函数的表示法1

合集下载

必修一2.1.2函数的表示法1(换元法、待定系数法、方程组法、配凑法)

必修一2.1.2函数的表示法1(换元法、待定系数法、方程组法、配凑法)

1
列表法
图像法
可以直观地表示函数 的局部变化规律,进 而可以预测它的整体 趋势 有些函数的图像难以 精确作出
解析法
一是简明、全面地概括了变 量间的关系;二是可以通过 解析式求任意一个函数值。 三是能便利研究函数性质。 不够形象、直观, 一些实际问题难以找到它的 解析式
优 不必通过计算就能 点 知道两个变量之间 的对应关系,比较 直观 缺 只能表示有限个元 点 素间的函数关系
1.如何检验一个图形是否是一个函数的图像?写出你的 检验法则。下图中的四个图形都是函数图像吗?哪些是,哪 些不是,为什么?
×
2.已知函数f(x)的图象如图所示,则此函 [- 3,3 ] [- 2,2 ] 数的定义域是 ,值域是 .
【解析】由图象可看出 -3≤x≤3,-2≤y≤2
例 1 作函数 y=
2、图像法
人的心脏跳动强度是时间的函数。医学上常用心电图,就是利 用仪器记录心脏跳动的强度(函数值)随时间变化的曲线图。
定义域? 值域?
像这样,用图像把两个变量间的函数关系表示出来的方法,
称为图像法。
图像法的优点:能形象直观的表示出函数的局部变化规律;可从图 中读出 。 图像法的缺点:只能近似求出自变量所对应的函数值,而且有时误 差较大。
0:00 4:00 8:00 12:00 16:00 20:00 24:00
时刻 温度/(OC)
-2
-5
4
9
8.5
3.5
-1
像这样,用表格的形式表示两个变量之间函数关系的方法, 称为列表法。
列表法的优点:不必通过计算就能知道两个变量之间的 对应关系,比较直观; 。 列表法的缺点:它只能表示有限个元素间的函数关系。

1【课件(人教版)】第1课时 函数的表示法

1【课件(人教版)】第1课时 函数的表示法

法二:(换元法) 令 x+1=t(t≥1),则 x=(t-1)2(t≥1), 所以 f(t)=(t-1)2+2 (t-1)2=t2-1(t≥1). 所以 f(x)=x2-1(x≥1). (3)f(x)+2f1x=x,令 x=1x, 得 f1x+2f(x)=1x.
于是得到关于 f(x)与 f1x的方程组
(3)消元法(或解方程组法):在已知式子中,含有关于两个不同变量的函数, 而这两个变量有着某种关系,这时就要依据两个变量的关系,建立一个新的 关于这两个变量的式子,由两个式子建立方程组,通过解方程组消去一个变 量,得到目标变量的解析式,这种方法叫做消元法(或解方程组法).
1.(2020·辽源检测)设函数 f11- +xx=x,则 f(x)的表达式为
解析:选 A.法一:令 2x+1=t,则 x=t-2 1.
所以 f(t)=6×t-2 1+5=3t+2,
所以 f(x)=3x+2.
法二:因为 f(2x+1)=3(2x+1)+2,
所以 f(x)=3x+2.
()
3.已知函数 f(x)=x-mx ,且此函数的图象过点(5,4),则实数 m 的值为 ________. 解析:因为函数 f(x)=x-mx 的图象过点(5,4), 所以 4=5-m5 ,解得 m=5. 答案:5
5.已知 f(x)是二次函数,且满足 f(0)=1,f(x+1)-f(x)=2x,求 f(x). 解:因为 f(x)是二次函数,设 f(x)=ax2+bx+c(a≠0), 由 f(0)=1,得 c=1. 由 f(x+1)-f(x)=2x, 得 a(x+1)2+b(x+1)+1-ax2-bx-1=2x.
4.下表表示函数 y=f(x),则 f(x)>x 的整数解的集合是________.

函数的表示方法ppt

函数的表示方法ppt
例如,在物理学中,通过绘制物体的运动轨迹图,可以直观地了解物体的运动规律;在工程中,通过绘 制电路图,可以直观地了解电路的工作原理和连接方式。
03 表格法
定义
01
表格法是一种通过表格的形式来表示函数的方法。
02
它通过列出自变量和因变量的对应关系来描述函数。
03
表格中的每一行表示自变量的一种取值,每一列表 示因变量对应的取值。
THANKS FOR WATCHING
感谢您的观看
举例
例如,函数 (f(x) = x^2 + 2x + 1) 可以 表示为如下表格
| --- | --- |
| x | f(x) |
举例
| -2 | 1 |
| -1 | 0 |
|0|1|
举例
|1|4|
|2|9|
VS
应用场景
01
表格法适用于表示简单函数或离散函数的值。
02
在实际应用中,表格法常用于描述一些具有离散性质
举例
例如,对于函数 (f(x) = x^2),其图象是一个开口向上的抛物线, 位于x轴上方。
当x的值从负无穷增大到正无穷时,y的值也随之增大,表示 函数随着x的增大而增大。
应用场景
图象法在数学、物理、工程等多个领域都有广泛的应用。
在解决实际问题时,图象法可以帮助我们直观地理解函数的性质和变化规律,从而更好地解决相关问题。
应用场景
• 解析法适用于需要精确描述函数关系的情况,如科 学计算、工程设计和数学研究等领域。由于解析法 具有精确性和可操作性,因此在实际应用中得到了 广泛的应用。
02 图象法
定义
函数图象法是一种通过绘制函数的图 形来表示函数的方法。

1.2.2 函数的表示法 第一课时 课件(人教A版必修1)

1.2.2 函数的表示法 第一课时 课件(人教A版必修1)
【例4】 已知f(x2+2)=x4+4x2,求f(x)的解析式. 错解:∵f(x2+2)=x4+4x2=(x2+2)2-4, 设t=x2+2,则f(t)=t2-4,∴f(x)=x2-4. 错因分析:本题错解的原因是忽略了函数f(x)的定 义域.上面的解法,似乎是无懈可击,然而从其结 论,即f(x)=x2-4来看,并未注明f(x)的定义域,那么 按一般理解,就应认为其定义域是全体实数.但是f(x) =x2-4的定义域不是全体实数.
图象法
课前自主学习
课堂讲练互动
课后智能提升
典例剖析
题型一 函数的表示法
【例 1】 已知完成某项任务的时间 t 与参加完成 b 此项任务的人数 x 之间适合关系式 t=ax+ ,当 x= x 2 时,t=100;当 x=14 时,t=28,且参加此项任务 的人数不能超过 20 人.
课前自主学习
课堂讲练互动
1 1 解析:令 =t,则 x= ,且 t≠0, x t 1 t ∴f(t)= = (t+1≠0), 1 t+1 1+ t x ∴f(x)= (x≠0 且 x≠-1). x+1
x 答案: (x≠0 且 x≠-1) x+1
课前自主学习
课堂讲练互动
课后智能提升
4.如图,函数 f(x)的图象是曲 线 OAB,其中点 O,A,B 的坐标 1 分别为(0,0),(1,2),(3,1),则 f f3 的值等于________.
课前自主学习
课堂讲练互动
课后智能提升
正解:∵f(x2+2)=x4+4x2=(x2+2)2-4, 令t=x2+2(t≥2),则f(t)=t2-4(t≥2), ∴f(x)=x2-4(x≥2). 纠错心得:采用换元法求函数的解析式时,一 定要注意换元后的自变量的取值范围.如本题中令t =x2+2后,则t≥2.

函数的表示方法

函数的表示方法

函数的表示方法★知识梳理一、函数的三种表示法:图象法、列表法、解析法1.图象法:就是用函数图象表示两个变量之间的关系; 2.列表法:就是列出表格来表示两个变量的函数关系; 3.解析法:就是把两个变量的函数关系,用等式来表示。

二、分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。

★重、难点突破重点:掌握函数的三种表示法-----图象法、列表法、解析法,分段函数的概念 难点:分段函数的概念,求函数的解析式重难点:掌握求函数的解析式的一般常用方法: (1)若已知函数的类型(如一次函数、二次函数),则用待定系数法; (2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法; 问题1.已知二次函数)(x f 满足564)12(2+-=+x x x f ,求)(x f 方法一:换元法令)(12R t t x ∈=+,则21-=t x ,从而)(955216)21(4)(22R t t t t t t f ∈+-=+-⋅--= 所以)(95)(2R x x x x f ∈+-= 方法二:配凑法因为9)12(5)12(410)12(564)12(222++-+=+-+==+-=+x x x x x x x f 所以)(95)(2R x x x x f ∈+-= 方法三:待定系数法因为)(x f 是二次函数,故可设c bx ax x f ++=2)(,从而由564)12(2+-=+x x x f 可求出951=-==c b a 、、,所以)(95)(2R x x x x f ∈+-=(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f 问题2:已知函数)(x f 满足x xf x f 3)1(2)(=+,求)(x f 因为 x xf x f 3)1(2)(=+① 以x 1代x 得 xx f x f 13)(2)1(⋅=+②由①②联立消去)1(x f 得)0(2)(≠-=x x xx f ★热点考点题型探析考点1:用图像法表示函数[例1] (09年广东南海中学)一水池有2个进水口, 1个出水口,一个口的进、出水的速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.给出以下3个论断:进水量 出水量 蓄水量(1)0点到3点只进水不出水;(2)3点到4点不进水只出水;(3)4点到6点不进水不出水.则一定不正确...的论断是 (把你认为是符合题意的论断序号都填上) . [解题思路]根据题意和所给出的图象,对三个论断进行确认即可。

新教材人教版高中数学必修1 第三章 3.1.2 函数的表示法(一)

新教材人教版高中数学必修1 第三章  3.1.2 函数的表示法(一)
对应关系f : 数轴上的点与它所代表的实数对应; (2)集合A {P | P是平面直角坐标系中的点},
集合B { x, y | x R, y R}
对应关系f : 平面直角坐标系中的点与它的坐标对应; (3)集合A={x|x是三角形},集合B={x|x是圆} 对应关系f : 每一个三角形都对应它的内切圆; (4)集合A {x | x是新华中学的班级}, 集合B {x | x是新华中学的学生}, 对应关系f : 每一个班级都对应班里的学生.
f’:平面直角坐标系内的点跟它的坐标对应
f’ : E F
➢映射概念
非空集合、唯一确定的对应关系、任意x、唯一确定的y
1、下列对应中,能构成映射的有(

A
B
a1
b1
a2
b2
a3
b3
a4
b4
(1)
A
B
a1
b1 b2
a2
b3 b4
(4)
A
B
a1
b1
a2
b2
a3
b3
a4
b4
(2)
A
B
a1
b1
a2
b2
(5)
(3) f ( x) 2x2 3x 5
[0, )
(, 2) U(2, ) [ 31 , )
8
一、复习回顾
实例1:炮弹距地面的高度h(单位:m)随时间t(单位:s)
变化的规律是 : h=130t-5t2
解析法
实例2:南极上空臭氧空洞的面积从1979~2001年的变
化情况:
图象法
实例3:
列表法
二、基础知识讲解
A
B
a1
b1
a2

函数的表示法_课件1

函数的表示法_课件1

0≤x<3之间的一段弧,如图(2)所示.
(3)y=|x-1|=
x-1,x≥1, 1-x,0<x<1,
其图象是一条折线,如图(3)所
示.
(4)此函数的图象由两部分组成,当0<x<1时,为双曲线y=
1 x
的一段,当x≥1时,是直线y=x的一部分,如图(4)所示.
点评:(1)函数的图象不一定是一条或几条无限长的平滑曲线, 也可以是一些点、一些线段、一段曲线等.
∴f(x)=x2-x+1.
点评:求函数的解析式的常用方法有: (1)代入法.如已知 f(x)=x2-1,求 f(x+x2)时,有 f(x+x2)=(x2 +x)2-1. (2)待定系数法.已知 f(x)的函数类型,要求 f(x)的解析式时,可 根据类型设其解析式,确定其系数即可.
(3)拼凑法.已知 f[g(x)]的解析式,要求 f(x)时,可从 f[g(x)]的解 析式中拼凑出“g(x)”,即用 g(x)来表示,再将解析式的两边的 g(x)用 x 代替即可.
中的关键词语“任何”、“都有”、“唯一”等,并能正确地理解
它们.
►跟踪训练 4.(1)在如图所示的对应中是A到B的映射的是( )
A.(2) B.(3) C.(3)(4) D.(4) (2)集合A={a,b},B={-1,0,1},从A到B的映射f:A→B满 足f(a)+f(b)=0,那么这样的映射f:A→B的个数是( ) A.2个 B.3个 C.5个 D.8个
答案:(1)C (2)B
题型3 实际问题中的函数问题
例3 国内投寄信函(外埠),假设每封信函不超过20 g付邮资 120分,超过20 g而不超过40 g付邮资240分,依此类推,每封x g(0 <x≤100)的信函应付邮资为y(单位:分),写出y=f(x)的表达式.

1函数的表示法3种表示法和分段函数

1函数的表示法3种表示法和分段函数

此五物之间,岂不为六一乎?”写作背景:宋仁宗庆历五年(1045年),参知政事范仲淹等人遭谗离职,欧阳修上书替他们分辩,被贬到滁州做了两年知州。到任以后,他内心抑郁,但还能发挥“宽简而不扰”的作风,取得了某些政绩。《醉翁亭记》就是在这个时期写就的。目标导学二:朗读文章,通文
会员免费下载 顺字1.初读文章,结合工具书梳理文章字词。2.朗读文章,划分文章节奏,标出节奏划分有疑难的语句。节奏划分示例
三种表示方法举例:
(1).解析法: y kx (k 0) , h 1 gt2
2
(2).列表法:
国内生产总值(单位:亿元)
年份
1990
1991
1992 1993
生产总值 18598.4 21662.5 26651.9 34560.5
(3).图象法:
我国人口出生率变化曲线Fra bibliotek例2.下表是某校高一(1)班三位同学在高一学年度几次 数学测试的成绩及班级平均分表:
(1)求f{f[f(-2)]} ;
(2)当f (x)=-7时,求x ;
解 (1) f{f[f(-2)]} = f{f[-1]}
= f{1} =0 (2)若x<-1 , 2x+3 <1,与
f (x)=-7相符,由
2x+3 =-7得x=-5
易知其他二段均不符合f (x)=-7 。
故 x=-5
思考
x+2, (x≤-1)
120
100
80 王伟
60
张城
赵磊
班平均分 40
(2)请你对这三位同学在高一学年度
20 的数学学习情况做一个分析,
0 第一次 第二次 第三次 第四次 第五次 第六次
例3 . 画出函数y | x | 的图象.

高一数学函数的常用表示方法

高一数学函数的常用表示方法

2.1.2函数表示法 课件
例5 画出函数y=|x|的图象.
解:由绝对值的概念,我们有
y=
图象如:
x, x≥0, -x, x<0.
y
5 4 3 2 1
-3 -2 -1 0 1 2 3
x
例6.某市空调公共汽车的票价按下列规则制定: (1)5公里以内(含5公里),票价2元; (2)5公里以上,每增加5公里,票价增加1元 (不足5公里的按5公里计算)。
;单创:/roll/2019-10-14/doc-iicezuev2144522.shtml
;

于是,带她去看,说明病史后,老中医什么都没说,只是揭开自己的白大褂,她看见,他只有一条腿。 (17)他说,人活着,不是靠双腿,靠的是一颗完整的心,我只有一条腿,活得好好的,你还比我多半条腿呢,怕什么? (18)从那以后,她常常去老中医那里,不是看病,而是疗心。 (19)再后来,父母给她装了假肢,搬了家,学了钢琴,当了钢琴老师,成了现在的自己。 (20)说完,她淡淡地笑,而我,似乎看见另外一个不一样的她,在我眼前,诉说别人的故事。 (21)是啊,如果不是偶然看见,在我心里,在我眼里,她依旧是那个只会撒娇、娇弱漂亮的公主,而此 刻,我似乎看见,那些她曾经受过的伤害和遭遇,凝聚成一股钢铁般的力量,让她坚强。 (22)再后来,她睡了。 (23)我走在走廊的尽头,心绪难平。 (24)我看见天边有一颗星星,异常耀眼,它像天空的眼睛,注视着大地,带给深沉无助的黑夜,一方光亮,也给黑夜里迷路的人们, 一抹希望。 (25)慢慢地,我看见天边泛着鱼肚白,黎明来了。 (26)那一刻,内心的迷茫,似乎慢慢退却,一点点被一束光照亮,所有难以启齿的磨难和曾经以为的绝望,慢慢变成了希冀。 (27)是的,繁华尽头有悲凉,尘埃深处是繁花。 (2017年5月9日) 16.

必修1课件1.2.2函数的表示法

必修1课件1.2.2函数的表示法

笔记本数x 钱数y
1 5
2 10
3 15
4 20
5 25
例2.下表是某校高一(1)班三名同学在高一学年 度六次数学测试的成绩及班级平均分表。
第一次 第二次 第三次 第四次 第五次 第六次
王 伟 张 城 赵 磊
班平分
98 90 68 88.2
87 76 65 78.3
91 88 73 85.4
92 75 72 80.3
观察得出映射(1)有两个特点: ①集合A中不同的元素在B中有不同的象; ②集合B中的元素都有原象;
一一映射:
设A、B是两个集合, f : A B 是集合A到集合B 的映射,如果在这个映射下,对于集合A中不同的元 素在B中有不同的象,而且集合B中的每一个元素都 有原象,这个映射叫做A到B上的 一一映射。
解:这个函数的定义域是数集{1,2,3,4,5}
用解析法可将函数y=f(x)表示为
y 5 x, x 1, 2, 3,4,5
用列表法可将函数表示为
笔记本数x 钱数y
1 5
2 10
3 15
4 20
5 25
用图象法可将函数表示为下图
y 25
20 . .
1 2 3 4

5
x
上例中(1)是A到B上的一一映射,(2)是A到B的 映射,但不是一一映射。
一一映射: 设A、B是两个集合, f : A B 是集合A到集合B 的映射,如果在这个映射下,对于集合A中不同的元 素在B中有不同的象,而且集合B中的每一个元素都 有原象,这个映射叫做A到B上的 一一映射。 注意:
①一一映射中集合A中不同的元素在B中有不同的象, 集合B中的元素都有原象;
例6 .判断下列对应是否映射?有没有对应法则?

函数的表示法

函数的表示法
y 5 4 3 2 1 -3 -2 -1 0 1 2 3 x
类比二次函数y= 类比二次函数 =x2 及二次函数y=( - 及二次函数 =(x-2 )2+1你 =( 你 有何感想? 有何感想?
问题探究
2x+3, x<- <-1, <- x2, -1≤x<1, < 4. 已知函数 (x)= 已知函数f x-1, - x≥1 .
(1)求f{f[f(-2)]} ;(复合函数) 求 - (复合函数) (2) 当f (x)=-7时,求x ; - 时求
欲改造营口开发区世纪广场中 心的圆形喷水池, 心的圆形喷水池,已知原喷水池直径为 20m, 20m,喷水池的周边靠近水面的位置安装 一圈喷水头,喷出的水柱在离池中心4m 一圈喷水头,喷出的水柱在离池中心4m 处达到最高,高度为6m 6m, 处达到最高,高度为6m,现设想在喷水 池的中心设计一个装饰物, 池的中心设计一个装饰物,使各方面喷 来的水柱在此处汇合, 来的水柱在此处汇合,这个装饰物的高 度应当如何设计? 度应当如何设计?
函数的表示法
函数表示法有几种?
函数表示法 解析法 图像法 列表法
一、函数的三种表示方法: 函数的三种表示方法:
定义:是把两个变量的函数关系,用一个等式来表示, 定义:是把两个变量的函数关系,用一个等式来表示, 1、解析法 简称解析式。 简称解析式。 优点:函数关系清楚, 优点:函数关系清楚,容易从自变量的值求出其对应 的函数值,便于用解析式来研究函数的性质。 的函数值,便于用解析式来研究函数的性质。 2、列表法 定义:是列出表格来表示两个变量的函数关系。 定义:是列出表格来表示两个变量的函数关系。 优点: 优点:不必通过计算就知道当自变量取某些值时函 数的对应值。 数的对应值。 3、图象法 定义:是用函数图象来表示两个变量的函数关系。 定义:是用函数图象来表示两个变量的函数关系。 优点:能直观形象地表示出函数的变化情况。 优点:能直观形象地表示出函数的变化情况。

函数表示方法

函数表示方法

函数表示方法函数是数学中非常重要的概念,它在数学、物理、工程等领域都有着广泛的应用。

在数学中,函数是一种特殊的关系,它将一个集合中的元素对应到另一个集合中的唯一元素上。

函数的表示方法有很多种,下面我们将介绍几种常见的函数表示方法。

1. 公式表示法。

最常见的函数表示方法就是公式表示法。

在这种表示方法中,我们用一个数学表达式来表示函数。

例如,我们可以用f(x) = x^2来表示一个将自变量x映射到其平方的函数。

公式表示法简洁明了,能够清晰地表达函数的计算规则,因此在数学和物理问题中被广泛使用。

2. 图形表示法。

另一种常见的函数表示方法是图形表示法。

通过绘制函数的图像,我们可以直观地看出函数的性质。

例如,对于f(x) = x^2这个函数,我们可以绘制出抛物线的图像,从而直观地了解函数的增减性、极值点、凹凸性等信息。

图形表示法能够帮助我们直观地理解函数,因此在教学和科研中被广泛应用。

3. 表格表示法。

除了公式和图形表示法,我们还可以用表格表示法来表示函数。

通过列出自变量和函数值的对应关系,我们可以清晰地展现函数的取值情况。

表格表示法在实际问题中非常实用,特别是在计算机程序设计和数据分析中经常使用。

4. 文字描述法。

除了以上几种常见的表示方法外,有时候我们还可以用文字来描述函数。

通过文字的方式,我们可以对函数的性质、定义域、值域等进行详细的描述。

文字描述法能够帮助我们对函数进行深入的分析和理解。

5. 符号表示法。

在一些高级的数学理论中,为了简化表示和分析,人们还会使用符号表示法来表示函数。

例如,利用极限、导数、积分等符号来表示函数的性质和变化规律。

符号表示法通常用于高等数学、物理学等领域的专业研究中。

综上所述,函数的表示方法有很多种,每种表示方法都有其独特的优势和适用范围。

在实际问题中,我们可以根据具体的情况选择合适的表示方法来研究和应用函数,以便更好地理解和利用函数的性质和规律。

希望本文介绍的函数表示方法能够对您有所帮助。

新教材北师大版必修第一册 第二章2.2函数的表示法1函数的表示法 课件(49张)

新教材北师大版必修第一册   第二章2.2函数的表示法1函数的表示法   课件(49张)
x
所以f(x)=- 1.
x
=-
x
,
3
xx
【补偿训练】
已知f(x)满足f(x)=2f ( 1 )+x,则f(x)的解析式为________.
x
【解析】因为f(x)=2f ( 1+) x,用
x
替1 换x得f
x
=( 12)f(x)+
x
,1
x
代入上式得f(x)= 2[2f x 1 ] x,
x
解得f(x)= 2 . x
【补偿训练】 某公共汽车,行进的站数与票价关系如表:
行进的 站数
票价
123456789 111222333
此函数的关系除了列表之外,能否用其他方法表示?
类型二 函数的图象及其应用(直观想象) 【典例】1.(2020·徐州高一检测)函数y= x2 的图象的大致形状是( )
x
2.已知函数f(x)=x2-2x(-1≤x≤2). (1)画出f(x)图象的简图. (2)根据图象写出f(x)的值域. 【思路导引】1.分x>0,x<0两种情况作出判断. 2.先作出图象,再根据图象写值域.
【跟踪训练】 作出下列函数的图象并写出其值域. (1)y=-x,x∈{0,1,-2,3}. (2)y= 2 ,x∈[2,+∞).
x
【拓展延伸】关于图象变换的常见结论有哪些? 提示:(1)y=f(x)与y=f(-x)的图象关于y轴对称. (2)y=f(x)与y=-f(x)的图象关于x轴对称. (3)y=f(x)与y=-f(-x)的图象关于点(0,0)对称. (4)y=f(|x|)是保留y=f(x)的y轴右边的图象,去掉y轴左边的图象,且将右边图象 沿y轴对折而成. (5)y=|f(x)|是保留y=f(x)的x轴上方的图象,将x轴下方的图象沿x轴对折且去掉 x轴下方的图象而成.

函数的表示法1(解析法)

函数的表示法1(解析法)
解析法: 用解析式来表示两个变量之间函
数关系的方法叫做解析法.
问题二:股票问题
时间 星期一 星期二 星期三 星期四 星期五
收盘价 12 12.5 12.9 12.45 12.75
列表法: 用表格来表示两个变量之间函数
关系的方法叫做列表法.
问题三:气温问题
下图测温仪记录的图象,它反映了北京 的春季某天气温T如何随时间t的变化而变化。
例2、按照我国税法规定,个人所得税的缴 付办法是:月收入不超过1600元,免交个人所 得税,超过1600元不超过5000元,超过部分需 缴纳5%的个人所得税;等等.
月收入 (元)
月缴付个 人所得税
1300
0
1600
0
1700
5
2000
20
2500
45
4500
145
(1)试写出月收入在1600元到5000元之间的个人所得 税 y(元)与月收入x(元)的函数解析式(x为精确到 0.01的正数)
T/℃ 8
04
14
24
图象法: 用图象来表示两个变量之间函数
关系的方法叫做列表法.
2、函数的表示法:
(1)解析法 (2)列表法 (3)图象法
解析法:
例1、学校为创建多媒体教学中心,备有资金 180万元,现计划分批购进电脑,每台电脑售 价6千元,求所剩资金与电脑台数之间的函数 解析式,并求出函数的定义域。
(2)求收入为3000元的职工每月需缴纳的个人所得税.
例3、一个等腰三角形的周长为10,设腰长 为x,底边长为y,求出y与x的函数关系式, 并求出函数的定义域.
例4、有长为60米的篱笆,围成一面靠墙的矩 形养鸡场(如图), 设矩形的宽为x米,试求矩形 养鸡场的面积S与x之间的函数关系式,并指出 函数的定义域.

函数的表示法课件-高一上学期数学人教A版(2019)必修第一册

函数的表示法课件-高一上学期数学人教A版(2019)必修第一册
(3)列表法:用列出的表格来表示两个变量之间的对应关系. 例如:问题4中的表格
例1. 某种笔记本的单价是5元,买 x(x {1,2,3,4,5}) 个笔记本需要 y 元. 试用函数的三种表示法表
示函数 y=f(x) . 解:这个函数的定义域是数集{1,2,3,4,5}.
用解析法可将函数 y=f(x) 表示为 y=5x,x {1,2,3,4,5}.
解:为了直观地反映每位同学和班级平均成绩的变化情况,我们用图 象法将表格中的4个函数表示出来,如图:
可以看出: 王伟同学的数学成绩始终高于平均水平, 学习情况稳定且成绩优秀。 张城同学的数学成绩不大稳定,总在班 级平均水平上下波动,且波动幅度较大。 赵磊同学的数学成绩低于班级平均水平, 但他成绩在稳步提高。
(1)画出函数 f (x), g(x) 的图象.
(2)x R,用m(x)表示f (x), g(x)中的较小者,记为m(x) min{ f (x), g(x)},
请分别用图象法和解析法表示函数 m(x).
解:(1)f (x) x 1 的图象如图(1);g(x) (x 1)2 的图象如图(2).
所以,在同一直角坐标系中函数f ( x), g( x) 的图象为:
(2)由图象可知,函数M(x)的解析式为:
(x 1)2, x 1,
M
(x)
x
1,1
x
0,
(x
1)2 ,
x
0.
另:f (x) g(x)
(x 1) (x 1)2= x(x 1)
-1 0
x
练6. 给定函数 f (x) x 1, g(x) (x 1)2 , x R,
(2)x R,用M (x)表示f (x), g(x)中的较大者,记为 M (x) max{ f (x), g(x)}.

函数的表示方法_1-课件

函数的表示方法_1-课件
距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理
由.
解:(1)3小时,31升 (2)因为汽车出发前油箱 有油50升,汽车每小时用油12升,所以y=- 12t+50(0≤t≤3) (3)汽车要准备油210÷70×12 =36(升),因为45升>36升,所以油箱中的油 够用
方法技能: 1.函数的表示方法共有三种:列表法、解析式法、图象法,它们分别从 数、式和形的角度反映了函数的本质. 2.根据图象读取信息时要把握三个方面:(1)横轴和纵轴的意义及横轴、 纵轴分别表示的量;(2)关于某个具体点,可向横、纵轴作垂线,从而求 得该点的坐标;(3)在实际问题中,要注意图象与横、纵轴的交点坐标代 表的具体意义. 易错提示: 对实际问题中函数图象的意义理解易出错.
7.某型号汽油的数量与相应金额的关系如图,那么这种汽油的单价是 每升____5_._0_9_元.
7.某型号汽油的数量与相应金额的关系如图,那么这种汽油的单价是 每升____5_._0_9_元.
8.如图,OA,BA分别表示甲、乙两名学生匀速跑步运动的函数图象, 图中s和t分别表示运动路程和时间.根据图象判断跑步快者比慢者每秒 快____m1..5
A.M处 B.N处 C.P处 D.Q处
12.小亮早晨从家骑车去学校,先走下坡路,然后走上坡路,去时 行程情况如图.若返回时,他的下坡和上坡速度仍保持不变,那么小亮 从学校按原路返回家用的时间是_3_4__分.
13.(例4变式)下表是丽丽往姥姥家打长途电话的几次收费记录:
时间(分) 1 2 3 4 5 6 7 电话费 0. 1. 1. 2. 3. 3. 4. 系?(1)哪如个果是用(自元x表变)示量时?间哪,个6是y表函示2数电,话请8费用,式上子4表表反示映0它了们哪的6两关个系变;2量之间的关

1.2.2 函数的表示法第1课时 函数的表示法

1.2.2 函数的表示法第1课时 函数的表示法

1.2.2函数的表示法第1课时函数的表示法明目标、知重点了解函数的三种表示法的各自优点,掌握用三种不同形式表示函数.自主学习1.函数的三种表示法(1)解析法——用表示两个变量之间的;(2)图象法——用表示两个变量之间的;f x为纵坐标就得到一个点,当自变量取完定义(以自变量x为横坐标,以对应的函数值()域内所有值时,即可得到函数图像。

一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式,再列表描出图象,画图时要注意一些关键点,如与坐标轴的交点,端点的虚、实问题等.)(3)列表法——列出来表示两个变量之间的.2.(了解)函数三种表示法的优缺点例题解析探究点一函数的表示方法例1某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用函数的三种表示法表示函数y=f(x).探究点二如何求函数的解析式例2已知f(x)是一次函数,且满足3f(x+1)-f(x)=2x+9,求f(x).反思与感悟本题已知函数类型,故可用待定系数法求解.即设出函数关系式,代入已知条件,建立关于x的恒等式求解.跟踪训练2(1)已知f(x)是一次函数,满足3f(x+1)=6x+4,则f(x)的解析式(2)已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1,求函数f(x)的解析式.例3已知f(x+1)=x2+4x+1,求f(x)的解析式.反思与感悟利用换元法、配凑法求函数解析式时要注意新元的取值范围,即所求函数的定义域.跟踪训练3.已知f (1x )=1x +1,则f (x )的解析式为( ) A .f (x )=11+x B .f (x )=1+x x C .f (x )=x 1+xD .f (x )=1+x 例4 已知函数y =f (x )满足f (x )=2f (1x)+x ,则f (x )的解析式为。

跟踪训练4:已知函数y =f (x )满足f (x )=2f (-x )+x ,则f (x )的解析式为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档