《整式的加减》整式的概念及整式的加减

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,则去年的产量为________元;
(3)一个长方体包装盒的长和宽都是a cm,高是h cm,则该包装盒的体积为________cm3
(4)数n的相反数为________;
(5)某种商品每袋4.8元,在一个月内的销售量是m袋,则这个月销售该商品的收入为________
单独的一个字母或数也叫做单项式,例: 、 .
单项式的次数:是指单项式中所有字母的指数和.例如:单项式 ,它的指数为 ,是四次单项式.单独的一个数(零除外),它们的次数规定为零,叫做零次单项式.
单项式的系数:单项式中的数字因数叫做单项数的系数.例如:我们把 叫做单项式 的系数.
同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项.
例4:若 ,则 的值为1.
解: = = =1
课堂练习:
(1)已知代数式 ,当 时,它的值为-7,则当 时,它的值为.
(2)已知当x=3时,代数式 的值是5,则当x=-3时,代数式 的值是.
(3)如果代数式x+2y的值是3,则代数式2x+4y+5的值是.
(4)已知b-a=-1,则 的值是.
(5)已知代数式 的值是3,则 的值是, 的值是.
(9)已知 ,求 的值.




学生签名: 家长签名:
(9)一条河的水流速度是2.5 km/h,船在静水中的速度是v km/h,则船在这条河中顺水行驶的速度为________km/h,逆水行驶的速度为________km/h;
(10)长方形的长和宽分别是a和b,则长方形的周长为________,长方形的面积为________;
(11)梯形的上底和下底分别是a和b,高为h,则梯形的面积为________;
(4)一个多项式与 -2 +1的和是3 -2,则原多项式为_________.
(5)从一个多项式中减去 ,由于粗心误抄为加上这个式子,得到的答案是 ,则正确答案是__________.
(6)一个两位数,十位上的数字是x,个位上的数字是y,如果把十位上的数与个位上的数对调,所得的两位数用x和y表示是().
∴原式中次数为2+3=5,系数为
例2:多项式1-x²+xy-y²-xy²的次数是3.
解:多项式的项分别是1,-x²,xy,-y²,-xy²
项的次数分别是0,2,2,2,3(注:次数为0的项我们也称为常数项)
多项式的次数取各项中次数的最大值,即3次
课堂练习:
(1)单项式: 的系数是,次数是.
(2)单项式 的系数是,次数是.
(12)棱长为a cm的正方体的表面积为________cm2,体积为_______cm3;
(13)长方形绿地的长和宽分别是a m和b m,如果长增加x m,则新增加的绿地面积为____m2;
(14)某种商品原价每件b元,第一次降价打八折,第二次降价每件又减10元,则第一次降价后的售价为________,第二次降价后的售价为________;
(11)多项式 的次数为5,则x=______
(12)多项式 是关于x的二次二项式,则m=__,n=__.
知识点三:整式的代值计算
例3:已知当x=-2时,代数式 的值是0,则当x=2时,代数式 的值是-8.
解:把x=-2代入代数式有-(-2)²+a×(-2)-(-2)=0,解得a=-1
求得代数式为 ,代入求值得﹣8
(3)单项式 的系数是,次数是.
(4)单项式 的系数是,次数是.
(5)单项式 的系数是,次数是.
(6)单项式 的系数是,次数是.
(7)多项式 的次数是.
(8)多项式 的次数是,项数是,常数项为.
(9)当a=______时,整式x2+a-1是单项式.
(10)多项式 是六次四项式,单项式 与该多项式的次数相同,则m=__,n=__.
(15)甲地的海拔高度是h m,乙地比甲地高20 m,丙地比甲地低30 m,则乙地的海拔高度为________m,丙地的海波高度为________m,乙地比丙地高________m.
考点二:单项式与多项式的系数与次数
例1:(1)单项式 的系数是3π,次数是2.
(2) 的次数,系数是______.
解:单项式的次数是未知数的次数之和,
学生姓名
学生年级
七年级
学校
上课时间
辅导老师
科目
七年级上数学
教学重点
单项式与多项式的系数与次数;整式的代值计算;整式的加减
教学目标
掌握单项式与多项式的系数与次数分析;开启代数思维
开场:1.行礼;2.晨读;3.检查作业;4.填写表格




1.单项式:像 , , , , ,……这些代数式中,都是数字与字母的积,这样的代数式称为单项式.也就是说单项式中不存在数字与字母或字母与字母的加、减、除关系,特别的单项式的分母中不含未知数.
(12) ,其中 , .
(13) ,其中 .
(14) ,其中 .
(15) ,其中
【提升训练】
(1)若代数式 与代数式 是同类项,则 的值是_________.
(2)已知 和- 是同类项,则 的值是_________.
(3)一个多项式加上x2y-3xy2得2x2y-xy2,则原多项式是_________.
按 降幂排列为____________;按 升幂排列为____________.
知识点五:整式的加减——合并同类项
例5:
解:原式= =
评析:原式中 和 含有相同的字母,且字母的指数相同的项称为同类项,整式加减的过程就是合并同类项
课堂练习:
(1)如果 与 是同类项,则 =________;
(2)如果 与 是同类项,则 =________;
添括号法则:添括号时,括号前面是“+”号时,括号里的各项都不变号;
括号前面是“-”号时,括号里的各项都改变符号。
例6:
解:原式=
例7:
解:原式=
例8:
解:原式=
例9:
解:原式=
课堂练习:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8) -[ ( - )+4 ]-
(9)
(10)
先化简,然后代值求解
(11) ,其中
(6)有两片棉田,一片有m公顷,平均每公顷产棉花a kg;另一片有n公顷,平均每公顷产棉花b kg,则这两片棉田上棉花的总产量为________kg;
(7)在一个大的正方形铁皮中挖去一个小正方形铁皮,大正方形的边长是a cm,小正方形的边长是b cm,则剩余部分的面积为________cm2;
(8)圆柱体的底面半径为r,高为h,则圆柱体的体积为_______;
(3)如果 与 是同类项,则 =________;
(4)如果 与百度文库是同类项,则 =________, =________;
(5)
(6)7-3x-4x2+4x-8x2-15
(7)
知识点六:整式的加减——去括号及添括号
去括号法则:去括号时,括号前面是“+”号时,括号里的各项都不变号;
括号前面是“-”号时,括号里的各项都改变符号。
2.多项式:几个单项式的和叫做多项式.例如: 是多项式.
多项式的项:其中每个单项式都是该多项式的一个项.多项式中的各项包括它前面的符号.多项式中不含字母的项叫做常数项.
多项数的次数:多项式里,次数最高项的次数就是这个多项式的次数.
3.整式:单项式和多项式统称为整式.




知识点一:列式表示
(1)苹果原价p元,按8折优惠出售,则现价为________元;
A、yx B、y+x C、10y+x D、10x+y
(7)不改变 的值,把二次项放在前面有“+”号的括号里,一次项放在前面有“-”号的括号里,下列各式正确的是().
A. B.
C. D.
(8)已知 , , .问:
①当 、 取不同的数值时, 的值是否发生变化?并说明理由.
② 的取值是正数还是负数?若是正数,求出最小值;若是负数,求出最大值.
(6)已知 ( , , , , , , 均为常数),试求:
① 的值;
② 的值;
③ 的值;
④ 的值.
知识点四:升幂排列和降幂排列
(1)把多项式 按 升幂排列排列为____________;
(2)把多项式 重新排列:
按 升幂排列为____________;按 降幂排列为____________;
(3)把多项式 重新排列:
相关文档
最新文档