信号与系统杨晓非课后答案
杨晓非信号与系统第3章(2)
f (t ) (t nT ) f (t ) T (t )
n
14
3-3 抽样定理
F(j) 引例:信号数字处理
(Sampling theorem)
S(j)
开关 信号
一、抽样(采样、sampling): 利用开关信号s(t)从连续信号f(t)中“抽取”一系列离散样本值的过程。
11
例:图(a)所示系统,频率特性如图(b)所示,求响应y(t)。其中
f (t ) 2 4 cos5t 4 cos10t
【解】
方法1:
H ( j 0) 1
1 H ( j 5) 2
(a)
(b)
H ( j10) 0
y(t ) 2 2 cos5t
方法2: f (t )
t
8
j j 2 t j j 2 t 1 y (t ) 1 e e 1 sin 2t 2 2
3.2 连续时间LTI系统对复指数信号的响应
f(t)
LTI系统 H(p)
t
y(t)
f (t ) e
y f (t ) f (t )* h(t ) h(t )* f (t ) h( ) f (t )d
1 Fs ( j) F ( j) * S ( j) f s (t ) f (t ) s(t ) 2 f (t )的全部信息? 需解决的问题: f s (t )能否包含
Fs ( j)与F ( j)的关系?
如何进行抽样?
15
复习:周期信号的傅立叶变换
fT (t )
两边同取傅立叶变换
解:
1 H ( j ) 2 j
F ( j )
《信号与系统》课后习题参考答案
《信号与系统》课后习题参考答案第二章 连续信号与系统的时域分析2-9、(1)解:∵系统的微分方程为:)(2)(3)(t e t r t r '=+',∴r(t)的阶数与e(t) 的阶数相等,则h(t)应包含一个)(t δ项。
又∵系统的特征方程为:03=+α,∴特征根3-=α∴)()(2)(3t u Ae t t h t -+=δ∴)]()(3[)(2)(33t e t u e A t t h t t δδ--+-+'=')()(3)(23t A t u Ae t t δδ+-'=-将)(t h 和)(t h '代入微分方程(此时e(t)= )(t δ),得:)()(3)(23t A t u Ae t t δδ+-'-+3)(2)]()(2[3t t u Ae t t δδ'=+-∴A=-6则系统的冲激响应)(6)(2)(3t u et t h t --=δ。
∴⎰⎰∞--∞--==t td ue d h t g τττδτττ)](6)(2[)()(3⎰∞-=t d ττδ)(2⎰∞---t d u e τττ)(63 )()(6)(203t u d e u t t ⎰-∞--=τττ )()3(6)(203t u e t u t --=-τ)()1(2)(23t u e t u t -+=- )(23t u e t -=则系统的阶跃响应)(2)(3t u et g t -=。
2-11、解:①求)(t r zi : ∵系统的特征方程为:0)3)(2(652=++=++αααα,∴特征根:21-=α,32-=α ∴t t zi e C eC t r 3221)(--+= (t ≥0) ②求)(t r zs :t t e A eA t h 3221)(--+= (t ≥0),可求得:11=A ,12-=A (求解过程略) ∴)()()(32t u e e t h t t ---=∴)(*)()(*)()]()[(*)()(*)()(3232t u e t u e t u e t u e t u e e t u e t h t e t r t t t t t t t zs --------=-==)()2121()()(21)()(3232t u e e e t u e e t u e e t t t t t t t -------+-=---= ③求)(t r :)(t r =)(t r zi +)(t r zs ++=--)(3221t te C e C )2121(32t t t e e e ---+- t tt e C e C e 3221)21()1(21---++-+= (t ≥0) ∵)()(t u Ce t r t -=,21=C 21=C ∴ 011=-C , ∴ 11=C0212=+C 212-=C ∴=-)0(r 21211)0(21=-=+=+C C r zi , ='-)0(r 2123232)0(21-=+-=--='+C C r zi 2-12、解:(1)依题意,得:)(2)(*)()(t u e t h t u t r tzi -=+)()()(t t h t r zi δ=+∴)(2)]()([*)()(t u e t r t t u t r t zi zi -=-+δ)(2)()()()1(t u e t r t u t r t zi zi --=-+∴)()12()()()1(t u e t r t r t zi zi -=---,两边求导得:)()12()(2)()(t e t u e t r t r t t zi ziδ-+-=-'-- )(2)()()(t u e t t r t r t zi zi--=-'δ ∴)(11)(112)()()1(t p p t p t t r p zi δδδ+-=+-=- ∴)()(11)(t u e t p t r t zi -=+=δ (2)∵系统的起始状态保持不变,∴)()(t u e t r t zi -=∵)()()(t t h t r zi δ=+,∴)()()(t u e t t h t--=δ∴)]()([*)()()(*)()()(33t u e t t u e t u e t h t e t r t r t t t zi ----+=+=δ )()()(t u te t u e t u e tt t ----+=)()2(t u e t t --= 2-16、证:∑∑∞-∞=--∞-∞=--=-=k k t k t k t u e k t t u e t r )3()3(*)()()3(δ∑∞-∞=--=k k t k t u e e )3(3 ∵当t-3k>0即3t k <时:u(t-3k)为非零值 又∵0≤t ≤3,∴k 取负整数,则:3003311)(---∞=∞=----===∑∑e e e e e et r t k k k t k t 则t Ae t r -=)(,且311--=e A 。
信号与系统--完整版答案--纠错修改后版本
1)
3)
5)
3.8、求下列差分方程所描述的离散系统的单位序列响应。
2)5)
3.9、求图所示各系统的单位序列响应。
(a)
(c)
3.10、求图所示系统的单位序列响应。
3.11、各序列的图形如图所示,求下列卷积和。
(1)(2)(3)(4)
4.34 某LTI系统的频率响应,若系统输入,求该系统的输出。
4.35 一理想低通滤波器的频率响应
4.36 一个LTI系统的频率响应
若输入,求该系统的输出。
4.39 如图4-35的系统,其输出是输入的平方,即(设为实函数)。该系统是线性的吗?
(1)如,求的频谱函数(或画出频谱图)。
(2)如,求的频谱函数(或画出频谱图)。
(1) (2) (3) (4) (5)
4.19 试用时域微积分性质,求图4-23示信号的频谱。
图4-23
4.20 若已知,试求下列函数的频谱:
(1)(3) (5)
(8)(9)
4下列方式求图4-25示信号的频谱函数 (1)利用xx和线性性质(门函数的频谱可利用已知结果)。
(1)
5-18 已知系统函数和初始状态如下,求系统的零输入响应。
(1),
(3),
5-22 如图5-5所示的复合系统,由4个子系统连接组成,若各子系统的系统函数或冲激响应分别为,,,,求复合系统的冲激响应。
5-26 如图5-7所示系统,已知当时,系统的零状态响应,求系数a、b、c。
5-28 某LTI系统,在以下各种情况下起初始状态相同。已知当激励时,其全响应;当激励时,其全响应。
(7)(8)
1-7 已知序列的图形如图1-7所示,画出下列各序列的图形。
信号与系统(杨晓非)1,2,3章习题答案
e (e e lim (2 j ) 2 0
j 2t
2 t
j 2t
)
1 dt ( ) lim e2t (e j 4t e j 4t 2)dt 4 0
1 ( ) lim [e (2 j 4)t e (2 j 4)t ]dt 4 0
2
4s
6s 3 T ' mT1 12 s T 5 12 60 s f (t )为周期信号,周期为60s.
(3) f (t ) 3e t sin(3t ) 3e t Im[e j (3t ) ] 3e t cos(3t ) 2 (4) f (t ) je( j100t 2) e 2 e( j100t 2) e 2e Re[ f (t )] e 2 cos(100t ) 2
0 0
10
10
(7) sin ( 5) d sin 5 (t 5)
0 t
t
(8) ( 2 1) ( ) d ( 2 1)2 ( ) d 2 (t ) 2
10 1 (9) (2t 2 t 5) (t )dt [2t 2 t 5] 10 4 t t t 1 4
(2)显然f (t ) | cos(2t ) | 为周期信号 (3) f (t ) 3e j (2t 45 )为周期信号
信号与系统课后习题答案第5章
y(k)=[2(-1)k+(k-2)(-2)k]ε(k)
76
第5章 离散信号与系统的时域分析
5.23 求下列差分方程所描述的离散系统的零输入响应、 零状态响应和全响应。
77
第5章 离散信号与系统的时域分析 78
第5章 离散信号与系统的时域分析
确定系统单位响应: 由H(E)极点r=-2, 写出零输入响应表示式: 将初始条件yzi(0)=0代入上式,确定c1=0, 故有yzi(k)=0。
题解图 5.6-1
16
第5章 离散信号与系统的时域分析
题解图 5.6-2
17
第5章 离散信号与系统的时域分析
因此
18
第5章 离散信号与系统的时域分析
5.7 各序列的图形如题图 5.2 所示,求下列卷积和。
题图 5.2
19
第5章 离散信号与系统的时域分析 20
第5章 离散信号与系统的时域分析 21
第5章 离散信号与系统的时域分析 46
第5章 离散信号与系统的时域分析
5.16 已知离散系统的差分方程(或传输算子)如下,试求各 系统的单位响应。
47
第5章 离散信号与系统的时域分析 48
由于
第5章 离散信号与系统的时域分析
49
第5章 离散信号与系统的时域分析
因此系统单位响应为
50
第5章 离散信号与系统的时域分析 51
5.21 已知LTI离散系统的单位响应为
试求: (1) 输入为
时的零状态响应yzs(k); (2) 描述该系统的传输算子H(E)。
69
第5章 离散信号与系统的时域分析
解 (1) 由题意知: 先计算:
70
第5章 离散信号与系统的时域分析
信号与系统课后习题答案汇总
第一章习题参考解答1.1 绘出下列函数波形草图。
(1) ||3)(t et x -=(2) ()⎪⎪⎨⎧<≥=02021)(n n n x n n (3) )(2sin )(t t tx επ= (5) )]4()([4cos )(--=-t t t et x tεεπ(7) t t t t x 2cos)]2()([)(πδδ--=(9) )2()1(2)()(-+--=t t t t x εεε)5- (11) )]1()1([)(--+=t t dtdt x εε (12) )()5()(n n n x --+-=εε (13) ⎰∞--=td t x ττδ)1()((14) )()(n n n x --=ε1.2 确定下列信号的能量和功率,并指出是能量信号还是功率信号,或两者均不是。
(1) ||3)(t et x -=解 能量有限信号。
信号能量为:(2) ()⎪⎩⎪⎨⎧<≥=02021)(n n n x n n解 能量有限信号。
信号能量为:(3) t t x π2sin )(=解 功率有限信号。
周期信号在(∞-∞,)区间上的平均功率等于在一个周期内的平均功率,t π2sin 的周期为1。
(4) n n x 4sin)(π=解 功率有限信号。
n 4sin π是周期序列,周期为8。
(5) )(2sin )(t t t x επ=解 功率有限信号。
由题(3)知,在),(∞-∞区间上t π2sin 的功率为1/2,因此)(2sin t t επ在),(∞-∞区间上的功率为1/4。
如果考察)(2sin t t επ在),0(∞区间上的功率,其功率为1/2。
(6) )(4sin)(n n n x επ=解 功率有限信号。
由题(4)知,在),(∞-∞区间上n 4sin π的功率为1/2,因此)(4sinn n επ在),(∞-∞区间上的功率为1/4。
如果考察)(4sinn n επ在),0(∞区间上的功率,其功率为1/2。
杨晓非信号与系统_习题答案
杨晓非信号与系统_习题答案信号与系统习题解答1.120201lim211lim22limlimPftdtdtEftdtdtftt总1 ftt解为功率信号。
ft2 ftt-t-1解是矩形脉冲信号故为能量信号。
6fttt3解书中已作证明斜坡信号为非公非能信号。
02222222222551Plim1lim2525limlim25jtTTTTfteftftdtTdtTEftdtdtft 总4解为功率信号2222224420024240sin2limlimsin21limlim2241lim4tttjtjttjtjtjtjtftettftdtet dteeedteeedtjeedt总5 解E242401lim42424111142424124241144165lim02sin2jtjtteejjjjjjEPftett总为能量信号221611Elimlim11lim111lim02ftttftdtdttEPft总总解为能量信号12213cos22cos2ftttTTft1.2 判断下列信号是否为周期信号如果是周期信号试确定其周期。
1 解是无理数改组合正弦信号是非周期信号2452cos233jtfttfte。
显然为周期信号为周期信号121214coscoscos23632232/422/631251260fttttTsTsTmTsTsft为周期信号周期为60s.310010021002222233sin33Im3cos324Recos1002ttjttjjtjtjtfteteeetftjeeeee ftet 2cos224sin.686782278477.1.3.16622222cos24jjtfttsfkfkNfteftet5为周期信号周期为为周期序列1.4 波形略1.5 30ttf设是确定下列个信号的零值时间区间。
1ttf201 2 ttftf2021 3试绘出题图1-6所示各连续信号波形的表达式。
a 21121ttttf b 1242ttf c 1sin53ttttf d 22211214224tttttttttf 220000220220lim.limlim1.81sinsin1112sinsin0.70744443sinsinttttttfttttftttttftttt1.7试证明tcos1114sinsincos44444tfttttt220221.91sinsin0.70744sin525553123411222tttttdtttdtSattdttettdtetttdtttt dtk. 21121kfkfkkkak. 31121kfkfkkak. 4121111kfkfkkkak. 5 121112kfkfkkak. 1.18. 1偶、偶谐2偶、奇谐3偶、偶谐奇谐非唯一4奇、奇谐5奇偶谐6奇、奇谐偶谐1.19 解1 整理得25532SSSIIIIUUU 2212121211222StCCCCCtCtUUdUUUUICUUUUIIIUUUdIIUdUU22222222222222222242CSCCcCCSSSSSUUIIURIIIIIIIduICIIdtUIUIII UIIUIIIUIIIUII 整理得25532SUUUUU 1.20 解由题意ykyk-1 αyk-1- βyk-1fk ∴yk-1 α- βyk-1fk 1.21解由题意y1f1 βy1 Y2f2y1 βy1 第k个月的全部本利为yk第k-1个月初的全部本利为yk-1则第k个月初存入银行的款数为Yk-1-βyk-1fk 1.22解由题意yk32yk-1 ∴yk-32yk-10 1.23 解由题意1yxetx0 yfdftsin0-- et x10x20 etx10etx20y1xy2x满足零输入线性f1f2--满足零状态线性∴为线性系统2ytsinx0tf2tx10x20--sin x10x20t≠sinx10tsinx20t不满足零输入线性3 0xtfty不满足分解性所以是非线性系统4 lg0tfxty 是非线性系统5 0lgxtytf 不满足零线性输入所以是非线性系统 6 ytdtfxtt不满足零输入线性yyffdtt21210满足零状态线性故为非线性系统7yk2012kfkfxk yyxxxxxxxxkkk21010100100212121222 满足零输入线性2221212121kfkfkkkkkkyyyyyyyy 不满足零状态线性因而是非线性系统8 knnfkxky00 0000212121kxkxkkyyxxxx020102121nnnnkkknknknffffff 因而为线性系统1.24 1dftyt为线性系统dxxfxdftfxdtddttt因而是时不变系统02tytfd线性0ddtttdddtfttftdxtfxfxdx时变3ytft 121212ffffff 非线性dddfttfttytt 4ftyte 非线性非时变522yyff 非线性非时变6sinyyf 线性时变272ytytft 非线性非时变非时变82ytyttft 线性时变911ykkykfk 线性时变1012ykykykfk 非线性非时变1.25 1dttdt 12222fttfdytdytettetdtdt 02tRtd1.26 解由题意eettxy3321eettxy3242eettfy322 fyxyxyty35221 eeeeeetttttt333636102064 eett32276 1.27 解由题意1 2132yyty 2 ffyxyxytyyxyxyty3212121eettxyxyyy322181022321 eettfyyy3212222 tytyeettf32 。
《信号与系统(第2版》【附录+习题答案】
附 录 A 常 用 数 学 公 式A.1 三角函数公式j e cos jsin t t t ωωω=+ j e e (cos jsin )t t t σωσωω+=+j j 1cos (e e )2t t t ωωω-=+j j 1sin (e e )2jt t t ωωω-=-sin()sin cos cos sin αβαβαβ±=± cos()cos cos sin sin αβαβαβ±=sin22sin cos ααα=2222cos2cos sin 12sin 2cos 1ααααα=-=-=-1sin sin [cos()cos()]2αβαβαβ=--+1cos cos [cos()cos()]2αβαβαβ=-++1sin cos [sin()sin()]2αβαβαβ=-++双曲正弦:e e sh 2x xx --=双曲余弦:e e ch 2x xx -+=A.2 微积分公式d()d Cu C u =,C 为常数(下同)d()d d u v u v ±=±,u 、v 为t 的函数(下同) d()d d uv v u u v =+ 2d d d u v u u v v v -⎛⎫= ⎪⎝⎭d d Cu t C u t =⎰⎰()d d d u v t u t v t ±=±⎰⎰⎰信号与系统288d d u v uv v u =-⎰⎰()d ()()()()d ()bb baaau t v t u t v t v t u t =-⎰⎰A.3 数列求和公式(1)等比数列123,,,,N a a a a 的通项为11n n a a q -=,q 为公比,前n 项的和为 111(1)11NN N N n n a a q a q S a q q =--===--∑(2)等差数列123,,,,N a a a a 的通项为1(1)n a a n d =+-,d 为公差,前n 项的和为111()(1)22NN N n n N a a N N dS a Na =+-===+∑附 录 B 常 用 信 号 与 系 统 公 式B.1 连续时间信号的卷积121221()()()()d ()()d x t x t x x t x x t ττττττ∞∞-∞-∞*=-=-⎰⎰B.2 离散时间信号的卷积121221()()()()()()m m x n x n x m x n m x m x n m ∞∞=-∞=-∞*=-=-∑∑B.3 连续时间三角形式的傅里叶级数0000011()[cos()sin()]cos()kk kkk k x t a ak t b k t A A k t ωωωϕ∞∞===++=++∑∑0000001()d t T t a A x t t T +==⎰000002()cos()d 1,2,t T k t a x t k t t k T ω+==⎰, 000002()sin()d 1,2,t T k t b x t k t t k T ω+==⎰,1,2,k A k = arctan 1,2,k k k b k a ϕ⎛⎫=-=⎪⎝⎭,B.4 连续时间指数形式的傅里叶级数FS000j 01()e d t T k t k t X x t t T ω+-=⎰0j 0()()ek tk x t X k ωω∞=-∞=∑信号与系统290B.5 连续时间傅里叶变换FTj (j )()e d t X x t t ωω∞--∞=⎰j 1()(j )e d 2πt x t X ωωω∞-∞=⎰B.6 双边拉普拉斯变换()()e d st X s x t t ∞--∞=⎰j j 1()()e d 2πjst x t X s s σσ+∞-∞=⎰B.7 单边拉普拉斯变换0()()e d st X s x t t ∞--=⎰j j 1()()e d 2πjst x t X s s σσ+∞-∞=⎰,0t ≥B.8 离散时间傅里叶级数DFS2πj 1()()ekn NN N n N X k x n N -=<>=∑,0,1,2,k =±±2πj()()ekn NN N k N x n X k =<>=∑,0,1,2,n =±±B.9 离散时间傅里叶变换DTFTj j (e )()enn X x n ΩΩ∞-=-∞=∑j j 2π1()(e )e d 2πn x n X ΩΩΩ=⎰B.10 离散傅里叶变换DFT1()()01N knNn X k x n Wk N -==-∑≤≤,附 录 B 常 用 信 号 与 系 统 公 式29111()()01N kn Nk x n X k Wn N N--==-∑≤≤,B.11 双边Z 变换b ()()nn X z x n z∞-=-∞=∑11()()2n cx n X z z dzj π-=⎰B.12 单边Z 变换s 0()()nn X z x n z∞-==∑11()()2n cx n X z z dzj π-=⎰习题参考答案第1章1.1(a)确定信号、连续时间信号、非周期信号、能量信号、非因果信号。
信号与系统课后习题答案汇总
可编辑第一章习题参考解答1.1 绘出下列函数波形草图。
(1) ||3)(t e t x -= (2) ()⎪⎪⎨⎧<≥=02021)(n n n x n n (3) )(2sin )(t t t x επ= (5) )]4()([4cos )(--=-t t t e t x t εεπ (7) t t t t x 2cos )]2()([)(πδδ--= (9) )2()1(2)()(-+--=t t t t x εεε)5- (11) )]1()1([)(--+=t t dt d t x εε (12) )()5()(n n n x --+-=εε (13) ⎰∞--=t d t x ττδ)1()((14) )()(n n n x --=ε 1.2 确定下列信号的能量和功率,并指出是能量信号还是功率信号,或两者均不是。
(1) ||3)(t e t x -=解 能量有限信号。
信号能量为:(2) ()⎪⎩⎪⎨⎧<≥=02021)(n n n x n n解 能量有限信号。
信号能量为:(3) t t x π2sin )(=解 功率有限信号。
周期信号在(∞-∞,)区间上的平均功率等于在一个周期内的平均功率,t π2sin 的周期为1。
(4) n n x 4sin )(π=解 功率有限信号。
n 4sinπ是周期序列,周期为8。
(5) )(2sin )(t t t x επ= 解 功率有限信号。
由题(3)知,在),(∞-∞区间上t π2sin 的功率为1/2,因此)(2sin t t επ在),(∞-∞区间上的功率为1/4。
如果考察)(2sin t t επ在),0(∞区间上的功率,其功率为1/2。
(6) )(4sin )(n n n x επ=解 功率有限信号。
由题(4)知,在),(∞-∞区间上n 4sinπ的功率为1/2,因此)(4sin n n επ在),(∞-∞区间上的功率为1/4。
信号与系统课后习题附参考答案
1-1试分别指出以下波形是属于哪种信号?题图1-11-2 试写出题1-1图中信号的函数表达式。
1-3已知信号)(1t x 与)(2t x 波形如题图1-3中所示,试作出下列各信号的波形图,并加以标注。
题图1-3t)(2t x )(b 12112t)(1t x )(a 121123122T T2TEt)(t x )(a t)(t x )(b 13124023412t)(t x )(c n)(n x )(d 2213012112344⑴)2(1t x ⑵)1(1t x ⑶)22(1t x ⑷)3(2tx ⑸)22(2t x ⑹)21(2t x ⑺)(1t x )(2t x ⑻)1(1t x )1(2tx ⑼)22(1t x )4(2tx 1-4 已知信号)(1n x 与)(2n x 波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。
题图1-4⑴)12(1n x ⑵)4(1n x ⑶)2(1n x ⑷)2(2n x ⑸)2(2n x ⑹)1()2(22n x n x ⑺)2(1nx )21(2n x ⑻)1(1n x )4(2nx ⑼)1(1nx )3(2nx 1-5 已知信号)25(t x 的波形如题图1-5所示,试作出信号)(t x 的波形图,并加以标注。
题图1-5t)25(t x 110232523n)(2n x )(b 2213121124n)(1n x )(a 22131142134212321231-6 试画出下列信号的波形图:⑴)8sin()sin()(t t t x ⑵)8sin()]sin(211[)(t t t x ⑶)8sin()]sin(1[)(t t t x ⑷)2sin(1)(t tt x 1-7 试画出下列信号的波形图:⑴)(1)(t u e t x t⑵)]2()1([10cos )(t u t u t e t x t⑶)()2()(t u e t x t⑷)()()1(t u et x t ⑸)9()(2tu t x ⑹)4()(2tt x 1-8试求出以下复变函数的模与幅角,并画出模与幅角的波形图。
(完整版)信号与系统课后题答案
《信号与系统》课程习题与解答第二章习题(教材上册第二章p81-p87)2-1,2-4~2-10,2-12~2-15,2-17~2-21,2-23,2-24第二章习题解答2-1 对下图所示电路图分别列写求电压的微分方程表示。
图(a):微分方程:11222012()2()1()()()2()()()()2()()()c cc di t i t u t e t dtdi t i t u t dtdi t u t dt du t i t i t dt ⎧+*+=⎪⎪⎪+=⎪⇒⎨⎪=⎪⎪⎪=-⎩图(b ):微分方程:⎪⎪⎪⎩⎪⎪⎪⎨⎧-==+++=+++⎰⎰2021'2'21'2'11)(01)(1Ri t v Ri Mi Li dt i Ct e Ri Mi Li dt i C)()(1)(2)()2()(2)()(33020022203304422t e dtd MR t v C t v dt d C R t v dt d C L R t v dt d RL t v dt d M L =+++++-⇒ 图(c)微分方程:dt i C i L t v ⎰==211'101)(⎪⎪⎪⎩⎪⎪⎪⎨⎧===⇒⎰dt t v L i t v L i dtdt v L i dt d)(1)(1)(10110'1122011∵ )(122111213t i dt d L C i i i i +=+=)(0(1]1[][101011022110331t e dt dR t v RL v dt d RR L C v dt d R C R C v dt d CC μ=+++++⇒图(d)微分方程:⎪⎩⎪⎨⎧+-=++=⎰)()()()()(1)()(11111t e t Ri t v t v dt t i C t Ri t e μRC v dt d 1)1(1+-⇒μ)(11t e V CR = ∵)()(10t v t v μ=)()(1)1(0'0t e R v t v R Cv v =+-⇒2-4 已知系统相应的其次方程及其对应的0+状态条件,求系统的零输入响应。
杨晓非信号与系统第3章(1)
波形移动T/2,与原波形横轴对
称,称为奇谐函数。
f(t)的傅氏级数偶次谐波为零(只有奇次谐波分量),即
n=1,3,5,…时
4 T2 an f (t ) cos ntdt T 0
4 T2 bn f (t ) sin ntdt T 0
n 1
f (t )
n
F e
n
jnt
幅度频谱 An ~
相位频谱
n ~
离散谱,谱线
25
三.周期矩形脉冲的频谱
以周期矩形脉冲信号为例,讨论频谱的特点。
例 试计算图示周期矩形脉冲信号的傅立叶级数展开式。 f (t ) E
-T
0
T
t
解:该周期信号f (t)显然满足狄里赫勒的三个条件, 必然存在傅立叶级数展开式。
定理1.
则在 ( t1,t2)上任意函数 f(t)可用表示为:
f(t) C1f1(t) C2f2(t) Ckfk(t) Cnfn(t)
其中
Ck
t2
t1
f (t ) f
t2 t1
k
(t ) dt
2
(傅立叶系数)
f k (t )
dt
7
三.
用完备正交函数集表示任意信号
定理2.
an 0
2 T 4 T2 bn f (t ) sin ntdt f (t ) sin ntdt 0 T 0 T 0
(2) f(t)为偶函数
4 an T
f t f t
T
2
0
f (t ) cos ntdt 0
信号与系统课后习题与解答第一章
1-1 分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所示信号分别为 (a )连续信号(模拟信号); (b )连续(量化)信号; (c )离散信号,数字信号; (d )离散信号;(e )离散信号,数字信号; (f )离散信号,数字信号。
1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问) (1))sin(t e at ω-; (2)nT e -; (3))cos(πn ;(4)为任意值)(00)sin(ωωn ;(5)221⎪⎭⎫⎝⎛。
解由1-1题的分析可知: (1)连续信号; (2)离散信号;(3)离散信号,数字信号; (4)离散信号; (5)离散信号。
1-3 分别求下列各周期信号的周期T : (1))30t (cos )10t (cos -; (2)j10t e ;(3)2)]8t (5sin [;(4)[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----。
解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。
(1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15T 2π=。
由于5π为21T T 、的最小公倍数,所以此信号的周期5T π=。
(2)由欧拉公式)t (jsin )t (cos e t j ωωω+= 即)10t (jsin )10t (cos e j10t +=得周期5102T ππ==。
信号与系统课后答案(PDF)
第二章第二章 课后题答案课后题答案2-1.1.图题2-1所示电路,求响应u 2(t)对激励f(t)的转移算子H(p)及微分方程。
解 其对应的算子电路模型如图题2.1(b )所示,故对节点①,②可列出算子形式的KCL 方程为= +++−=−+0)(111)(1)()(1)(1312121t u p p t u p t f t u p t u p即()=+++−=−+0)(1)()()()(13122121t u p p t u t pf t u t u p联解得)()()(443)(22t f p H t f p p t u =++=故得转移算子为443)()()22++==p p t f t u p H (u 2(t)对f(t)的微分方程为())()(t f t u p p 34422=++即)(t f t u t u dt d t u dt d 3)(4)(4)(22222=++2-2图题2-2所示电路,求响应i(t)对激励f(t)的转移算子H(p)及微分方程。
解 其对应的算子电路模型如图2.2(b)所示。
故得)()(t f p p p p pp t f t i 3011101022221.01)(2+++=+×++=故得转移算子为30111010)()()(2+++==p p p t f t i p Hi(t)对f(t)的微分方程为)()1010()()3011(2t f p t i p p +=++即)(10)(10)(30)(11)(22t f t f dt d t i t i dt d t i dt d +=++2-3图题2-3所示电路,已知u C (0-)=1 V, i(0-)=2 A。
求t>0时的零输入响应i(t)和u C (t)。
解 其对应的算子电路模型如图题2.3(b)所示。
故对节点N 可列写出算子形式的KCL 方程为0)(2312= ++t u p p C又有uc(t)=pi(t),代入上式化简,即得电路的微分方程为=====++−+−+1)0()0(2)0()0(0)()23(2c cu u i i t i p p电路的特征方程为0232=++p p故得特征根(即电路的自然频率)为p 1=-1,p 2=-2。
杨晓非信号与系统_习题答案
信号与系统习题解答1.1221lim|()|211lim 22lim |()|lim ()()P f t dt dt E f t dt dt f t t ττττττττττεττε→∞-→∞→∞→∞-======∞∴=⎰⎰⎰⎰总(1) f(t)=(t)解为功率信号。
()f t εε(2) f(t)=(t)-(t-1)解是矩形脉冲信号,故为能量信号。
()6()f t t t ε=(3)解:书中已作证明斜坡信号为非公非能信号。
0()2222222222()5|()|51P lim|()|1lim 2525lim|()|lim25()j t T T T T f t e f t f t dtTdt TE f t dt dt f t ωϕττττττττ+→∞-→∞-→∞→∞--==∴======∞∴⎰⎰⎰⎰总(4)解为功率信号22222244200(24)(24)0()sin 2()lim |()|lim (sin 2)()1lim ()lim (2)(2)41()lim []4t t t j t j t t j t j tj t j t f t e t t f t dt e t dte e e dt e e e dt j e e dtττττττττττττε--→∞→∞------→∞→∞---+→∞===-==-+-=-+⎰⎰⎰⎰⎰总(5) 解:E(24)(24)01()lim[]|42424111()[1]42424124241()[1]44165lim 02()sin 2()j t j t t e e j j j j j j EP f t e t t ττττε---+→∞→∞-=----+=-+--+++-=--=+==∴=总为能量信号 221(6)()()11E lim ()lim (1)1lim()111lim 02()f t t tf t dt dt t E P f t ττττττττεττ→∞→∞--→∞→∞=+==+=-+=+==∴⎰⎰总总解:为能量信号1221()3cos(2)2cos()2()f t t t T T f t πωωπ=+==∴1.2 判断下列信号是否为周期信号,如果是周期信号,试确定其周期。
信号与系统第1至8章习题参考解答
《信号与系统》第1~8章习题参考解答第一章 (2)第二章 (13)第三章 (22)第四章 (35)第五章 (48)第六章(无) (56)第七章 (57)第八章 (65)第一章1-4 对于例1-1所示信号,由f (t )求f (−3t − 2),但改变运算顺序,先求f (3t )或先求f (−t ),讨论所得结果是否与原例之结果一致。
解:(1). 例1-1的方法: f (t )→ f (t − 2)→ f (3t − 2)→ f (−3t − 2) (2). 方法二:f (t )→ f (3t )→ 2[3()]3f t − →f (−3t − 2) (3). 方法三:f (t )→f (−t ) →[(2)]f t −+ →f (−3t − 2)方法三:1-5 已知()f t ,为求0()f t at −应按下列哪种运算求得正确结果(式中0t ,a 都为正值)?(1)()f at −左移0t (2)()f at 右移0t (3)()f at 左移0t a (4)()f at −右移0ta解:(4)()f at −右移t a:故(4)运算可以得到正确结果。
注:1-4、1-5 题考察信号时域运算:1-4 题说明采用不同的运算次序可以得到一致的结果; 1-5 题提醒所有的运算是针对自变量t 进行的。
如果先进行尺度变换或者反转变换,再进行移位变换,一定要注意移位量和移位的方向。
1-9 粗略绘出下列各函数式的波形图: (1)()(2)()t f t e u t −=− (2)2()(36)()t t f t e e u t −−=+ (3)3()(55)()t t f t e e u t −−=−(4)()cos(10)[(1)(2)]t f t e t u t u t π−=−−− 解:(1)()(2)()tf t e u t −=−(2)2()(36)()ttf t e eu t −−=+(3)3()(55)()ttf t e eu t −−=−(4)()cos(10)[(1)(2)]tf t e t u t u t π−=−−−1-12 绘出下列各时间函数的波形图,注意它们的区别:(1)[()(1)]−−;t u t u t(2)(1)�;t u t−(3)[()(1)](1)−−+−;t u t u t u t(4)(1)(1)−−;t u t(5)(1)[()(1)]−−−−;t u t u t(6)[(2)(3)]−−−;t u t u t(7)(2)[(2)(3)]t u t u t−−−−。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统杨晓非课后答案
【篇一:《信号与系统》考试大纲】
>(一)信号与系统的基本概念
信号的基本概念及其分类,信号的表示方法,典型连续信号及其性质,典型离散信号及性质,信号的基本运算和变换,系统的基本概念及其分类,线性非时变系统及其性质,系统性质的判定,连续系统与离散系统的数学模型,离散系统数学模型的建立,连续系统的时域模拟。
(二)连续系统的时域卷积分析法 lti连续系统的时域经典分析法。
冲激响应、阶跃响应及其与冲激响应的关系;任意波形信号的时域分解与卷积积分的定义,卷积积分的图解法和阶跃函数法、求解卷积的运算性质,lti连续系统零状态响应的卷积分析法,运用杜阿密尔积分求解系统的零状态响应。
lti离散系统的时域经典分析法。
单位序列响应、阶跃响应及其与单位序列响应的关系;任意波形离散信号的时域分解与积卷和的定义,卷积和的图解法、时限序列卷积和的不进位乘法和算式法求解、卷积和的运算性质,lti离散系统零状态响应的卷积和分析法。
(三)信号的频谱分析与傅里叶变换分析法
周期信号表为傅里叶级数,周期信号的频谱及其特点,周期信号的功率谱。
非周期信号的傅里叶变换,频谱密度及其特点,典型信号的傅里叶变换,傅里叶变换的性质,周期信号的傅里叶变换,能量谱密度和功率谱密度。
频域系统函数h(j?),lti连续系统零状态响应的傅里叶变换分析法,系统无失真传输的条件;无失真传输系统和理想低通滤波器的冲激响应与阶跃响应,抽样定理。
(四)拉普拉斯变换分析法
拉普拉斯变换及其收敛域,单边拉普拉斯变换,典型信号的单边拉普拉斯变换,单边拉普拉斯变换的性质,求拉普拉斯反变换的部分分式展开法和留数法,单边拉普拉斯变换与傅里叶变换的关系。
微分方程的拉普拉斯变换解,lti连续系统的s域分析法,电路的s 域分析法,系统函数h(s)在系统分析中的意义及求取,系统信号流图及其化简与模拟。
系统函数的零、极点概念,零极点图,连续系统函数h(s)的零极点分布与系统的时间特性、频率特性、因果性以及稳定性的定性关系,系统稳定性的判别。
(五)离散时间系统与z变换分析法
法)。
离散系统的z域分析法,z域系统函数h(z)及其求取方法,离散系
统信号流图及其化简与模拟。
系统函数h(z)的零、极点分布与系统时间特性、频率特性以及稳定
性的定性关系,离散系统稳定性的判定。
(六)状态变量分析法
状态和状态变量及动态方程,连续系统和离散系统动态方程的建立。
考试题型:1.简答题;2.判断题;3.填空题;4.分析计算题;5.综合题。
参考书目:《信号与系统》,杨晓非、何丰主编,科学出版社,2008。
【篇二:重邮2016年硕士研究生入学考试大纲】
ss=txt>《《信号与系统》与《通信原理》(801)》考试大纲
重庆邮电大学2016年硕士研究生入学
《《数字信号处理》、《c语言程序设计》、《数字电
路与逻辑设计》三选二(f09)》考试大纲
【篇三:重庆邮电大学2016年硕士研究生入学“信号与
系统”“通信原理”考试大纲】
ss=txt>《《信号与系统》与《通信原理》(801)》考试大纲。