讲解SSS、SAS、ASA、AAS全等条件,让学生熟练运用这些条件判断三角形全等。
-三角形相似的条件:强调SS、SAS、AA相似条件,培养学生运用这些条件解决实际问题的能力。
3.课堂上关注每个学生的学习情况,及时发现问题并给予指导;
4.课后及时进行教学反思,不断调整教学策略,以提高教学效果。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形有关的实际问题。
2.实验操位线定理的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)

与三角形有关的线段

与三角形有关的线段
例3.如图,是一个正五边形木架,那么至少需要加钉几根木条才能固定该正五边形木架?
思路分析:
题意分析:此题考查三角形稳定性的应用.
解题思路:这是一个五边形,要把它的各边都分割到三角形中才能将其固定,这样的木条至少需要2根.
解答过程:至少需要加钉2根木条.
解题后的思考:由于三角形具有稳定性,而其他图形不具有稳定性.因此要确定至少需要几根木条才能固定多边形木架,只需确定该多边形至少能分割成几个互不重叠的三角形.
A.6个B.5个C.4个D.3个
思路分析:
题意分析:本题考查三角形的三边关系.
解题思路:x的取值不能太大,因为有3+8>x,即x<11.x的取值也不能太小,因为有3+x>8,即x>5,在这个范围内的偶数有6、8、10,共3个.
解答过程:D
解题后的思考:解答这个问题要注意两点:①对于x的取值要保证3、8、x能组成三角形,也就是要满足任意两边之和大于第三边.②x的值为偶数.学了不等式的知识后解答本题会更容易一些.
难点:三角形两边的和大于第三边.
三、考点分析:
本讲内容在中考中非常重要,但难度不大,要求理解三角形、三角形的高、中线和角平分线的概念,掌握三边关系及按边分类,认识三角形的稳定性并能灵活应用于实际,主要以填空题、选择题、计算题的形式出现.
1.三角形的边
(1)三角形的概念和表示方法
由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形,组成三角形的线段叫做三角形的边,相邻两边的公共端点叫做三角形的顶点,相邻两边所组成的图形叫做三角形的内角,简称三角形的角.
解题后的思考:三角形的中线把一边平分,并且把这个三角形的面积平分.我们常用这个结论来说明两个三角形面积相等.
小结:在三角形的有关概念中,应重点掌握三角形的角平分线、中线和高的定义与性质.如:三角形的中线把三角形分成面积相等的两部分,三角形的边与该边上的高的积相等.

人教版八年级上册11.1《与三角形有关的线段》说课稿

人教版八年级上册11.1《与三角形有关的线段》说课稿
2.多媒体资源:PPT、几何画板等,展示动态的几何图形和性质,增强学生的空间想象能力。
3.技术工具:网络资源、在线学习平台等,提供丰富的学习资料,拓展学生的学习视野。
它们在教学中的作用主要有:
1.直观展示几何图形和性质,降低学生的理解难度。
2.提供丰富的学习资源,满足学生的个性化学习需求。
3.创设生动、有趣的学习情境,激发学生的学习兴趣。
人教版八年级上册11.1《与三角形有关的线段》说课稿
一、教材分析
(一)内容概述
本节课选自人教版八年级上册11.1《与三角形有关的线段》,它是整个课程体系中几何部分的重要内容,主要介绍了三角形的中线、高线、角平分线等基本概念及其性质。这部分内容是对三角形知识的深入探究,旨在帮助学生巩固对三角形基本概念的理解,并为后续学习相似三角形、解直角三角形等知识打下基础。
(二)新知讲授
在新知讲授阶段,我将采用以下步骤逐步呈现知识点,引导学生深入理解:
1.通过动态PPT或几何画板展示三角形的中线、高线、角平分线的定义和性质,让学生直观地理解这些概念。
2.结合实际例题,讲解中线、高线、角平分线的判定方法和应用,让学生在具体情境中掌握知识。
3.分步骤演示如何准确地画出三角形的中线、高线、角平分线,并指导学生进行动手操作,加深对知识点的理解。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.基础练习:布置一些基本的画图题目,如画出给定三角形的中线、高线、角平分线,让学生独立完成。
2.提高练习:设计一些综合性的题目,让学生运用所学知识解决实际问题,如求三角形的面积、判断三角形的类型等。
3.小组合作活动:组织小组讨论,让学生共同探究与三角形有关的线段在生活中的应用,培养学生的团队合作能力和创新思维。

最新人教版初中八年级上册数学第十一章《与三角形有关的线段》精品教案

最新人教版初中八年级上册数学第十一章《与三角形有关的线段》精品教案

随堂练习 1
1、图中有几个三角形,用符号表示这些三角形. 解:共有6个三角形,分别是: △ABD,△ABE,△ABC, △ADE,△ADC,△AEC.
2、一个等腰三角形的一边长为6cm,周长为20cm,求其他两边的长. 解:第一种情况:当腰长为6cm的时候,底边长为20-6-6=8(cm), 则该等腰三角形的另外两边分别为6cm,8cm. 第二种情况:当底边长为6cm的时候,腰长为(20-6)÷2=7(cm), 则该等腰三角形的另外两边分别为7cm,7cm.
课堂小结
三角形的边
边、顶点、角 三角形的分类 三角形的三边关系
按角分类
按边分类 三角形两边之和 大于第三边
三角形两边之差 小于第三边
拓展提升 1
1、已知三条线段的比例分别为1:3:4,3:3:6,3:4:5,其中可以 构成三角形的有几个? 解:1个,序号为.
假设中边长为1,3,4,因为1+3=4,所以不能构成三角形. 假设中边长为3,3,6,因为3+3=6,所以不能构成三角形. 假设中边长为3,4,5,因为3+4>5,所以能构成三角形.
归纳:判断三条线段是否可以构成三角形,只需判断“两 条较短的线段之和大于第三条”即可.
新新知知探探究 究
例2:用一条长18cm的细绳围成一个等腰三角形. (1)如果腰长是底边长的2倍,那么各边的长是多少? (2)能围成有一边的长是4cm的等腰三角形吗?为什么?
解:(1)设底边长为xcm,则腰长为2xcm. 由题可得: x+2x+2x=18, 解得x=3.6.
三角形的三边关系: 1、三角形两边之和大于第三边; 2、三角形两边之差小于第三边.
A C
பைடு நூலகம்

11.1与三角形有关的线段(重难点同步特训)教案

11.1与三角形有关的线段(重难点同步特训)教案
3.重点难点解析:在讲授过程中,我会特别强调三角形的三边关系和内角和定理这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示三角形特殊线段的性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在实践活动和小组讨论环节,学生们表现出了很高的积极性。他们能够围绕三角形在实际生活中的应用展开讨论,并提出自己的观点和想法。但在讨论过程中,我也发现部分学生表达不够清晰,逻辑思维能力有待提高。因此,在今后的教学中,我将更加注重培养学生的表达能力和逻辑思维。
另外,今天的课堂氛围较为活跃,学生们积极参与,教学效果较好。但我也注意到,在课堂纪律方面还需加强管理,确保教学活动有序进行。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形的基本概念、三边关系、内角和定理以及特殊线段的性质和应用。同时,我们也通过实践活动和小组讨论加深了对三角形知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
举例:给出具体的三边长度,让学生判断是否可以构成一个三角形。

八年级数学《与三角形有关的线段》教案

八年级数学《与三角形有关的线段》教案

数学备课组第 1 周供2 周用主备课稿____________,______________,________________;按角分成三类:________________,__________________,_________________。

7、一位同学用三根木棒拼成下图中的图形,其中符合三角形概念的是( ):找出图中所有的三角形,并把它们表示出来。

已知一个等腰三角形的两边长分别为8厘米和4厘米,求这个等腰三角形的周长。

∆ABC的三边长分别为a,b,c,试化简:(1)|c-a-b|-|b-a-c| (2)|a+b-c|-|b-a-c|一、课堂练习:1、教材P65练习第1、2题2、一个三角形的两边长分别是3厘米,、4厘米,则第三边a的取值范围是____________。

3、已知三角形的两边长分别是6厘米和7厘米,第三边长是偶数,则第三边长可能是___________________。

4、如图,找出图中所有的三角形。

二、作业布置教材P69第1、2、6题;教材P70第7题,三、自我检测(一)选择题1、∆ABC的三边长为a,b,c,且a>b>c,若b=6,c=2,则a的取值范围是( )A、42、如图,为估计池塘岸边A,B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离不可能是( )A、20米B、15米C、10米D、5米3、已知三角形的两边长分别为3厘米和8厘米,则此三角形的第三边的长可能是( )A、4厘米B、5厘米C、6厘米D、13厘米4、已知一个等腰三角形的底边长为5,这个等腰三角形的腰长为x,则x的取值范围是( )A、05、如果线段a、b、c能组成三角形,那么它们的长度比可能是( )A、1:2:4B、1:3:4C、3:4:7D、2:3:4(二)填空题6、一个木工师傅现有两根木条,它们的长分别为50厘米和70厘米,他要选择第三根木条,将它们钉成一个三角形木架,设第三根木条的长为x厘米,则x的取值范围是________7、如图,在∆ABC中,AB的=所对的角是__________,∠BAC所对的边是_______,AC在∆ABC中是_________的对边。

与三角形有关的线段教案(教学设计)

与三角形有关的线段教案(教学设计)

与三角形有关的线段【教学目标】1.亲历认识与三角形有关的线段的探索过程,体验分析归纳得出三角形的定义与分类,三角形三边之间的大小关系,三角形的高、中线与角平分线的定义,以及三角形的稳定性,进一步发展学生的探究、交流能力。

2.掌握三角形三边之间的大小关系。

3.熟练运用三角形三边之间的大小关系,三角形的高、中线与角平分线。

【教学重难点】重点:掌握三角形边的性质。

难点:熟练运用三角形三边之间的大小关系,三角形的高、中线与角平分线。

【教学过程】一、直接引入师:今天这节课我们主要学习与三角形有关的线段,这节课的主要内容有:三角形的的定义与分类,三角形三边之间的大小关系,三角形的高、中线与角平分线的定义,以及三角形的稳定性,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。

二、讲授新课(1)教师引导学生在预习的基础上了解三角形的定义,形成初步感知。

(2)首先,我们先来学习三角形三边之间的大小关系,它的具体内容是三角形两边的和大于第三边,三角形的两边的差小于第三边。

它是如何在题目中应用的呢?我们通过一道例题来具体说明。

例1.用一条长为的细绳围成一个等腰三角形。

(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边的长是的等腰三角形吗?为什么?解:(1)设底边长为,则腰长为。

解得所以,三边长分别为。

(2)因为长为的边可能是腰,也可能是底边,所以需要分情况讨论。

18cm 4cm xcm 2xcm 2218x x x ++=3.6x = 3.67.27.2cm cm cm ,,4cm如果长的边为底边,设腰长为,则解得如果长的边为腰,设底边长为,则解得因为,不符合三角形两边的和大于第三边,所以不能围成腰长是的等腰三角形。

由上讨论可知,可以围成底边边长是的等腰三角形。

(3)接着,我们再来看下三角形的高、中线与角平分线的定义内容,它的具体内容是从的顶点向它所对的边所在的直线画垂线,垂足为,所得线段叫做的边上的高。

《与三角形有关的线段》教案

《与三角形有关的线段》教案

11.1 与三角形有关的线段 11.1.1 三角形的边【出示目标】1.通过观察、操作、想象、推理、交流等活动,发展空间观念、推理能力和表达能力. 2.通过具体实例,进一步认识三角形的概念及其基本要素.3.学会三角形的表示及根据“是否有边相等”对三角形进行的分类. 4.掌握三角形三条边之间的关系. 【预习导学】自学指导:阅读教材P2—4,完成下列各题. 【自学反馈】 一、三角形1.定义:由不在__同一条直线上__的三条线段首尾__顺次相接__所组成的图形叫做三角形.2.有关概念如图,线段AB ,BC ,CA 是三角形的__边__,点A ,B ,C 是三角形的__顶点__,∠A ,∠B ,∠C 是相邻两边组成的角,叫做三角形的__内角__,简称三角形的角.3.表示方法:顶点是A ,B ,C 的三角形,记作“__△ABC __”,读作“__三角形ABC __”. 二、三角形的分类1.等边三角形:三条边都__相等__的三角形.2.等腰三角形:有两边__相等__的三角形,其中相等的两条边叫做__腰__,另一边叫做__底边__,两腰的夹角叫做__顶角__,腰和底边的夹角叫做__底角__.3.不等边三角形:三条边都__不相等__的三角形. 4.三角形按边的相等关系分类三角形⎩⎪⎨⎪⎧不等边三角形等腰三角形⎩⎪⎨⎪⎧底边和腰不相等的等腰三角形等边三角形【合作探究】活动1 自主学习三角形的相关概念 (1)什么是三角形:如图,由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(2)三角形的有关概念:①边:组成三角形的三条线段叫做三角形的三条边.②角:三角形相邻两边的夹角叫做三角形的内角,简称三角形的角. ③顶点:三角形相邻两边的公共端点叫做三角形的顶点. (3)三角形的表示:如图,以A 、B 、C 为顶点的三角形记作“△ABC ”,读作“三角形ABC ”.【教师点拨】(1)三角形的表示方法中“△”代表“三角形”,后边的字母为三角形的三个顶点,字母的顺序可以自由安排,即△ABC ,△ACB ,△BAC ,△BCA ,△CAB ,△CBA 为同一个三角形.(2)角的两边为射线,三角形的三条边为线段.(3)由于在三角形内一个角对着一条边,那么这条边就叫这个角的对边,同理,这个角也叫做这个边的对角.如图,∠A 的对边是BC (经常也用a 表示),∠B 的对边是AC (经常也用b 表示),∠C 的对边为AB (经常也用c 表示);AB 的对角为∠C ,AC 的对角为∠B ,BC 的对角为∠A .活动2 跟踪训练1.小强用三根木棒组成下列图形,其中符合三角形概念是( C )2.找一找,图中有多少个三角形,并把它们写下来.解:图中有5个三角形.分别是:△ABE 、△DEC 、△BEC 、△ABC 、△DBC . 活动3 三角形的分类三角形按角分类如下:三角形⎩⎪⎨⎪⎧锐角三角形直角三角形纯角三角形三角形按边分类如下:三角形⎩⎪⎨⎪⎧等腰三角形⎩⎪⎨⎪⎧腰和底边不相等的等腰三角形等边三角形不等边三角形【教师点拨】等边三角形是特殊的等腰三角形,即底边和腰相等的等腰三角形.活动4 三角形的三边关系(1)三角形任意两边之和大于第三边.【教师点拨】组成一个三角形必须满足任意两条线段的和大于另一条线段.(2)推论:由于a +b >c ,根据不等式的性质,得c -b <a ,即三角形两边之差小于第三边. (3)利用三角形三边关系,可以确定在已知两边的三角形中,第三边的取值范围,以及判断任意三条线段能否构成三角形.【教师点拨】三角形两边之和大于第三边指的是三角形任意两边之和大于第三边,即a +b >c ,b +c >a ,c +a >b 三个不等式同时成立.活动5 跟踪训练下列长度的三条线段能否组成三角形?(1)3,4,8( 不能 ) (2)2,5,6( 能 )_(3)5,6,10( 能 ) (4)5,6,11( 不能 ) 问题:判断三条线段能否组成三角形,是否一定要检验三条线段中任何两条的和都大于第三条?根据你刚才的解题经验,你有没有更简便的判断方法?【教师点拨】用较短的两条线段之和与最长的线段比较,若和大,能组成三角形;反之,则不能.活动6 例题解析【例1】 若三角形的两边长分别是2和7,第三边长为奇数,求第三边的长.解:设第三边的长为x ,根据两边之和大于第三边得:x <2+7即x <9.根据两边之差小于第三边得:x >7-2即x >5.所以x 的值大于5小于9,又因为它是奇数,所以x 只能取7.【例2】用一根长为18厘米的细铁丝围成一个等腰三角形. (1)如果腰长是底边的2倍,那么各边的长是多少? (2)能围成有一边的长为4厘米的等腰三角形吗? 解:(1)设底边长为x 厘米,则腰长为2x 厘米.则 x +2x +2x =18.解得x =3.6.∴三边长分别为3.6厘米,7.2厘米,7.2厘米; (2)①当4厘米长为底边,设腰长为x 厘米, 则4+2x =18.解得x =7.∴等腰三角形的三边长为7厘米、7厘米、4厘米; ②当4厘米长为腰长,设底边长为x 厘米,可得 4×2+x =18.解得x =10. ∵4+4<10,∴此时不能构成三角形.综上可得,可围成等腰三角形,且三边长分别为7厘米、7厘米和4厘米. 活动7 跟踪训练1.现有两根木棒,它们的长度分别为20cm 和30cm ,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取(B)A.10cm的木棒B.20cm的木棒C.50cm的木棒D.60cm的木棒2.已知等腰三角形的两边长分别为3和6,则它的周长为(C)A.9B.12C.15D.12或153.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为(B)A.2cm B.3cm C.4cm D.5cm4.若五条线段的长分别是1cm,2cm,3cm,4cm,5cm,则以其中三条线段为边可构成__3__个三角形.5.若等腰三角形的两边长分别为3和7,则它的周长为__17__;若等腰三角形的两边长分别是3和4,则它的周长为__10或11__.活动8课堂小结【随堂训练】教学至此,敬请使用学案随堂训练部分11.1.2三角形的高、中线与角平分线【出示目标】1.三角形的高、中线与角平分线的概念.2.三角形的高、中线与角平分线的画法.【预习导学】自学指导:阅读教材P4—5,回答下列问题:【合作探究】1.从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做__三角形的高__.2.在三角形中,连接一个顶点与它对边中点的线段,叫做这个__三角形的中线__.3.在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫__三角形的角平分线__.【自学反馈】1.三角形的高从△ABC的顶点A向它所对的边BC所在直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的__高__.如图1,AD是△ABC的高,则AD⊥__BC__.图1图2图32.连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC的边BC 上的__中线__.如图2,AD是△ABC的中线,则BD=__CD__.3.∠BAC的平分线AD,交∠BAC的对边BC于点D,所得线段AD叫做△ABC的__角平分线__.如图3,AD是△ABC的角平分线,则∠BAD=__∠CAD__.4.三角形的角平分线与角的平分线有什么区别?高与垂线呢?解:三角形的角平分线是线段,角的平分线是射线;高是线段,垂线是直线.5.一个三角形有几条高?几条中线?几条角平分线?解:一个三角形有3条高,3条中线,3条角平分线.【合作探究】活动1三角形的高用工具准确画出三角形的高.三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.如图,线段AD是BC边上的高.注意:画三角形的高时要标明垂直的记号和垂足的字母.【教师点拨】回忆并演示“过一点画已知直线的垂线”画法.分别在锐角三角形、直角三角形、钝角三角形中画出所有的高,观察高与三角形的位置关系.由作图可得出如下结论:(1)三角形的三条高线相交于__一__点;(2)锐角三角形的三条高线相交于三角形的__内部__;(3)钝角三角形的三条高线相交于三角形的__外部__;(4)直角三角形的三条高线相交于三角形的__直角顶点__;活动2三角形的中线三角形的中线:在三角形中连接一个顶点与它对边中点的线段,叫做这个三角形的中线.如图,AD是△ABC中BC边上的中线.分别在锐角三角形、直角三角形、钝角三角形中画出所有的中线,观察中线与三角形的位置关系.由作图可得出如下结论:(1)三角形的三条中线相交于__一__点;(2)锐角三角形的三条中线相交于三角形的__内部__;(3)钝角三角形的三条中线相交于三角形的__内部__;(4)直角三角形的三条中线相交于三角形的__内部__.活动3三角形的角平分线以前所学的“角平分线”是一条射线,“三角形的角平分线”还是射线吗?三角形的角平分线:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫三角形的角平分线.如图,AD是△ABC的角平分线,图中∠BAD=∠CAD.【教师点拨】三角形的角平分线”是一条线段.分别在锐角三角形、直角三角形、钝角三角形中画出所有的角平分线,观察角平分线与三角形的位置关系.由作图可得出如下结论:(1)三角形的三条角平分线相交于__一__点;(2)锐角三角形的三条角平分线相交于三角形的__内部__;(3)钝角三角形的三条角平分线相交于三角形的__内部__;(4)直角三角形的三条角平分线相交于三角形的__内部__.活动4课堂小结【随堂训练】教学至此,敬请使用学案随堂训练部分11.1.3三角形的稳定性【出示目标】1.通过观察和实地操作得知三角形具有稳定性,四边形没有稳定性.2.稳定性与不稳定性在生产、生活中广泛应用.【预习导学】自学指导:阅读教材P6—7,回答下列问题.【合作探究】1.下列图形中具有稳定性的是(C)A.正方形B.长方形C.直角三角形D.平行四边形2.要使下列木架变稳定各至少需要多少根木棍?解:四、五、六边形木架分别需要一、二、三根木棍才能使其变稳定.【自学反馈】1.下列图中具有稳定性的有(C)A.1个B.2个C.3个D.4个2.下列设备中,没有利用三角形的稳定性的是(A)A.活动的四边形衣架B.起重机C.屋顶三角形钢架D.索道支架3.人站在晃动的公共汽车上,若你分开两腿站立,则需伸出一只手去抓住栏杆才能站稳,这是利用了__三角形的稳定性__.【合作探究】活动1思考盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢?(防止窗框变形)【教师点拨】家里的门窗最怕变形.观察下面的图片,有什么共同点?(都具有三角形的形状.)活动2讨论观察上面这些图片,你发现了什么?发现这些物体都用到了三角形.【教师点拨】这说明三角形有它所独有的性质.到底是什么性质呢?下面我们通过实验来探讨三角形的特性.活动3动手操作探究三角形的稳定性1.用三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?(不会)错误!,第2题图),第3题图)2.用四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?(会) 3.在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?(不会)从上面实验过程你能得出什么结论?与同学交流.解:三角形木架形状不会改变,四边形木架形状会改变,这就是说,三角形具有稳定性,四边形没有稳定性.【教师点拨】第一个三角形不变形,第二个四边形变形,当在四边形的木架上再钉一根木条,然后扭动它,不变形.通过对比得出三角形具有稳定性的结论.还有什么发现?解:还可以发现,斜钉一根木条的四边形木架的形状不会改变.原因是斜钉一根木条后,四边形变成两个三角形,由于三角形有稳定性,所以斜钉一根木条的四边形木架的形状不会改变.【教师点拨】现在你知道为什么窗框未安装好之前,要先在窗框上斜钉一根木条了吧.其实就是利用了三角形的稳定性.活动4理解三角形的稳定性只要三角形三条边的长度固定,这个三角形的形状和大小也就完全确定,三角形的这种性质叫做三角形的稳定性.这就是说,三角形的稳定性不是“拉得动、拉不动”的问题,其实质应是“三角形边长确定,其形状和大小就确定了”.活动5四边形的不稳定性的应用四边形的不稳定性是我们常常需要克服的,那么四边形的不稳定性在生活中有没有应用价值呢?如果有,你能举出实例吗?活动6跟踪训练1.下列图形中哪些具有稳定性?【教师点拨】判断一个图形是否稳定,关键是看图形中是否都是三角形.2.如图,桥梁的斜拉钢索是三角形的结构,主要是为了(C)A.节省材料,节约成本B.保持对称C.利用三角形的稳定性D.美观漂亮,第2题图),第3题图)3.如图,工人师傅砌门时,常用木条EF和EG固定门框ABCD,使其不变形,这种做法的根据是(D)A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳定性【随堂训练】教学至此,敬请使用学案随堂训练部分。

与三角形有关的线段说课稿

与三角形有关的线段说课稿

与三角形有关的线段各位评委老师:大家好!我是××号考生,今天我抽到的题目是初中数学人教版八年级上册第十一章第11.1节《与三角形有关的线段》。

下面我将从说教材、说教法、说学法、说教学过程、板书设计、教学反思六个方面来进行我的说课展示。

一、说教材1、本节教材的地位和作用与三角形有关的线段是初中数学图形与几何的内容,在此之前,学生已经学习了角、线段、相交线、平行线等知识,为本节课的学习做了良好的铺垫;另一方面,本节课的学习可以加深学生对三角形的认识,对后续学习其他几何图形奠定了基础。

因此,本节课起着承上启下的作用。

2、学情分析从学生的认知基础看,学生在此之前已经对三角形有了初步认识。

希望通过本节课对三角形的进一步学习,引导学生通过观察和比较的方法来思考和解决问题,培养学生的归纳概括能力。

3、教学目标基于以上对教材和学生的分析,以及新课标理念,我设计如下教学目标:①知识与技能目标:认识三角形,能用符号语言表示三角形,理解三角形的概念及三角形的分类。

②过程与方法目标:通过经历三角形三边不等关系的探究过程,理解三角形的三边不等关系,培养学生的归纳概括能力。

③情感态度价值观目标:通过自主探究、合作交流等方式培养学生的探究精神和团队意识。

4、教学重点和难点通过以上综合分析,我确定本节课的——教学重点:理解三角形的概念,能用符号语言表示三角形,理解三角形的三边不等关系。

教学难点:对三角形三边不等关系的应用。

二、说教法基于我对研究性学习,“启发式”教学模式和新课程改革理论的认识,本节课我主要采用小组合作、诱思探究、生成体验的教学方法来完成本节课教学。

为了实现教学目标,在教学过程中,注重多媒体课件的直观展示,通过观察比较等方法,加深学生对新知识的感知和理解。

三、说学法学生是学习的主体,教师的教要紧紧围绕学生的学。

因此,在课堂教学中,我注重师生互动、学生相互交流等方式,并综合运用多媒体技术服务教学;在学生合作探究过程中,注重学生的主动评价,通过小组展示,培养学生的归纳总结能力。

与三角形有关的线段教案

与三角形有关的线段教案

与三角形有关的线段教案教案:与三角形有关的线段教学目标:1.理解什么是与三角形有关的线段。

2.掌握与三角形有关线段的定义。

3.能够应用相关概念解决问题。

教学重点:1.与三角形有关的线段的定义。

2.与三角形有关线段的性质。

教学难点:1.运用相关概念解决问题。

2.培养学生的逻辑思维能力。

教学准备:1.教师准备多边形模型和三角形模型。

2.教师准备板书工具。

教学过程:Step 1 引入教学1.教师出示多边形模型,引导学生思考:多边形是否包括三角形?2.学生回答后,教师引导学生理解:三角形是一种特殊的多边形,由三条边和三个顶点构成。

3.教师出示三角形模型,向学生介绍三角形的三个顶点,三条边以及各边的命名方法。

Step 2 概念讲解1.教师向学生介绍与三角形有关的线段的定义:与三角形有关的线段指的是与三角形的边或顶点相关的线段。

它可以是三角形的边,也可以是连接三角形的顶点所构成的线段。

2.教师运用板书工具,以图形的方式展示与三角形有关的线段的示例,并向学生解释示例图形中的线段与三角形的关系。

Step 3 线段性质讲解1.教师引导学生思考,与三角形有关的线段是否具有特殊性质?2.学生回答后,教师向学生介绍与三角形有关线段的性质:a)三角形的三边之一的一半是与该边所对的顶角的正弦中线;b)三角形的边上的中线比原边短;c)三角形的两边和夹角中线的长度之积等于剩余一边与夹角平分线的长度之积。

Step 4 练习1.教师出示练习题,让学生利用与三角形有关的线段的性质解决问题。

2.学生独立完成练习,然后互相交流答案。

Step 5 总结归纳1.教师向学生回顾与三角形有关的线段的定义和性质。

2.学生进行总结归纳,将所学内容整理为笔记。

Step 6 拓展练习1.教师出示更难的拓展练习题,让学生应用所学的知识解决问题。

2.学生独立完成拓展练习,并相互讨论答案。

Step 7 相关应用1.教师向学生介绍与三角形有关的线段在实际生活中的应用,如建筑、工程等领域。

八年级三角形的有关线段的教学设计

八年级三角形的有关线段的教学设计

八年级三角形的有关线段的教学设计篇一:八年级数学上册三角形有关的线段教案新人教版福清美佛儿学校自研互探随堂检测八年级数学导学案班级:姓名:设计者:初二数学组审核:教学目标1、知识与技能、理解三角形的表示法,分类法以及三边存在的关系,发展空间观念。

2、过程与方法:⑴经历探索三角形中三边关系的过程,认识三角形这个最简单,最基本的几何图形,提高推理能力。

⑵培养学生数学分类讨论的思想。

3、情感态度与价值观:⑴培养学生的推理能力,运用几何语言有条理的表达能力,体会三角形知识的应用价值。

⑵通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识,在独立思考的同时能够认同他人。

重点掌握三角形三边关系难点三角形三边关系的应用学习方法自学与小组合作学习相结合的方法学习过程一、自主学习(1):1.自学内容:教材第2页2.自学要求:学生理解边、角、顶点的意义而不是背其定义;让学生感受数学语言的逻辑性,严密性。

二、交流展示(1):1:三角形定义:___________________________________________________ 2:怎样用几何符号表示你所画的三角形?什么是三角形的顶点、边、角?三、自主学习(2):1.自学内容:课本3页到‘探究‘上;2.自学要求:学生会对三角形分类;明白采用几种不同的分类标准.四、交流展示(2)1. 三角形可采用几种不同的分类标准?如何分类?2.如何给你所画的这些形状各异的?五、自主学习(3):1.自学内容:课本3页探究到例题上;2.自学要求:学生理解三角形三边之间的关系,能进行简单说理.六、交流展示(3)1、三角形三边之间的关系定理:_________________________________,理论依据是__________________________.2、记住:三角形三边之间的关系定理的推论:三角形的两边之差大于第三边;3、下列长度的三条线段能否围成三角形?为什么?⑴ 2,4,7 ⑵ 6,12,6 ⑶ 7,8,134、现有两根木棒,它们的长分别为40cm和50cm,若要钉成一个三角形木架(?不计接头),则在下列四根木棒中应选取()A.10cm长B.40cm长 C.90cm长D.100cm5.已知一个三角形的两边长分别是3cm和4cm,则第三边长x的取值范围是____.?若x是奇数,则x的值是______;这样的三角形有______个;?若x?是偶数,?则x?的值是______;这样的三角形又有________个.七、自主学习(4):1.自学内容:课本3页例题;2.自学要求:让学生体会数学的严密性。

八年级数学上册-11.1与三角形有关的线段 复习教案

八年级数学上册-11.1与三角形有关的线段 复习教案

第十一章三角形11.1与三角形有关的线段【教材分析】教学目标知识技能1.进一步认识三角形的三边关系,三角形的稳定性,与三角形有关的线段;2.能熟练的运用三角形三边关系解决有关问题;3.能熟练地画出三角形的高、中线、角平分线,并能解决有关题目过程方法经历对与三角形有关的边、线段的复习,培养梳理知识的能力,学会类比、对比、整体认识,提高观察、分析、解决问题的能力.情感态度通过对两节内容的回顾与思考,让学生在学习的过程中获得成功的体验,发展学生应用数学的意识,并培养归纳、总结以及语言表达能力,增强学生学习数学的自信心.重点应用三角形的三边关系、三角形的有关线段解决有关问题.难点钝角三角形高的认识及综合应用知识解决有关问题.【教学流程】环节导学问题师生活动二次备课知识回顾1.(2016·温州)下列各组数可能是一个三角形的边长的是( )A.1,2,4B.4,5,9C.4,6,8D.5,5,112.三角形的木架不易变形的原因是 .3. 如图,在△ABC中,AD⊥BC于点D,ED=DC,∠1=∠2,则:(1)AD是△ABC的边上的高,也是△ABE的边上的高;(2)A D既是的边上的中线,又是边上的高,还是的角平分线.3题图4.锐角三角形的三条高都在,钝角三角形有条高在三角形外,直角三角形有两条高恰是它的.你能根据以上题目,回顾出本单元的知识点,完成本单元知识结构图吗?教师:出示题目,巡视了解学生完成情况,最后讲评,总结.学生:独立完成,回顾所学知识点,完成后组内交流,理解各知识点.参考答案:1.C;2.三角形的稳定性3.BC,BE;△AEC,EC,EC,△AEC.4、三角形内部,两,直角边,本单元知识结构图:综合运用例1、(2015·南通)有3cm,6cm,8cm,9cm四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A.1B.2C.3D.4例2、三角形一边长11,另一边长为5,已知第三边长是整数,求第三边的长.教师:出示题目,引导学生分析生:尝试分析,并根据分析板演出过程,教师简要讲评.答案:例1:选C.四条线段的所有组合:3,6,8和3,6,9和6,8,9和3,8,9;只有3,6,8和6,8,9和3,8,9能组成三角形.例2:解:设第三边为X,则:11+5>X >11-516 >X >6∵X为整数∴X=15,14,13,12,11,10,9,8,7.矫正补偿1.(2016·梧州)以下列各组线段的长为边,能组成三角形的是( )A.2 cm,3 cm,4 cmB.2 cm,3 cm,5 cmC.2 cm,5 cm,10 cmD.8 cm,4 cm,4 cm2.如果一个三角形的两边长分别为2和4,则第三边的长可能是( )A.2B.4C.6D.83.如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是( )A.2B.3C.4D.84.若等腰三角形的两边长为3cm和7cm,则等腰三角形的周长为 cm.5.如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是( )A.AB=2BFB.∠ACE=错误!未找到引用源。

11.1与三角形有关的线段(第2课时)教案

11.1与三角形有关的线段(第2课时)教案

11.1与三角形的关的线段(第2课时)
2.三角形的中线的概念
1、如图,教师给出一个准备好的三角形纸片,把
B,C重合对折,折痕与BC交于点D.
问题:(1)D点有什么特殊性?
(2)连接线段AD人。

把厶ABC分成的两个三角形的面积有何关系?
(3)请归纳线段AD的特点.
并用语言描述中线定义.
三角形中,连结一个顶点和它对边中的线段叫做三角形的中线
表示方法:1.AE是厶ABC的BC上的中线.
1
2.BE=EC= BC.
2
问题:你认为一个三角形有几条中线?并分别作出来,你有什么发现?结论:三条
定义:
三角形的三条中线的交点叫做三角形的重心
3.三角形的角平分线的概念
如图,教师再给出一个三角形纸片,对折,使AC与AB
所在直线重合,折痕与BC交于D.
问题:(1)通过这个操作你认为AD有什么位置特点?
(2)请给出三角形角平分线的定义.
三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段叫做三角形角的平分线
表示方法:1.AM是厶ABC的/ BAC的平分线.
1
2. / 仁/ 2= —/ BAC.
2
思考:三角形的高、中线和角平分线是代表线段还是代
通过画、折等实践操作活动理解三角形的角平分线概念,并培养学生动手操作能力,自主探索、合作交流,发现三角形的三条角平分线交于一点的规律
让学生能感知并有一种意识去动手实践,主动探究。

与三角形有关的线段教学教案

与三角形有关的线段教学教案

与三角形有关的线段教学教案这是与三角形有关的线段教学教案,是优秀的数学教案文章,供老师家长们参考学习。

与三角形有关的线段教学教案第 1 篇一、设计思路本课程的教学设计思路:激发内驱力,激发兴趣,让学生享受自由呼吸的课堂,感受三角形的特点引发思考。

感知三角形的本质属性并表达出来。

理解三角形的高和底之间的相互依赖关系。

这节课的教学内容是人教版小学数学四年级第五单元的第一节课内容,是本单元的开始,也是三角形理解的第二个学习时段。

内容包括三角形各部分的名称,特点,定义,以及高和底的含义。

三角形是平面图形中最简单、最基本的多边形。

学好这一课,为以后学习平面几何和立体几何打下基础。

数学课标解读中说:图形与几何的学习有助于学生更好地认识和理解人类的生存空间;有助于培养学生的创新精神;初步发展空间观念,学会推理;有助于学生全面、持续、和谐的发展。

所以在教学时我善于强调现实背景,联系生活经验和活动经验,经常运用观察、操作、推理想象(猜想)、作图设计等手段。

培养学生的符号意识,和应用意识。

二、教学目标1.知识与能力:通过观察、运算、测量、联想等学习活动,了解三角形的基本特征,初步形成三角形的概念,初步认识三角形的底和高,认识三角形的底和高的相互依存关系。

2.方法和途径:在认识三角形的基本特征和底与高的活动中,了解认识多边形特征的基本方法,发展我们的观察能力和比较、抽象、概括的思维能力。

3、情感与评价:认识到三角形是日常生活中的常见图形,在学习活动中进一步产生学习图形的兴趣和积极性。

4、现代教学手段:多媒体辅助教学。

三、教学重点与难点教学重点:知道三角形的基本特征,知道三角形的底和高。

教学难点:知道了底和高的对应关系,我可以画一个三角形来指定边上的高度。

四、教学准备教学准备:棍、三角、教程、多媒体课件等。

五、教学过程一、猜谜引入,激发兴趣。

对话:同学们,我们来玩猜谜游戏好吗?四条边一样长,四个角一样大。

正方形的形状是什么?没有角,像个车轮转转转,像个钟面圆又圆什么形?三个角尖尖的,三条边直直的,三角三边紧相连什么形?问题:你在生活中哪里见过三角形?出示:关于三角形的图片并欣赏。

11.1与三角形有关的线段教案

11.1与三角形有关的线段教案

教案设计课题与三角形有关线段课程类型新课学生基础基础较弱教学目标 1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法2. 理解并会应用三角形三边间的关系教学重点掌握三角形的三边关系教学难点运用三角形三边关系解决有关的问题教学步骤:一、课程导入:旧知回顾:三角形是我们熟悉的图形,观察下列图片,你能说一说三角形是怎样的图形吗?(引出课题:讨论中引出三角形的概念)二、教学过程三角形基础知识1.师生合作探究:提问:(1)观察这些三角形,说一说什么叫三角形?(2)三角形中有几条线段?有几个角?(3)你认识有什么类型的三角形?要点一、三角形的定义及分类1.定义:(1)由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(2)基本元素:三条线段,三个角记法:三角形ABC用符号表示△ABC,注意单独的△没有意义.边:三角形ABC的边AB、AC和BC,可用小写字母分别表示为c,a,b顶点:点A,B,C是三角形的顶点.角:∠A ,∠B ,∠C 叫做三角形的内角,简称三角形的角.【辩一辩】下面图形符合三角形的定义吗?要点诠释:(1)①位置关系:不在同一直线上;②联接方式:首尾顺次2. 三角形的分类(1)按角分类:要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.(2)按边分类:要点诠释:①等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;②等边三角形:三边都相等的三角形.【课堂练习】3分钟例1:如图所示:1.图中有几个三角形?用符号表示这些三角形。

2.以AB 为边的三角形有哪些?3.以E 为顶点的三角形有哪些?4.以∠D 为角的三角形有哪些?5.说出△BCD 的三个角和三个顶点所对的边?【思路点拨】在(1)问中数三角形的个数时,应按一定规律去找,这样才会不重、不漏地找出所有的三角形;在(2)问中,突破口在于由三角形定义知,除了A 、E 再找一个第三点,使这点不在AB 上,便可得到以AE 为边的三角形;(3)问的突破口是∠E 一定是以E 为一个顶点组成的三角形中.【答案与解析】解:(1)图中共有5个三角形,它们分别是△ABE,△ABC, △BEC,△BCD,△ECD.(2)以AB 为边的三角形有△ABC 、△ABE.(3)以E 为顶点的三角形有△ ABE 、△BCE 、 △CDE.(4)△ BCD 、 △DEC.⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形(5)△BCD的三个角是∠BCD、∠BDC、∠CBD.顶点B所对应的边为DC,顶点C所对应的边为BD,顶点D 所对应的边为BC.【总结升华】在数三角形的个数时一定要按照一定的顺序进行,做到不重不漏.【变式训练】5分钟要点二、三角形的三边关系1.师生合作探究:画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?(1)在同一个三角形中,任意两边之和与第三边有什么大小关系?(2)在同一个三角形中,任意两边之差与第三边有什么大小关系?(3)三角形三边有怎样的不等关系?通过动手实验同学们可以得到哪些结论?(引出课题:引出三角形三边关系)【归纳】1.定理:三角形任意两边的和大于第三边.2.推论:三角形任意两边的差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.【课堂练习】3分钟例2:例1:判断下列长度的三条线段能否拼成三角形?为什么?(1)3cm、8cm、4cm;(2)5cm、6cm、11cm;(3)5cm、6cm、10cm.【答案】(1)不能,因为3cm+4cm<8cm;(2)不能,因为5cm+6cm=11cm;(3)能,因为5cm+6cm>10cm.【解析】要构成一个三角形.必须满足任意两边之和大于第三边.在运用时习惯于检查较短的两边之和是否大于第三边.【总结升华】判断以三条线段为边能否构成三角形的简易方法是:①判断出较长的一边;②看较短的两边之和是否大于较长的一边,大于则能够成三角形,不大于则不能够成三角形.【变式训练】5分钟【课堂检测】10分钟(5题)课后作业:与三角形有关线段作业标准:1、认真完成作业2、按照训练标准进行3、利用通讯设备提前询问情况。

数学人教版八年级上册《与三角形有关的线段》教学设计

数学人教版八年级上册《与三角形有关的线段》教学设计

11.1《与三角形有关的线段》教学设计教材分析:在学本节以前,学生已经学习了线段、角以及相交线、平行线等知识,他们的空间观念得到了进一步发展。

现在学习三角形的相关知识,就有了更为充实的基础和准备。

通过学习,可以丰富和加深学生对三角形的认识,同时为学习其他图形知识打好基础。

教学目标:知识与能力:认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。

过程与方法:经历度量三角形边长的实践活动中,理解三角形三边不等的关系。

情感态度与价值观:懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。

重难点分析:教学重点:三角形三边关系的探究和归纳三角形边角关系是平面几何中的几何形态问题。

在突出重点时,主要在学生已有知识经验(两点之间线段最短)的基础上,大胆提出猜想:三角形两边之和大于第三边.利用课前准备好的小木棒,让学生动手操作,体验思考、实验和归纳的过程,加深对三边关系的理解和记忆.此外,教学中还可辅以几何画板进行动画演示,对实验过程进行直观的演示.教师在学生小组动手操作过程中进行个别的指导,在动画演示过程中进行讲解,以明确学生的认识.教学难点:三角形三边关系的应用。

三角形的三边关系不仅涉及到几何的重要内容,而且同不等式有机结合,这给学生理解三角形的三边关系带来了很大的难度.学生往往能够记住这些结论,但是在实际应用时,缺乏灵活的分析和判断能力.另通过学生对三角形三边关系的实际例子的分析和操作,实现对三边关系的判断过程的把握,从而提高利用不等关系解决实际问题的能力.教学过程一、创设情境,导入新课(多媒体图片引入)在小学,我们认识了三角形,三角形看起来简单,但在工农业生产和日常生活中却有许多用处.一起来欣赏图片(古埃及金字塔,香港中银大厦,交通标志,等等),处处都有三角形的形象。

图片欣赏完后,请同学们举例说明在日常生活中见到什么物体上有三角形?(设计意图:以生活中的实例导入,学生有熟悉感,随后提出问题,易激发学习兴趣,使学生能快速进入到学习情境中去。

《与三角形有关的线段》教学设计

《与三角形有关的线段》教学设计

《与三角形有关的线段》教学设计兴农镇中学:于海波一、教材分析本节课是人教版八年级第一学期第十一章第一课时的内容。

教材首先借助于三角形在生活中的实例来引入本章内容,学生在小学阶段对三角形已有直观认识,会求三角形的面积。

本节课是初中第一次系统学习三角形,先让学生回忆旧知,对三角形有了进一步的认识后,学习掌握三角形的三边关系,为接下来学习等腰三角形、全等三角形的相关知识打下了基础。

二、教学目标A、知识目标(1)理解三角形的有关概念,会表示三角形的三个顶点、三条边、三个角,会用符号表示三角形。

B、能力目标:(1)理解掌握三角形的三边关系定理,并会运用此定理判段三条线段能否构成三角形。

C、情感态度:(1)通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认同他人。

(2)通过对三角形的三边关系定理的探究活动,使学生初步认识数学与现实生活的密切联系。

3.教学重难点(1)重点:三角形的概念及其三边关系定理(2)难点:探究三角形的两边之和大于第三边的理由。

二、教法学法(1)教法:本节课主要采用自学辅导的教学方法,让学生理解掌握三角形的有关概念,并用猜想证明的数学方法,引导得出三角形的三边关系。

(2)学法:充分发挥学生的主体作用,让学生通过生活中的实例得出定理,激起学生学习数学的欲望,达到学习新知识的目的。

三、教学过程(一)激发兴趣,提出问题。

本节课的教学重点与难点是三角形的三边关系的探究,基于此我设计了场景,小红家到学校有三条路线,一条是走线段,一条是经过公园形成三角形,一条是经过超市和图书馆的两折线,依据两点之间,线段最短,选线段路线。

再让学生比较三角形路线与线段路线,引出了课题三角形,而且为证明三角形的任意两边之和大于第三边作了铺垫。

简洁的开场,利用学生已有的知识,提出问题引发学生深入思考,营造宽松的学习气氛,可以激发学生学习新知识的兴趣,架起了生活和学习的桥梁。

三角形有关的线段教案

三角形有关的线段教案

三角形有关的线段教案教案标题:探索三角形相关线段教学目标:1. 了解三角形的基本概念和性质;2. 掌握计算三角形边长和角度的方法;3. 理解并应用三角形的周长和面积公式;4. 探索三角形内外切圆的性质。

教学准备:1. 教师准备:投影仪、计算器、白板、彩色粉笔、几何工具(直尺、量角器等);2. 学生准备:教材、练习册、笔、尺、计算器。

教学过程:Step 1:引入新知1. 教师通过投影仪展示一幅三角形的图像,引导学生观察并讨论三角形的特点。

2. 教师提问:“你们知道三角形有哪些基本要素?”学生回答后,教师总结并解释三角形的定义、顶点、边和角的概念。

Step 2:探索三角形的边长和角度1. 教师通过投影仪展示不同类型的三角形,引导学生观察并讨论它们的边长和角度特点。

2. 教师分别介绍计算等腰、直角和一般三角形边长的方法,并通过示例演示计算过程。

3. 学生进行练习,计算给定三角形的边长和角度。

Step 3:应用三角形的周长和面积公式1. 教师介绍三角形的周长和面积公式,并解释其推导过程。

2. 教师通过示例演示如何应用周长和面积公式计算三角形的周长和面积。

3. 学生进行练习,计算给定三角形的周长和面积。

Step 4:探索三角形内外切圆的性质1. 教师通过投影仪展示三角形内外切圆的图像,引导学生观察并讨论其性质。

2. 教师引导学生发现三角形内切圆的圆心与三角形的内角平分线相交于一点,并解释其原理。

3. 教师引导学生发现三角形外切圆的圆心与三角形的外角平分线相交于一点,并解释其原理。

Step 5:综合应用1. 学生分组进行小组讨论,设计一个实际问题,要求应用所学知识解决。

2. 每个小组选择一位代表,向全班展示并解答问题。

Step 6:总结与评价1. 教师与学生共同总结本节课所学的三角形相关知识点,并解答学生提出的疑问。

2. 学生完成课堂反馈练习,检验对所学内容的理解程度。

拓展活动:1. 学生可通过实地观察,寻找日常生活中存在的三角形,并记录下来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与三角形有关的线段教案
以下是查字典数学网为您推荐的与三角形有关的线段教案,希望本篇文章对您学习有所帮助。

与三角形有关的线段
7.1 与三角形有关的线段
第一课时 7.1-1 三角形的边
重点:三角形的三边关系
难点:三角形的三边关系
一、阅读教材P63-P65的内容
二、独立思考:
1、_________________________________________叫三角形.
2、如图的三角形记作___________,它的三条边是
_____________________,三个顶点分别是
_______________,三个内角是______________________。

3、如图,共有_________个三角形,其中以AC为边的三角形是____________________;以B为其中一个内角的三角形有_____________________________________________。

4、下列长度的三条线段能组成三角形的是( )
A、2,2,4
B、3,4,1
C、5,6,12
D、5,5,8
5、已知一个三角形的两边的边长分别是6和4,第三边的长
可能是( )
A、2
B、1
C、4或2
D、4或6
6、三角形按边分为三类:
____________,______________,________________;按角分成三类:
________________,__________________,_______________ __。

7、一位同学用三根木棒拼成下图中的图形,其中符合三角形概念的是( )
:找出图中所有的三角形,并把它们表示出来。

已知一个等腰三角形的两边长分别为8厘米和4厘米,求这个等腰三角形的周长。

ABC的三边长分别为a,b,c,试化简:
(1)|c-a-b|-|b-a-c| (2)|a+b-c|-|b-a-c|
一、课堂练习:
1、教材P65练习第1、2题
2、一个三角形的两边长分别是3厘米,、4厘米,则第三边a的取值范围是____________。

3、已知三角形的两边长分别是6厘米和7厘米,第三边长是偶数,则第三边长可能是___________________。

4、如图,找出图中所有的三角形。

二、作业布置
教材P69第1、2、6题;
教材P70第7题,
三、自我检测
(一)选择题
1、ABC的三边长为a,b,c,且ac,若b=6,c=2,则a的取值范围是( )
A、4
2、如图,为估计池塘岸边A,B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离不可能是( )
A、20米
B、15米
C、10米
D、5米
3、已知三角形的两边长分别为3厘米和8厘米,则此三角形的第三边的长可能是( )
A、4厘米
B、5厘米
C、6厘米
D、13厘米
4、已知一个等腰三角形的底边长为5,这个等腰三角形的腰长为x,则x的取值范围是( )
A、0
5、如果线段a、b、c能组成三角形,那么它们的长度比可能是( )
A、1:2:4
B、1:3:4
C、3:4:7
D、2:3:4
(二)填空题
6、一个木工师傅现有两根木条,它们的长分别为50厘米和70厘米,他要选择第三根木条,将它们钉成一个三角形木架,设第三根木条的长为x厘米,则x的取值范围是________
7、如图,在ABC中,AB的=所对的角是__________,BAC所对的边是_______,AC在ABC中是_________的对边。

8、两边长分别为3和10与另一边组成的边长都是整数的三角形共有__________个。

(三)解答题
9、如果一个三角形的三边长度之比为2:3:4,周长为36厘米,求三边的长。

10、等腰三角形的周长为20厘米。

(1)若已知腰长是底长的2倍,求各边的长;
(2)若已知一边长为6厘米,求其它两边的长。

11、已知一个等腰三角形的三边长分别是a,3a-1,4a-2,试求其周长。

(提示:要分三种情况讨论)
12、如图,P为ABC内任意一点,试说明PA+PB+PC (AB+AC+BC)
13、某木材市场上木棒规格和价格如下表:
规格 1米 2米 3米 4米 5米 6米
价格(元/根) 10 15 20 25 30 35
小明的爷爷要做一个三角形的木架养鱼用,现有两根长度为3米和5米的木棒,还需要到该木材市场上购买一根。

(1)有几种规格木棒可供小明的爷爷选择?
(2)选择哪一种规格的木棒最省钱?
第二、三课时 7.1-2 三角形高、中线和角平分线
7.1-3 三角形的稳定性
1、掌握三角形的三条重要线段(角平分线、中线、高)的有关概念、表示、画法及应用。

2、了解三角形的稳定性
重点:三角形的高、中线、角平分线
难点:三角形的高、中线、角平分线
一、阅读教材P65-P68的内容
二、独立思考:
1、如图,AD是ABC的中线,AE是BAC的平分线,则
BD=_________= ______,BAE=________= __________。

2、三角形具有___________性,而四边形没有_________性,要使一个六边形木架(如图)不变形,至少要钉上__________根木条。

3、关于三角形的高线、中线、角平分线,下列说法中正确的是( )
A、都是射线
B、都是直线
C、都是线段
D、只有高线是射线
4、如图,BD是ABC的角平分线,DE//BC,DBC=20,则
AED=__________。

5、如图所示,AM是ABC的中线,若ABM的面积是20平方厘
米,求ACM的面积。

画出下列三角形中每个内角的角平分线,与同学讨论一下,你发现了什么规律?
规律:
___________________________________________________ _________________。

画出下列三角形中每条边上的中线,看看你发现什么规律? 规律:
___________________________________________________ __________________。

画出下列三角形中每条边上的高,与同学们讨论一下,发现了什么规律?
规律:
___________________________________________________ _________________.
一、课堂练习:
1、教材P66练习第1、2题。

2、教材P68练习题
3、在RtABC中,CDAB于D,若AD=4,CD=6,BD=9,求:
(1)ABC的面积。

(2)SADC :SBDC以及AD:BD,你发现了什么?
二、作业布置
教材P69第3、4、5题
教材P70第8题
三、自我检测
(一)选择题
1、下列图形中,具有稳定性的是( )
2、如果三角形本条高的交点是三角形的一个顶点,那么这个三角形是( )
A、锐角三角形
B、钝角三角形
C、直角三角形
D、以上都不正确
3、如图,若2,4,下列结论错误的是( )
A、AD是ABC的角平分线
B、CE是AC的角平分线
C、3= ACB
D、CE是ABC的角平分线
4、如图,ADBC,垂足为D,则图中以A灰高的三角形共有( )
A、4个
B、5个
C、3个
D、10个
5、如图,在ABC中,D、E分别是BC、AD的中点,SABC=4
平方厘米,则SABE等于( )平方厘米
A、2
B、1
C、0.5
D、0.25
(二)解答题
6、如图,写出以AE为高的三角形。

7、ABC中,AB=AC,AC边上的中线BD把三角形的周长分成24cm和30cm的两部分,求三角形三边之长。

8、农户张大爷家要把一块三角形的土地平均分成4份,种
植不同的蔬菜,并比较他们的产量,应如何分?试画出三种不同的分法。

9、在ABC中,AD是A的平分线,DE//AC交AB于E,EF//AD 交BC于F,试问,EF是BDE的角平分线吗?说说你的理由。

10、如图,在ABC中有一点P,当P、A、B、C没有任何三点在同一直线上时,在三角形内可构成三个不重叠的三角形;当ABC内的点的个数增加为2个时,在三角形内可构成五个不重叠的三角形;当ABC内的点的个数增加为3个时,在三角形内可构成七个不重叠的三角形。

(1)若其它条件不变,当ABC内的点的个数增加为88个时,在三角形内可构成多少个不重叠的小三角形?
(2)若其它条件不变,当ABC内的点的个数增加为n个时,在三角形内可构成301个不重叠的三角形,试求n的值。

相关文档
最新文档