2020年上海市高三数学二模分类汇编:解析几何(16区全)
2020年上海市高三数学二模分类汇编:三角(16区全)
1(2020静安二模). 若sin 3x =,则cos(2)x π-的值为 1(2020虹口二模). 函数()3cos21f x x =+的最小值为2(2020宝山二模). 函数)1arcsin(+=x y 的定义域是 2(2020黄浦二模). 函数22cos 2y x =+的最小正周期为 3(2020杨浦二模). 函数23cos 1y x =+的最小正周期为 3(2020徐汇二模). 函数()cos 3xf x π=的最小正周期为5(2020黄浦二模). 如果sin α=,α为第三象限角,则3sin()2πα+= 5(2020徐汇二模). 方程1sin 3x =在[,]2ππ上的解是 7(2020奉贤二模). 在△ABC 中,222sin sin sin sin sin A B C B C ≤+-⋅,则A 的取值范围是7(2020崇明二模). 若1sin()23πα+=,则cos2α=8(2020虹口二模). 设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若b =,8c =,30A =︒,则sin C =9(2020崇明二模). 将函数()sin f x x =的图像向右平移ϕ(0ϕ>)个单位后得到函数()y g x =的图像,若对满足12|()()|2f x g x -=的任意1x 、2x ,12||x x -的最小值是3π,则ϕ的最小值是10(2020普陀二模). 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若22csc()ab ca b c A B -=++,则角C 的大小为11(2020崇明二模). 在△ABC 中,,cos )AB x x =uu u r ,(cos ,sin )AC x x =uuu r ,则△ABC面积的最大值是12(2020嘉定二模). 在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,若222sin a b c A ++=,则A =14(2020宝山二模). 若函数x a x x f cos sin )(+=的图像关于直线4x π=对称,则a 的值为( )A. 1B. 1-C.D. 15(2020徐汇二模). 设点2( 1)(0)2t P t t+<,是角α终边上一点,当||OP uu u r 最小时,cos α的值是( )A. 5-B. 5C. 5D. 515(2020虹口二模). 已知函数1()sin()62f x x πω=++(0ω>)在区间(0,)2π上有且仅有两个零点,则实数ω的取值范围为( )A. 14(2,]3 B. 14[2,)3 C. 10[,4)3 D. 10(,6]315(2020长宁二模). 在直角坐标系xOy 中,角α的始边为x 轴的正半轴,顶点为坐标原点O ,已知角α的终边l 与单位圆交于点(0.6,)A m ,将l 绕原点逆时针旋转2π与单位圆交于点(,)B x y ,若4tan 3α=-,则x =( )A. 0.6B. 0.8C. 0.6-D. 0.8- 15(2020浦东二模). 已知函数()cos |cos |f x x x =⋅,给出下列结论: ①()f x 是周期函数; ②函数()f x 图像的对称中心(,0)2k ππ+(Z k ∈);③若12()()f x f x =,则12x x k π+=(Z k ∈);④不等式sin 2|sin 2|cos2|cos2|x x x x ππππ⋅>⋅的解集为15{|,Z}88x k x k k +<<+∈; 则正确结论的序号是( )A. ①②B. ②③④C. ①③④D. ①②④16(2020静安二模). 若函数()sin()f x A x ωϕ=+(0A >,0ω>,0ϕπ≤<)满足下列条件:①()f x 的图像向左平移π个单位时第一次和原图像重合,对任意的x ∈R 都有()(26f x f π≤=)成立.(1)求()f x 的解析式;(2)若锐角△ABC 的内角B 满足()1f B =,且B ∠的对边1b =, 求△ABC 的周长l 的取值范围.18(2020闵行二模). 已知函数2()3cos cos f x x x x ωωω=+(0ω>). (1)当()f x 的最小正周期为2π时,求ω的值;(2)当1ω=时,设△ABC 的内角A 、B 、C 对应的边分别为a 、b 、c ,已知()32A f =,且a =,6b =,求△ABC 的面积.18(2020松江二模). 已知函数2()2cos cos f x x x x =+.(1)求()f x 的最大值和最小正周期T ;(2)在△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,已知()32Af =,且1a =, 求△ABC 面积的最大值.18(2020宝山二模). 已知函数())f x x ωϕ=+,()g x x ω=,0ω>,[0,)ϕπ∈,它们的最小正周期为π.(1)若)(x f y =是奇函数,求)(x f 和)(x g 在[0,]π上的公共递减区间D ; (2)若()()()h x f x g x =+的一个零点为6x π=-,求()h x 的最大值.18(2020普陀二模). 设函数2()2sin ())1263x f x x ωππω=++-.(1)当01ω<<时,若函数()f x 的最大值为()2f π,求函数()f x 的最小正周期; (2)若函数()f x 在区间(,2)ππ内不存在零点,求正实数ω的取值范围.18(2020嘉定二模). 设常数a ∈R ,函数2()2cos f x x a x =+.(1)若()f x 为奇函数,求a 的值;(2)若()36f π=,求方程()2f x =在区间[0,]π上的解.18(2020青浦二模). 已知函数2π()[2sin()sin ]cos 3f x x x x x =++. (1)若函数()y f x =的图像关于直线x a =(0a >)对称,求a 的最小值; (2)若存在05[0,]2π1x ∈,使0()20mf x -=成立,求实数m 的取值范围.18(2020杨浦二模). 已知三角形ABC 中,三个内角A 、B 、C 的对应边分别为a 、b 、c ,且5a =,7b =.(1)若3B π=,求c ;(2)设点M 是边AB 的中点,若3CM =,求三角形ABC 的面积.18(2020金山二模). 已知函数2()2cos 2xf x x =. (1)求函数()f x 在区间[0,]π上的单调递增区间; (2)当11()5f α=,且236ππα-<<,求sin(2)3πα+的值.18(2020长宁二模). 已知函数()sin f x x x =-,R x ∈.(1)设△ABC 的内角A 、B 、C 所对的边长分别为a 、b 、c ,若()0f A =,且2b =,3c =,求a 的值;(2)求函数()cos y f x x =的最大值.18(2020浦东二模). 已知锐角α、β的顶点与坐标原点重合,始边与x 轴正方形重合,终边与单位圆分别交于P 、Q 两点,若P 、Q . (1)求cos()αβ+的大小;(2)在△ABC 中,a 、b 、c 分别为三个内角A 、B 、C 对应的边长,若已知角C αβ=+,3tan 4A =,且22a bc c λ=+,求λ的值.。
2020年上海各区高三二模分类汇编-5解析几何(教师版)
2020年二模汇编——解析几何一、填空题【奉贤2】已知圆的参数方程为62cos 2sin x y θθ=+⎧⎨=⎩,则此圆的半径是【答案】2【解析】考察圆的参数方程, ()2264,2x y r -+==【松江3】已知动点P 到定点(1,0)的距离等于它到定直线:1l x =-的距离,则点P 的轨迹方程为 . 【答案】24y x =【解析】动点到定点的距离等于它到定直线的距离,因为定点不在定直线上,所以的轨迹是抛物线,为焦点,为准线。
因为22y px =的焦点是(,0)2p,即,所以2p =,进而抛物线方程为24y x =.【闵行3】若直线01=++by ax 的方向向量为()1,1,则此直线的倾斜角为_______【答案】4π 【解析】()4,1tan ,1,1πθθ====k【奉贤4】已知P 为曲线22:1412x y Γ+=上位于第一象限内的点,1F 、2F 分别为Γ的两焦点,若12F PF ∠是直角,则点P 坐标为【答案】【解析】考察焦点三角形的面积21tan222P P b c y y θ=⋅⋅⇒=代入若原椭圆方程解得P x =,所以P点坐标为【宝山4】已知双曲线()2222:10,0x y C a b a b-=>>的实轴与虚轴长度相等,则C 的渐近线方程是 。
【答案】y x =±P (1,0):1l x =-P (1,0):1l x =-(1,0)【解析】由题意知by x a=±,a b =,所以y x =±。
【黄浦4】若直线1:350l ax y +-=与2:210l x y +-=互相垂直,则实数a 的值为 【答案】6-【解析】60,6a a +==-【青浦5】双曲线22144x y -=的一个焦点到一条渐近线的距离是__________.【答案】2【解析】双曲线22144x y -=的焦点为()±,渐近线方程为y x =±,由点到直线距离公式得距离2d =.【金山6】已知双曲线2221(0)x y a a-=>的一条渐近线方程为20x y -=,则实数a = .【答案】12【解析】2221(0)x y a a -=>的渐近线方程为:x y a =±,12,2x y x a a ===【浦东6】在平面直角坐标系xOy 中,直线l 的参数方程为1x t y t =-⎧⎨=⎩(t 为参数),圆O 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),则直线l 与圆O 的位置关系是 .【答案】相交【解析】直线l 的一般方程是10x y -+=,圆O 的一般方程是221x y +=,圆心到直线距1<,直线l 与圆O 的位置关系是相交【长宁6】直线2:12x tl y t=+⎧⎨=-+⎩(t 是参数)的斜率为 .【答案】2【解析】由直线的参数方程定义可知直线方程为()122y x =-+-,所以2k =【黄浦7】已知双曲线22221x y a b-=(0a >,0b >)的一条渐近线平行于直线:210l y x =+, 双曲线的一个焦点在直线l 上,则双曲线的方程为【答案】221520x y -= 【解析】22222222,5,5255,1520b x yc c a b a a a ===+==⇒=-= 【浦东8】已知双曲线的渐近线方程为x y ±=,且右焦点与抛物线x y 42=的焦点重合,则这个双曲线的方程是____________. 【答案】12222=-y x【解析】抛物线x y 42=的焦点为()10,,设双曲线的方程为22x y λ-=,即221x y λλ-=,则1+12λλλ=⇒=,所以双曲线的方程是12222=-y x 【徐汇8】已知直线()()2130a x a y ++--=的方向向量是直线()(1)2320a x a y -+++=的法向量,则实数a 的值为 .【答案】1±【解析】由题意得两直线垂直()()()()2112+3=0a a a a ∴+-+-,()()1223=0a a a ∴-+--,所以()()110a a ---=,所以1a =±【杨浦8】已知曲线1C 的参数方程为212x t y t =-⎧⎨=+⎩(t 是参数),曲线2C 的参数方程为15cos 5sin x y θθ⎧=-+⎪⎨=⎪⎩(θ是参数),则1C 和2C 的两个交点之间的距离为 【答案】556 【解析】 ()51:,052:2221=++=+-y x C y x C 5501---=∴d 54=55653251652222==-=-=∴d r l 【虹口10】已知1F 、2F 是椭圆222:13x y C a +=(3a >)的左、右焦点,过原点O 且倾斜角为60o的直线与椭圆C 的一个交点为M ,若1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r ,则椭圆C 的长轴长为【答案】232+【解析】依据题意画出大致图像:因为1212MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r,即等价为1290F MF ︒∠=211tan 3,22M F MF S b y ∴===⨯y =则M ⎫,代入椭圆方程得:()()22233133a a a +=--,化简可得:42630a a --=解得)2231a =+=22a ∴=【嘉定11】设p 是双曲线2218y x -=上的动点,直线3cos sin x t y t θθ=+⎧⎨=⎩t (为参数)与圆()2231x y -+=相交与A ,B 两点,则PA PB u u u r u u u rg 的最小值是【答案】3【解析】如图所示,运用极化恒等式有:PA PB u u u r u u u rg 222222=PC PC 1213CA -=-≥-=【青浦11】已知正三角形ABC 的三个顶点均在抛物线2x y =上,其中一条边所在直线的ABC ∆的三个顶点的横坐标之和为__________.【答案】10-【解析】令()()()222112233,,,,,A x x B x x C x x.令22212121ABx x k x x x x -==+=-ABC中22313131ACx x k x x x x -==+==-223232325BCx x k x x x x --==+==-由此可得出13210x x x ++=-.【黄浦12】点A是曲线y =(2y ≤)上的任意一点,(0,2)P -,(0,2)Q ,射线QA 交曲线218y x =于B 点,BC 垂直于直线3y =,垂足为点C ,则下列结论:(1)||||AP AQ -为定值22; (2)||||QB BC +为定值5;(3)||||||PA AB BC ++为定值52+; 其中正确结论的序号是 【答案】①②【解析】(1)由题意可知,曲线22y x =+(2y ≤)是双曲线22122y x -=的上半支,根据双曲线定义可知,正确(2)曲线28x y =的准线2y =-,故正确(3)||||||||||5||5||||522PA AB BC PA AB QB PA AQ ++=++-=+-=+,故错误【奉贤12】在平面直角坐标系内有两点(,1)A m -,(2,1)B -,2m <,点A 在抛物线22y px =上,F 为抛物线的焦点,若2||||6AB AF +=,则m = 【答案】51-+,12-,16-【解析】12||2122m AB m pm p m<∴=-∴=∴=Q 抛物线的准线方程为14x m =-由抛物线的定义知1||||4AF m m =+于是条件可转化为12(2)||64m m m-++= 当0m >时, 25481012m m m +-=∴=-+(舍负) 当0m <时, 21128106m m m ++=∴=-或12m =- 【杨浦12】已知抛物线1Γ与2Γ的焦点均为点(2,1)F ,准线方程分别为0x =与5120x y +=,设两抛物线交于A 、B 两点,则直线AB 的方程为【答案】230x y -=【解析】由题意可知A 和B 两点既在1Γ又在2Γ上,所以到两准线的距离相等,由点到直线距离公式可知51213x yx +=,由抛物线定义以及焦点位置和准线方程并结合图像知AB 斜率为正,所以AB 方程为230x y -=二、选择题【宝山13】抛物线24y x =的准线方程是( )【A 】2x =- 【B 】1x =- 【C 】18y =-【D 】116y =- 【答案】D【解析】 由24y x =得到214x y =,则其准线方程为116y =-. 【虹口13】已知抛物线24y x =上的点M 到它的焦点的距离为5,则点M 到y 轴的距离为( ) 【A 】2 【B 】4 【C 】5 【D 】6 【答案】B【解析】抛物线24y x =的焦点坐标()1,0,抛物线上24y x =的一点M 到该抛物线的焦点F 的距离,则M 到准线的距离为5,则点M 到y 轴的距离为:4,故答案为:4【松江13】若O 为坐标原点,P 是直线20x y -+=上的动点,则OP 的最小值为( )【A 】2【B【C 【D 】2 【答案】B【解析】OP 的最小值为原点O 到直线20x y -+=的距离,即:min d ==【崇明14】若抛物线28y x =的焦点F 与双曲线2213x y n-=的一个焦点重合,则n 的值为( )【A 】1- 【B 】1 【C 】2 【D 】13 【答案】B【解析】由()20,2=⇒c F ,所以1432=⇒=+=n n c ,故选B【闵行15】已知抛物线的方程为24y x =,过其焦点F 的直线交此抛物线于,M N 两点,交y 轴于点E ,若1EM MF λ=,2EN NF λ=,则12λλ+=( ) 【A 】2- 【B 】12-【C 】1【D 】1- 【答案】D【解析】设()()⎪⎭⎫ ⎝⎛-+=m E y x N y x M my x l 1,0,,,,,1:2211 112114,4044412121221*********-=+⋅--=+-+-=+-==+∴=--⇒⎩⎨⎧=+=y y y y m y m y y m y y y m y y my y xy my x λλ【青浦15】记椭圆221441x ny n +=+围成的区域(含边界)为(1,2,)n n Ω=L ,当点(,)x y 分别在1Ω,2Ω,L 上时,x y +的最大值分别是1M ,2M ,L ,则lim n n M →∞=( ).【A 】2 【B 】4 【C 】3【D 】【答案】D【解析】令2222cos ,sin 441x ny n θθ==+,2cos ,x y θθ∴==2cos ),x y θθθϕ∴+=+=+lim n n n μ→∞→∞∴==【杨浦15】设1F 、2F 是椭圆22194x y +=的两焦点,A 与B 分别是该椭圆的右顶点与上顶点,P 是该椭圆上的一个动点,O 是坐标原点,记2122s OP F P F P =-⋅uu u r uuu r uuu r,在动点P 在第一象限内从A 沿椭圆向左上方运动到B 的过程中,s 的大小的变化情况为( )【A 】 逐渐变大 【B 】 逐渐变小 【C 】 先变大后变小 【D 】 先变小后变大 【答案】B【解析】令()()()()()202020202100520,5,0,5,,y x y x s F F y x P +--+=∴-595591452020202020+=+⎪⎪⎭⎫ ⎝⎛-+=++=x x x y x s ,可知选B 三、解答题【宝山20】已知直线:l y kx m =+ 和椭圆22:142x y Γ+=相交于点()()1122,,,A x y B x y .(1)当直线l 过椭圆Γ的左焦点和上顶点时,求直线l 的方程; (2)点)C在Γ上,若0m =,求ABC ∆面积的最大值;(3)如果原点O 到直线l的距离是3,证明:AOB ∆为直角三角形。
2020年上海16区中考数学二模分类汇编-专题10 几何证明(23题压轴题)(逐题详解版)
2020年上海市16区中考数学二模汇编专题10 几何证明(23题压轴题)1.(2020闵行二模)2.(2020嘉定二模)3.(2020松江二模)4.(2020宝山二模)5.(2020奉贤二模)6.(2020金山二模)7.(2020静安二模)8.(2020长宁二模)9.(2020崇明二模) 10.(2020浦东二模) 11.(2020徐汇二模) 12.(2020青浦二模)13.(2020虹口二模) 14(2020杨浦二模) 15(2020黄浦二模) 16.(2020普陀二模)1.(2020闵行二模)如图,已知在平行四边形ABCD中,AE⊥BC,垂足为E,CE=AB,点F为CE的中点,点G在线段CD上,联结DF,交AG于点M,交EG于点N,且∠DFC=∠EGC.(1)求证:CG=DG;(2)求证:2CG GM AG=⋅.2.(2020嘉定二模)已知:△ABC,ACAB=,∠BAC=90°,点D是边BC的中点,点E在边AB上(点E不与点A、B重合),点F在边AC上,联结DE、DF.(1)如图6-1,当∠EDF=90°时,求证:BE=AF;(2)如图6-2,当∠EDF=45°时,求证:.CFBEDFDE=22FD CABEEDAF3.(2020松江二模)如图,已知AB 、AC 是⊙O 的两条弦,且AO 平分∠BAC . 点M 、N 分别在弦AB 、AC 上,满足AM=CN .(1)求证AB=AC ;(2)联结OM 、ON 、MN ,求证:.4.(2020宝山二模)如图5,E F 、分别是正方形ABCD 的边DC CB 、的中点,以AE 为边作正方形AEHG ,HE 与BC 交于点Q ,联结AQ DF 、.(1)求证:AE DF ⊥;(2)设123,,,CEQ AED EAQ S S S S S S ∆∆∆===,求证123S S S +=.OAOM AB MN = ABC O M5.(2020奉贤二模)已知:如图6,在梯形ABCD 中,CD ∥AB ,∠DAB=90°,对角线AC 、BD 相交于点E ,AC ⊥BC ,垂足为点C ,且CA CE BC ⋅=2.(1)求证:AD=DE ;(2)过点D 作AC 的垂线,交AC 于点F ,求证:AF AE CE ⋅=2.6. (2020金山二模)如图,已知C 是线段AB 上的一点,分别以AC 、BC 为边在线段AB 同侧作正方形ACDE 和正方形CBGF ,点F 在CD 上,联结AF 、BD ,BD 与FG 交于点M ,点N 是边AC 上一点,联结EN 交AF 于H .A B C DE图6(1)求证:AF =BD ;(2)如果GF GM AC AN =,求证:AF ⊥EN .7.(2020静安二模)已知:如图8,四边形ABCD 是平行四边形,延长BA 至点E ,使得AE=AB ,联结DE 、AC .点F 在线段DE 上,联结BF ,分别交AC 、AD 于点G 、H .(1)求证:BG =GF ;(2)如果AC =2AB ,点F 是DE 的中点,求证:BH GH AH ⋅=2.E8.(2020长宁二模)如图6,已知四边形ABCD 是矩形,点E 在对角线AC 上,点F 在边CD 上(点F 与点C 、D 不重合),EF BE ⊥,且︒=∠+∠45CEF ABE . (1)求证:四边形ABCD 是正方形;(2)联结BD ,交EF 于点Q ,求证:DF CE BC DQ ⋅=⋅.9.(2020崇明二模)如图,已知四边形ABCD 菱形,对角线AC BD 、相交于点O ,DH AB ⊥,垂足为点H ,交AC 于点E ,连接HO 并延长交CD 于点G .(1)求证:12DHO BCD ∠=∠; (2)求证:2HG AE DE CG =.10.(2020浦东二模).已知:如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点E ,过点E 作AC 的垂线交边BC 于点F ,与AB 的延长线交于点M ,且AB AM AE AC ⋅=⋅.求证:(1)四边形ABCD矩形;(2)2DE EF EM =⋅.11.(2020徐汇二模) 如图,平行四边形ABCD 中,点E 、F 、G 、H 分别在AB 、BC 、CD 、AD 边上且AE=CG ,AH=CF .(1)求证:四边形EFGH 是平行四边形; (2)如果AB=AD ,且AH=AE ,求证:四边形EFGH 是矩形.是12.(2020青浦二模)如图6,在平行四边形ABCD 中,BE 、DF 分别是平行四边形的两个外角的平分线,12EAF BAD ∠=∠,边AE 、AF 分别交两条角平分线于点E 、F .(1)求证:ABE ∆∽FDA ∆;(2)联结BD 、EF ,如果2DF AD AB =⋅,求证:BD EF =.13.(2020•虹口区二模)如图,在△ABC 中,AB =AC ,点D 在边BC 上,联结AD ,以AD 为一边作△ADE ,满足AD =AE ,∠DAE =∠BAC ,联结EC .(1)求证:CA 平分∠DCE ;(2)如果AB 2=BD •BC ,求证:四边形ABDE 是平行四边形.G F E DC B A H14.(2020杨浦二模)如图,已知在正方形ABCD 中,对角线AC 与BD 交于点O ,点M 在线段OD 上,联结AM 并延长交边DC 于点E ,点N 在线段OC 上,且ON=OM ,联结DN 与线段AE 交于点H ,联结EN 、MN .(1)如果EN //BD ,求证:四边形DMNE 是菱形;(2)如果EN ⊥DC ,求证:2AN NC AC =⋅.15(2020黄浦二模) 已知:如图,圆O 是△ABC 的外接圆,AO 平分∠BAC .(1)求证:△ABC 是等腰三角形;(2)当OA =4,AB =6,求边BC 的长.16.(2020普陀二模)2020年上海市16区中考数学二模汇编专题10 几何证明(23题压轴题)1.(2020闵行二模)2.(2020嘉定二模)3.(2020松江二模)4.(2020宝山二模)5.(2020奉贤二模)6.(2020金山二模)7.(2020静安二模)8.(2020长宁二模)9.(2020崇明二模) 10.(2020浦东二模) 11.(2020徐汇二模) 12.(2020青浦二模)13.(2020虹口二模) 14(2020杨浦二模) 15(2020黄浦二模) 16.(2020普陀二模)1.(2020闵行二模)如图,已知在平行四边形ABCD中,AE⊥BC,垂足为E,CE=AB,点F为CE的中点,点G在线段CD上,联结DF,交AG于点M,交EG于点N,且∠DFC=∠EGC.(1)求证:CG=DG;(2)求证:2CG GM AG=⋅.【分析】(1)首先证明△ECG≌△DCF,则有CG=CF,因为CF=12CE,则有CG=12CD,则结论可证;(2)延长AG、BC交于点H,首先证明△ADG≌△HCG,则有AG=HG,然后根据直角三角形斜边中线有AG=HG=EG,进而得出∠CDF=∠DAH,进一步可证△ADG∽△DMG,则有MG DGDG AG=,即2DG GM AG=⋅,又因为CG=DG即可证明结论.【详解】证明:(1)∵四边形ABCD是平行四边形,CE=AB,∴AB=CD=EC.又∵∠DFC=∠EGC,∠FCD=∠GCE,∴△ECG≌△DCF,∴CG=CF.∵点F为CE的中点,∴CF=12 CE,∴CG=12 CD,即:CG=DG.(2)延长AG、BC交于点H.∵△ECG≌△DCF,∴∠CEG=∠CDF,DG=CG.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAH=∠H,∠ADC=∠DCH.∴△ADG≌△HCG,∴AG=HG.∵AE⊥BC,∴∠AEC=90°,∴AG=HG=EG.∴∠CEG=∠H,∴∠CDF=∠DAH.又∵∠AGD=∠DGM,∴△ADG∽△DMG.∴MG DG DG AG,∴2DG GM AG =⋅又,CG=DG ,,2CG GM AG =⋅.【点睛】本题主要考查全等三角形的判定及性质,相似三角形的判定及性质,掌握全等三角形的判定及性质,相似三角形的判定及性质是解题的关键.2.(2020嘉定二模)已知:△ABC ,AC AB =,∠BAC =90°,点D 是边BC 的中点,点E 在边AB 上(点E 不与点A 、B 重合),点F 在边AC 上,联结DE 、DF .(1)如图6-1,当∠EDF =90°时,求证:BE =AF ;(2)如图6-2,当∠EDF =45°时,求证:.CF BE DF DE =22证明:(1)联结AD (如图6-1).在Rt △ABC 中,∵︒=∠90BAC ,CD BD =,∴AD BD =,BC AD ⊥,︒=∠=∠45CAD BAD . ···················································· 1分在△ABC 中,∵AC AB =,∴C B ∠=∠. ······································································ 1分∵︒=∠90BAC ,∴︒=∠+∠90C B .∴︒=∠=∠45C B .又∵︒=∠45CAD ,∴CAD B ∠=∠. ·········································································· 1分∵︒=∠+∠90ADE BDE ,︒=∠+∠90ADE ADF ,∴ADF BDE ∠=∠. ·················· 1分在△BDE 和△ADF 中,∵CAD B ∠=∠,AD BD =,ADF BDE ∠=∠,∴△BDE ≌△ADF . ································································································· 1分∴AF BE =. ··········································································································· 1分FDC AB EE D A F(2)∵EDF BDE BDF ∠+∠=∠,CFD C BDF ∠+∠=∠,∴=∠+∠EDF BDE CFD C ∠+∠.又∵︒=∠=∠45EDF C ,∴=∠BDE CFD ∠. ····· 1分又∵C B ∠=∠,∴△BDE ∽△CFD . ·············································································· 1分∴DF DE CF BD CD BE ==. ·································································································· 2分 ∴2)(DFDE CF BD CD BE =⋅. ································································································ 1分 又∵CD BD =,∴.22CFBE DF DE = ·················································································· 1分 方法2. 如图6-2,联结AD ,过点D 作AB DG ⊥,AC DH ⊥,垂足分别为G 、H .证出△BDE ∽△CFD ,累计得到 ··················································································· 2分∴.S S DF DE CFDBDE △△=22 ········································································································ 1分 写出DH CF DG BE DH CF DG BE S S CFD BDE⋅⋅=⋅⋅=2121△△. ········································································ 1分 证出DH DG =, ········································································································ 1分∴.22CF BE DFDE = ············································································································ 1分3.(2020松江二模)如图,已知AB 、AC 是⊙O 的两条弦,且AO 平分∠BAC . 点M 、N 分别在弦AB 、AC 上,满足AM=CN .(1)求证AB=AC ;(2)联结OM 、ON 、MN ,求证:. OAOM AB MN = FDC AB EH G E D A B F证明: (1)过点O 作OD ⊥AB , OE ⊥AC …………………………………………1分∵AO 平分∠BAC .∴OD=OE …………………………………………………………2分∴AB =AC ………………………………………………………………………………2分(2) 联结OB ,∠1,∠2,∠3,∠4,∠5如图所示,∵AM=CN, AB =AC∴BM =AN ………………………………………………………………………………1分∵OA =OB ,∴∠1 =∠3∵∠1 =∠2,∴∠2 =∠3 ……………………………………………………………1分∴△BOM ≌△AON ……………………………………………………………………1分∴∠4=∠5 ,OM =ON …………………………………………………………………1分∴∠AOB =∠MON ……………………………………………………………………1分∴△NOM ∽△BOA ……………………………………………………………………1分 ∴OA OM AB MN = ……………………………………………………………………1分4.(2020宝山二模)如图5,E F 、分别是正方形ABCD 的边DC CB 、的中点,以AE 为边作正方形AEHG ,HE 与BC 交于点Q ,联结AQ DF 、.(1)求证:AE DF ⊥;(2)设123,,,CEQ AED EAQ S S S S S S ∆∆∆===,求证123S S S +=.ABC O M解析:(1)证明:∵四边形ABCD 是正方形∴AD =DC ,∠ADE =∠DCF =90°在△ADE 和△DCF 中{AD =DC∠ADE =∠DCF DF =CE∴△ADE ≌△DCF (SAS )∴∠EAD =∠CDF∵∠AED +∠CDF =90°∴∠AED +∠EAD =90°∴AE ⊥DF(2)易证△ADE ∽△ECQ∵E 是CD 的中点∴1 2QE CE DE AE AD AD === ∵∠ADE =∠C =90°∴△AEQ ∽△ADE ∽△ECQ设CE =DE =a ,则AD =2a ,AE =√5a ∴1315S S =,234 5S S = ∴123 S S S +=5.(2020奉贤二模)已知:如图6,在梯形ABCD 中,CD ∥AB ,∠DAB=90°,对角线AC 、BD 相交于点E ,AC ⊥BC ,垂足为点C ,且CA CE BC ⋅=2.(1)求证:AD=DE ;(2)过点D 作AC 的垂线,交AC 于点F ,求证:AF AE CE ⋅=2.证明:(1)∵CA CE BC ⋅=2,∴BC CA CE BC . ································································· (1分) ∵BCA ECB ∠=∠,∴△BCE ∽△ACB . ····························································· (1分)∴CBE CAB . ······························································································ (1分) ∵AC ⊥BC,∠DAB=90°,∴90BEC CBE ∠+∠=︒,90DAE CAB ∠+∠=︒. ∴BEC DAE . ································································································ (1分) ∵BECDEA ,∴DAE DEA . ····························································· (1分) ∴AD DE . ············································································································ (1分) (2)∵DF ⊥AC , AC ⊥BC ,∴∠DFE=∠BCA =90°.∴//DF BC . ∴CE BE EF DE=. ··········································································································· (2分) ∵//DC AB ,∴BE AE DE CE =. ················································································· (1分) ∴CE AE EF CE=. ··············································································································· (1分) ∵AD DE ,DF ⊥AC ,∴AF EF . ······································································· (1分) ∴2CE AE EF =⋅. ······································································································· (1分)7. (2020金山二模)如图,已知C 是线段AB 上的一点,分别以AC 、BC 为边在线段AB 同侧作正方A B C DE图6形ACDE 和正方形CBGF ,点F 在CD 上,联结AF 、BD ,BD 与FG 交于点M ,点N 是边AC 上一点,联结EN 交AF 于H .(1)求证:AF =BD ;(2)如果GF GM AC AN =,求证:AF ⊥EN . 证明:(1),四边形ACDE 和四边形BCFG 是正方形,,AC =DC ,FC =BC ,,ACF =,DCB =90°,,△ACF ≌△DCB ,---------------------------(4分),AF =BD . ---------------------------------------------------------------------------------------------(2分)(2)在正方形ACDE 和正方形CBGF 中,AC =AE ,GF =GB ,,AN GM AC GF =,,AN GM AE GB =,又,,EAN =,BGM =90°,,△AEN ∽△GBM ,,,AEN =,GBM ,-----------------------(2分),四边形BCFG 是正方形,∴CD ∥BG ,∴,CDB =,GBM ,∵△ACF ≌△DCB ,∴,CAF =,CDB ,∴,CAF =,AEN ,----------------------------------(2分)∵∠EAN =90°,∴,AEN +,ANE=90°,∴,NAH +,ANH=90°,∴,AHN=90°,∴AF ⊥EN .------------------------------------------------------------------------(2分)7.(2020静安二模)已知:如图8,四边形ABCD 是平行四边形,延长BA 至点E ,使得AE=AB ,联结DE 、AC .点F 在线段DE 上,联结BF ,分别交AC 、AD 于点G 、H .(1)求证:BG =GF ;(2)如果AC =2AB ,点F 是DE 的中点,求证:BH GH AH ⋅=2.E证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB //CD . ······························································································ (1分)∵AB =AE ,∴AE =CD . ······························································································ (1分)∴四边形ACDE 是平行四边形. ··············································································· (1分)∴AC//DE . ················································································································· (1分) ∴1==AE AB GF BG . ····································································································· (1分) ∴BG =GF . ·················································································································· (1分)(2)∵AB =AE ,∴BE =2AE . ∵AC =2AB ,∴BE =AC .∵四边形ACDE 是平行四边形,∴AC=DE .∴DE=BE . ··················································································································· (1分)∵点F 是DE 的中点,∴ DE=2EF .∴AE= EF . ·················································································································· (1分)∵∠E =∠E ,∴△BEF ≌△DEA . ··············································································· (1分)∴∠EBF =∠EDA . ······································································································· (1分)∵AC //DE ,∴∠GAH =∠EDA .∴∠EBF =∠GAH .∵∠AHG=∠BHA ,∴△AHG ∽△BHA . ··································································· (1分)∴AHGH BH AH =. ∴BH GH AH ⋅=2. ······························································································· (1分)8.(2020长宁二模)如图6,已知四边形ABCD 是矩形,点E 在对角线AC 上,点F 在边CD 上(点F 与点C 、D 不重合),EF BE ⊥,且︒=∠+∠45CEF ABE . (1)求证:四边形ABCD 是正方形;。
2020年上海市高三数学二模分类汇编:函数(16区全)
2(2020静安二模). 若幂函数()y f x =的图像经过点1(,2)8,则1()8f -的值为2(2020虹口二模). 函数()f x =的定义域为 2(2020金山二模). 函数12y x-=的定义域是3(2020青浦二模). 已知函数1()1f x x=+,则方程1()2f x -=的解x = 3(2020浦东二模). 若函数12()f x x =,则1(1)f -=4(2020静安二模). 若函数()y f x =(x ∈R )是偶函数,在区间(,0]-∞上是增函数,2x =是其零点,则()0f x >的解集为4(2020崇明二模). 已知函数()21x f x =+,其反函数为1()y f x -=,则1(3)f -= 5(2020虹口二模). 已知函数()g x 的图像与函数2()log (31)x f x =-的图像关于直线y x =对称,则(3)g =5(2020金山二模). 已知函数21()11x f x =,则1(0)f -=6(2020徐汇二模). 若11()21xf x a=+-是奇函数,则实数a 的值为 7(2020宝山二模). 某种微生物的日增长率r ,经过n 天后其数量由0p 变化为p ,并且满足方程0rnp p e =.实验检测,这种微生物经过一周数量由2.58个单位增长到14.86个单位,则增长率=r (精确到1%)7(2020金山二模). 已知函数1()lg sin 11xf x x x-=+++,若()4f m =,则()f m -= 8(2020嘉定二模). 已知函数()2log a f x x =+(0a >且1a ≠)的反函数为1()y f x -=,若1(3)2f -=,则a =8(2020黄浦二模). 已知函数()x f x a b =+(0a >,1a ≠)的定义域和值域都是[2,0]-,则(1)f -=8(2020松江二模). 若函数2()log (21)x f x kx =++是偶函数,则k =9(2020长宁二模). 已知111{2,1,,,,1,2,3}232α∈---,若函数()f x x α=在(0,)+∞上递减且为偶函数,则α=9(2020青浦二模). 设{1,3,5}a ∈,{2,4,6}b ∈,则函数1()log baf x x=是减函数的概率为10(2020青浦二模). 已知函数()f x =,若存在实数0x 满足00[()]f f x x =,则实数a 的取值范围是10(2020静安二模). 设(,)n n A n y (*n ∈N )是函数12y x x=+的图像上的点,直线1x n =+与直线n y y =的交点为n B ,△1n n n A B A +的面积为n S ,则lim n n S →∞的值为10(2020闵行二模). 已知(2)f x +是定义在R 上的偶函数,当12,[2,)x x ∈+∞,且12x x ≠,总有12120()()x x f x f x -<-,则不等式1(31)(12)x f f +-+<的解集为10(2020浦东二模). 已知函数222()log (2)2f x x a x a =+++-的零点有且只有一个,则实数a 的取值集合为10(2020松江二模). 已知函数()cos(2)6f x x π=-,若对于任意的1[,]44x ππ∈-,总存在2[,]x m n ∈,使得12()()0f x f x +=,则||m n -的最小值为11(2020黄浦二模). 已知a ∈R ,函数22(0)()1(0)a x f x xx x ⎧+>⎪=⎨⎪+≤⎩,若存在不相等的实数1x 、2x 、3x ,使得312123()()()2f x f x f x x x x ===-,则a 的取值范围是 11(2020奉贤二模). 三个同学对问题“已知,R m n +∈,且1m n +=,求11m n+的最小值”提出各自的解题思路:甲:112m n m n n m m n m n m n +++=+=++,可用基本不等式求解; 乙:1111(1)m n m n mm mn m m ++===-,可用二次函数配方法求解;丙:1111()()2n mm n m n m n m n+=++=++,可用基本不等式求解;参考上述解题思路, 可求得当x = 时,2221100a y x x=+-(010x <<,0a >)有最小值 12(2020虹口二模). 已知函数|51|1()811x x f x x x ⎧-<⎪=⎨≥⎪+⎩,若方程(())f f x a =恰有5个不同的实数根,则实数a 的取值范围为 12(2020闵行一模). 已知函数()|sin ||cos |4sin cos f x x x x x k =+--,若函数()y f x =在区间(0,)π内恰好有奇数个零点,则实数k 的所有取值之和为12(2020崇明二模). 对于函数()f x ,其定义域为D ,若对任意的12,x x D ∈,当12x x <时都有12()()f x f x ≤,则称函数()f x 为“不严格单调增函数”,若函数()f x 定义域为{1,2,3,4,5,6}D =,值域为{7,8,9}A =,则函数()f x 是“不严格单调增函数”的概率是 12(2020松江二模). 已知函数20()|log ()|0a x x f x xx x ⎧+>⎪=⎨⎪-<⎩(R a ∈且a 为常数)和()g x k =(R k ∈且k 为常数),有以下命题:① 当0k <时,函数()()()F x f x g x =-没有零点;② 当0x <时,2()()()h x f x b f x c =+⋅+恰有3个不同零点1x 、2x 、3x ,则1231x x x ⋅⋅=-; ③ 对任意的0k >,总存在实数a ,使得()()()F x f x g x =-有4个不同的零点123x x x <<4x <,且1||x 、2||x 、3||x 、4||x 成等比数列;其中的真命题是 (写出所有真命题的序号)12(2020徐汇二模). 设二次函数2()(21)2f x m x nx m =++--(,m n ∈R 且12m ≠-)在[2,3]上至少有一个零点,则22m n +的最小值为12(2020青浦二模). 定义函数(){{}}f x x x =,其中{}x 表示不小于x 的最小整数,如{1.4}2=,{2.3}2-=-,当(0,]x n ∈(*n ∈N )时,函数()f x 的值域为n A ,记集合n A 中元素的个数为n a ,则n a = 12(2020长宁二模). 已知函数1()||1f x x =-,若关于x 的方程()f x x b -=有三个不同的实数解,则实数b 的取值范围是13(2020黄浦二模).“函数()f x (x ∈R )存在反函数”是“函数()f x 在R 上为增函数”的( )A. 充分而不必要条件B. 必而不充分条件C. 充分必要条件D. 既不充分也不必要条件13(2020徐汇二模). 某地区的绿化面积每年平均比上一年增长20%,经过x 年,绿化面积与原绿化面积之比为y ,则()y f x =的图像大致为( )A. B. C. D.14(2020嘉定二模). 下列函数中,既是(0,)+∞上的增函数,又是偶函数的是( ) A. 1y x=B. 2x y =C. 1||y x =-D. lg ||y x = 14(2020奉贤二模). 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则()y f x =在[0,]π上的图像大致为( )A. B. C. D.15(2020奉贤二模). 设函数()log (1)x a f x a =-,其中0a >,且1a ≠,若*N n ∈,则()lim f n n n a a a→∞=+( ) A. 1 B. a C.1a D. 1a或a 16(2020宝山二模). 已知)(x f 是定义在R 上的奇函数,对任意两个不相等的正数1x 、2x 都有211212()()0x f x x f x x x -<-,则函数(),0()0,0f x xg x x x ⎧≠⎪=⎨⎪=⎩( )A. 是偶函数,且在(0,)+∞上单调递减B. 是偶函数,且在(0,)+∞上单调递增C. 是奇函数,且单调递减D. 是奇函数,且单调递增 16(2020松江二模). 已知实数12100,,,[1,1]x x x ⋅⋅⋅∈-,且12100x x x π++⋅⋅⋅+=,则当22212100x x x ++⋅⋅⋅+取得最大值时,12100,,,x x x ⋅⋅⋅这100个数中,值为1的个数为( )A. 50个B. 51个C. 52个D. 53个16(2020金山二模). 函数()f x 是定义在R 上的奇函数,且(1)f x -为偶函数,当[0,1]x ∈时,()f x =()()g x f x x m =--有三个零点,则实数m 的取值范围是( )A. 11(,)44-B. (11)C. 11(4,4)44k k -+(Z k ∈)D. (411)k k +(Z k ∈)16(2020普陀二模). 定义域均为D 的三个函数()f x 、()g x 、()h x 满足条件:对任意x D ∈,点(,())x g x 与点(,())x h x 都关于点(,())x f x 对称,则称()h x 是()g x 关于()f x 的“对称函数”.已知函数()g x =()h x =()h x 是()g x 关于()f x 的“对称函数”,记()f x 的定义域为D ,若对任意s D ∈,都存在t D ∈,使得222()21f s t t a a =+++-成立,则实数a 的取值范围是( )A. [1,0][1,2]-UB. {1}[0,2]-UC. [2,1][0,1]--UD. {1}[2,0]-U16(2020崇明二模). 已知函数2()2x f x m x nx =⋅++,记集合{|()0,R}A x f x x ==∈,集合{|B x =(())0,R}f f x x =∈,若A B =,且A 、B 都不是空集,则m n +的取值范围是( )A. [0,4)B. [1,4)-C. [3,5]-D. [0,7) 16(2020青浦二模). 已知函数()sin 2|sin |f x x x =+,关于x的方程2()()10f x x --=有以下结论:① 当0a ≥时,方程2()()10f x x --=在[0,2]π内最多有3个不等实根; ② 当6409a ≤<时,方程2()()10f x x -=在[0,2]π内有两个不等实根; ③若方程2()()10f x x --=在[0,6]π内根的个数为偶数,则所有根之和为15π; ④若方程2()()10f x x --=在[0,6]π内根的个数为偶数,则所有根之和为36π; 其中所有正确结论的序号是( )A. ②④B. ①④C. ①③D. ①②③17(2020普陀二模). 设函数3120()()0x x f x g x x m-⎧--≤≤=⎨<≤⎩是偶函数.(1)求实数m 的值及()g x ;(2)设函数()g x 在区间[0,]m 上的反函数为1()g x -,当12(2)log 5a g ->(0a >且1a ≠)时,求实数a 的取值范围.18(2020奉贤二模). 已知向量33(cos ,sin )22a x x =r ,(sin ,cos )22x xb =-r (x k π≠,Z k ∈),令()f x =2()a b a bλ+⋅r r r r (R λ∈). (1)化简2()()a b f x a bλ+=⋅r r r r ,并求当1λ=时方程()2f x =-的解集; (2)已知集合{()|()()2P h x h x h x =+-=,D 是函数()h x 与()h x -定义域的交集且D 不是空集},判断元素()f x 与集合P 的关系,说明理由.18(2020虹口二模). 已知函数4()31xf x a =-+(a 为实常数). (1)讨论函数()f x 的奇偶性,并说明理由;(2)当()f x 为奇函数时,对任意的[1,5]x ∈,不等式()3xuf x ≥恒成立, 求实数u 的最大值.18(2020黄浦二模). 设11(,)A x y ,22(,)B x y 是函数21log 21xy x=+-的图像上任意两点,点00(,)M x y 满足1()2OM OA OB =+uuu r uu r uu u r .(1)若012x =,求证:0y 为定值;(2)若212x x =,且01y >,求1x 的取值范围,并比较1y 与2y 的大小.18(2020崇明二模). 已知函数()22x x af x =-(0a >). (1)判断()f x 在其定义域上的单调性,并用函数单调性的定义加以证明; (2)讨论函数()f x 的奇偶性,并说明理由.18(2020徐汇二模). 已知函数()|31|f x x =-,()1||g x x =-. (1)解不等式()2f x ≤;(2)求()()()F x f x g x =-的最小值.21(2020松江二模). 已知函数()f x 的定义域为D ,若存在实常数λ及a (0a ≠),对任意x D ∈,当x a D +∈且x a D -∈时,都有()()()f x a f x a f x λ++-=成立,则称函数()f x 具有性 质(,)M a λ.(1)判断函数2()f x x =是否具有性质(,)M a λ,并说明理由;(2)若函数()sin 2sin g x x x =+具有性质(,)M a λ,求λ及a 应满足的条件;(3)已知函数()y h x =不存在零点,当R x ∈时具有性质1(,1)M t t+(其中0t >,1t ≠),。
上海市2020届高三数学各区(16区已全)一模考试汇编:解析几何(解析版)
2020年一模汇编——解析几何一、填空题【普陀1】若抛物线2y mx =的焦点坐标为1(,0)2,则实数m 为___________.【答案】2【解析】抛物线的性质:p=1,所以m=2【黄浦3】抛物线28x y =的焦点到准线的距离为___________. 【答案】4【解析】由题抛物线的焦点为(0,2),准线为直线2x =-,易得焦点到准线的距离为4【青浦3】直线1:10l x -=和直线20l y -=的夹角大小是【答案】6π 【解析】设夹角为θ,则23213cos =⨯=θ,故夹角6πθ=【静安3】若直线1l 和直线2l 的倾斜角分别为32和152则1l 与2l 的夹角为_____.【答案】60【解析】1801523260-+=【静安4】若直线l 的一个法向量为(2,1)n =,则若直线l 的斜率k =_____. 【答案】2-【解析】(2,1)n =,则单位向量(1,2)d =-,221k ==-【宝山5】以抛物线x y 62-=的焦点为圆心,且与抛物线的准线相切的圆的方程是 .【答案】9)23(22=++y x【解析】焦点)0,23(-,半径3==p r 【松江5】已知椭圆22194x y +=的左、右焦点分别为1F 、2F ,若椭圆上的点P 满足122PF PF =,则1=PF【答案】4【解析】由椭圆定义得:1226PF PF a +==,又122PF PF =,联立得:1=PF 4【虹口6】抛物线26x y =的焦点到直线3410x y +-=的距离为_________. 【答案】1【解析】抛物线26x y =的焦点为)23,0(,焦点到直线3410x y +-=的距离33041215d ⨯+⨯-==【杨浦7】椭圆22194x y +=焦点为1F ,2F ,P 为椭圆上一点,若15PF =,则12cos F PF ∠= 【答案】35【解析】因为3a ==,2b ==,所以c ==,所以1(F,2F ,225651PF a =-=-=,所以22212513cos 2155F PF +-∠==⋅⋅【奉贤7】若双曲线的渐近线方程为3y x =±,它的焦距为则该双曲线的标准方程为____________.【答案】2219y x -=±【解析】根据双曲线的渐近线方程为3y x =±,可知3b a =或3ab=;由焦距为得出c =222c a b =+,求得,,a b c 的值【普陀8】设椭圆222:1(1)x y a aΓ+=>,直线l 过Γ的左顶点A 交y 轴于点P ,交Γ于点Q ,若AOP △是等腰三角形(O 为坐标原点),且2PQ QA →→=,则Γ的长轴长等于_________.【答案】【解析】由题知(),0A a -、()0,P a ,设(),Q x x a +,有(),PQ x x =、(),QA a x x a =----, 所以()2x a x =⋅--,解得23x a =-,将(),Q x x a +代入2221x y a +=得22211210x ax a a ⎛⎫+++-= ⎪⎝⎭,整理得Γ的长轴长2a = 【崇明8】若双曲线的一个顶点坐标为(3,0),焦距为10,则它的标准方程是__________.【答案】116922=-y x 【解析】由题意得3=a ,5210=÷=c ,16222=-=a c b ,标准方程为116922=-y x【杨浦9】在直角坐标平面xOy 中,(2,0)A -,(0,1)B ,动点P 在圆22:+2C x y =上,则PA PB ⋅的取值范围为___________.【答案】(22+【解析】因为22+2x y =,设)P θθ,则(2,)PA θθ=--,(,1)PB θθ=-,22222cos 2sin PA PB θθθθ⋅=++,22)PA PB θθθϕ⋅=+=++,【崇明9】已知,a b R +∈,若直线230x y ++=与(1)2a x by -+=互相垂直,则ab 的最大值等于___________.【答案】81 【解析】两直线互相垂直得1121-=-⋅-ba ,b a 21-=,代入得b b ab )21(-=, 0,0a b >>,最小值为81【宝山9】已知直线l 过点)0,1(-且与直线02=-y x 垂直,则圆08422=+-+y x y x 与直线l 相交所得的弦长为___________.【答案】152【解析】直线方程为012=++y x ,圆心到直线的距离5=d ⇒222||d r AB -=【奉贤9】设平面直角坐标系中,O 为原点,N 为动点,6ON =,5ON OM =,过点M 作1MM x ⊥轴于1M ,过N 作1NN x ⊥轴于点1N ,M 与1M 不重合,N 与1N 不重合,设11OT M M N N =+,则点T 的轨迹方程是______________.【答案】22536x y +=05x x ⎛≠≠ ⎝⎭且【解析】设(),T x y ,点()11,N x y ,则()11,0N x ,又1111,OM y M y ⎫⎛⎫==⎪ ⎪⎭⎝⎭11,0M M ⎫=⎪⎭,()110,N N y =,于是1111,OT M M N N x y ⎫=+=⎪⎭,由此能求出曲线C的方程。
上海市2020届高三模拟考试2数学试题 Word版含解析
2020年全国普通高等学校招生统一考试上海 数学模拟试卷(2)考生注意:1.本试卷共4页,21道试题,满分150分,考试时间120分钟.2.本考试分设试卷和答题纸,试卷包括试题与答题要求,作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分3.答卷前,务必用黑色钢笔或圆珠笔在答题纸正面清楚地填写姓名、班级、准考证号. 一、填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,第1题至第6题每个空格填对得4分,第7题至第12题每个空格填对得5分,否则一律得零分1.若集合{}|1,A x y x x R ==-∈,{}|1,B x x x R =≤∈,则A B =________.【答案】{}1 【解析】 【分析】求出A 中x 的范围确定出A ,求出B 中不等式的解集确定出B ,找出两集合的交集即可. 【详解】解:由A 中1y x =-10x -,解得:1x ,即{|1}Ax x ,由B 中不等式变形得:11x -,即{|11}B x x =-, 则{1}A B ⋂=, 故答案为:{1}.【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题. 2.若函数()1f x x =,()1g x x x -,则()()f x g x +=__________. 【答案】11x +-(01)x ≤≤ 【解析】 分析】根据偶次根式被开方数大于等于零可求得()(),f x g x 定义域,取交集得到()()f x g x +的定义域,将()(),f x g x 解析式相加可得所求结果. 【详解】()f x 定义域为:{}0x x ≥;()g x 定义域为:{}01x x ≤≤()()f x g x ∴+的定义域为{}01x x ≤≤()())1101f x g x x ∴+==≤≤故答案为)101x ≤≤【点睛】本题考查函数解析式的求解,易错点是忽略了函数定义域的要求,造成所求函数的定义域缺失. 3.若3sin 5α=且α是第二象限角,则cot 24απ⎛⎫-= ⎪⎝⎭_________.【答案】2 【解析】 【分析】由α是第二象限角,及sin α的值,利用同角三角函数间的基本关系求出cos α的值,进而确定出tan α的值,利用二倍角的正切函数公式化简,求出tan 2α的值,将所求式子利用两角和与差的正切函数公式及特殊角的三角函数值化简,把tan 2α的值代入计算,即可求出值.【详解】解:α是第二象限角,且3sin 5α=,4cos 5α∴==-,3tan 4α=-,22tan32tan 412tan ααα∴==--,即23tan8tan 3022αα--=, 解得:1tan23α=-或tan 32α=, 因为α是第二象限角,2α是第一象限或第三象限角,tan 02α∴> tan32α∴=则tantan31124tan 241321tan tan 24απαπαπ--⎛⎫-=== ⎪+⎝⎭+.则1cot 224tan 24απαπ⎛⎫-== ⎪⎛⎫⎝⎭- ⎪⎝⎭. 故答案为:2.【点睛】此题考查了两角和与差的正切函数公式,二倍角的正切函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键,属于中档题. 4.若函数())0f x x =≥的反函数是()1f x -,则不等式()()1f x f x ->的解集为______.【答案】{}|1x x > 【解析】 【分析】 由())0f x x =≥求出反函数,直接解不等式即可.【详解】设())0y f x x ==≥,则3x y =,x ,y 互换,得()13f x x -=,0x ≥,,∵()()1fx f x ->,∴3x >,∴9x x >,∴81x >,解得1x >. ∴不等式()()1fx f x ->的解集为{}|1x x >.故答案为:{}|1x x >.【点睛】本题主要考查了反函数,不等式的解,属于容易题.5.函数()f x 是定义在R 上的偶函数,在(,0]-∞上单调递减,且(1)0f =,则使得()0f x <的实数x 的取值范围是________. 【答案】(1,1)- 【解析】 【分析】先由题意,得到函数()f x 在()0,∞+上单调递增,(1)(1)0f f -==;再由函数单调性,即可求出结果.【详解】因为()f x 是定义在R 上的偶函数,在(,0]-∞上单调递减, 所以函数()f x 在()0,∞+上单调递增; 又(1)0f =,所以(1)(1)0f f -==, 所以当0x >时,由()0f x <得:01x <<;当0x ≤时,因为函数单调递减,由()0f x <可得:10x -<≤; 综上,使得()0f x <的实数x 的取值范围是(1,1)-. 故答案为(1,1)-【点睛】本题主要考查由函数奇偶性与单调性解不等式,熟记函数奇偶性与单调性即可,属于常考题型.6.已知()2sin (0)f x x ωω=>在0,3π⎡⎤⎢⎥⎣⎦单调递增,则实数ω的最大值为______ 【答案】32【解析】 【分析】根据正弦函数的单调区间,结合函数在0,3π⎡⎤⎢⎥⎣⎦单调递增,即可求得ω的最大值. 【详解】设()sin g x x =,()2sin (0)f x x ωω=> 因为(0)2sin 00f == ()f x 且0,3π⎡⎤⎢⎥⎣⎦单调递增,()sin g x x =在0,2π⎡⎤⎢⎥⎣⎦上单调递增 所以32ππω⋅≤即32ω≤所以ω的最大值为32故答案为:32【点睛】本题考查了正弦函数单调性的简单应用,由函数单调性求参数的最值,属于中档题.7.设P是曲线2sec (2tan x y θθθ⎧=⎪⎨⎪=⎩为参数)上的一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹的普通方程为_____. 【答案】22841x y -= 【解析】 【分析】由sec 2θ﹣tan 2θ=1,可得曲线的方程为2x 2﹣y 2=1,设P (x 0,y 0),M (x ,y ),运用中点坐标公式,代入曲线方程,化简整理即可得到所求轨迹方程. 【详解】曲线(θ为参数),即有sec 2tan xyθθ⎧=⎪⎨=⎪⎩, 由sec 2θ﹣tan 2θ=1,可得曲线的方程为2x 2﹣y 2=1, 设P (x 0,y 0),M (x ,y ),可得0022x x y y =⎧⎨=⎩,代入曲线方程,可得2x 02﹣y 02=1,即为2(2x )2﹣(2y )2=1, 即为8x 2﹣4y 2=1. 故答案为8x 2﹣4y 2=1.【点睛】本题考查中点的轨迹方程的求法,注意运用代入法和中点坐标公式,考查参数方程和普通方程的互化,注意运用同角的平方关系,考查运算能力,属于中档题.8.如图,已知正方体1111ABCD A B C D -,若在其12条棱中随机地取3条,则这三条棱两两是异面直线的概率是______(结果用最简分数表示)【答案】255【解析】 【分析】12条棱随机取出3条,利用组合数确定基本事件总数,再求出三条棱两两是异面直线包含的基本事件个数,利用古典概型求解.【详解】正方体1111ABCD A B C D -,在其12条棱中随机地取3条, 基本事件总数312220n C ==,这三条棱两两是异面直线包含的基本事件个数8m =, ∴这三条棱两两是异面直线的概率是8222055m p n ===. 故答案为:255. 【点睛】本题主要考查了正方体的结构特点,异面直线,古典概型,属于中档题. 9.若函数()()2sin ,3sin f x x t x t R x=++∈+最大值记为()g t ,则函数()g t 的最小值为______. 【答案】34【解析】 【分析】 化简2sin 3sin y x x=++,利用对勾函数求值域,分类讨论t 与值域中点的大小,即可写出最大值()g t . 【详解】∵22sin sin 333sin 3sin x x x x+=++-++,∵1sin 1x -≤≤, ∴2sin 34x ≤+≤,∴293sin 33sin 2x x ≤++≤+,∴230sin 333sin 2x x ≤++-≤+,∴()()max 3,433,24t t g t f x t t ⎧≥⎪⎪==⎨⎪-<⎪⎩,∴当3t 4=时,函数()g t 有最小值为34;故答案为34. 【点睛】本题主要考查了对勾函数的应用及分段函数的应用,同时考查了正弦函数的性质及整体思想与分类讨论的思想,属于难题.10.如图所示,三个边长为2的等边三角形有一条边在同一直线上,边33B C 上有10个不同的点1210,,,P P P ,记2i iM AB AP =⋅(1,2,,10i =),则1210M M M +++=________.【答案】180 【解析】 【分析】以A 为坐标原点,1AC 所在直线为x 轴建立直角坐标系,可得23)B ,33)B ,3(6,0)C ,求出直线33B C 的方程,可设(i i P x ,)i y 363i i x y +=,运用向量的数量积的坐标表示,计算即可得到所求和.【详解】解:以A 为坐标原点,1AC 所在直线为x 轴建立直角坐标系, 可得23)B ,33)B ,3(6,0)C , 直线33B C 的方程为3(6)y x =--, 可设(i i P x ,)i y 363i i x y +=, 即有233i i i i M AB AP x =⋅=+ 3(3)18i i x y =+=,则12101810180M M M++⋯+=⨯=.故答案为:180.【点睛】本题考查向量的数量积的坐标表示,注意运用直线方程,考查化简整理的运算能力,属于中档题.11.设函数2,1()(0,1),2,1xa xf x a ax x x⎧<⎪=>≠⎨-≥⎪⎩若不等式()3f x≤的解集为(],3,-∞则实数a的取值范围为___________.【答案】(]1,3【解析】【分析】利用分段函数,结合指数函数的单调性,推出不等式,求解即可得到答案.【详解】0a>,且1a≠,设函数21()21xa xf xx x x⎧<⎪=⎨-≥⎪⎩,若不等式()3f x的解集是(-∞,3],当1x时,2|2|3x x-,可得2323x x--,解得13x ;当1x<,即(,1)x∈-∞时,3xa,不等式恒成立可得13a<.综上可得13a<.∴实数a的取值范围为:(1,3].故答案为:(1,3].【点睛】本题考查分段函数的应用,函数的单调性的应用,考查分析问题解决问题的能力,是中档题.12.已知*n N∈,从集合{}1,2,3,,n中选出k(k∈N,2k≥)个数12,,,kj j j,使之同时满足下面两个条件:①121kj j j n≤<<≤;②1i ij j m+-≥(1,2,,1i k=-),则称数组()12,,k j j j 为从n 个元素中选出k 个元素且限距为m的组合,其组合数记为(),k m nC . 例如根据集合{}1,2,3可得()2,133C =.给定集合{}1,2,3,4,5,6,7,可得()3,27C =______.【答案】10 【解析】 【分析】由题意得(3,2)7C 即从定集{1,2,3,4,5,6,7}中选出3个元素且限距为2的组合,即可得出结论.【详解】解:由题意得(3,2)7C 即从定集{1,2,3,4,5,6,7}中选出3个元素且限距为2的组合.于是若从{1,3,5,7}中任选3个均符合要求则有344C =个,若选{2,4,6}也满足条件;另外还有{1,3,7},{1,3,6},{1,4,7},{1,5,7},{2,5,7}均满足条件,故(3,2)741510C =++=,故答案为:10.【点睛】本题考查进行简单的合情推理,考查学生的计算能力,正确转化是关键,属于难题. 二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 13.一个几何体的三视图如图所示,则该几何体的表面积为( )A. 3πB. 4πC. 24π+D. 34π+【答案】D 【解析】该几何体为半圆柱,底面为半径为1的半圆,高为2,因此表面积为21π12π12+223π+42⨯+⨯⨯⨯⨯= ,选D.14.过抛物线28y x =的焦点作一条直线与抛物线相交于A 、B 两点,且这两点的横坐标之和为9,则满足条件的直线( ) A. 有且只有一条 B. 有两条C. 有无穷多条D. 必不存在【答案】B 【解析】 【分析】设出AB 的方程,联立方程组消元,根据根与系数的关系列方程判断解得个数. 【详解】解:抛物线的焦点坐标为(2,0), 若l 无斜率,则l 方程为2x =,显然不符合题意.若l 有斜率,设直线l 的方程为:(2)y k x =-,设1(A x ,1)y ,2(B x ,2)y ,联立方程组28(2)y xy k x ⎧=⎨=-⎩,消元得:2222(48)40k x k x k -++=,∴2122489k x x k ++==,∴k =.故选:B .【点睛】本题考查了直线与圆锥曲线的位置关系,分类讨论思想,属于中档题. 15.若z C ∈,则“Re 1,1z Imz ≤≤”是“||1z ≤”成立的( )条件. A. 充分非必要 B. 必要非充分 C. 充要 D. 既非充分又非必要 【答案】B 【解析】 【分析】设z x yi =+,由||1x ,||1y ,可得||2z ,充分性不成立;反之成立.【详解】解:设z x yi =+,由||1x ,||1y ,则||2z ,故充分性不成立;由||1z ,则221x y+,所以||1x ,||1y ,即必要性成立.所以“Re 1,1z Imz ≤≤”是“||1z ≤”必要不充分条件. 故选:B .【点睛】本题考查了不等式的性质、复数的有关知识、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.16.对于正实数α,记M α是满足下列条件的函数()f x 构成的集合:对于任意的实数12,x x R ∈且12x x <,都有()()()()212121x x f x f x x x αα--<-<-成立.下列结论中正确的是( )A. 若()1f x M α∈,()2g x M α∈,则()()12f x g x M αα⋅⋅∈B. 若()1f x M α∈,()2g x M α∈且()0g x ≠,则()()12M f x g x M αα∈ C. 若()1f x M α∈,()2g x M α∈,则()()12f x g x M αα++∈D. 若()1f x M α∈,()2g x M α∈()2g x M α∈且12αα>,则()()12f x g x M αα--∈ 【答案】C 【解析】 【分析】 由题意知2121()()f x f x x x αα--<<-,从而求得.【详解】解:对于()()()()212121x x f x f x x x αα--<-<-,即有()()()2121f x f x x x αα--<<-, 令()()()2121f x f x k x x -=-, 则k αα-<<,若()1f x M α∈,()2g x M α∈, 即有11f k αα-<<,22g k αα-<<, 所以1212f g k k αααα--<+<+,则有()()12f x g x M αα++∈, 故选:C .【点睛】本题考查了函数的性质的判断与应用,属于中档题.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.在锐角△ABC 中,2sin sin sin()sin()44A B B B ππ=++-.(1)求角A 的值;(2)若12AB AC ⋅=,求△ABC 的面积.【答案】(1)6A π=;(2)【解析】试题分析:(1)将等式2sin sin sin()sin()44A B B B ππ=++-左边利用两角和与差的正弦公式展开后,再利用同角三角函数之间的关系可得定值12,进而得6A π=;(2)由cos126AB AC AB AC π⋅==,可得83AB AC =ABC 的面积.试题解析:(1)在△ABC 中,2sin sin sin()sin()44A B B B ππ=++-2sin )B B B B B =+ 2221sin (cos sin )2B B B =+-221sin (12sin )2B B =+-12= 又A 为锐角,∴6A π=.(2)cos 126AB AC AB AC π⋅==,∴83AB AC =∴111sin 2622ABC S AB AC π∆==⨯=考点:1、利用两角和与差的正弦公式;2、平面向量数量积公式.18.某种“笼具”由内,外两层组成,无下底面,内层和外层分别是一个圆锥和圆柱,其中圆柱与圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为24cm π,高为30cm ,圆锥的母线长为20cm .(1)求这种“笼具”的体积(结果精确到0.13cm );(2)现要使用一种纱网材料制作50个“笼具”,该材料的造价为每平方米8元,共需多少元?【答案】(1)11158.9;(2)110425π【解析】 【分析】(1)根据“笼具”的构造,可知其体积等于圆柱的体积减去圆锥的体积,即可求出; (2)求出“笼具”的表面积,即可求出50个“笼具”的总造价. 【详解】设圆柱的底面半径为r ,高为h ;圆锥的母线长为l ,高为1h , 根据题意可知:(1)224r ππ=,12r =cm ,221201216h =-=cm ,所以“笼具”的体积2211355211158.93V r h r h πππ=-=≈cm 3.(2)圆柱的侧面积12720S rh ππ==cm 2,圆柱的底面积22144S r ππ==cm 2,圆锥侧面积3240S rl ππ==cm 2,所以“笼具”的表面积为1104π cm 2, 故造50个“笼具”的总造价:4110450811041025ππ⨯⨯=元. 答:这种“笼具”的体积约为11158.9 cm 3,生产50个“笼具”的总造价为110425π元. 【点睛】本题主要考查简单组合体的体积和表面积的计算,意在考查学生的数学运算能力,属于基础题.19.某企业参加A 项目生产的工人为1000人,平均每人每年创造利润10万元.根据现实的需要,从A 项目中调出x 人参与B 项目的售后服务工作,每人每年可以创造利润310500x a ⎛⎫- ⎪⎝⎭万元(0a >),A 项目余下的工人每人每年创造利图需要提高0.2%x(1)若要保证A 项目余下的工人创造的年总利润不低于原来1000名工人创造的年总利润,则最多调出多少人参加B 项目从事售后服务工作?(2)在(1)的条件下,当从A 项目调出的人数不能超过总人数的40%时,才能使得A 项目中留岗工人创造的年总利润始终不低于调出的工人所创造的年总利润,求实数a 的取值范围. 【答案】(1)500;(2)(0,5.1]. 【解析】 【分析】(1)根据题意,列出不等式10(1000)(10.2%)101000x x -+≥⨯,求解即可; (2)求出x 的范围,得出不等式310(500xa -)10(1000)(10.2%)x x x ≤-+,整理可得210001500x a x≤++恒成立,根据x 的范围,可知函数在定义域内为减函数,当400x =时,函数取得最小值.【详解】设调出x 人参加B 项目从事售后服务工作 (1)由题意得:10(1000)(10.2%)101000x x -+≥⨯,即25000x x -≤,又0x >,所以0500x <≤.即最多调整500名员工从事第三产业. (2)由题知,0400x <≤,从事第三产业的员工创造的年总利润为310()500xa x -万元, 从事原来产业的员工的年总利润为110(1000)(1)500x x -+万元, 则310(500xa -)10(1000)(10.2%)x x x ≤-+, 所以23110002500500x ax x x -≤+--2x ,所以221000500x ax x ≤++,即210001500x a x≤++恒成立, 因为0400x <≤,所以210002400100011 5.1500500400x x ⨯++≥++=, 所以 5.1a ≤,又0a >,所以0 5.1a <≤, 即a 的取值范围为(0,5.1].【点睛】考查了利用不等式解决实际问题,难点是建立不等式关系,利用函数单调性求出最值.20.教材曾有介绍:圆222x y r +=上的点()00,x y 处的切线方程为200x x y y r +=.我们将其结论推广:椭圆()222210x y a b a b+=>>上的点()00,x y 处的切线方程为00221x x y y a b +=,在解本题时可以直接应用.已知,直线30x y -+=与椭圆()222:11x E y a a+=>有且只有一个公共点.(1)求a 的值;(2)设O 为坐标原点,过椭圆E 上的两点A 、B 分别作该椭圆的两条切线1l 、2l ,且1l 与2l 交于点()2,M m .当m 变化时,求OAB ∆面积的最大值;(3)在(2)条件下,经过点()2,M m 作直线l 与该椭圆E 交于C 、D 两点,在线段CD上存在点N ,使CN MCND MD=成立,试问:点N 是否在直线AB 上,请说明理由. 【答案】(1)2a =22(3)见解析 【解析】 【分析】(1)将直线y =x 3得到x 的方程,由直线和椭圆相切的条件:判别式为0,解方程可得a 的值;(2)设切点A (x 1,y 1),B (x 2,y 2),可得切线1l ,22x xy y 12+=,CN MC ND MD =,再将M 代入上式,结合两点确定一条直线,可得切点弦方程,AB 的方程为x+my =1,将直线与椭圆方程联立,运用韦达定理,求得△OAB 的面积,化简整理,运用基本不等式即可得到所求最大值;(3)点N 在直线AB 上,因为()C C C x ,y设()D D D x ,y 、()00N x ,y 、()CN λND λ0,λ1=>≠,且CM λMD =-,于是C D 0x λx x 1λ+=+,向量坐标化,得C D 0y λy y 1λ+=+、C D x λx 21λ-=-、C Dy λy m 1λ-=-、00x my 10+-=,将()CN λND λ0,λ1=>≠代入椭圆方程,结合()D D D x ,y 、()00N x ,y在椭圆上,整理化简得222x y 1ay x ⎧=⎪⎨+=⎪⎩,即N 在直线AB 上.【详解】(1)联立2211x 20(1)a a ⎛⎫+++=>⎪⎝⎭,整理得(2214120a a ⎛⎫-⋅+⋅=⇒= ⎪⎝⎭依题意Δ0=,即()11A x ,y(2)设()22B x ,y 、11x xy y 12+=,于是直线1l 、2l 的方程分别为()M 2,m 、CN MC ND MD = 将11x my 10+-=代入1l 、2l 的方程得22x my 10+-=且x my 10+-=所以直线AB 的方程为()222210m 2y 2my 10x y 12x my +-=⎧⎪⇒+--=⎨+=⎪⎩ 联立1221y y m 2=-+显然Δ0>,由1y ,2y 是该方程的两个实根,有1222my y m 2+=+,ΔOAB 121S y y 2=-面积()()()()222121222222m 1121S y y 4y y 142m 2m 12m 1+⎡⎤=+-==≤⎣⎦+++++即22C C x y 12+=当且仅当m 0=时,“=”成立,S取得最大值2(3)点N 在直线AB 上,因为()C C C x ,y设()D D D x ,y 、()00N x ,y 、()CN λND λ0,λ1=>≠,且CM λMD =- 于是C D 0x λx x 1λ+=+,即C D 0y λy y 1λ+=+、C D x λx 21λ-=-、C Dy λy m 1λ-=-、00x my 10+-=又22222222C D DD C D x x x y 1y λy 1λ222⎛⎫+=⇒+-+=- ⎪⎝⎭,C D C D C D C D x λx x λx y λy y λy 1121+λ1λ1+λ1λ+-+-⇒⋅⋅+⋅=-- 00001x 2y m 1x my 102⇒⋅⋅+=⇒+-=, ()()()()()f 2,j f 1,j f 1,j 12f 1,j 48j 4j 1,2,,n 1=++=+=+=-,即N 在直线AB 上.【点睛】本题考查直线和椭圆的位置关系的判断,考查直线和椭圆相切的条件:判别式为0,以及切线的方程的运用,同时考查直线和椭圆相交的三角形的面积的最值的求法,注意运用基本不等式,属于中档题.21.已知各项不为零的数列{}n a 的前n 项和为n S ,且11a =,112n n n S a a +=⋅(*n N ∈) (1)求证:数列{}n a 是等差数列; (2)设数列{}n b 满足:122n n a a n b +-=,且()11211lim 384k k k k n n n b b b b b b ++++→∞+++=,求正整数k 的值;(3)若m 、k 均为正整数,且2m ≥,k m <,在数列{}k c 中,11c =,11k k k c k mc a ++-=,求12m c c c +++.【答案】(1)见解析(2)2(3)1m【解析】 【分析】(1)通过112n n n S a a +=,利用11n n n a S S ++=-整理得22n n a a +-=,进而可知数列{}n a 是首项、公差均为1的等差数列; (2)通过(1)可知212n n b +=,进而可知151124n n nb b +=,进而利用等比数列的求和公式计算、取极限即得结论; (3)通过11k k k c k m c a ++-=及n a n =分别计算出21c c 、32c c 、43c c 、1n n c c -的表达式,进而累乘化简,利用二项式定理计算即得结论. 【详解】(1)证明:112n n n S a a +=,111211122n n n n n n n a S S a a a a +++++∴=-=-,整理得:22n n a a +-=, 又11a =,12122S a a ==, ∴数列{}n a 的通项公式n a n =,即数列{}n a 是首项、公差均为1的等差数列;(2)解:由(1)可知122(1)21222n n a a n n n n b +--++===,123511112224n n n n nb b +++∴=⋅=⋅, 1121511111()2444k k k k n n k k nb b b b b b +++++∴++⋯+=++⋯+ 151111412414n k k-+-=⋅⋅-321111(1)324k n k ++-=⋅-, 又11211lim()384k k k k n n n b b b b b b ++++→∞++⋯+=,即3211132384k +⋅=, 解得:2k =; (3)解:11c =,11k k k c k mc a ++-=,n a n =, ∴11k k c k m c k +-=+,1(1)(1)(,2)k k c m k m k m c k---=-⋅>, 2211(1)2c m c c -∴==-,232321(2)(1)(1)32c c m m c c c --=⋅=-⨯,3343424321(1)(2)(3)1(1)(1)4321m c c c m m m c C c c c m ---=⋅⋅=-⋅=-⋅⋅⨯⨯⨯, ⋯11(1)k kk m c C m-=-⋅⋅, 显然当1m =时满足上式 12m c c c ∴++⋯+1211(1)m m m m m C C C m-⎡⎤=-+⋯+-⋅⎣⎦ 02314(1)111m mmm m m m m C C C C C C m ⎡⎤+⋯+--=⎢⎥-+-⎣-+⎦⋅ 1(11)11m m --=⋅- 1m=. 【点睛】本题考查数列的通项及前n 项和,考查累乘法,考查运算求解能力,注意解题方法的积累,属于中档题.。
2020上海高三数学二模分类汇总-立体几何(含答案)
2020届二模分类汇总-立体几何一、点线面关系1、【2020年闵行区二模第13题】在空间中,“两条直线不平行”是“这两条直线异面”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件 【答案: B 】二、棱锥、棱柱2、【2020年长宁区二模第7题】 如图,已知正四棱柱1111ABCD A B C D -的侧棱长为2,底面边长为1,则直线1D B 和底面ABCD 所成的角的大小为 【答案:4π】3、【2020年奉贤区二模第9题】如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是【答案:2π】 4、【2020年浦东新区二模第14题】如图,正方体1111A B C D ABCD -中,E F 、分别为棱1AA BC 、上的点,在平面11ADD A 内且与平面DEF 平行的直线( ).A 有一条 .B 有两条 .C 有无数条 .D 不存在【答案:C 】5、【2020年嘉定区二模第15题】如图,若正方体1111ABCD A B C D -的侧面11BCC B 内动点P 到棱11A B 的距离等于它到棱BC 的距离,则点P 所在的曲线为( )A. 椭圆B. 双曲线C. 抛物线D. 圆 【答案:C 】6、【2020年松江区二模第15题】在正方体1111ABCD A B C D -中,P 、Q 两点分别从点B 和点1A 出发,以相同的速度在棱BA 和11A D 上运动至点A 和点1D ,在运动过程中,直线PQ 与平面ABCD 所成角θ的变化范围为( )A. [,]43ππB. 2[arctan,arctan 2]2 C. [,arctan 2]4πD. 2[arctan,]2π 【答案:C解析:如图,作QE ⊥AD 交AD 于点E ,联结PE , ∴∠QPE 即θ,设AE BP x ==,∴222(1)PE x x =+-,由2222[(1)](1)[(1)]2x x x x x x +-≤+-≤+-,∴2112PE ≤≤,2[,1]2PE ∈,1tan [1,2]QE PE PE θ==∈,即θ∈[,arctan 2]4π。
2020年上海市高三数学二模分类汇编:三角(16区全)
2020年上海市高三数学二模分类汇编:三角(16区全)1.函数f(x)=3cos2x+1的最小值为1.2.若sinx=1/2,则cos(π/2-x)=cos(π/2-sin⁻¹(1/2))=cos(π/3)=1/2,因此cosx=cos(π/2-π/3)=sin(π/3)=√3/2.3.函数y=arcsin(x+1)的定义域是[-1,√2]。
4.函数y=2cos2x+2的最小正周期为π/2.5.函数y=3cos2x+1的最小正周期为π。
6.函数f(x)=cos(πx/3)的最小正周期为6.7.根据三角形余弦定理,sin²A≤sin²B+sin²C-sinBsinC,代入A=π/2-B-C得到cosBcosC≤1/4,因此B+C≥π/3.又因为B+C≤π-A=2π/3,所以A∈[π/3,2π/3]。
8.根据三角函数的基本关系sin(π/2+α)=cosα,代入sin(π/2+α)=1得到cosα=0,因此α=π/2.再根据三角函数的基本关系cos2α=2cos²α-1得到cos2α=-1.9.根据正弦定理,sinC=c/√(a²+b²-2abcosC),代入a=23,b=√(23²-8²)=21,C=150°得到sinC=8/21.10.根据函数图像的平移公式,将f(x)=sinx向右平移Δ个单位得到g(x)=sin(x-Δ),其中Δ>0.对于满足|f(x₁)-g(x₂)|=2的任意x₁、x₂,有|sin(x₁)-sin(x₂-Δ)|=2,即|sin(x₁)-cosΔsin(x₂)-sinΔcos(x₂)|=2.根据三角函数的基本关系sin(x±y)=sinxcosy±cosxsiny,可得到|sin(x₁-x₂)cosΔ-s inΔcos(x₂-x₁)|=2.因为|sinθ|≤1和|cosθ|≤1,所以有|sin(x₁-x₂)|≤2,即|x₁-x₂|≤2.因此Δ的最小值为2.11.根据向量的数量积公式AB·AC=|AB||AC|cosA,代入AB=(3cosx,cosx),AC=(cosx,sinx),得到cosA=1/2,因此A=π/3.根据正弦公式,△ABC的面积为S=1/2ab·sinC=3/2sinx·cosx。
上海市金山区2020届高三数学二模考试试题含解析.doc
上海市金山区2020届高三数学二模考试试题(含解析)一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果1.集合{|03}A x x =<<,{|||2}B x x =<,则A B =__________【答案】(0,2) 【解析】 【分析】 计算出{|22}Bx x ,由交集概念即可得解.【详解】由题意{|||2}{|22}=<=-<<B x x x x , 则AB ={|22{|}(003}{|02})2,x x x x x x -<<=<<<<=.故答案为:(0,2).【点睛】本题考查了集合的运算,属于基础题. 2.函数()12f x x-=的定义域为_______.【答案】(0,)+∞ 【解析】 【分析】 将函数()12f x x -=化简为()f x=,即可求得答案. 【详解】()12f x x -=化简可得:()f x=∴定义域为0x >.故答案为:(0,)+∞.【点睛】本题主要考查了求函数的定义域,解题关键是掌握常见函数定义域的求法,考查了计算能力,属于基础题.3.i 是虚数单位,则1ii-的值为__________【答案】2【解析】 【分析】 由题意11122i i i =-+-,根据复数模的计算即可得解.【详解】由题意()()()11111122+==-+--+i i i i i i i ,所以12i i ==-故答案为:2. 【点睛】本题考查了复数的运算及模的求解,属于基础题.4.已知线性方程组的增广矩阵为11302a ⎛⎫ ⎪⎝⎭,若该线性方程组的解为12⎛⎫⎪⎝⎭,则实数a =__________【答案】2 【解析】 【分析】由题意可得1x =,2y =是方程02ax y +=的解,即可得解. 【详解】由题意可得1x =,2y =是方程02ax y +=的解, 代入可得2a =. 故答案为:2.【点睛】本题考查了线性方程组增广矩阵的应用,属于基础题. 5.已知函数21()11x f x =,则1(0)f -=__________【答案】0 【解析】 【分析】由题意可得()21xf x =-,由反函数的概念可得()12()log 1f x x -=+,代入即可得解.【详解】由题意21()2111x x f x ==-,则()12()log 1f x x -=+, 所以12(0)log 10f -==. 故答案为:0.【点睛】本题考查了行列式的计算与反函数的求解,属于基础题.6.已知双曲线2221(0)x y a a-=>的一条渐近线方程为20x y -=,则实数a =__________【答案】12【解析】 【分析】由双曲线的性质结合题意可得12a=,即可得解. 【详解】双曲线2221(0)x y a a -=>的一条渐近线方程为20x y -=,∴12a =即12a =. 故答案为:12. 【点睛】本题考查了双曲线性质的应用,考查了运算求解能力,属于基础题. 7.已知函数1()log sin 11xf x x x-=+++,若()4f m =,则()f m -=__________ 【答案】2- 【解析】 【分析】 令1()log sin 1xg x x x-=++,可得()g x 为奇函数,求得()3g m =后,即可得()3g m -=-,即可得解.【详解】令1()logsin 1xg x x x -=++,则()()1f x g x =+, ()()11()log sin log sin 11x xg x x x g x x x+--=+-=--=--+,∴()g x 为奇函数,又()4f m =,∴()()13g m f m =-=,∴()()3g m g m -=-=-,∴()()12f m g m -=-+=-.故答案为:2-.【点睛】本题考查了函数奇偶性及对数运算、三角函数性质的应用,考查了构造新函数的能力和运算求解能力,属于中档题.8.已知数列{}n a 的通项公式为1,1,21,32nn n n a n ⎧=⎪⎪=⎨⎛⎫⎪≥ ⎪⎪⎝⎭⎩,*n N ∈,其前n 项和为n S ,则lim n n S →∞=________.【答案】74【解析】 【分析】先对数列{}n a 求和得到n S ,再求极限. 【详解】当1n =时,1=1S ,当2n =时,213=1+=22S ,当3n ≥时,211[1()]13117182=1++=()()122424212n n n n S --+-=-- ∴1132271,342n nn S n n ⎧⎪=⎪⎪==⎨⎪⎪⎛⎫-≥⎪ ⎪⎝⎭⎩,, ∴lim lim 717[()]424n n n n S →∞→∞-==, 故答案为:74.【点睛】本题考查了数列的求和问题,考查了等比数列的求和公式,考查了极限的求法,属于基础题.9.甲、乙、丙三个不同单位的医疗队里各有3人,职业分别为医生、护士与化验师,现在要从中抽取3人组建一支志愿者队伍,则他们的单位与职业都不相同的概率是__________(结果用最简分数表示) 【答案】114【解析】 【分析】由题意求出所有选法的个数及符合要求的选法个数,根据古典概型概率公式即可得解.【详解】由题意,从9人中随机抽取3人,共有3984C =种选法;要求从中抽取3人中的单位与职业都不相同,共有3216⨯⨯=种选法; 则所求概率618414P ==. 故答案为:114. 【点睛】本题考查了计算原理的应用及古典概型概率的求解,属于基础题.10.若点集{}22(,)|1A x y x y =+≤,{(,)|22,11}B x y x y =-≤≤-≤≤,则点集()(){}12121122(,)|,,,,,Q x y x x x y y y x y A x y B ==+=+∈∈所表示的区域的面积是__________ 【答案】20π+ 【解析】 【分析】转化条件为()()22221x x y y -+-≤,进而可得点(,)x y 表示以集合B 表示的矩形内(包括边界)的点为圆心,1为半径的圆面,画出点集Q 表示的区域后,即可得解.【详解】由22111x y +≤,1212,x x x y y y =+=+可得()()22221x x y y -+-≤,又2222,11x y -≤≤-≤≤,所以点(,)x y 表示以集合B 表示的矩形内(包括边界)的点为圆心,1为半径的圆面, 如图所示,点集Q 表示的是由4段圆弧及连接它们的四条切线围成的区域,其面积()2124221414204S ππ=⨯++⨯⨯+⋅⨯=+. 故答案为:20π+.【点睛】本题考查了由不等式表示的平面区域的相关问题,考查了转化化归思想,属于中档题.11.我们把一系列向量(1,2,,)i a i n =按次序排成一列,称之为向量列,记作{}i a ,已知向量列{}i a 满足()()111111(1,1),,,(2)2n n n n n n n a a x y x y x y n ----===-+≥,设n θ表示向量n a 与1n a -的夹角,若2n n n b θπ=对任意正整数n ,122111log (12)a n n na b b b ++++>-恒成立,则实数a 的取值范围是__________【答案】10,3⎛⎫ ⎪⎝⎭【解析】 【分析】由题意结合平面向量数量积可得2cos 2n θ=,即可得()24n n θπ=≥,进而可得()224n n b n =≥122111n n nb b b +++的最小值后,利用对数函数的性质即可得解.【详解】由题意可得,当2n ≥时,()()1111111111cos 2n n n n n n n n n n n x y x x y y xa a aa θ--------⋅-++===⋅,∴()24n n θπ=≥,∴()2224n n n b n n θπ=≥=,∴21nb +=⋅⋅⋅1111221122n n n n n n ⎛⎫=++⋅⋅⋅+≥⋅⋅= ⎪+++⎝⎭, 当且仅当1n =时,等号成立,∴log (12)1log a a a a -<=,由120a ->可得12a <,∴102a <<,∴12a a ->解得13a <,综上,实数a 的取值范围是10,3⎛⎫ ⎪⎝⎭.故答案为:10,3⎛⎫ ⎪⎝⎭.【点睛】本题考查了平面向量、数列及对数函数的综合应用,考查了运算求解能力和恒成立问题的解决,属于中档题.12.设*,n n N a ∈为(2)(1)n nx x +-+的展开式的各项系数之和,16,2m t t R =-+∈,1222333n n n na a a b ⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦([]x 表示不超过实数x 的最大整数),则()22()n n t b m -+-的最小值为__________ 【答案】95【解析】 【分析】令1x =可得32nnn a =-,则332n n n n a n n =-⋅⎛⎫ ⎪⎝⎭,构造函数可得3201nn ⎛⎫ ⎪⎝⎭<⋅<,进而可得()12n n n b -=,转化原条件可得所求即为点()1,2n n A n -⎛⎫ ⎪⎝⎭到点1,62B t t ⎛⎫-+⎪⎝⎭的距离的平方的最小值,再由点A 在曲线()211022y x x x =->上,点B 直线162y x =-+上,联立方程后,求出交点后即可得解.【详解】令1x =,则(12)(11)32n n n n na +-+==-,∴()333322n n nn n nn n n n a -=⎛⎫= ⋅⎪⎝⎭-, 令()()ln 1x f x x x =≥,则()21ln xf x x-'=, ∴函数()f x 在()1,e 上单调递增,在(),e +∞上单调递减, ∴ln nn 的最大值为ln 22或ln 33,又ln 23ln 22=<,ln 33ln 32=<, ∴ln 3ln 2n n <即2ln ln 03n n +<,∴3201nn ⎛⎫ ⎪⎝⎭<⋅<, ∴13n n na n ⎡⎤=-⎢⎥⎣⎦,∴()122123332n n n n n na a a b -⎡⎤⎡⎤⎡⎤=+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,∴()()222211()()622n n n n t b m n t t -⎡⎤⎛⎫-+--+--+⎢⎥ ⎪⎝⎭⎣⎦=, 表示点()1,2n n A n -⎛⎫ ⎪⎝⎭到点1,62B t t ⎛⎫-+ ⎪⎝⎭的距离的平方,点A 在曲线()211022y x x x =->上,点B 直线162y x =-+上,由21122162yx x y x ⎧=-⎪⎪⎨⎪=-+⎪⎩解得()3,4x =或x =-,当3n =时,点()3,3A 到直线162y x =-+的距离15d ==,当4n =时,点()4,6A 到直线162y x =-+的距离21d d ==>,∴()22()n n t b m -+-的最小值为22195d ==⎝⎭. 故答案为:95. 【点睛】本题考查了新定义下二项式定理、数列及导数的综合应用,考查了转化化归思想,属于中档题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确答案,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑13.已知直角坐标平面上两条直线方程分别为1111:0L a x b y c ++=,22220L a x b y c ++=:,那么“11220a b a b =”是“两直线1L 、2L 平行”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件 【答案】B 【解析】 【分析】根据两条直线平行的条件,以及行列式运算,可判断必要不充分条件. 【详解】由题意,两条直线平行,则12210a b a b -=且12210b c b c -≠而11220a b a b =12210a b a b ⇔-=,故“两直线1L 、2L 平行”能推出“11220a b a b =”,而反向不可推出,那么“11220a b a b =”是“两直线1L 、2L 平行”的必要不充分条件故选:B【点睛】判断充分必要条件:条件推结论,则充分条件;结论推条件,则是必要条件. 14.如果一个水平放置的图形的斜二测直观图是一个底面为45︒,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A. 22+B.12C.22+ D. 12+【答案】A 【解析】 【分析】如图所示建立坐标系,计算面积得到答案. 【详解】如图所示建立坐标系,根据题意:图2中OABC 为直角梯形,2OC =,1BC =,21OA =+.故22S =+.故选:A .【点睛】本题考查了斜二测画法求面积,意在考查学生的计算能力. 15.在正方体1111ABCD A B C D -中,下列结论错误的是( ) A. 221111111()3A A A D A B A B ++= B .1111()0AC A B A A ⋅-= C. 向量1AD 与1A B 的夹角是120D. 正方体1111ABCD A B C D -的体积为1||AB AA AD ⋅⋅ 【答案】D 【解析】 【分析】由空间向量线性运算法则可得111111A A D A AC A B ++=,即可判断A ;由1111A B A A AB -=、11AB AC ⊥即可判断B ;由11//AD BC 、11BC A △为等边三角形即可判断C ;由1AB AA ⊥可得1||0AB AA AD ⋅⋅=,即可判断D ;即可得解. 【详解】正方体1111ABCD A B C D -如图,由正方体的性质得1111111A A A D A B A D A A A C CD ++=++=, 222211111133C C B A A B A A ===,故A 正确;1111A B A A AB -=,由1AB BC ⊥,11AB A B ⊥可得1AB ⊥平面1A BC ,则11AB AC ⊥,所以110AC AB ⋅=即1111()0AC A B A A ⋅-=,故B 正确; 由正方体性质可得11//AD BC ,易知11BC A △为等边三角形,所以1160A BC ∠=,所以向量1AD 与1A B 的夹角是120,故C 正确;因为1AB AA ⊥,所以1||0AB AA AD ⋅⋅=,故D 错误. 故选:D.【点睛】本题考查了正方体的几何特征与空间向量的综合应用,属于基础题. 16.函数()f x 是定义在R 上的奇函数,且(1)f x -为偶函数,当[0,1]x ∈时,()f x x =函数()()g x f x x m =--有三个零点,则实数m 的取值范围是( ) A. 11,44⎛⎫-⎪⎝⎭ B. (12,21)-C. 114,4()44k k k Z ⎛⎫-+∈ ⎪⎝⎭D. (412,421)()k k k Z +-+-∈【答案】C【解析】 【分析】由题意,画出函数()f x 图象的草图,利用数形结合的方法找出当函数()f x 的图象与直线y x m =+有3个交点时m 的取值范围,即可得解.【详解】函数()f x 是定义在R 上的奇函数,且(1)f x -为偶函数,∴()()(1)11f x f x f x -=--=-+,∴()(1)3f x f x -=+,∴()f x 的对称轴为1x =-且周期为4,又[0,1]x ∈时,()f x x =,∴可作出函数()f x 图象的草图,如下:若函数()()g x f x x m =--有3个零点,则方程()f x x m =+有3个实根,∴函数()f x 的图象与直线y x m =+有3个交点,当[0,1]x ∈时,121()12f x x -'==,解得14x =,即当直线y x m =+与()f x x =的图象相切时切点为11,42⎛⎫⎪⎝⎭,此时14m =,由图象的对称性可知当11,44m ⎛⎫∈-⎪⎝⎭时,函数()f x 的图象与直线y x m =+有3个交点, 再由周期性可知,当114,4()44m k k k Z ⎛⎫∈-+∈ ⎪⎝⎭时,函数函数()f x 的图象与直线y x m =+有3个交点. 故选:C.【点睛】本题考查了函数奇偶性、周期性与对称性综合应用,考查了函数零点与方程根的关系,体现了转化化归思想与数形结合思想,属于中档题.三、解答题(本大题满分76分)本大题共有5题,下列必须在答题纸相应编号的规定区城内写出必要的步骤.17.已知四棱锥P ABCD -,PA ⊥底面ABCD ,1PA =,底面ABCD 是正方形,E 是PD 的中点,PD 与底面ABCD所成角的大小为6π.(1)求四棱锥P ABCD -的体积(2)求异面直线AE 与PC 所成角的大小(结果用反三角函数值表示) 【答案】(1)1;(2)7. 【解析】 【分析】(1)由题意可得3AD =13P ABCD ABCD V S PA -=⋅即可得解; (2)取CD 的中点F ,连接AF 、EF 、AC ,由题意可得AEF ∠即为异面直线AE 与PC 所成角,分别计算出7EF =、1AE =、15AF =后,利用余弦定理即可得解. 【详解】(1)PA ⊥底面ABCD ,∴PDA ∠即为PD 与底面ABCD 所成的角,PA AD ⊥, ∴6PDA π∠=,又1PA =,∴3tan6PA AD π==,∴11331133P ABCD ABCD V S PA -=⋅==; (2)取CD 的中点F ,连接AF 、EF 、AC ,如图,E是PD的中点,∴//EF PC,∴AEF∠(或该角的补角)为异面直线AE与PC所成角,由(1)知1PA=,正方形ABCD3∴222PD PA AD=+=,226AC AD==,227PC AC PA=+=2215AF AD DF=+=,∴172EF PC==,112AE PD==,∴在AEF中,由余弦定理得2227151744cos2721AE EF AFAEFAE EF+-+-∠===⋅⨯⨯∴异面直线AE与PC所成角为7.【点睛】本题考查了三棱锥体积及异面直线夹角的求解,属于基础题.18.已知函数2()2cos3sin2xf x x=+(1)求函数()f x在区间[0,]π上的单调增区间:(2)当11()5fα=,且236ππα-<<,求sin23πα⎛⎫+⎪⎝⎭的值【答案】(1)0,3π⎡⎤⎢⎥⎣⎦;(2)2425.【解析】【分析】(1)由题意结合三角恒等变换可得()2sin 16f x x π⎛⎫=++ ⎪⎝⎭,令22262k x k k Z πππππ-+<+<+∈,可得22233k x k k Z ππππ-+<<+∈,,即可得解; (2)由题意可得3sin 65πα⎛⎫+= ⎪⎝⎭,进而可得4cos 65πα⎛⎫+= ⎪⎝⎭,根据二倍角的正弦公式即可得解.【详解】(1)由题意21cos ()2cos222x xf x x x +==⋅cos 12sin 16x x x π⎛⎫=++=++ ⎪⎝⎭,令22262k x k k Z πππππ-+<+<+∈,,解得22233k x k k Z ππππ-+<<+∈,, 令0k =可得233x ππ-<<, 故函数()f x 在区间[0,]π上的单调增区间为0,3π⎡⎤⎢⎥⎣⎦;(2)由11()5f α=可得112sin 165πα⎛⎫++= ⎪⎝⎭解得3sin 65πα⎛⎫+= ⎪⎝⎭,又236ππα-<<,∴,623πππα⎛⎫+∈- ⎪⎝⎭,∴4cos 65πα⎛⎫+== ⎪⎝⎭,∴24sin sin 22s 2in cos 666253πππααπαα⎡⎤⎛⎫⎛⎫⎛⎫+=+⋅+= ⎪ ⎪ ⎪⎢⎥⎛⎫+= ⎪⎝⎭⎭⎭⎭⎝⎣⎝⎝⎦. 【点睛】本题考查了三角函数的性质与三角恒等变换的综合应用,考查了运算求解能力,属于中档题.19.随着疫情的有效控制,人们的生产生活逐渐向正常秩序恢复,位于我区的某著名赏花园区重新开放.据统计硏究,近期每天赏花的人数大致符合以下数学模型*n N ∈.以611200150016()30032400728234006502936n n n f n n n n -+≤≤⎧⎪⎪=⋅+≤≤⎨⎪-≤≤⎪⎩表示第n 个时刻进入园区的人数,以0115()4005000162882002936n g n n n n ≤≤⎧⎪=-≤≤⎨⎪≤≤⎩表示第n 个时刻离开园区的人数,设定每15分钟为一个计算单位,上午8点15分作为第1个计算人数单位,即8点30分作为第2个计算单位,即2n =:依次类推,把一天内从上午8点到下午5点分成36个计算单位(最后结果四舍五入,精确到整数)(1)试分别计算当天12:30至13:30这一小时内,进入园区的人数(19)(20)(21)(22)f f f f +++和离开园区的游客人数(19)(20)(21)(22)g g g g +++.(2)请问,从12点(即16n =)开始,园区内总人数何时达到最多?并说明理由 【答案】(1)14738,12800;(2)13点30分,详见解析 【解析】 【分析】(1)由分段函数的性质,直接代入计算即可得解;(2)由题意可得()()61130034007400,162815200650,2936n n n f n g n n n -⎧⎪⋅-+≤≤-=⎨⎪-≤≤⎩,然后构造函数()6113003400x h x x -=⋅-,利用导数研究()()0f n g n ->时,n 的最大值即可得解.【详解】(1)由题意进入园区的人数(19)(20)(21)(22)f f f f +++131415161111111130032400300324003003240030032400=⋅++⋅++⋅++⋅+1341111111313300240041473813⎛⎫- ⎪⎝⎭=⋅+⨯-⋅≈,离开园区的人数(19)(20)(21)(22)g g g g +++400195000400205000400215000400215000=⨯-+⨯-+⨯-+⨯-12800=;(2)由题意()()61130034007400,162815200650,2936n n n f n g n n n -⎧⎪⋅-+≤≤-=⎨⎪-≤≤⎩,当()()0f n g n ->,园区内人数增多,()()0f n g n -<,园区内人数减少, 当2936n ≤≤时,()()0f n g n -<,园区内人数减少;令()6113003400x h x x -=⋅-,则()611300ln 3340011x h x -'=⋅⋅-, 易知()h x '单调递增,且()230028ln 33400011h '=⋅⋅-<, 所以当1628n ≤≤时,()()61130034007400n f n g n n --=⋅-+单调递减,又()()161122223003400227400830f g -=⋅-⨯+>≈,()()1711232330034002374001610f g -=⋅-⨯+-<≈,所以当22n =即13点30分时,园区内总人数最多.【点睛】本题考查了函数的应用,考查了利用导数确定函数的单调性及转化化归思想,属于中档题.20.已知动直线与l 与椭圆22:12y C x +=交于()11,P x y 、()22,Q x y 两不同点,且OPQ △的面积2OPQS=,其中O 为坐标原点 (1)若动直线l 垂直于x 轴.求直线l 的方程;(2)证明:2212x x +和2212y y +均为定值;(3)椭圆C 上是否存在点D ,E ,G ,使得三角形面积2ODGODEOEGS SS===若存在,判断DEG△的形状;若不存在,请说明理由 【答案】(1)x =;(2)证明见解析;(3)不存在,详见解析 【解析】 【分析】(1)由题意设直线:l x m =,表示出点(P m ,(,Q m 后,利用12OPQm S=⋅m ,即可得解; (2)分直线斜率是否存在分类讨论;当直线l 斜率存在时,设直线:0l y kx n n ,联立方程组可得12222kn x x k ,212222n x xk,由弦长公式及点到直线的距离公式可得2222OPQSk ==+,化简后可得2221k n ,即可得解;(3)假设存在点()33,D x y ,()44,E x y ,()55,G x y 满足题目要求,由(2)可得22234512x x x ===,2223451y y y ===,进而可得点D 、E 、G 只能从1⎛⎫± ⎪ ⎪⎝⎭四个点中选取三个不同的点,由这三点的连线中必有一条经过原点,与题设矛盾,即可得解. 【详解】(1)当直线l 垂直于x 轴时,设直线:l x m=, 则点(P m,(,Q m ,所以12OPQSm =⋅=,解得212m =,所以m=, 故所求直线方程为2x =±; (2)当直线l 斜率不存在时,由(1)知,2221221x x m ==+,()22122412y my =-=+;当直线l 斜率存在时,设直线:0l ykx n n ,则2212y kx n y x =+⎧⎪⎨+=⎪⎩,消去y 得2222220kx knxn ,所以2288160kn,12222kn x x k ,212222n x x k,所以24n PQ -==-⋅ 2222221kk n ,点O 到直线l的距离d =所以12OPQSPQ d ==⋅= 整理可得2221kn ,满足>0∆,所以()()()22242422121222422122224884821242x n k n n n n n x x x n k x x k ---+=+-=-==+++,()()()2222121222122121422y x y x x x =-+=-++-=; 综上,2212x x +为定值1,,2212y y +为定值2;(3)假设存在点()33,D x y ,()44,E x y ,()55,G x y 满足题目要求,由(2)得22341x x +=,22351x x +=,22451x x +=,22342y y +=,22352y y +=,22452y y +=,解得22234512x x x ===,2223451y y y ===, 所以3x 、4x 、5x只能从2±中选取,3y 、4y 、5y 只能从±1中选取, 故点D 、E 、G只能从,12⎛⎫±± ⎪ ⎪⎝⎭四个点中选取三个不同的点, 而这三点连线中必有一条经过原点,与22ODGODEOEGSSS===矛盾, 所以椭圆上不存在点D 、E 、G ,使得三角形面积22ODGODE OEGSSS===. 【点睛】本题考查了直线与椭圆的综合应用,考查了运算求解能力,属于中档题. 21.若无穷数列{}n a 满足:存在*k N ∈,对任意的()*0n n n N ≥∈,都有n kn aa d +-=(d 为常数),则称{}n a 具有性质()0,,Q k n d(1)若无穷数列{}n a 具有性质(3,1,0)Q ,且1231,2,3a a a ===,求234a a a ++的值 (2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+,判断{}n a 是否具有性质()0,,0Q k n ,并说明理由.(3)设无穷数列{}n a 既具有性质()1,2,Q i d ,又具有性质()2,2,Q j d ,其中*,,,,i j N i j i j ∈<互质,求证:数列{}n a 具有性质1,2,j i Q j i d i -⎛⎫- ⎪⎝⎭【答案】(1)6;(2)不具有;详见解析(3)证明见解析; 【解析】 【分析】(1)由题意可得任意的()*1n n N≥∈,都有30n n aa +-=,可得411a a ==,即可得解;(2)由题意可得5120193n n n n a b c n -⎛⎫=+=-+ ⎪⎝⎭,若{}n a 具有性质()0,,0Q k n ,由新定义可得51203113n kk-⎛⎫=⎪⎝⎭⎛⎫- ⎪⎝⎭,即可判断; (3)由题意可得对任意()*2n n N≥∈,均有1n in aa d +-=,2n j n a a d +-=,进而可得1n ij n a a jd +-=、2n ij n a a id +-=、21j d d i =,再证明1n j i n iia a j d +--⋅=-即可得解. 【详解】(1)无穷数列{}n a 具有性质(3,1,0)Q ,∴30n n a a +-=,()*1n n N ≥∈,又1231,2,3a a a ===,∴410a a -=即411a a ==,∴2342316a a a =+++=+;(2)设无穷数列{}n b 的公差为d ,无穷数列{}n c 公比为q ,0q >,则451181c q c ==,51480d b b =-=,∴13q =,20d =, ∴2019n b n =-,513n n c -⎛⎫= ⎪⎝⎭,∴5120193n n n n a b c n -⎛⎫=+=-+ ⎪⎝⎭,假设{}n a 具有性质()0,,0Q k n ,*k N ∈, 则对于任意的()*0n n n N≥∈,均有()55112019201933n k n n k n a a n k n +--+⎡⎤⎛⎫⎛⎫-=+-+--+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ 511201033n k k -⎡⎤⎛⎫⎛⎫=+-=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦, 即51203113n k k-⎛⎫= ⎪⎝⎭⎛⎫- ⎪⎝⎭对任意()*0n n n N ≥∈均成立,式子左边是变量,右边是常数,所以51203113n k k-⎛⎫= ⎪⎝⎭⎛⎫- ⎪⎝⎭不恒成立,故假设错误, ∴{}n a 不具有性质()0,,0Q k n ;(3)证明:无穷数列{}n a 具有性质()1,2,Q i d ,∴1n i n a a d +-=,()*2n n N ≥∈,①无穷数列{}n a 具有性质()2,2,Q j d , ∴2n j n a a d +-=,()*2n n N ≥∈,②*,,,,i j N i j i j ∈<互质,由①得1n ij n a a jd +-=,由②得2n ij n a a id +-=,∴12n n a d d a j i +=+即21j d d i=, ∴当()*2n n N ≥∈时,()()121n j i n n j i n j n j n a a a a a a j i d d d i+-+-++--==-+=+⋅--, ∴数列{}n a 具有性质1,2,j i Q j i d i -⎛⎫- ⎪⎝⎭. 【点睛】本题考查了数列新定义的运用以及等差数列和等比数列的通项公式,考查了运算求解能力以及推理能力,属于难题.。
2020年上海市高三数学二模分类汇编:集合与命题(16区全)
1(2020松江二模). 若集合{2,4,6,8}A =,2{|40}B x x x =-≤,则A B =I 1(2020杨浦二模). 设集合{1,2,3,4}A =,集合{1,3,5,7}B =,则A B =I 1(2020嘉定二模). 已知集合{2,4,6,8}A =,{1,2,3}B =,则A B =I 1(2020青浦二模). 已知全集U =R ,集合(,2)A =-∞,则集合U A =ð1(2020黄浦二模). 若集合{1,2,3,4,5}A =,2{|60}B x x x =--<,则A B =I 1(2020徐汇二模). 已知{1,2,3,4,5}U =,{1,3,5}A =,则U A =ð1(2020长宁二模). 已知集合(2,1]A =-,(0,)B =+∞,则A B =I1(2020闵行二模). 设集合{1,3,5,7}A =,{|47}B x x =≤≤,则A B =I 1(2020金山二模). 集合{|03}A x x =<<,{|||2}B x x =<,则A B =I 1(2020浦东二模). 设全集{0,1,2}U =,集合{0,1}A =,则U A =ð2(2020崇明二模). 设集合{|12}A x x =-≤≤,{|04}B x x =≤≤,则A B =I 3(2020虹口二模). 设全集R U =,若{||2|3}A x x =-≥,则U A =ð10(2020奉贤二模). 集合22{|0}24x x A x -=≤-,{|||2}B x x a =-≤,若A B =∅I ,则实数a 的取值范围是12(2020静安二模). 设x ∈R ,则“250x x -<”是“|1|1x -<”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件14(2020普陀二模). 已知集合{3}M =,{2,4}N =,{1,2,5}Q =,从这三个集合中各取一个元素构成空间直角坐标系O xyz -中向量a r 的坐标,则可确定不同向量a r 的个数为( )A. 33B. 34C. 35D. 3616(2020浦东二模). 设集合{1,2,3,,2020}S =⋅⋅⋅,设集合A 是集合S 的非空子集,A 中的最大元素和最小元素之差称为集合A 的直径,那么集合S 所有直径为71的子集的元素个数之和为( )A. 711949⋅B. 7021949⋅C. 702371949⋅⋅D. 702721949⋅⋅。
2020年上海各区高三二模分类汇编-5解析几何(教师版)
2020年二模汇编——解析几何一、填空题【奉贤2】已知圆的参数方程为62cos 2sin x y θθ=+⎧⎨=⎩,则此圆的半径是【答案】2【解析】考察圆的参数方程, ()2264,2x y r -+==【松江3】已知动点P 到定点(1,0)的距离等于它到定直线:1l x =-的距离,则点P 的轨迹方程为 . 【答案】24y x =【解析】动点到定点的距离等于它到定直线的距离,因为定点不在定直线上,所以的轨迹是抛物线,为焦点,为准线。
因为22y px =的焦点是(,0)2p,即,所以2p =,进而抛物线方程为24y x =.【闵行3】若直线01=++by ax 的方向向量为()1,1,则此直线的倾斜角为_______【答案】4π 【解析】()4,1tan ,1,1πθθ====k【奉贤4】已知P 为曲线22:1412x y Γ+=上位于第一象限内的点,1F 、2F 分别为Γ的两焦点,若12F PF ∠是直角,则点P 坐标为【答案】【解析】考察焦点三角形的面积21tan222P P b c y y θ=⋅⋅⇒=代入若原椭圆方程解得P x =,所以P点坐标为【宝山4】已知双曲线()2222:10,0x y C a b a b-=>>的实轴与虚轴长度相等,则C 的渐近线方程是 。
【答案】y x =±P (1,0):1l x =-P (1,0):1l x =-(1,0)【解析】由题意知by x a=±,a b =,所以y x =±。
【黄浦4】若直线1:350l ax y +-=与2:210l x y +-=互相垂直,则实数a 的值为 【答案】6-【解析】60,6a a +==-【青浦5】双曲线22144x y -=的一个焦点到一条渐近线的距离是__________.【答案】2【解析】双曲线22144x y -=的焦点为()±,渐近线方程为y x =±,由点到直线距离公式得距离2d =.【金山6】已知双曲线2221(0)x y a a-=>的一条渐近线方程为20x y -=,则实数a = .【答案】12【解析】2221(0)x y a a -=>的渐近线方程为:x y a =±,12,2x y x a a ===【浦东6】在平面直角坐标系xOy 中,直线l 的参数方程为1x t y t =-⎧⎨=⎩(t 为参数),圆O 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),则直线l 与圆O 的位置关系是 .【答案】相交【解析】直线l 的一般方程是10x y -+=,圆O 的一般方程是221x y +=,圆心到直线距1<,直线l 与圆O 的位置关系是相交【长宁6】直线2:12x tl y t=+⎧⎨=-+⎩(t 是参数)的斜率为 .【答案】2【解析】由直线的参数方程定义可知直线方程为()122y x =-+-,所以2k =【黄浦7】已知双曲线22221x y a b-=(0a >,0b >)的一条渐近线平行于直线:210l y x =+, 双曲线的一个焦点在直线l 上,则双曲线的方程为【答案】221520x y -= 【解析】22222222,5,5255,1520b x yc c a b a a a ===+==⇒=-= 【浦东8】已知双曲线的渐近线方程为x y ±=,且右焦点与抛物线x y 42=的焦点重合,则这个双曲线的方程是____________. 【答案】12222=-y x【解析】抛物线x y 42=的焦点为()10,,设双曲线的方程为22x y λ-=,即221x y λλ-=,则1+12λλλ=⇒=,所以双曲线的方程是12222=-y x 【徐汇8】已知直线()()2130a x a y ++--=的方向向量是直线()(1)2320a x a y -+++=的法向量,则实数a 的值为 .【答案】1±【解析】由题意得两直线垂直()()()()2112+3=0a a a a ∴+-+-,()()1223=0a a a ∴-+--,所以()()110a a ---=,所以1a =±【杨浦8】已知曲线1C 的参数方程为212x t y t =-⎧⎨=+⎩(t 是参数),曲线2C 的参数方程为15cos 5sin x y θθ⎧=-+⎪⎨=⎪⎩(θ是参数),则1C 和2C 的两个交点之间的距离为 【答案】556 【解析】 ()51:,052:2221=++=+-y x C y x C 5501---=∴d 54=55653251652222==-=-=∴d r l 【虹口10】已知1F 、2F 是椭圆222:13x y C a +=(3a >)的左、右焦点,过原点O 且倾斜角为60o的直线与椭圆C 的一个交点为M ,若1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r ,则椭圆C 的长轴长为【答案】232+【解析】依据题意画出大致图像:因为1212MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r,即等价为1290F MF ︒∠=211tan 3,22M F MF S b y ∴===⨯y =则M ⎫,代入椭圆方程得:()()22233133a a a +=--,化简可得:42630a a --=解得)2231a =+=22a ∴=【嘉定11】设p 是双曲线2218y x -=上的动点,直线3cos sin x t y t θθ=+⎧⎨=⎩t (为参数)与圆()2231x y -+=相交与A ,B 两点,则PA PB u u u r u u u rg 的最小值是【答案】3【解析】如图所示,运用极化恒等式有:PA PB u u u r u u u rg 222222=PC PC 1213CA -=-≥-=【青浦11】已知正三角形ABC 的三个顶点均在抛物线2x y =上,其中一条边所在直线的ABC ∆的三个顶点的横坐标之和为__________.【答案】10-【解析】令()()()222112233,,,,,A x x B x x C x x.令22212121ABx x k x x x x -==+=-ABC中22313131ACx x k x x x x -==+==-223232325BCx x k x x x x --==+==-由此可得出13210x x x ++=-.【黄浦12】点A是曲线y =(2y ≤)上的任意一点,(0,2)P -,(0,2)Q ,射线QA 交曲线218y x =于B 点,BC 垂直于直线3y =,垂足为点C ,则下列结论:(1)||||AP AQ -为定值22; (2)||||QB BC +为定值5;(3)||||||PA AB BC ++为定值52+; 其中正确结论的序号是 【答案】①②【解析】(1)由题意可知,曲线22y x =+(2y ≤)是双曲线22122y x -=的上半支,根据双曲线定义可知,正确(2)曲线28x y =的准线2y =-,故正确(3)||||||||||5||5||||522PA AB BC PA AB QB PA AQ ++=++-=+-=+,故错误【奉贤12】在平面直角坐标系内有两点(,1)A m -,(2,1)B -,2m <,点A 在抛物线22y px =上,F 为抛物线的焦点,若2||||6AB AF +=,则m = 【答案】51-+,12-,16-【解析】12||2122m AB m pm p m<∴=-∴=∴=Q 抛物线的准线方程为14x m =-由抛物线的定义知1||||4AF m m =+于是条件可转化为12(2)||64m m m-++= 当0m >时, 25481012m m m +-=∴=-+(舍负) 当0m <时, 21128106m m m ++=∴=-或12m =- 【杨浦12】已知抛物线1Γ与2Γ的焦点均为点(2,1)F ,准线方程分别为0x =与5120x y +=,设两抛物线交于A 、B 两点,则直线AB 的方程为【答案】230x y -=【解析】由题意可知A 和B 两点既在1Γ又在2Γ上,所以到两准线的距离相等,由点到直线距离公式可知51213x yx +=,由抛物线定义以及焦点位置和准线方程并结合图像知AB 斜率为正,所以AB 方程为230x y -=二、选择题【宝山13】抛物线24y x =的准线方程是( )【A 】2x =- 【B 】1x =- 【C 】18y =-【D 】116y =- 【答案】D【解析】 由24y x =得到214x y =,则其准线方程为116y =-. 【虹口13】已知抛物线24y x =上的点M 到它的焦点的距离为5,则点M 到y 轴的距离为( ) 【A 】2 【B 】4 【C 】5 【D 】6 【答案】B【解析】抛物线24y x =的焦点坐标()1,0,抛物线上24y x =的一点M 到该抛物线的焦点F 的距离,则M 到准线的距离为5,则点M 到y 轴的距离为:4,故答案为:4【松江13】若O 为坐标原点,P 是直线20x y -+=上的动点,则OP 的最小值为( )【A 】2【B【C 【D 】2 【答案】B【解析】OP 的最小值为原点O 到直线20x y -+=的距离,即:min d ==【崇明14】若抛物线28y x =的焦点F 与双曲线2213x y n-=的一个焦点重合,则n 的值为( )【A 】1- 【B 】1 【C 】2 【D 】13 【答案】B【解析】由()20,2=⇒c F ,所以1432=⇒=+=n n c ,故选B【闵行15】已知抛物线的方程为24y x =,过其焦点F 的直线交此抛物线于,M N 两点,交y 轴于点E ,若1EM MF λ=,2EN NF λ=,则12λλ+=( ) 【A 】2- 【B 】12-【C 】1【D 】1- 【答案】D【解析】设()()⎪⎭⎫ ⎝⎛-+=m E y x N y x M my x l 1,0,,,,,1:2211 112114,4044412121221*********-=+⋅--=+-+-=+-==+∴=--⇒⎩⎨⎧=+=y y y y m y m y y m y y y m y y my y xy my x λλ【青浦15】记椭圆221441x ny n +=+围成的区域(含边界)为(1,2,)n n Ω=L ,当点(,)x y 分别在1Ω,2Ω,L 上时,x y +的最大值分别是1M ,2M ,L ,则lim n n M →∞=( ).【A 】2 【B 】4 【C 】3【D 】【答案】D【解析】令2222cos ,sin 441x ny n θθ==+,2cos ,x y θθ∴==2cos ),x y θθθϕ∴+=+=+lim n n n μ→∞→∞∴==【杨浦15】设1F 、2F 是椭圆22194x y +=的两焦点,A 与B 分别是该椭圆的右顶点与上顶点,P 是该椭圆上的一个动点,O 是坐标原点,记2122s OP F P F P =-⋅uu u r uuu r uuu r,在动点P 在第一象限内从A 沿椭圆向左上方运动到B 的过程中,s 的大小的变化情况为( )【A 】 逐渐变大 【B 】 逐渐变小 【C 】 先变大后变小 【D 】 先变小后变大 【答案】B【解析】令()()()()()202020202100520,5,0,5,,y x y x s F F y x P +--+=∴-595591452020202020+=+⎪⎪⎭⎫ ⎝⎛-+=++=x x x y x s ,可知选B 三、解答题【宝山20】已知直线:l y kx m =+ 和椭圆22:142x y Γ+=相交于点()()1122,,,A x y B x y .(1)当直线l 过椭圆Γ的左焦点和上顶点时,求直线l 的方程; (2)点)C在Γ上,若0m =,求ABC ∆面积的最大值;(3)如果原点O 到直线l的距离是3,证明:AOB ∆为直角三角形。
2020年上海市高三数学二模分类汇编:参数方程、线性规划(16区全)
参数方程:2(2020奉贤二模). 已知圆的参数方程为62cos 2sin x y θθ=+⎧⎨=⎩,则此圆的半径是 6(2020浦东二模). 在平面直角坐标系xOy 中,直线l 的参数方程为1x t y t =-⎧⎨=⎩(t 为参数),圆O 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),则直线l 与圆O 的位置关系是 6(2020长宁二模). 直线2:12x t l y t =+⎧⎨=-+⎩(t 是参数)的斜率为8(2020杨浦二模). 已知曲线1C 的参数方程为212x t y t =-⎧⎨=+⎩(t 是参数),曲线2C 的参数方程为1x y θθ⎧=-+⎪⎨=⎪⎩(θ是参数),则1C 和2C 的两个交点之间的距离为线性规划:5(2020普陀二模). 已知实数x 、y 满足条件001x y y x y -≥⎧⎪≥⎨⎪+≤⎩,则目标函数2z x y =+的最大值为5(2020奉贤二模). 已知O 是坐标原点,点(1,1)A -,若点(,)M x y 为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OM OA ⋅uuu r uu r 的取值范围为5(2020嘉定二模). 若实数x 、y 满足0120x y x y ≥⎧⎪≤⎨⎪-≤⎩,则z x y =+的最大值为5(2020长宁二模). 若实数x 、y 满足0022x y x y ≥⎧⎪≥⎨⎪+≤⎩,则z x y =-的最小值为7(2020闵行二模). 若x 、y 满足||1x y ≤+,且1y ≤,则3x y +的最大值为7(2020杨浦二模). 实数x 、y 满足约束条件242300x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,目标函数f x y =+的最大值为9(2020黄浦二模). 当x、y满足270101x yx yx+-≤⎧⎪--≤⎨⎪≥⎩时,|2|x y a-≤恒成立,则实数a的取值范围是13(2020浦东二模). 若x、y满足1x yx yy-≥⎧⎪+≤⎨⎪≥⎩,则目标函数2f x y=+的最大值为()A. 1B. 2C. 3D. 4。
2020年上海市高三数学二模分类汇编:向量与复数(16区全)
复数:1(2020宝山二模). 已知复数z 满足2020(1i )24i z +=-(其中,i 为虚数单位),则=z 2(2020青浦二模). 已知i 为虚数单位,复数2i z =+的共轭复数z = 2(2020闵行二模). 已知复数z 满足i 1i z ⋅=+(i 为虚数单位),则Im z = 2(2020松江二模). 已知复数12i z a =+,223i z =+(i 是虚数单位),若12z z ⋅是纯虚数,则实数a =3(2020普陀二模). 已知i 为虚数单位,若复数z 满足1(5)i z z a +=+-,则实数a 的值为3(2020金山二模). i 是虚数单位,则i||1i-的值为 3(2020奉贤二模). 设2021i z b =+(i 为虚数单位),若22029z z ⋅=,则实数b =3(2020崇明二模). 已知复数z i =,i 为虚数单位,则z = 4(2020杨浦二模). 设i 是虚数单位,复数z 满足(12i)43i z +=+,则z = 4(2020徐汇二模). 若1i +(i 是虚数单位)是关于x 的实系数方程20x px q ++=的根,则pq =4(2020长宁二模). 若复数z 满足23z =-,则||z =4(2020浦东二模). 若1i -是关于x 的方程20x px q ++=的一个根(其中i 为虚数单位,,R p q ∈),则p q +=6(2020虹口二模). 设复数cos isin iz αα=(i 为虚数单位),若||z =,则tan2α=9(2020嘉定二模). 设z ∈C ,290z +=,则|4|z -=10(2020宝山二模). 已知方程210x tx ++=()t ∈R 的两个根是21,x x ,若22x x -=则=t14(2020黄浦二模). 设1z 、2z 是复数, 则下列命题中的假命题是( )A. 若12||0z z -=,则12z z =B. 若12z z =,则12z z =u rC. 若12||||z z =,则2112··z z z z =D. 若12||||z z =,则2212z z =14(2020杨浦二模). 设z 是复数,则“z 是虚数”是“3z 是虚数”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件向量:6(2020静安二模). 在平面直角坐标系xOy 上,由不等式组0222x y x ⎧≤≤⎪≤⎨⎪≤⎩所确定的区域为D ,若(,)M x y 为区域D 上的动点,点(2,1)A ,则z OM OA =⋅uuu r uu r的最大值为8(2020青浦二模). 已知平面向量a r 、b r 满足(1,1)a =-r ,||1b =r ,|2|2a b +=r ra r 与b r的夹角为9(2020虹口二模). 已知点(3,2)A -,点P 满足线性约束条件201024x y x y +≥⎧⎪-≤⎨⎪-≤⎩,设O 为坐标原点,则OA OP ⋅uu r uu u r的最大值为9(2020松江二模). 已知等边△ABC 的边长为23P 是其外接圆上的一个动点,则PA PB ⋅uu r uu r的取值范围是10(2020徐汇二模). 在△ABC 中,若||||AB AC AB AC +=-uu u r uuu r uu u r uuu r,2AB =,1AC =,E 、F 为BC 边的三等分点,则AE AF ⋅=uu u r11(2020普陀二模). 在平面四边形ABCD 中,0AB BC AD DC ⋅=⋅=uu u r uu u r uuu r uuu r ,||||1AB AD ==uu u r uuu r,12AB AD ⋅=-uu u r uuu r ,若点M 是边BC 上的任一动点,则AM DM ⋅uuu r uuu u r 的最小值为11(2020闵行二模). 已知A 、B 、C 是边长为1的正方形边上的任意三点,则AB AC ⋅uu u r uuu r的取值范围为11(2020嘉定二模). 设P 是双曲线2218y x -=上的动点,直线3cos sin x t y t θθ=+⎧⎨=⎩(θ为参数)与圆22(3)x y -+1=相交于A 、B 两点,则PA PB ⋅uu r uu r的最小值是11(2020宝山二模). 已知O 是坐标原点,点(1,1)A -,若点),(y x M 为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM ⋅u u u r u u u u r的取值范围是11(2020杨浦二模). 设a r 、b r 、c r是同一平面上的三个两两不同的单位向量,若():():()1:1:2a b b c c a ⋅⋅⋅=r r r r r r,则a b ⋅r r 的值为11(2020浦东二模).如图,在△ABC 中,3BAC π∠=,D 为AB的中点,P 为CD 上一点,且满足AP t AC =uu u r uuu r 13AB +uu u r,若△ABC的面积为332,则||AP uu u r 的最小值为11(2020长宁二模). 已知M 、N 在以AB 为直径的圆上,若5AB =,3AM =,2BN =,则AB MN ⋅=uu u r uuu r12(2020宝山二模). 已知平面向量a r 、b r ,e r 满足||1e =r ,1a e ⋅=r r ,1b e ⋅=-r r ,||4a b -=r r,则a b ⋅r r的最小值是13(2020长宁二模). 已知向量(1,,1)a x =-r ,(,1,1)b x =r,R x ∈,则“1x =-”是“a r ∥b r ”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件15(2020闵行二模). 已知抛物线的方程为24y x =,过其焦点F 的直线交此抛物线于M 、N 两点,交y 轴于点E ,若1EM MF λ=uuu r uuu r ,2EN NF λ=uuu r uuu r,则12λλ+=( )A. 2-B. 12- C. 1 D. 1- 15(2020黄浦二模). 已知e r 、f u r 是互相垂直的单位向量,向量n a u u r 满足:n e a n ⋅=r u u r,21n f a n ⋅=+u r u u r ,n b 是向量f u r 与n a u u r夹角的正切值,则数列{}n b 是( )A. 单调递增数列且1lim 2n n b →∞=B. 单调递减数列且1lim 2n n b →∞=C. 单调递增数列且lim 2n n b →∞= D. 单调递减数列且lim 2n n b →∞=。
2020年上海市高三数学二模分类汇编:二项式定理(16区全)
3(2020静安二模). 若1()n x x +展开式的二项式系数之和为64,则展开式的常数项的值为 3(2020长宁二模). 5(1)x +的二项展开式的第三项的系数是
4(2020嘉定二模). 在5(2)x -的二项展开式中,项的系数为
4(2020青浦二模). 若5(1)ax +的展开式中3x 的系数是80,则实数a 的值是
5(2020松江二模). 若8()x a +的展开式中5x 项的系数为56,则实数a =
6(2020闵行二模). 在81)x 的二项展开式中,常数项的值为
6(2020崇明二模). 241(2)x x +的展开式中含5x 项的系数是 (用数字作答)
7(2020徐汇二模). 二项式25(x
+
的展开式中的常数项等于 (结果用数值表示)
7(2020浦东二模). 若二项式4(12)x +展开式的第4项的值为23lim()n n x x x x →∞
+++⋅⋅⋅+= 7(2020虹口二模). 若25(ax
的展开式中的常数项为52-,则实数a 的值为 8(2020普陀二模). 设1110(1)(1)(1)(1)n n n n n x a x a x a x a --+=-+-+⋅⋅⋅+-+,若110729n n a a a a -++⋅⋅⋅++=,则3a =
8(2020宝山二模). 已知1()2n x x
-的展开式的常数项为第6项,则常数项为
10(2020杨浦二模). 设*n ∈N ,若(2n +
的二项展开式中,有理项的系数之和为29525,则n =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3(2020闵行二模). 若直线10ax by ++=的方向向量为(1,1),则此直线的倾斜角为 3(2020松江二模). 已知动点P 到定点(1,0)的距离等于它到定直线:1l x =-的距离,则点P 的轨迹方程为4(2020黄浦二模). 若直线1:350l ax y +-=与2:210l x y +-=互相垂直,则实数a 的值为4(2020宝山二模). 已知双曲线2222:1x y C a b-=(0,0)a b >>的实轴与虚轴长度相等,则C的渐近线方程是4(2020奉贤二模). 已知P 为双曲线22:1412x y Γ+=上位于第一象限内的点,1F 、2F 分别为Γ的两焦点,若12F PF ∠是直角,则点P 坐标为5(2020闵行二模). 已知圆锥的母线长为10,母线与轴的夹角为30°,则该圆锥的侧面积为5(2020青浦二模). 双曲线22144x y -=的一个焦点到一条渐近线的距离是6(2020金山二模). 已知双曲线2221x y a-=(0)a >的一条渐近线方程为20x y -=,则实数a =7(2020黄浦二模). 已知双曲线22221x y a b-=(0a >,0b >)的一条渐近线平行于直线:210l y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为8(2020徐汇二模). 已知直线(2)(1)30a x a y ++--=的方向向量是直线(1)(23)20a x a y -+++=的法向量,则实数a 的值为8(2020浦东二模). 已知双曲线的渐近线方程为y x =±,且右焦点与抛物线24y x =的焦点重合,则这个双曲线的方程是9(2020闵行二模). 已知直线1:l y x =,斜率为q (01q <<)的直线2l 与x 轴交于点A ,与y 轴交于点0(0,)B a ,过0B 作x 轴的平行线,交1l 于点1A ,过1A 作y 轴的平行线,交2l 于点1B , 再过1B 作x 轴的平行线交1l 于点2A ,⋅⋅⋅,这样依次得线 段01B A 、11A B 、12B A 、22A B 、⋅⋅⋅、1n n B A -、n n A B , 记n x 为点n B 的横坐标,则lim n n x →∞=9. 一个水平放置的等轴双曲线型的拱桥桥洞如图所示,已知当 前拱桥的最高点离水面5米时,量得水面宽度30AB =米,则 当水面升高1米后,水面宽度为 米(精确到0.1米)10(2020虹口二模). 已知1F 、2F 是椭圆222:13x y C a +=(3a >点O 且倾斜角为60°的直线与椭圆C 的一个交点为M ,若1212||||MF MF MF MF +=-uuu r uuu u r uuu r uuu u r ,则椭圆C 的长轴长为10(2020金山二模). 若点集22{(,)|1}A x y x y =+≤,{(,)|22,11}B x y x y =-≤≤-≤≤,则点集12121122{(,)|,,(,),(,)}Q x y x x x y y y x y A x y B ==+=+∈∈所表示的区域的面积是 11(2020青浦二模). 已知正三角形ABC 的三个顶点均在抛物线2x y =上,其中一条边所2ABC 的三个顶点的横坐标之和为12(2020奉贤二模). 在平面直角坐标系内有两点(,1)A m -,(2,1)B -,2m <,点A 在抛物线22y px =上,F 为抛物线的焦点,若2||||6AB AF +=,则m =12(2020普陀二模). 设双曲线222:1x y aΓ-=(0a >)的左、右焦点分别为1F 、2F ,点M 在Γ的右支上,向量是(1,)d a =u r 是直线1F M 的一个方向向量,若124F MF π∠=,则Γ的焦距为12(2020金山二模). 设n ∈*N ,n a 为(2)(1)n n x x +-+的展开式的各项系数之和,162m t =-+,t ∈R ,1222[][][]333n n n na a a b =++⋅⋅⋅+([]x 表示不超过实数x 的最大整数),则22()()n t b m -+-的最小值为12(2020杨浦二模). 已知抛物线1Γ与2Γ的焦点均为点(2,1)F ,准线方程分别为0x =与5120x y +=,设两抛物线交于A 、B 两点,则直线AB 的方程为12(2020黄浦二模). 点A 是曲线22y x =+(2y ≤)上的任意一点,(0,2)P -,(0,2)Q ,射线QA 交曲线218y x =于B 点,BC 垂直于直线3y =,垂足为点C ,则下列结论: (1)||||AP AQ -为定值2 (2)||||QB BC +为定值5;(3)||||||PA AB BC ++为定值52; 其中正确结论的序号是13(2020静安二模). 方程222980x xy y -+=的曲线C 所满足的性质为( ) ① 不经过第二、四象限;② 关于x 轴对称;③ 关于原点对称;④ 关于直线y x =对称; A. ①③ B. ②③ C. ①④ D. ①②13(2020普陀二模). 对于抛物线,“方程24y x =”是“焦点到准线的距离等于2”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分也非必要条件13(2020虹口二模). 已知抛物线24y x =上的点M 到它的焦点的距离为5,则点M 到y 轴的距离为( )A. 2B. 4C. 5D. 613(2020松江二模). 若O 为坐标原点,P 是直线20x y -+=上的动点,则||OP 的最小值为( )A.B. C. D. 213(2020宝山二模). 抛物线24y x =的准线方程是( )A. 2x =-B. 1x =-C. 18y =- D. 116y =-13(2020金山二模). 已知直角坐标平面上两条直线的方程分别为1111:0l a x b y c ++=,2222:l a x b y c ++0=,那么“11220a b a b =”是“两直线1l 、2l 平行”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件14(2020崇明二模). 若抛物线28y x =的焦点F 与双曲线2213x y n-=的一个焦点重合,则n 的值为( )A. 1-B. 1C. 2D. 1315(2020闵行二模). 已知抛物线的方程为24y x =,过其焦点F 的直线交此抛物线于M 、N 两点,交y 轴于点E ,若1EM MF λ=uuu r uuu r ,2EN NF λ=uuu r uuu r,则12λλ+=( ) A. 2- B. 12-C. 1D. 1- 15(2020杨浦二模). 设1F 、2F 是椭圆22194x y +=的两焦点,A 与B 分别是该椭圆的右顶点与上顶点,P 是该椭圆上的一个动点,O 是坐标原点,记2122s OP F P F P =-⋅uu u r uuu r uuu r,在动点P 在第一象限内从A 沿椭圆向左上方运动到B 的过程中,s 的大小的变化情况为( )A. 逐渐变大B. 逐渐变小C. 先变大后变小D. 先变小后变大15(2020青浦二模). 记椭圆221441x ny n +=+围成的区域(含边界)为n Ω(1,2,n =⋅⋅⋅),当点(,)x y 分别在1Ω,2Ω,⋅⋅⋅上时,x y +的最大值分别是1M ,2M ,⋅⋅⋅,则lim n n M →∞=( )A. 2B. 4C. 3D. 16(2020闵行二模). 关于x 的实系数方程2450x x -+=和220x mx m ++=有四个不同的根,若这四个根在复平面上对应的点共圆,则m 的取值范围是( )A. {5}B. {1}-C. (0,1)D. (0,1){1}-U17(2020静安二模). 已知抛物线2:4y x Γ=的焦点为F ,若△ABC 的三个顶点都在抛物线Γ上,且0FA FB FC ++=uu r uu r uu u r r,则称该三角形为“核心三角形”.(1)是否存在“核心三角形”,其中两个顶点的坐标分别为(0,0)和(1,2)?请说明理由; (2)设“核心三角形”ABC 的一边AB 所在直线的斜率为4,求直线AB 的方程; (3)已知△ABC 是“核心三角形”,证明:点A 的横坐标小于2.20(2020闵行二模). 在平面直角坐标系中,A 、B 分别为椭圆22:12x y Γ+=的上、下顶点,若动直线l 过点(0,)P b (1b >),且与椭圆Γ相交于C 、D 两个不同点(直线l 与y 轴不重合,且C 、D 两点在y 轴右侧,C 在D 的上方),直线AD 与BC 相交于点Q . (1)设Γ的两焦点为1F 、2F ,求12F AF ∠的值;(2)若3b =,且32PD PC =uu u r uu u r,求点Q 的横坐标;(3)是否存在这样的点P ,使得点Q 的纵坐标恒为13? 若存在,求出点P 的坐标,若不存在,请说明理由.20. 已知直线:l y kx m =+和椭圆22:142x y Γ+=相交于点),(11y x A ,),(22y x B .(1)当直线l 过椭圆Γ的左焦点和上顶点时,求直线l 的方程; (2)点(2,1)C 在Γ上,若0m =,求△ABC 面积的最大值; (3)如果原点O 到直线l 的距离是233,证明:△AOB 为直角三角形.20(2020松江二模). 如图,已知椭圆2222:1x y M a b+=(0a b >>)经过圆22:(1)4N x y ++=与轴的两个交点和与y 轴正半轴的交点.(1)求椭圆M 的方程;(2)若点P 为椭圆M 上的动点,点Q 为圆N 上的动点,求线段PQ 长的最大值; (3)若不平行于坐标轴的直线l 交椭圆M 于A 、B 两点,交圆N 于C 、D 两点,且满足AC DB =uuu r uu u r,求证:线段AB 的中点E 在定直线上.20(2020青浦二模). 已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是1F 、2F ,其长轴长是短轴长的2倍,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线1PF 、2PF 的斜率分别为1k 、2k ,若0k ≠,证明:1211kk kk + 为定值,并求出这个定值;(3)点P 是椭圆C 上除长轴端点外的任一点,设12F PF ∠的角平分线PM 交椭圆C 的长轴于点(,0)M m ,求m 的取值范围.20(2020普陀二模). 已知椭圆22:194x y Γ+=的左、右焦点分别1F 、2F ,上顶点为M ,过点M 且斜率为1-的直线与Γ交于另一点N ,过原点的直线l 与Γ交于P 、Q 两点.(1)求△2PQF 周长的最小值;(2)是否存在这样的直线l ,使得与直线MN 平行的弦的中点都在l 上?若存在,求出直 线l 的方程,若不存在,请说明理由;(3)直线l 与线段MN 相交,且四边形MPNQ 的面积1083613[,]13S ∈,求直线l 的斜率k的取值范围.20(2020嘉定二模). 已知椭圆2222:1x y a bΓ+=(0a b >>)过点(0,2)P ,且它的一个焦点与抛物线28y x =的焦点相同,直线l 过点(1,0)Q ,且与椭圆Γ相交于A 、B 两点.(1)求椭圆Γ的方程;(2)若直线l 的一个方向向量为(1,2)d =u r,求△OAB 的面积(其中O 为坐标原点);(3)试问:在x 轴上是否存在点M ,使得MA MB ⋅uuu r uuu r为定值?若存在,求出点M 的坐标和定值,若不存在,请说明理由.20(2020黄浦二模). 已知点A 、B 分别是椭圆2222 :1(0)x y C a b a b+=>>的右顶点与上顶点,坐标原点O 到直线AB 的距离为6,且点A 是圆222:(2)x y r Γ-+=(0r >)的圆心,动直线:l y kx =与椭圆交于P 、Q 两点. (1)求椭圆C 的方程;(2)若点S 在线段AB 上,OS OP λ=uu r uu u r(λ+∈R ),且当λ取最小值时直线l 与圆Γ相切,求r 的值;(3)若直线l 与圆Γ分别交于G 、H 两点,点G 在线段PQ 上,且||||QG PH =, 求r 的取值范围.20(2020杨浦二模). 已知双曲线222:1y H x b-=(0b >),经过点(2,0)D 的直线l 与该双曲线交于M 、N 两点.(1)若l 与x 轴垂直,且||6MN =,求b 的值;(2)若2b =,且M 、N 的横坐标之和为4-,证明:90MON ∠=︒;(3)设直线l 与y 轴交于点E ,EM MD λ=⋅uuu r uuu r ,EN ND μ=⋅uuu r uuu r,求证:λμ+为定值.20(2020徐汇二模). 已知椭圆2222:1(0) x ya babΓ+=>>的长轴长为22,右顶点到左焦点的距离为21+,1F、2F分别为椭圆Γ的左、右两个焦点.(1)求椭圆Γ的方程;(2)已知椭圆Γ的切线l(与椭圆Γ有唯一交点)的方程为y kx m=+,切线l与直线1x=和直线2x=分别交于点M、N,求证:22||||MFNF为定值,并求此定值;(3)设矩形ABCD的四条边所在直线都和椭圆Γ相切(即每条边所在直线与椭圆Γ有唯一交点),求矩形ABCD的面积S的取值范围.20(2020虹口二模). 设双曲线2222:1x yCa b+=的左顶点为D,且以点D为圆心的圆222:(2)D x y r++=(0r>)与双曲线C分别相交于点A、B,如图所示.(1)求双曲线C的方程;(2)求DA DB⋅uu u r uu u r的最小值,并求出此时圆D的方程;(3)设点P为双曲线C上异于点A、B的任意一点,且直线PA、PB分别与x轴相交于点M、N,求证:||||OM ON⋅为定值(其中O为坐标原点).20(2020金山二模). 已知动直线l与椭圆22:12yC x+=交于11(,)P x y、22(,)Q x y两不同点,且△OPQ的面积22OPQS=V,其中O为坐标原点.(1)若动直线l 垂直于x 轴,求直线l 的方程;(2)证明2212x x +和2212y y +均为定值;(3)椭圆C 上是否存在点D 、E 、G ,使得三角形面积2ODE ODG OEG S S S ===V V V ? 若存在,判断△DEG 的形状,若不存在,请说明理由.20(2020奉贤二模). 直线1:0L y +-=上的动点P 到点1(9,0)T 的距离是它到点(1,0)T 的距离的3倍.(1)求点P 的坐标;(2)设双曲线22221x y a b-=的右焦点是F ,双曲线经过动点P ,且10PF TT ⋅=uu u r uur ,求双曲线的方程;(3)点(1,0)T 关于直线0x y +=的对称点为Q ,试问能否找到一条斜率为k (0k ≠)的直线L 与(2)中的双曲线22221x y a b-=交于不同的两点M 、N ,且满足||||QM QN =,若存在,求出斜率k 的取值范围,若不存在,请说明理由.20(2020崇明二模). 已知椭圆22:12x y Γ+=的右焦点为F ,直线x t =((t ∈)与该椭圆交于点A 、B (点A 位于x 轴上方),x 轴上一点(2,0)C ,直线AF 与直线BC 交于点P .(1)当1t =-时,求线段AF 的长; (2)求证:点P 在椭圆Γ上;(3)求证:PAC S ≤V .20(2020浦东二模). 在平面直角坐标系xOy 中,1F 、2F 分别是椭圆222:1x y aΓ+=(0a >)的左、右焦点,直线l 与椭圆交于不同的两点A 、B ,且12||||AF AF +=. (1)求椭圆Γ的方程;(2)已知直线l 经过椭圆的右焦点2F ,P 、Q 是椭圆上两点,四边形ABPQ 是菱形,求直线l 的方程;(3)已知直线l 不经过椭圆的右焦点2F ,直线2AF 、l 、2BF 的斜率依次成等差数列,求直线l 在y 轴上截距的取值范围.。