高一数学值域的求法1
高一数学求值域的方法

高一数学求值域的方法
求值域,又称对偶值域或解析域,是指在一个表达式中,所有可以使得表达式有意义的值的集合。
通常,一个表达式的求值域不仅取决于其事先被给定的变量的值,而且还取决于表达式中的运算的有效性(如分母非零等)。
求值域的方法有许多种,比如:
1. 分别检查表达式中出现运算的条件,确定哪些值可以使得表达式有意义;
2. 对于给定的变量,考虑它可能取到的有效值;
3. 通过求得表达式的分母且不等于零来求值域;
4. 如果表达式中存在除数,就要检查分母是否为0;
5. 将表达式和设置的初始值代入原数学模型中,研究计算过程,实现求值域。
高一数学值域的求法1

,
故y
-,
65 12
.
[-1, 1]
[4, +∞)
值域课堂练习题
1.求下列函数的值域: (1) y= 3xx-+21; (2) y=2x+4 1-x ;
(1)(-∞, 3)∪(3, +∞) (2)(-∞, 4]
(3) y=x+ 1-x2 ;
(3)[-1, 2 ]
(4) y=|x+1|+ (x-2)2 ; (4)[3, +∞)
∴△=64-4mn<0 且 m>0.
令 y=
mx2+8x+n x2+1
,
则 1≤y≤9.
问题转化为 x∈R 时,
y=
mx2+8x+n x2+1
的值域为[1, 9].
变形得 (m-y)x2+8x+(n-y)=0,
当 m≠y 时, ∵x∈R, ∴△=64-4(m-y)(n-y)≥0.
整理得 y2-(m+n)y+mn-16≤0. 依题意 mm+nn-1=6=11+×9,9, 解得 m=5, n=5.
二、换元法
通过代数换元法或者三角函数换元法, 把无理函数、指数
函数、对数函数等超越函数转化为代数函数来求函数值域的
方法(关注新元范围).
例2 求下列函数的值域:
(1) y=x- x-1 ;
[
3 4
,
+∞)
(2) y=x+ 2-x2 ; [- 2 , 2]
三、判别式法
能转化为 A(y)x2+B(y)x+C(y)=0 的函数常用判别式法求函
高一数学值域的求法1

高一数学值域的求法1

不过女人的丈夫是一个很沉着冷静的人,他只是对女人说了一句话,明天,我们去民政局办离婚手续吧!真人博彩那个好 女人的丈夫不吵不闹,说完了这句话后就走了。 不管怎么样,女人当场还是被吓呆了,男人也是被这突然发生的一幕而心有余悸。不过男人是一个真诚的人,男人紧紧地抱着女人说,他不要你,我要你,其实我早就等这一天。 女人说,可是我放不下我的孩子。 男人说,孩子的事去民政局协商吧,你有两个孩子,你至少可以争取抚养一个,再说你是孩子们的母亲,即使离婚了,也可以去看孩子的啊! 女人说,但都不像离婚以前那样了。 男人说,那是肯定的,但是为了我们的爱情和幸福,鱼和熊掌不可兼得啊! 女人说,我知道,但你那边也要离得很清楚啊。 男人说,这次我回去就给它办妥当。 女人靠在男人的怀里哭泣说,好,我现在背叛了很多人,现在就只有你了,如果你对我不好,我真的走投无路,会活不下去的。 男人说,我知道,我会尽最大力量去关心你、疼爱你、呵护你,让你幸福一生。 女人吻了男人一下说,亲,我相信你。 这次约会回来到家之后,男人真的向自己的妻子提出了离婚,男人的妻子当场惊呆了。不过男人的妻子也是一个性格直率的人,她振作起来之后对男人说,谁怕谁,你不跟老娘过,老娘早就不想跟 你过了呢,好吧,马上去民政局。
高一数学值域的求法1

高一数学例析求函数值域的方法

例析求函数值域的方法某某黔江新华中学 侯建新求函数的值域常和求函数的最值问题紧密相关,是高中数学的重点和难点。
注意:求值域要先求定义域。
虽然没有固定的方法和模式,但常用的方法有:一、直接法:从自变量x 的X 围出发,推出()y f x =的取值X 围。
例1:求函数1y =的值域。
0≥11≥,∴函数1y =的值域为[1,)+∞。
二、图像法:对于二次函数在给定区间求值域问题,一般采用图像法。
例2:求函数242y x x =-++([1,1]x ∈-)的值域。
(开口方向;区间与对称轴的关系)三、中间变量法:函数式中含有可以确定X 围的代数式。
例3:求函数2211x y x -=+的值域。
解:由函数的解析式可以知道,函数的定义域为R (定义域优先原则),对函数进行变形可得 2(1)(1)y x y -=-+,∵1y ≠,(特殊情况优先原则)∴211y x y +=--(x R ∈,1y ≠), ∴101y y +-≥-,∴11y -≤<, ∴函数2211x y x -=+的值域为{|11}y y -≤< 例4:求y=525+-x x (1≤X ≤3)的值域。
解:y =525+-x x ⇒ x =1255+-y y∵1≤X ≤3 ∴1≤1255+-y y ≤3 (怎么求解?)⇒ y ∈[112,74] 四、分离常数法:分子、分母是一次函数的有理函数,可用分离常数法,此类问题一般也可以利用反函数法。
例5:求函数125x y x -=+的值域。
解:(此处要先求定义域)∵177(25)112222525225x x y x x x -++-===-++++, ∵72025x ≠+,∴12y ≠-,∴函数125x y x -=+的值域为1{|}2y y ≠-。
五、换元法:运用代数代换,奖所给函数化成值域容易确定的另一函数,从而求得原函数的值域,形如y ax b =+±a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法求解。
高一函数值域的求法

定义法通过值域的定义求值域是最简单直接的一种方法,但是有时也是我们最常忽略的一种方法,因为它的简单,所以是在学习值域中最早接触过的一种方法,但是在一些考查思维能力的大题中,伴随着一些阅读信息出现时,往往会给我们造成一些困扰。
今天的学习希望大家就从定义出发,理解函数值域。
先看例题:已知函数2,y x x A =∈,其中{|||2,}A x x x Z =≤∈且则函数的值域是_____若函数24y x x =-的定义域是{|15,}x x x N ≤≤∈则其值域为________求函数||x y x =的值域注意:定义域不是有限集,值域可能是有限集总结:函数值域是函数值的集合,它是由定义域和对应法则共同给确定的,求值域时要注意函数的定义域练习:1. 若f (x )的定义域为[a ,b ],值域为[a ,b ] (a <b ),则称函数f (x )是[a ,b ]上的“四维方军”函数.(1)设213()22g x x x =-+是[1,b]上的“四维方军”函数,求常数b 的值; (2)问是否存在常数a ,b (a >-2)使函数1()2h x x =+是区间[a ,b ]上的“四维方军”函数?若存在,求出a ,b 的值,否则,请说明理由.分离常数法分离常数,是高中数学的常用方法,分离常数的思路是将变量和常量分开研究,是解决矛盾的一种重要思路。
该方法在求函数值域中也有非常广泛的应用,今天我们就一起来看看如何用分离常数的方法求函数值域。
1.函数2211x y x -=+的值域为____2.求函数312x y x +=-的值域 我们发现,如果一个函数形如(0)cx d y a ax b+=≠+,这时可以考虑使用分离常数的方法,来求其值域。
更进一步,如果我们把x 的位置换成一个函数,即()(0)()c f x d y a a f x b ⋅+=≠⋅+还能够使用分离常数的方法么?继续往下看:3.求函数11x x e y e -=+的值域 (先分离常数) 对于形如()(0)()c f x d y a a f x b⋅+=≠⋅+的函数,都可以考虑用分离常数的方法进行求解。
高一函数定义域和值域讲解

函数定义域、值域求法总结(一)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(二)求函数的值域1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;2、在函数f:A→B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C 是B的子集;若C=B,那么该函数作为映射我们称为“满射”;3、分段函数的值域是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结一、定义域是函数()y f x =中的自变量x 的范围。
求函数的定义域需要从这几个方面入手:(1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
(6)0x 中x 0≠二、值域是函数()y f x =中y 的取值范围。
高一数学函数的定义域与值域的常用方法

高一数学求函数的定义域与值域的常用法:求函数解析式 1、换元法: 例1.已知 题目给出了与所求函数有关的复合函数表达式,可将函数用一个变量代换。
心) X t 解:设 2 f (x ) X X X ,则1,x 1 。
x 2 X 1 x 2 ,试求 f (X )。
1 t 1,代入条件式可得: f (t )t 2 t 1,t ≠ 1。
故得: 说明:要注意转换后变量围的变化,必须确保等价变形。
2、构造程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出 另一个程,联立求解。
f (X) 例2. ( 1)已知 (2)已知 f (X) 2f(2f(1) 3X 24X 5 XX)3X 2解:(1)由条件式,以 • 1 消去 X ,则得: X 代2_ X X,则得 8 3x4X 5f(1) X X 24x 3(2) 由条件式,以一 X 代X 则得: X 24x -3。
f( 去说明: 定义域由解析式确定,不需要另外给出。
例4.求下列函数的解析式: (1) (2) (3) ,试求f (X);f(x).3厶 X试求 2f(x)5 3OX) 2f (X)3X 24X5,与条件式联立,,与条件式联立,消,则得: 本题虽然没有给出定义域,但由于变形过程一直保持等价关系, 故所求函数的 已知 已知 已知 f (X )是二次函数,且f (0) f (∙一 X 1) 心) X 3f (x ) 2, f (X 1) f(X) X 1 ,求 f(X); 2 X ,求 f (x), f (x 1), f (x 2) 1 1 亠 2 ,求 X X f (X);(4) 【题意分析】(1) 设法求出a,b,c 即可。
若能将X 2 - X 适当变形,用.XX 1 设 为一个整体,不妨设为 X X , 已知 2 f ( x) X 3 ,求 f (x)。
由已知f (X)是二次函数,所以可设 f(X) ax 2 bx c(a 0),(2) (3) 1的式子表示就容易解决了。
函数专题:函数值域的6种常用求法-【题型分类归纳】高一数学上学期同步讲与练(原卷版)

函数专题:函数值域的6种常用求法一、函数的最大(小)值1、最大值:对于函数y=f(x),其定义域为D,如果存在x0∈D,f(x)=M,使得对于任意的x∈D,都有f(x)≤M,那么,我们称M是函数y=f(x)的最大值,即当x=x0时,f(x0)是函数y=f(x)的最大值,记作y max=f(x0).2、最小值:对于函数y=f(x),其定义域为D,如果存在x0∈D,f(x)=M,使得对于任意的x∈D,都有f(x)≥M,那么,我们称M是函数y=f(x)的最小值,即当x=x0时,f(x0)是函数y=f(x)的最小值,记作y min=f(x0).3、几何意义:函数最大值对应图象中的最高点,最小值对应图象中的最低点,它们不一定只有一个.二、求函数值域的6种常用求法1、单调性法:如果一个函数为单调函数,则由定义域结合单调性可快速求出函数的最值(值域).(1)若函数y=f(x)在区间[a,b]上单调递增,则y max=f(b),y min=f(a).(2)若函数y=f(x)在区间[a,b]上单调递减,则y max=f(a),y min=f(b).(3)若函数y=f(x)有多个单调区间,那就先求出各区间上的最值,再从各区间的最值中决定出最大(小)值.函数的最大(小)值是整个值域范围内的最大(小)值.2、图象法:作出函数的图象,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合.(1)分段函数:尽管分段函数可以通过求出每段解析式的范围再取并集的方式解得值域,但对于一些便于作图的分段函数,数形结合也可很方便的计算值域.(2)()f x的函数值为多个函数中函数值的最大值或最小值,此时需将多个函数作于同一坐标系中,然后确定靠下(或靠上)的部分为该()f x函数的图象,从而利用图象求得函数的值域.3、配方法:主要用于二次函数或可化为二次函数的函数,要特别注意自变量的取值范围.4、换元法:换元法是将函数解析式中关于x的部分表达式视为一个整体,并用新元t代替,将解析式化归为熟悉的函数,进而解出最值(值域).(1)在换元的过程中,因为最后是要用新元解决值域,所以一旦换元,后面紧跟新元的取值范围.(2)换元的作用有两个:①通过换元可将函数解析式简化,例如当解析式中含有根式时,通过将根式视为一个整体,换元后即可“消灭”根式,达到简化解析式的目的.②可将不熟悉的函数转化为会求值域的函数进行处理 5、分离常数法:主要用于含有一次的分式函数,形如+=+ax b y cx d 或2++=+ax bx e y cx d(a ,c 至少有一个不为零)的函数,求其值域可用此法以+=+ax by cx d为例,解题步骤如下: 第一步,用分子配凑出分母的形式,将函数变形成=++a ey c cx d的形式, 第二步,求出函数=+e y cx d 在定义域范围内的值域,进而求出+=+ax by cx d的值域。
高一数学函数值域解题技巧

一.观察法通过对、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x) 的值域。
点拨:根据的性质,先求出√(2-3x) 的值域。
解:由的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为 .点评:具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.法当函数的存在时,则其的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.当所给函数是或可化为的时,可以利用求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成,利用的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
是数学的一种重要的思想方法。
练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.法若可化为关于某变量的的函数或无理函数,可用法求函数的值域。
例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。
高一数学《函数的值域》的求法

高一数学《函数的值域》的求法函数的值域是函数的三要素之一,它是函数这部分内容中一个重要的知识点。
本文介绍高一数学中求函数值域的几种常见方法:1.直接法:从自变量$x$的范围出发,推出$y$的取值范围;2.二次函数法:利用换元法,将函数转化为二次函数求值域(或最值);3.反函数法:将求函数的值域转化为求它反函数的定义域;4.判别式法:使用方程思想,依据二次方程有实根,求出$y$的取值范围;5.单调性法:利用函数的单调性求值域;6.图象法:当一个函数图象可作时,通过图象可求其值域(或最值)。
例如,对于函数$y=x^2-2x-3$,我们可以通过以下几种方法求其值域:1.直接法:当$x=-1$时,$y=0$;当$x=0$时,$y=-3$;当$x=1$时,$y=-4$。
因此,所求值域为$\{0,-3,-4\}$。
2.二次函数法:将函数转化为$y=(x-1)^2-4$,然后求出最值。
当$y=-3$时,$y_{\max}=12$;当$x=1$时,$y_{\min}=-4$。
因此,所求值域为$[-4,12]$。
3.反函数法:将函数转化为$y=(x-1)^2-4\geq -4$。
因此,所求值域为$[-4,+\infty)$。
4.判别式法:将函数转化为$y=-x^2+2x+3$,然后求出判别式的取值范围。
由于判别式为$4-4\times (-1)\times 3=16>0$,因此$y$的取值范围为$(-\infty,-4]\cup [1,+\infty)$。
5.单调性法:当$x1$时,函数单调递增。
因此,所求值域为$[-4,+\infty)$。
6.图象法:函数$y=x^2-2x-3$的图象是一个开口向上的抛物线,顶点坐标为$(1,-4)$。
因此,所求值域为$[-4,+\infty)$。
除了以上这些方法,我们还可以通过改变$x$的范围来求函数的值域。
例如,将$x\in R$改为$x\in [-3,2]$或$x\in [-3,+\infty)$等。
高一数学《函数的值域》的求法

高一数学《函数的值域》的求法《新形势下教育管理理论与实践指导全书》函数的值域是函数的三要素之一,它是函数这部分内容中一个重要的知识点,下面介绍高一数学中求函数值域的几种常见方法。
(1)直接法——从自变量x的范围出发,推出y的取值范围;(2)二次函数法——利用换元法,将函数转化为二次函数求值域(或最值);(3)反函数法——将求函数的值域转化为求它反函数的定义域;(4)判别式法——使用方程思想,依据二次方程有实根,求出y的取值范围;(5)单调性法——利用函数的单调性求值域;(6)图象法——当一个函数图象可作时,通过图象可求其值域(或最值)。
例1、求下列函数的值域:(直接法)(1)y=x2-2x-3,x∈{-1,0,1}解:当x=-1时,y=0当x=0时,y=-3当x=1时,y=-4∴所求值域{0,-3,-4}(2)y=x2-2x-3,x∈[-3,4]解:y=(x-1)2-4当y=-3时,y max=12当x=1时,y min=-4所求值域为[-4,12](3)y=x2-2x-3,x∈R解:y=(x-1)2-4≥-4∴所求值域为[-4,+∞)可改变x的范围,求函数的值域。
如将“x∈R”改为“x∈[-3,2]”;将“x∈R”再改为“x∈[-3,+∞)(4)y=4解:要使原函数有意义,则3+2x-x2≥0-1≤x≤3y=4当x=1时,y min=0当x=-1或3时,y max=4∴所求值域为[0,4](5)y=25243 x x-+解:y=252(2)3 x x-+=252(1)1x -+ ∵2(x -1)2≥0∴2(x -1)2+1≥1∴0<212(1)1x -+≤1 ∴0<252(1)1x -+≤5 ∴所求值域为(0,5]上试中“>0”这个条件很容易被漏掉,讲课时应注意强调。
例2、求下列的值域:(1)y=311x x -+ (2)y=2x (3)y=1x x+,x ∈[1,3] (4)y=22436x x x x +++- (5)y=234x x + 解:(1)方法一(分离变量法)y=431x -+≠3 方法二:(反函数法)由y=311x x -+得x=13y y +- ∴y ≠3所以所求值域为(-∞,3)∪(3,+∞)解:(2)≥0)则x=212t - ∴y=-t 2+t+1=-(t -12)2+54当t=12时,y max =54∴所求值域为(-∞, 54] 解:(3)(利用单调性)可证:y=x+1x在[1,3]为增函数 ∴当x=1时,y min =2当x=3时,y max =103∴所求值域为[2,103] 解:(4)原函数的定义域为{x R ∈|x ≠-3且x ≠2}方法1:(先化简函数)y=(3)(1)131(3)(2)22x x x x x x x +++==++--- ∵x ≠2 ∴y ≠1 又x ≠3 ∴y ≠312x +--即y ≠25所求值域为{y R ∈|y ≠1且y ≠25} 方法2:(判别式法)由y=22436x x x x +++-得 (y -1)x 2+(y -4)x -3(2y+1)=01°当y=1时,x=-3与定义域中x ≠=-3矛盾,∴y ≠12°当y ≠1时,由△=(5y -2)2≥0得y ∈R ,但y ≠1而当y=25时,求得x=-3不合题意∴y ≠25故所求值域为{y ∈R|y ≠1,且y ≠25} 解:(5)(判别式法):由y=234x x +得 y ·x 2-3x+4y=01°当y=0时,x=02°当y ≠0时,∵x ∈R ∴△=32-4y ·y ≥0 -34≤y ≤34且y ≠0 综合以上知所求值域为[-34,34] 注:利用判别式求形如:y=22ax bx c dx ex f++++的值域当化为m(y)x 2+n(y)x+p(y)=0后,要注意: ①分m(y)=0,及m(y)≠0两种情况讨论,只有m(y)≠0时,才能利用判别式;②在求出y 的取值范围后;要注意“=”能否取到,即检验间断点以及△=0时,y 对应x 是否属于定义域。
高一数学值域的求法1

曾经,一本日记本,一本喜欢的书就是一个世界。在这个世界里,任凭思绪纷飞,任凭日子飞逝,任阳光洒在书本上,心底里,都觉得生活有滋有味,简单快乐。。 快手号出售 /
曾经,一台电脑,一杯咖啡,也是一个世界。无论是敲打的心情文字,还是咖啡香醇的气息,都如生活的痕迹,带着敏感,充满诗意,浅酌咖啡的丝滑,感受文字的魅力。 曾经想起某个人,心底还会隐隐的发痛。那些记忆,象春天的雨滴,滴滴都在心上。虽然还未开始,就已经结束。却无法忘却那一个难以忘怀的眷恋。在紧锁的日记本里,只剩下斑驳的回忆。我知道, 你的笑容,你熟悉的一切,我都无法收藏,甚至不在拥有。 今天听朴树的《那些花儿》,突然感触很多。坐在电脑前,思绪无法停下。我知道,恍惚迷离的视线里,都是从前,都是那些日子。伴随音乐的起伏,心情更是波涛汹涌,不由自主的怅然泪下。 真的老了,总是想回忆,回忆经过的事情,回忆曾经相伴的人儿。那些花儿,还在开放吗。那些人儿,还在和我想着你一样的想着我吗。往事已过,只能回忆,朋友,我们是再也回不去了,我明白的。 习惯了咖啡的陪伴,习惯了独自怀念。电脑前的敲打,独自的面对,你们知道吗。樱花盛开的日子里,无数个日子里,想起了你们,却只能看见樱花片片的落下,像一场繁华而决绝的表演,不再重复。 只能பைடு நூலகம்伤那颗敏感的心。 去年今日此门中,人面桃花相映红,人面不知何处去,桃花依旧笑春风。那些花儿,此时此刻,正在世上的某个角落,静静地开着,我却再也看不到。
高一数学值域的求法1

吃了熊心豹子胆,可以铤而走险选择将桉树作为钓点,搞上一次李向阳队长百战不殆的“灯下黑”。
这条堰坎与下面一片秧田的垂直高度,约摸五六米,距离成渝马路五十米。塘面没有水草,视野开阔,一膀子可以将鱼钩撒出十来米甚至更远。可马路、几方堰坎来来去去的人们洞若观火。真钓了 大货,除了束手待毙,甭指望能有机会化腐朽为神奇。
池塘游泳那些野孩子喜欢爬上面去玩跳水;社员爱去上面洗洗涮涮;我平素路过,不由自主会想上去玩上一会儿。五黄六月,头顶伞幄一般的树荫,坐在树根,双腿插入水中,自由自在戏戏凉水, 阵阵清风迎暴雨,否则经年累月根系均暴露在外面。男男女女从堰坎轻而易举迈得上去。
上放学路过,当真从马路上几个角度模拟过漫不经心转头一瞥,与转过身去目不转睛的差异。无论怎么样,除非视而不见,堰坎上当真是连一只老鼠蹿过也一目了然。见别人站、蹲那里时间稍长, 自己也难以消除心中的狐疑,不是钓鱼,蹲那么久干啥?
高一数学函数的定义域与值域的常用方法

高一数学求函数得定义域与值域得常用法一:求函数解析式1、换元法:题目给出了与所求函数有关得复合函数表达式,可将函数用一个变量代换。
例1、 已知,试求。
解:设,则,代入条件式可得:,t ≠1。
故得:。
说明:要注意转换后变量围得变化,必须确保等价变形.2、构造程组法:对同时给出所求函数及与之有关得复合函数得条件式,可以据此构造出另一个程,联立求解。
例2、 (1)已知,试求; (2)已知,试求; 解:(1)由条件式,以代x,则得,与条件式联立,消去,则得:。
(2)由条件式,以—x 代x则得:,与条件式联立,消去,则得:.说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数得定义域由解析式确定,不需要另外给出。
例4、 求下列函数得解析式:(1)已知就是二次函数,且,求; (2)已知,求,,; (3)已知,求; (4)已知,求. 【题意分析】(1)由已知就是二次函数,所以可设,设法求出即可。
(2)若能将适当变形,用得式子表示就容易解决了。
(3)设为一个整体,不妨设为,然后用表示,代入原表达式求解。
(4),同时使得有意义,用代替建立关于,得两个程就行了。
【解题过程】⑴设,由得, 由,得恒等式,得。
故所求函数得解析式为。
(2)1)1(112)(2)1(22-+=-++=+=+x x x x x x f , 又。
(3)设,则1)1()1(111111)1()(22222+-=-+-+=++=++=+=t t t t x xx x x x x f t f 所以。
(4)因为 ① 用代替得 ② 解①②式得。
【题后思考】求函数解析式常见得题型有:(1)解析式类型已知得,如本例⑴,一般用待定系数法。
对于二次函数问题要注意一般式,顶点式与标根式得选择;(2)已知求得问题,法一就是配凑法,法二就是换元法,如本例(2)(3); (3)函数程问题,需建立关于得程组,如本例(4)。
若函数程中同时出现,,则一般将式中得用代替,构造另一程。
高一数学求函数值域的方法仅限高一

仅限高一求函数值域的方法:1、 直接法直接根据函数表达式来求值域,例:y = x 2 , x ∈(2,3)2、 单调性法利用函数的单调性来求值域例:y=x-x 21-;解:定义域⎭⎬⎫⎩⎨⎧≤21|x x ,函数y=x,y=-x 21-均在⎥⎦⎤ ⎝⎛∞-21,上递增,故y≤.21212121=⨯-- ∴函数的值域为⎥⎦⎤ ⎝⎛∞-21,. 3、 图象法利用函数图象来求值域例:y = x 3 x ∈(-2,5)4、 配方法把函数化简成二次函数的形式,利用二次函数的性质来求, 例: y=12+-x x 解:∵y=412+-x x 能构成完全平方而y=412+-x x +43 ∴4321y 2+-=)(x ∵x R ∈ ∴值域为y ≥435、 判别式法把式子化成一元二次方程的形式,利用判别式法来求,例:y=;122+--x x x x解:由y=,122+--x x x x 得(y-1).0)1(2=+-+y x y x∵y=1时,≠∴∅∈y x , 1.又∵∈x R ,∴必须∆=(1-y)2-4y(y-1)≥0. ∴.131≤≤-y ∵,1≠y ∴函数的值域为⎪⎭⎫⎢⎣⎡-1,31. 6、 换元法把带根号或者带分式等不容易看出来的式子用一个新元代替了,换完元后,一定要注意新元的范围,根据新元的范围来求值域。
例1:y=x-x 21-;解:令x 21-=t,则t≥0,且x=.212t - ∴y=-21(t+1)2+1≤21(t≥0), ∴y∈(-∞,21]. 例2:y=|x|21x -. 解:∵1-x 2≥0,令x=sin α,则有y=|sin αcos α|=21|sin2α|, 故函数值域为[0,21].7、分离常数法适用于分子与分母同样的次幂,最终化成只有分母有x 。
例:y=521+-x x ;解:y=-)52(2721++x ,∵)52(27+x ≠0,∴y≠-21. 故函数的值域是{y|y∈R,且y≠-21}. 8、反求法用y来表达x,适用于x的范围知道,且能用y来表示x。
高一值域求法必备

一.观察法例1求函数y=3+√(2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为 .点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一种重要的思想方法。
练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法。
例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。
点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。
解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*)当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3当y=2时,方程(*)无解。
高一数学函数值域方法汇总

解法2(线性规划)
∵x,y是圆C:(x-2)2+(y+3)2=2上的点,设 x+y+4=z,则y=-x+(z-4),z-4可看作为直 线L:x+y+4-z=0在y轴上的截距,作直线 y=-x并平移,当直线L:x+y+4-z=0和圆C 相切时,z-4有最大值和最小值。
高一数学函数值域方法汇总
求函数值域方法很多,常用配方法、换 元法、判别式法、不等式法、反函数法 、图像法(数形结合法)、函数的单调 性法以及均值不等式法等。这些方法分 别具有极强的针对性,每一种方法又不 是万能的。要顺利解答求函数值域的问 题,必须熟练掌握各种技能技巧,根据 特点选择求值域的方法,下面就常见问 题进行总结。
将上式可看成为x轴上点P(x,0)与
A(1,3),B(-3,2)的距离之和。即在x
轴上求作一点P与两定点A,B的距离
y
之和的最值,利用解析几何的方法
可求其最小值。
B(-
A(1,3)
如图,可求A关于x轴对称点A1(1,-3)连 结A1B交x轴y于P,则P(x,0)为所求,
例1 求函数
分析:本题是求二次函数在区间上的值域问题 ,可用配方法或图像法求解。
y
如图, ∴y∈[-3/4,3/2].
3/2
o 1/2
-1
1x
-3/4
例2 求函数
分析:函数是分式函数且都含有二次项,可用判 别式和单调性法求解。
解法1:由函数知定义域为R,则变形可得: (2y-1)x2-(2y-1)x+(3y-1)=0. 当2y-1=0即y=1/2时,代入方程左边=1/2·3-1≠0,故 ≠1/2. 当2y-1≠0,即y ≠1/2时,因x∈R,必有△=(2y-1)24(2y-1)(3y-1) ≥0得3/10≤y≤1/2, 综上所得,原函数的值域为y∈〔3/10,1/2〕.
高一数学三角函数值域的求法

解: 变形为 y
1
3 sin x sin x 3 3 sin x 2 3或 sin x 2 3 --------② sin x sin x
0 y 1 2 3 或 1 2 3 y0
-----------------------------①
------------------------③ -----------反表示法 数形结合法
分离系数法
数形结合法
有界性法 判别式法
根的分布
单调性法
课后思考
2 2 1.求函数 y a sin x 6a cos x 2a (a R)
作业
sin x cos x 的值域. 2.求函数 y 3 2 sin x 2 cos x
的最值.
( D )[1, )
1 (C )( , ] 3
基础练习
3 sin x 1 的最值是 2.函数 y sin x 2
发散思维
sin x 1.求函数 y 的最值. 2 cos x
有界
判别
数1形
数2形
发散思维
2.求函数 y
sin x sin x 3
2
的值域.
下面解法的每个步骤是否正确?为什么?
课外练习1、2、3、4、 《数学之友》 P 70
摩登娱乐 摩登娱乐
是低声下气地向她服软:“您以后别要再说那句话咯 爷只说过壹次 爷保证以后再也别会说咯 您是爷の诸人 将您满门抄斩 爷能有啥啊好结果?”见他说得如此情真意切、 语气凝重 水清原本是逗他开心 谁想到竟然引发他如此伤感の话题 很是别忍心 赶快岔开话题 缓解壹下气氛:“刚刚妾身也没什么别の啥啊意思 只是因为您天天让妾身躺在 床上养身子 照那么壹各养法儿 过两天 您见到の就别是妾身 而是壹头白白胖胖の大肥猪咯!”壹听是那话 他那壹颗悬着の心才算是踏实下来 继而被她气得牙根痒痒 于是 攥她胳膊の手又加咯壹番力道 痛得水清眉头皱咯起来 他晓得她吃痛 可是别让她痛壹痛 真是难解心头之气 继而他又觉得只让她肉体上痛壹下别足以对她实施足够有效の惩 罚 还要在精神上再对她实施壹番折磨 方能壹解他心中の恼怒之气 于是他壹边对她松手 壹边意味深长地说道:“好好好 您说得对 变成大肥猪更好!爷就喜欢您养得白白胖 胖の!”“啊?”她当然晓得他最喜欢啥啊样の诸人 无非是性情上要听话の、温顺の、乖巧の 而模样上当然还是要娇气の 柔弱の 怎么啥啊时候他の审美观点改变咯?开始 喜欢上胖美人咯?见水清中计 他の心情也是大好起来 于是说道:“白白胖胖最好 那样才能给爷多生几各小小格 ”水清哪里料到自己の玩笑之语竟然招惹来他の那番真情告 白 脸上立即挂别住咯 特别是月影还在屋里 可是月影心里最期盼の竟然与王爷壹模壹样 就是盼着她家仆役赶快怀胎 赶快生子 别管是啥啊准备晚膳啊 还是啥啊缝补衣裳啊 统统都没什么那件事情重要 现在见到王爷与她所想の竟是如出壹辙 虽然她晓得仆役已经被恼得脸色通红 可是仍然止别住の高兴 最后竟是憋别住 抿着嘴笑咯起来 昨天被那 两各人壹各该听话进屋来却别听话地迅速退咯下去 另壹各别该听话却偏偏“听话”旁若无人地吻她别停 今天又被那两各人合起伙儿来取笑她 月影是强忍抿嘴笑 而他更是别 管别顾地坏坏地笑 被气坏咯の水清壹甩手进咯里屋 扔下那两各人在外间屋 第壹卷 第923章 验证他今天の心情格外地好 既是因为淑清の病好得差别多咯 他再也别用疲于 奔命、左右逢缘 另外今天没什么太多の事情 回来得早壹些 前两天 天天弄到后半夜 实非他本意 对此既是觉得愧疚 也是觉得别忍心 他晓得水清の睡眠是壹各大难题 别是 想睡就能睡 想醒就能醒の 壹连折腾咯她两天 终于偷得浮生半晚闲 于是他就赶快张罗着歇息 好好地补偿壹下她严重缺觉の问题 由于躺下得早 两各人就又有咯足够の闲功 夫来逗嘴皮子:“您瞧瞧您 怎么现在越来越长脾气咯?爷说咯啥啊咯 又惹得您给爷摞脸子?”“爷啊!您以后能别能别要当着月影の面说那些话啊!”“爷就说各让您养得 胖壹些 好给爷多生几各小小格 那有啥啊?怎么就月影听别得咯?”水清当然别愿望让月影听到咯!即使月影是她の贴身丫环 那种暧昧の话题她也别想与任何人分享 于是她 要向他发出严正警告:“爷啊 您以后别要再当着月影说那些话咯!”“那也别能说 那也别能说 那以后月影在の时候 爷就当哑巴?爷怎么还要怕咯她那各奴才别成?”“您 是别用怕 可是妾身怕得别行呢!”“您怕她做啥啊?”“您没瞧见月影那丫头在笑话妾身吗?”壹听水清说月影笑话她 王爷可算是找到咯共鸣:“哈哈!月影笑话您也是应 该の!您要是赶快给爷生各小小格 爷就别说咯!再说咯 谁让您别好好养身子の?您瞧瞧 您那胳膊细の 都没什么筷子粗呢!”壹边说着 壹边似乎是为咯证明他の话有多么 の正确 于是他壹把抓起咯水清の小细胳膊 果然 他只用咯壹只手 竟然轻轻松松地实现咯大拇指与中指の成功对接!那各情景将他都吓咯壹跳 天啊!竟是比他想象得更是骇 人!于是他又急急地伸手去握她の纤腰 想要看壹看她那腰肢有多么の纤细 她要将自己养胖の任务是多么の艰巨 可是事
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网站SEO优化 www.gengzLeabharlann