专题二、分式不等式的解法
高三数学不等式的解法2
2、解不等式:
(1)k 2(x 2) k(3x 1) 2(x 2) 0
(2)ax2 (a 1)x 1 0
练习:
1、设a与b不相等,解关于x的不等式:
a2 x b2 (1 x) [ax b(1 x)]2 98年全国高考题
2、关于实数x的不等式:| x (a 1)2 | (a 1)2 22
与x2 3(a 1)x 2(3a 1) 0(a R)
的解集分别为A、B,求使 A B
时实数a的取值范围
3、已知a、b是不相等的实数,且
a3 b3 a2 b2 求证 : 0 a b 4
3
4、设不等式:
(m
1) x 2
x2 3x 4 2(m 1)x
1、解不等式:
x2 x2
3x 2x
2 3
0
解法一:分类讨论 3 x1 x3 x2
(2) (x 1)2 (x 2) 0 x2 7x 12
三、含参数的不等式:
1、若不等式:ax+b>0的解集为: {x|x>5} 求不等式:3ax-b<0的解集
不等式的解法举例
一、绝对值不等式
1.解不等式 | x2 5x 5 | 1
知识点: | x | a(a 0) a x a
2.解不等式 | x2 x | 1 x 2
3、解不等式:| x+2|+|x-1|<4
Ex :解不等式:|x-2|-|2x+5|>2x
二、分式不等式:
2m
3
0
对一切实数x恒成立,求实数m的 取值范围。
专题:分式不等式和绝对值不等式的解法
专题:分式不等式和绝对值不等式的解法一、知识要点本讲义从以下两方面展开: 1. 分式不等式的解法分式不等式是一种常见的不等式,掌握其解法在高考中是非常重要的。
2. 绝对值不等式的解法绝对值不等式是一种常见的不等式,其解法主要要注意分类讨论,也是高考常考的一个内容。
➢ 知识点一:分式不等式的解法分式不等式的求解主要在于同解变形,将不等式化为整式不等式来进行求解。
一般地,对于分式不等式11()()()f x h xg x ≤,要将其通分化为()0()f x g x ≤的标准形式, 对于分式不等式()0()f x g x ≤,它与()()0()0f xg x g x ≤⎧⎨≠⎩同解。
这样,我们就可以将分式不等式化为整式不等式。
➢ 知识点二:绝对值不等式的解法与分式不等式类似的是,求解绝对值不等式也是要将不等式的绝对号去掉,进行同解变形。
一般的,()()f x g x >与()()()()f x g x f x g x ><-或同解;()()f x g x <与()()()g x f x g x -<<同解。
需要注意的是,如果不等式中有多个绝对值,那么就需要对每个绝对值号进行讨论。
二、典型例题1. 分式不等式的解法【例1】 (★☆☆☆)解不等式:22911721x x x x -+≥-+ 解:原不等式化为:2(43)(12)0(1)x x x -+≥-,它等价于: 4()(12)031x x x ⎧-+≤⎪⎨⎪≠⎩,得到:14[,1)(1,]23x ∈-⋃教学提示:此题是标准的求解分式不等式的题目。
分式不等式求解的关键在于把分式不等式进行等价变形成为整式形式。
在等价变形时要注意分母不为零。
一般地,对于分式不等式()0()f x g x ≤,它与()()0()0f x g x g x ≤⎧⎨≠⎩同解。
【例2 】解不等式:2121332x x x x ++≥-- 解:通分整理,原不等式化为:2(12)0(3)(32)x x x +>--,它等价于: (3)(32)0210x x x -->⎧⎨+≠⎩,得到:3x >或23x <且12x ≠- 教学提示:注意提醒学生,此题切忌直接把21x +约去,因为它的符号是未知的。
专题(二) 方程、不等式的解法
(2)当 k=1 时,原方程为 x2+3x+1=0. ∵x1,x2 是该方程的两个实数根, ∴由根与系数的关系可知 x1+x2=-3,x1x2=1. ∴x21+x22=(x1+x2)2-2x1x2=(-3)2-2×1=7.
3.解不等式:2x-1>3x2-1,并把它的解集在数轴上表示出来.
解:去分母,得 4x-2>3x-1. 解得 x>1. 这个不等式的解集在数轴上表示如下:
4.解不等式组:25xx-≥-1>9-3(x,x+1),并把它的解集在数轴上表示出来. 解:解不等式 2x≥-9-x,得 x≥-3. 解不等式 5x-1>3(x+1),得 x>2. 则不等式组的解集为 x>2. 将解集表示在数轴上如下:
8.已知关于 x 的方程(x-3)(x-2)-p2=0. (1)求证:无论 p 取何值时,方程总有两个不相等的实数根; (2)设方程的两个实数根分别为 x1,x2,且满足 x21+x22=3x1x2,求实数 p 的值.解:(1)证明:∵(x-3)(x-2)-p2=0,
∴x2-5x+6-p2=0. ∴Δ=(-5)2-4×1×(6-p2)=25-24+4p2=1+4p2. ∵无论 p 取何值时,总有 4p2≥0, ∴1+4p2>0. ∴无论 p 取何值时,方程总有两个不相等的实数根.
2x+y=4,① (3)x-y=-1;② 解:①+②,得 2x+y+x-y=4-1.解得 x=1. 把 x=1 代入①,得 2+y=4.解得 y=2. ∴原方程组的解是xy= =12,.
高三数学 不等式的解法 分式、高次、指数、对数、含参不等式的解法
含绝对值不等式的解法
公式法:(a>0)
|x|=a x a
|x|>a x a或x -a
|x|<a a x a
注意a≤0
|x|<a在a≤0时解集是φ, |x|≥a在a≤0时解集是R
例4:①不等式(1 x )(1 x) 0的解集
②不等式x2 - x - 2 0的解集
f (x) 0 g(x) 0 f (x) g(x)
以上不等式组中的 f (x) 0 去掉后和原不等式是否同解?
f (x) g(x)
可同解变形为
g(x) 0 f (x) 0 f (x) g 2 (x)
以上不等式组中的 f (x) 0 去掉后和原不等式是否同解?
lo解ga 法f (;x) loga g(x)
(a>0,a≠1)型的不等式的
Aa2x Bax C 0
中级目标:掌握 可化为
及 不等式的A解法log;a2 x B loga x C 0 型的
高级目标:初步掌握综合有根式、指数、对数
的不等式的解法;用分类讨论思想解指数、对 数不等式;(依时间而定)
f (x) g(x)
可同解变形为
g(x) 0 f (x) 0
或
g(x) 0
f (x) g 2 (x)
f (x) 0
按g(x)分类
以上不等式组中的 f (x) 0 去掉后和原不等式是否同解?
你知道吗?
指数的性质:
指数的运算法则:
a0 1(a 0)
ax ay axy
不等式的解法二
分式、高次、指数、对数、含 参不等式的解法
分式不等式的解法:
分式不等式的解法
2)当m-3≠0时,
ⅰ.若方程的解是正数
ⅱ.若方程的解是负数
16课堂练习:书上习题
巩固技能
学生练习
17教师:今天我们研究了分式不等式的解法,在做的时候我们特别要注意保证分式是有意义的,那解分式不等式的最基本的思想是什么?
教师:我们在解分式不等式的时候就应牢牢把握住这点,并对于一些注意点要特别小心。
且(cx+d)≠0
≥0 (ax+b)(cx+d)≥0
且(cx+d)≠0
讲解技能
(总结)
学生听讲
12教师:下面我们在总结了以上内容后,一起来做一道例题,在做的时候请同学们与前几题进行一下比较。
板书:例五:
出示例题
学生观察
13提问1:这道题和前几题有何不同?
提问2:那有什么手段可以让它变为零吗?
板书:移项通分后
教师:这道题讨论的x的解,所以我们应该先把x的解用m表示出来,然后再来讨论。
解:移项
提问1:可以直接得出 吗?
提问2:那应该怎么办?
提问技能(让学生自己得出)
学生回答1:不可以,因为不确定m-3是否为零。
学生回答2:分别讨论m-3=0的时候和m-3≠0的时候x的解.
1)当m-3=0时,m=3
左边=0右边=9
总结
学生:转化为整式不等式。
市南中学
闵佳
学生:得出解集
(- ,-1)∪( ,+ )
8教师:那我们把例二中的符号改一下,那又怎么解呢?前面的方法还有效吗?
例三: <0
提问技能
(引导学生进行类比)
学生:(x+1)(3x-2)<0
解集为
9教师:但我们平时在题目中往往不仅要求分式大于零或小于零,而要大于等于零,那怎么办呢?
绝对值与分式不等式
1、含绝对值的不等式的解法(一)、公式法:即利用a x >与a x <的解集求解。
主要知识:1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。
2、a x >与a x <型的不等式的解法。
(1)当0>a 时,不等式>x 的解集是{}a x a x x -<>或, 不等式a x <的解集是{}a x a x <<-; (2)当0<a 时,不等式a x >的解集是{}R x x ∈ 不等式a x <的解集是∅;例1 解不等式32<-x (整体思想,把“2-x ”看着一个整体)(二)、平方法:解()()f x g x >型不等式。
例2 解不等式123x x ->-(三)零点分段法例3 求不等式|x +2|+|x -1|>3的解集.分析:据绝对值为零时x 的取值把实数分成三个区间,再分别讨论而去掉绝对值,从而转化为不含绝对值的不等式.解:原不等式等价于下面三个不等式组:(Ⅰ) 2213x x x <-⎧⎨--+->⎩,或(Ⅱ)1213x x x >⎧⎨++->⎩,或(Ⅲ) 21213x x x -≤<⎧⎨++->⎩. 不等式组(Ⅰ)的解集是{x |x <-2},不等式组(Ⅱ)的解集是∅,不等式组(Ⅲ)的解集是{x |x >1}. 综上可知原不等式的解集是{x |x <-2或x >1}.(四)几何法:即转化为几何知识求解。
例5 对任何实数x ,若不等式12x x k +-->恒成立,则实数k 的取值范围为 ( )(A)k<3(B)k<-3 (C)k ≤3 (D) k ≤-3 【自测练习】解下列关于x 的不等式(1)10832<-+x x (2)22234x x x x -->--(3)2321>-x (4)212+<-x x (两种方法)(5)1212-<-m x )(R m ∈【知识小结】1.)0(>>+c c b ax 或)0(><+c c b ax 的解法 ||ax b c ax b c +>⇔+>或ax b c +<-;||ax b c c ax b c +<⇔-<+<;2.)()(x g x f >或)()(x g x f <的解法()f x >()g x ⇔()f x >()g x 或)()(x g x f -<;()()()()()f x g x g x f x g x <⇔-<<3.)()(x g x f >或)()(x g x f <的解法)()()()(22x g x f x g x f >⇔> )()()()(22x g x f x g x f <⇔<4.b x a x -±-的几何意义2、分式不等式的解法解分式不等式的基本思想是等价转化,即采用正确的方法将分式不等式转化为整式不等式或不等式组来解决,下面举例谈谈含绝对值不等式的几种常用解法.一、转化为不等式组例1 解不等式0321<+-x x 例2 解不等式22301x x x +-≥-变式1:解不等式()2309x x x -≤-二、转化为整式不等式例1、(1)()()303202x x x x ->-->-与解集是否相同,为什么? (2)()()303202x x x x -≥--≥-与解集是否相同,为什么? 解:方法1:利用符号法则转化为一元一次不等式组,进而进行比较。
分式不等式的解法课件
转化为一元二次不等式组的方法
总结词
通过移项和整理,将分式不等式转化为简单的一元二次不等 式组,然后求解。
详细描述
首先观察分式不等式的形式,通过移项和整理,将其转化为 形如 ax^2 + bx + c > 0 或 ax^2 + bx + c < 0 的一元二次 不等式。然后,根据一元二次不等式的解法,求解这个不等 式组,得出解集。
VS
详细描述
综合练习题将分式不等式与其他数学知识 相结合,如代数、函数、方程等。这些题 目通常需要学生综合运用多个知识点来解 题,旨在提高学生的数学综合素质和问题 解决能力。解决这些题目需要学生具备扎 实的数学基础和灵活的思维,能够从多个 角度分析问题并找到合适的解题方法。
感谢观 看
THANKS
分子和分母同号时,解集为空集;分子和分母异号时,解集为全体实数。
02
分式不等式的解法
转化为一元一次不等式组的方法
总结词
通过消去分母,将分式不等式转化为简单的一元一次不等式组,然后求解。
详细描述
首先观察分式不等式的分母,通过乘以适当的正数消去分母。然后,将不等式 两边进行整理,使其成为一元一次不等式的形式。最后,解这个一元一次不等 式组,得出解集。
转化为一元高次不等式组的方法
总结词
通过移项和整理,将分式不等式转化为简单的一元高次不等式组,然后求解。
详细描述
首先观察分式不等式的形式,通过移项和整理,将其转化为形如 ax^n + bx^(n1) + ... + c > 0 或 ax^n + bx^(n-1) + ... + c < 0 的一元高次不等式。然后, 根据一元高次不等式的解法,求解这个不等式组,得出解集。
专题二、分式不等式的解法
( 【1 】一)分式不等式:型如:0)()(>x x f ϕ或0)()(<x x f ϕ(个中)(、x x f ϕ)(为整式且0≠)(x ϕ)的不等式称为分式不等式.(2)归纳分式不等式与整式不等式的等价转化:(1)0)()(0)()(>⋅⇔>x x f x x f ϕϕ(3)0)()(0)()(<⋅⇔<x x f x x f ϕϕ(2)⎩⎨⎧≠≥⋅⇔≥0)(0)()(0)()(x x x f x x f ϕϕϕ (4)⎩⎨⎧≠≤⋅⇔≤0)(0)()(0)()(x x x f x x f ϕϕϕ (3)小结分式不等式的解法步调:(1)移项通分,不等式右侧化为“0”,左侧为一分式 (2)转化为等价的整式不等式(3)因式分化,解整式不等式(留意因式分化后,一次项前系数为正) (1)分式不等式的解法:解关于x 的不等式0231>-+x x办法一:等价转化为: 办法二:等价转化为:⎩⎨⎧>->+02301x x 或⎩⎨⎧<-<+02301x x 0)23)(1(>-+x x 变式一:0231≥-+x x等价转化为:⎩⎨⎧≠-≥-+0230)23)(1(x x x比较不等式0231<-+x x 及0231≤-+x x 的解集.(不等式的变形,强调等价转化,分母不为零)练一练:解关于x 的不等式051)1(>--x x 3532)2(≤-x例1、 解关于x 的不等式:232≥+-x x 解:0232≥-+-x x 03)3(22≥++--x x x即,038≥+--x x 038≤++x x (包管因式分化后,包管一次项前的系数都为正) 等价变形为:⎩⎨⎧≠+≤++030)3)(8(x x x∴原不等式的解集为[)3,8--例2.解关于x 不等式23282<+++x x x办法一:322++x x恒大于0,应用不等式的基赋性质办法二:移项.通分,应用两式同号.异号的充要前提,划归为一元一次或一元二次不等式. 例3、 解关于x 的不等式:1≥xa 解:移项01≥-x a通分 0≥-x x a 即,0≤-xax 等价转化为,⎩⎨⎧≠≤-00)(x a x x当a>0时,原不等式的解集为],0(a 当a<0时,原不等式的解集为)0,[a当a=0时,原不等式的解集为φ⒈ 一元二次不等式与特别的高次不等式解法 例1 解不等式0)1)(4(<-+x x . 剖析一:应用前节的办法求解;剖析二:由乘法运算的符号轨则可知,若原不等式成立,则左边两个因式必须异号,∴原不等式的解集是下面两个不等式组:⎩⎨⎧<+>-0401x x 与⎩⎨⎧>+<-0401x x 的解集的并集,即{x|⎩⎨⎧<+>-0401x x }∪⎩⎨⎧>+<-0401|{x x x }=φ∪{x|-4<x<1}={x|-4<x<1}.书写时可按下列格局:解二:∵(x-1)(x+4)<0⇔⎩⎨⎧<+>-0401x x 或⎩⎨⎧>+<-0401x x⇔x ∈φ或-4<x<1⇔-4<x<1, ∴原不等式的解集是{x|-4<x<1}.小结:一元二次不等式)a ()c bx ax (c bx ax 00022≠<++>++或的代数解法:设一元二次不等式)a (c bx ax 002≠>++响应的方程)a (c bx ax 002≠=++的两根为2121x x x x ≤且、,则00212>--⇔>++)x x )(x x (a c bx ax ;①若⎩⎨⎧>>⎩⎨⎧<<⇒⎩⎨⎧>->-⎩⎨⎧<-<->.x x ,x x ,x x ,x x .x x ,x x ,x x ,x x ,a 2121212100000或或则得 当21x x <时,得1x x <或2x x >;当21x x =时,得1x x ,R x ≠∈且.②若⎩⎨⎧><⎩⎨⎧><⇒⎩⎨⎧>-<-⎩⎨⎧>-<-<.x x ,x x ,x x ,x x .x x ,x x ,x x ,x x ,a 2121212100000或或则得 当21x x <时,得21x x x <<;当21x x =时,得∅∈x .剖析三:因为不等式的解与响应方程的根有关系,是以可求其根并由响应的函数值的符号暗示出来即可求出不等式的解集.解:①求根:令(x-1)(x+4)=0,解得x(从小到大分列)分离为-4,1,这两根将x轴分为三部分:(-∞,-4)(-4,1)(1,+∞);②剖析这三部分华夏不等式左边各因式的符号③由上表可知,原不等式的解集是{x|-4<x<1}.例2:解不等式:(x-1)(x+2)(x-3)>0;解:①检讨各因式中x的符号均正;②求得响应方程的根为:-2,1,3;③列表如下:④由上表可知,原不等式的解集为:{x|-2<x<1或x>3}.小结:此法叫列表法,解题步调是:①将不等式化为(x-x1)(x-x2)…(x-x n)>0(<0)情势(各项x的符号化“+”),令(x-x1)(x-x2)…(x-x n)=0,求出各根,无妨称之为分界点,一个分界点把(实数)数轴分成两部分,n个分界点把数轴分成n+1部分……;②按各根把实数分成的n+1部分,由小到大横向分列,响应各因式纵向分列(由对应较小根的因式开端依次自上而下分列);③盘算各区间内各因式的符号,下面是乘积的符号;④看下面积的符号写出不等式的解集.演习:解不等式:x(x-3)(2-x)(x+1)>0. {x|-1<x<0或2<x<3}.思虑:由函数.方程.不等式的关系,可否作出函数图像求解例2图演习图直接写出解集:{x|-2<x<1或x>3}. {x|-1<x<0或2<x<3}在没有技巧的情形下:可大致画出函数图星求解,称之为串根法①将不等式化为(x-x1)(x-x2)…(x-x n)>0(<0)情势,并将各因式x的系数化“+”;(为了同一便利)②求根,并在数轴上暗示出来;③由右上方穿线,经由数轴上暗示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.留意:奇穿偶不穿例3 解不等式:(x-2)2(x-3)3(x+1)<0. 解:①检讨各因式中x 的符号均正;②求得响应方程的根为:-1,2,3(留意:2是二重根,3是三重根); ③在数轴上暗示各根并穿线,每个根穿一次(自右上方开端),如下图:④∴原不等式的解集为:{x|-1<x<2或2<x<3}.解释:∵3是三重根,∴在C 处穿三次,2是二重根,∴在B 处穿两次,成果相当于没穿.由此看出,当左侧f(x)有雷同因式(x-x 1)n 时,n 为奇数时,曲线在x 1点处穿过数轴;n 为偶数时,曲线在x 1点处不穿过数轴,无妨归纳为“奇穿偶不穿”.演习:解不等式:(x-3)(x+1)(x 2+4x+4)≤0. 解:①将原不等式化为:(x-3)(x+1)(x+2)2≤0;②求得响应方程的根为:-2(二重),-1,3; ③在数轴上暗示各根并穿线,如图:④∴原不等式的解集是{x|-1≤x ≤3或x=-2}.解释:留意不等式若带“=”号,点画为实心,解集鸿沟处应有等号;别的,线虽不穿-2点,但x=-2知足“=”的前提,不克不及漏失落.2.分式不等式的解法 例4 解不等式:073<+-x x . 错解:去分母得03<-x ∴原不等式的解集是{}3<x |x .解法1:化为两个不等式组来解: ∵073<+-x x ⇔⎩⎨⎧>+<-⎩⎨⎧<+>-07030703x x x x 或⇔x ∈φ或37<<-x ⇔37<<-x , ∴原不等式的解集是{}37<<-x |x . 解法2:化为二次不等式来解: ∵073<+-x x ⇔⎩⎨⎧≠+<+-070)7)(3(x x x ⇔37<<-x , ∴原不等式的解集是{}37<<-x |x解释:若本题带“=”,即(x-3)(x+7)≤0,则不等式解分散应留意x ≠-7的前提,解集应是{x| -7<x ≤3}.小结:由不等式的性质易知:不等式双方同乘以正数,不等号偏向不变;不等式双方同乘以负数,不等号偏向要变;分母中有未知数x,不等式双方同乘以一个含x 的式子,它的正负不知,不等号偏向无法肯定,无从解起,若评论辩论分母的正负,再解也可以,但太庞杂.是以,解分式不等式,切忌去分母.解法是:移项,通分,右边化为0,左边化为)x (g )x (f 的情势.例5 解不等式:0322322≤--+-x x x x . 解法1:化为不等式组来解较繁.解法2:∵0322322≤--+-x x x x ⇔⎪⎩⎪⎨⎧≠--≤--+-0320)32)(23(222x x x x x x ⇔⎩⎨⎧≠+-≤+---0)1)(3(0)1)(3)(2)(1(x x x x x x , ∴原不等式的解集为{x| -1<x ≤1或2≤x<3}. 演习21演习:3⑴⑵253>+-x x .答案:1.⑴{x|-5<x<8};⑵{x|x<-4,或x>-1/2};2.{x|-13<x<-5}.演习:解不等式:123422+≥+--x x x x.(答:{x|x ≤0或1<x<2}) 1. 不等式222310372x x x x ++>-+的解集是 2. 不等式3113x x+>--的解集是3. 不等式2223712x x x x +-≥--的解集是4. 不等式1111x x x x -+<+-的解集是 5. 不等式229152x x x --<+的解集是 6. 不等式22320712x x x x -+>-+的解集是 7. 不等式2121x x x +≤+的解集是 8. 不等式2112x x ->-+的解集是 9. 不等式23234x x -≤-的解集是 10. 不等式2212(1)(1)x x x -<+-的解集是 11. 不等式2206x x x x +<+-的解集是12. 不等式2121x xx +<-的解集是 13. 不等式2321x xx x +>++的解集是14. 不等式211(3)x >-的解集是 15. 不等式(23)(34)0(2)(21)x x x x -->--的解集是16. 不等式2311x x +≥+的解集是17. 不等式1230123x x x +->---的解集是18. 不等式25214x x+≤--的解集是19. 不等式221421xx x≥--的解集是20. 不等式221(1)(2)xx x-<+-的解集是答案1. 2. (-2,3)3. 4.5. 6.7. 8. (1,2)9. 10.11. 12.13. 14.15. 16. [-1,2] 17. 18.19. 20.。
不等式解法整式分式根式
§ 不等式的解法一一线名师精讲基础知识串讲解不等式的基本原则:1、解不等式实质是一个等价变形的过程,当元的取值范围扩大时,应与原有取值范围求交集;2、解不等式是一个由繁到简的转化过程,其转化的总思路为:3、解含有等号的不等式时,应该将等式与不等式分开解答后取并集;基本类型不等式的解法: 一、整式不等式的解法 1、一元一次不等式标准形式:b ax >或)0(≠<a b ax .解法要点:在不等式的两端同时除以a 后,若0<a 则不等号要反向;2、一元二次不等式标准形式:02>++c bx ax 或02<++c bx ax 其中0>a ;解法要点:解一元二次不等式一般可按以下步骤进行:1整形:将不等式化为标准形式; 2求根:求方程02=++c bx ax 的根; 3写解:根据方程02=++c bx ax 根的情况写出对应不等式的解集;当两根明确时,可由“大于0,两根外;小于0,两根内”的口诀写解,当0≤∆时,则可由函数c bx ax y ++=2的草图写解;3、一元高次不等式可分解因式型标准形式:0)())((21>---n x x x x x x a 或0)())((21<---n x x x x x x a ()0>a ;解法要点:用“数轴穿根”的方法最为简便,一般可按如下步骤进行:1整形:将不等式化为标准形式; 2求根:求出对应方程的根;3穿根:将方程的根标在数轴上,用一条曲线从右上方开始依次穿过;方程有重根时,奇数重根按正常情况穿过,偶数重根则不穿过,反弹回来后继续穿根;即“奇过偶不过”;4写解:数轴上方所对应曲线的区间为0)())((21>---n x x x x x x a 的解,数轴下方所对应曲线的区间为0)())((21<---n x x x x x x a 的解;二、分式不等式的解法 标准形式:0)()(>x f x g ,或0)()(<x f x g ; 解法要点:解分式不等式的关键是去分母,将分式不等式转化为整式不等式求解;若分母的正负可定,可直接去分母;若分母的正负不定,则按以下原则去分母:0)()(0)()(>⋅⇔>x g x f x g x f 0)()(0)()(<⇔<x g x f x g x f 三、根式不等式的解法 标准形式:)()(x g x f >;)()(x g x f >;以及)()(x g x f <;解法要点:解根式不等式的关键是去根号,应抓住被开方数的取值范围以及不等式乘方的条件这两大要点进行等价变换:⎪⎩⎪⎨⎧>≥≥⇔>)()(0)(0)()()(x g x f x g x f x g x f ⎪⎩⎪⎨⎧>≥≥⇔>)()(0)(0)()()(2x g x f x f x g x g x f 或⎩⎨⎧≥<0)(0)(x f x g ⎪⎩⎪⎨⎧<≥>⇐<)()(0)(0)()()(2x g x f x f x g x g x f 基本题型指要【例1】 解下列不等式或不等式组:1⎪⎩⎪⎨⎧+<<-+220)1)(3(2x x x x 20)4)(2()3(2≤-+-x x x 3x x x x x <-+-+222322402)1(2≥---x x x1思路导引:按规范化程序操作,化为标准形式后求解,可以有效的防止错误;解析:将0)1)(3(<-+x x 化为标准形式0)1)(3(>-+x x ,易得:1,3>-<x x 或;由222+<x x 得01)1(2>+-x ,所以R x ∈; 综上所述,原不等式组的解集为{}13|>-<x x x 或,;2解析:由已知,0)4)(2()3(2≥-+-x x x , 用数轴穿根法易得原不等式的解集为:{}342|=≥-≤x x x x 或,,或误区警示:若不化为标准形式求解,易将解集错写为{}42|≤≤-x x ;另外,建议将这类等式与不等式的混合式中的“等式”单独求解,以防止漏掉3=x 这类解;3思路导引:解分式不等式的关键是去分母;但本题分母正负不明,若直接去分母应分类讨论,较为复杂,使用移项通分化为标准形式的方法较好;解析:将x x x x x <-+-+222322化为标准形式,得:0)1)(3()1)(2(2>+-++-x x x x x ,因为12>++x x 恒成立,所以,0)1)(3()2(>+--x x x ;用数轴穿根法易得原不等式的解集为:{}321|><<-x x x 或,;4思路导引:解根式不等式关键是抓住乘方的条件,对原不等式实施等价转换,去除根号;解析:原不等式等价于:02)1(2>---x x x (1)或02)1(2=---x x x (2)由1得:⎪⎩⎪⎨⎧>->--01022x x x ,解得2>x ;由2得12-==x x ,或;所以,原不等式的解集为{}12|-=≥x x x ,或; 误区警示:请找出下面解法的错误: 由022≥--x x ,得01≥-x ,所以,原不等式的解为1≥x ;点评:解等式与不等式的混合型不等式,最好将等式与不等式分开求解,以避免错误; ◆题型二:解含参数的不等式不少同学都怕解含参数的不等式,究其原因,关键是没有把握住解题技巧;其实,解含有参数的不等式在总思路上与解普通不等式完全相同,当参数不影响式子的变形时,与解普通不等式没有差异,在参数影响式子的变形时,就需弄清参数的取值范围或者予以分类讨论,才能顺利的解出不等式;例2解下列关于x 的不等式: 102>+ax 2x t tx )2(22+>+3)1,0(1log 22log 3≠>-<-a a x x a a 1思路导引:本题在求解x 时必须去除系数a ,由于a 的范围不明,无法直接变形,若将a 按变形的要求分为正、负、零三类,则在每一小类中式子就能顺利变形了;解析:由已知,2->ax ; ①、当0>a 时,a x 2->; ②、当0<a 时, ax 2-<; ③、当0=a 时,20->恒成立,R x ∈ ;故,原不等式解集当0>a 时为⎭⎬⎫⎩⎨⎧->a x x 2|,当0<a 时为⎭⎬⎫⎩⎨⎧-<a x x 2|,当0=a 时为R ;2思路导引:解含参数的二次不等式通常是在以下三个地方实施分类讨论:一是平方项系数有参数时需分正、负、零讨论,二是判别式△有参数时的需分正、负、零讨论,三是两根有参数时需根据他们的大小关系分类讨论;本题中的不等式即0)2)(1(>--tx x ,在求解过程中参数会在两个地方影响式子变形:一是平方项系数t 的正、负、零,二是对应的二次方程的根1与t2是否存在、谁大谁小;此时,同一字母t 形成了不同的分类,可将t 在0、2处分段统筹安排进行分类如图;解析:原不等式即0)2)(1(>--tx x ;① 当0<t 时,可以化为0)2)(1(<+--tx x , 易知12<t ,所以12<<x t; ② 当0=t 时,原不等式即022>+-x ,所以 1<x ;③ 当20<<t 时,易知12>t,可得,1<x tx 2>或; ④ 当2=t 时,原不等式即0)1(22>-x ,所 以1≠∈x R x ,且;⑤ 当2>t 时,易知12<t ,可得,tx 2< 1>x 或;综上所述,原不等式的解集当0<t 时,为 ⎭⎬⎫⎩⎨⎧<<12|x t x ;当0=t 时,为{}1|<x x ;当20<<t 时,为⎭⎬⎫⎩⎨⎧><t x x x 21|,或;当2=t 时,为{}1|≠∈x R x x ,且;当2>t 时,为⎭⎬⎫⎩⎨⎧><12|x t x x ,或;误区警示:本题易漏掉20==t t 和两种特殊情况的讨论;另外,在0<t 时,解集易错为⎭⎬⎫⎩⎨⎧><12|x t x x ,或;3思路导引:本题关键是抓住根式不等式的解题特点,对不等式进行乘方处理,去除根号;若令t x a =log 进行换元,会使书写变得更简便;解析:按根式不等式的解题思路,易知原不等式等价于⎪⎩⎪⎨⎧>--<-≥-)3(01log 2)2()1log 2(2log 3)1(02log 32 x x x x a a a a由1得,32log ≥x a 由2得,1log ,43log ><x x a a 或 由3得.21log >x a 由此得,1log ,43log 32><≤x x a a 或 当1>a 时,易求得原不等式的解集为}|{4332a xa x a x ><≤,或;当10<<a 时,易求得原不等式的解集为}0|{3243a x a x ax <<≤<,或;误区警示:在乘方去除根号的过程中,要注意不等式乘方的条件以及根号内式子的取值范围,保证不等式的变形为等价变形;点评:从本例的解答过程可以看出,解含参数的不等式关键是抓住以下两个要点来处理不等式中的参数:一是由“参数是否影响不等式变形”来确定该不该对参数进行分类讨论,二是由“参数是怎样影响不等式变形” 来确定怎样对参数进行分类讨论;已知不等式的解集求参数值或范围是一类很常见也很重要的题型;由于该题型解法较为灵活,我们在解题时若不能把握住它的解题规律,往往会觉得变化莫测而无可适从;解答本题型关键是要抓住以下两个要点:一是按其正向题型“解不等式”变化,试解原不等式;二是利用已知的解集或解集的部分信息去逆向推测它们与参数的关系;两个要点结合,就会比较容易找到所求参数的方程或不等式,从而求出它们的值或范围;例3已知不等式022>++bx ax 1若不等式的解集为31,21-,求b a +;2若不等式的解集为R,求b a 、应满足的条件; 1思路导引:从解集的形式可知:原不等式必为二次不等式;再从解不等式的角度来看,原不等式的解集可由方程022=++bx ax 的二根来得出,但二根不方便写出,自然会想到用韦达定理列式解题;解析:由题意,方程022=++bx ax 的二根为3121和-, 所以,⎪⎪⎪⎩⎪⎪⎪⎨⎧=⨯--=+->⨯-<aa b a b a 23121312102402易解得212-=-=b a ,, 所以,14-=+b a ;误区警示:不能遗漏条件0242>⨯-a b 和0<a ;2思路导引:原不等式022>++bx ax 的系数b a 、范围未定,可能形成二次型、一次型、常数型三类不等式;因为原不等式的解集为R,故原不等式只能为二次型、常数型不等式;解析:1当0==b a 时, 原不等式为02>,其解集显然为R,符合题意;2当0≠a 时,因为原不等式解集为R ,所以,⎪⎩⎪⎨⎧<⨯->02402a b a化简得a b a 802<>,且;综上所述,b a 、应满足的条件为:0==b a ;或a b a 802<>且;点评: 已知二次不等式的解集求参数值可分为两种类型:若解集为“两根内外”型,一般用韦达定理求解;若解集为R 或φ,则通常用数形结合解题;例4若不等式组⎪⎩⎪⎨⎧<+++>--05)25(20222k x k x x x 的整数解只有-2,求实数k 的取值范围;思路导引:本题的解题思路与已知不等式的解集求参数值相似,只是要注意不等式组的解集应是各个不等式解集的交集;解析: ⎪⎩⎪⎨⎧<+++>--)2(05)25(2)1(0222 k x k x x x由1解得12-<>x x ,或;由2得0))(52(<++k x x ;因为-2是不等式组的解,故0)2](5)2(2[<+-+-⨯k ,得 2<k ,所以25->-k ,2的解为k x -<<-25; 由此可知,原不等式组的解为Ⅰ⎪⎩⎪⎨⎧-<<--<k x x 251,或⎪⎩⎪⎨⎧-<<->k x x 252;因为2<k ,所以2->-k ,故Ⅰ的整数解为-2;而原不等式组的整数解只有-2,所以Ⅱ应该没有整数解,所以33-≥≤-k k ,即;综上所述,23<≤-k ;阅卷老师评题例51996年全国高考解不等式.1)11(log >-xa命题目的:本题综合考查了对数不等式、分式不等式、二次不等式的解法,以及分类讨论的思想和运算能力;考情分析:该题本身的能力要求并不高,但在解答的过程中却多次涉及易错点,故当年考生的得分率较低,区分度达;思路导引:因为对数函数的单调性与a 有关,故应对a 分类讨论去除对数符号,将原不等式化为分式不等式,然后再化为整式不等式求解;解析:Ⅰ当1>a 时,原不等式等价于: ⎪⎩⎪⎨⎧>->-)2(11)1(011 a x x 因1>a ,故只需解2式,由此得 )3(11 xa >- 因为,01<-a 所以,0<x 由3可得 .011<<-x aⅡ当10<<a 时,原不等式等价于: ⎪⎩⎪⎨⎧<->-)5(11)4(011 a xx 由4得,,01<>x x 或 由5得,011>->a x,故0>x , 易解得5的解为ax -<<111; 所以ax -<<111; 综上所述:当1>a 时,不等式的解集为 };011|{<<-x ax 当10<<a 时,不等式的解集为}.111|{ax x -<< 点评:解不等式要注意不等式变形的等价性,对常见的易错点应熟记于心,这样才能有效地避免错误;此外,在解题时注意充分使用已知条件,常常会得到简便解法;如解不等式25时利用a 的范围判断出x 的正负后,就能很方便的去分母了;本题也可由011>-x得出10><x x ,或后,分0<x 和1>x 两类解答;例62004年上海高考记函数fx=132++-x x 的定义域为A,g x =lg x -a -12a -xa <1 的定义域为B;1 求A ;2 若B ⊆A, 求实数a 的取值范围.命题目的:本小题主要考查集合的有关概念, 考查二次不等式、分式不等式、对数不等式的解法,以及分析问题和推理计算能力;考情分析:此题型在各地高考中经常出现;本题难度较小,得分率较高,但有的考生在求a 的范围时没充分使用1>a 的条件,引起解题过程复杂或出错;解析:1由2-13++x x ≥0, 得11+-x x ≥0, 解得 x <-1或x ≥1, 即A=-∞,-1∪1,+ ∞2 由x -a -12a -x >0, 得x -a -1x -2a <0.因为a <1,所以a +1>2a ,故B=2a ,a +1; 由B ⊆A 知:2a ≥1或a +1≤-1, 解得a ≥21或a ≤-2; 因为a <1, 所以21≤a <1或a ≤-2, 故当A B ⊆时, 实数a 的取值范围是-∞,-2∪21,1 . 好题优化训练基础巩固1、1652->+-x x x 的解集为 A )1,(-∞ B ),2(+∞ C )35,1[ D )35,(-∞答案:D解析:取0=x 可排除B 、C ;取1=x 可排除A;故选D; 2、满足3121-><xx 与的x 的取值范围是 A 2131<<x B 21>x C 31-<x D 3121-<>x x ,或 答案:D解析:解不等式组或验证排除; 3、解不等式212->-x x答案:⎭⎬⎫⎩⎨⎧<≤521|x x解析:原不等式等价于Ⅰ⎩⎨⎧<-≥-02012x x ,或Ⅱ⎪⎩⎪⎨⎧->-≥-≥-2)2(1202012x x x x由Ⅰ解得221<≤x , 由Ⅱ解得52<≤x所以,原不等式的解集为⎭⎬⎫⎩⎨⎧<≤521|x x ;点评:若令t x =-12,则该不等式可化为一个关于t 的二次不等式求解;4、解关于x 的不等式04)1(22<++-x a ax ; 答案:原不等式的解集当0=a 时,为{}2|>x x ;当10<<a 时,为⎭⎬⎫⎩⎨⎧<<a x x 22|;当1=a 时为 φ;当1>a 时,为⎭⎬⎫⎩⎨⎧<<22|x a x ;当0<a 时,为⎭⎬⎫⎩⎨⎧><22|x a x x ,或;解析: 原不等式即0)2)(2(<--x ax ,a 的范围明显会影响不等式的解集,故需分类讨论: 10=a 时,原不等式即042<+-x ,解得2>x ; 210<<a 时,22>a ,不等式的解为ax 22<<; 31=a 时,原不等式为0)2(2<-x ,Φ∈x ; 41>a 时,22<a ,不等式的解为22<<x a; 50<a 时,原不等式可化为0)2)(2(>-+-x ax , 易知22<a ,所以不等式的解为22><x a x ,或; 5、不等式13642222<++++x x m mx x 对一切实数x 均成立,求m 的取值范围; 答案:1,3;解析:已知分母恒正,故原不等式可化为:3642222++<++x x m mx x , 即0)3()26(22>-+-+m x m x , 由题意,该式对一切实数x 恒成立; 所以,0)3(8)26(2<---=∆m m , 容易解得31<<m ;技能培训6、不等式0343>---x x 的解集为:_______; 答案:3,+∞;解析:原不等式等价于⎪⎩⎪⎨⎧->-≥-≥-34303043x x x x ,解得3≥x ;7、设1)(2+-=ax x x f ;若方程0)(=x f 没有正根,则a 的取值范围为____________; 答案:)2(,-∞;解析:因为方程0)(=x f 没有正根,由图 易知;⎪⎩⎪⎨⎧<≥-=∆0242aa , 或042<-=∆a ; 解得:2<a ; 8、若关于x 的不等式0342>+++x x a x 的解是13-<<-x ,或2>x ,则a 的值为 A 2 B 2- C21D 21-答案:B解析:原不等式即0)3)(1)((>+++x x a x ,由其解集易知2-=a ;9、若0)1(3)1()1()(2<-+--+=m x m x m x f 对于 一切实数x 恒成立,则m 的取值范围是 A ),1(+∞ B )1,(--∞ C )1113,(--∞ D ),1()1113,(+∞--∞ 答案:C解析:由已知,⎪⎩⎪⎨⎧<-+--<+0)1)(1(12)1(012m m m m ,解得1113-<x ; 10、解关于x 的不等式)1(12)1(≠>--a x x a ; 答案:不等式的解集当0<a 时为⎭⎬⎫⎩⎨⎧<<--212|x a a x ;当10<<a 时为⎭⎬⎫⎩⎨⎧--<<122|a a x x ;当0=a 时为Φ;当1>a 时,为⎭⎬⎫⎩⎨⎧--<>122|a a x x x ,或; 解析: 原不等式可化为02)2()1(>--+-x a x a ,所以0)]2()1)[(2(>-+--a x a x ; 1当0<a 时,21201<--<-a a a ,,原不等式的解集为⎭⎬⎫⎩⎨⎧<<--212|x a a x ; 2当10<<a 时,212>--a a ,原不等式的解集为⎭⎬⎫⎩⎨⎧--<<122|a a x x ;3当0=a 时,原不等式为10>,所以∈x Φ; 4当1>a 时,212<--a a ,,所以原不等式的解集为⎭⎬⎫⎩⎨⎧--<>122|a a x x x ,或;11、某工厂生产商品M,若每件定价80元,则每年可销售80万件;税务部门对市场销售的商品征收附加费,为了既增加国家收入又有利于活跃市场,必须合理确定征收的税率;根据调查分析,若政府对商品M 征收的税率为p %时,每年销售减少10p 万件,试问:1若税务部门对商品M 每年所收税金不少96万元,求p 的取值范围;2在所收税金不少于96万元的前提下,要让厂家获得最大的销售金额,因如何确定p 值3若仅考虑每年税收金额最高,又应如何确定p 值答案:162≤≤p ;22=p ;34=p ;解析: 1税率为%p 时,销售量为p 1080-万件,销售金额为)1080(80p -万元80<<p ;由题意易得:⎩⎨⎧<<≥⋅-8096%)1080(80p p p ,解得62≤≤p ;2销售金额最大即)1080(80p -最大,由1可知,62≤≤p ,所以,当2=p 时 ,最大销售金额为4800万元;3由1知易知,销售金额为)1080(80p -,故税金为128)4(8%)1080(802+--=⋅-p p p , 因为80<<p ,所以,4=p 时,国家所得税金最多,为128万元;12、若不等式02>++c bx ax 的解集为),(βα,且βα<<0,求不等式02<++a bx cx 的解集; 答案:⎭⎬⎫⎩⎨⎧><αβ1,1|x x x 或解析:依题意,方程02=c bx ax ++的二根为βα、,故有:⎪⎪⎩⎪⎪⎨⎧>=<+-=)2(0)1(0)( αββαac ab所以,)(βα+-=a b ,)(αβa c =,这样即可将不等式02<++a bx cx 化为0)()(2<++-a x a x a βααβ,由题意易知0<a ,所以0)1)(1(>--x x βα; 因为βα<<0,所以αβ110<<,故所求不等式的解集为⎭⎬⎫⎩⎨⎧><αβ11|x x x ,或;13、解不等式)0(122>->-a x a ax答案:⎭⎬⎫⎩⎨⎧≥2|a x x解析:原不等式可化为:Ⅰ⎪⎩⎪⎨⎧->-≥-)2()1(2)1(0122 x a ax x 或Ⅱ⎪⎩⎪⎨⎧≥-<-)4(02)3(012a ax x 由1得1≤x ,由2得a a x a a 2121++<<-+, 由3得1>x , 由4得2ax ≥; 因为0>a ,所以121>++a a ; 1当20≤<a 时,121≤-+a a ,12≤a,故不等式组Ⅰ的解为121≤<-+x a a ,不等式组Ⅱ的解为1>x ,此时,原不等式的解为a a x 21-+>;2当2>a 时,121>-+a a ,12>a,此时不等式组Ⅰ的解为Φ,不等式组Ⅱ的解为2ax ≥,原不等式的解为2a x ≥; 综上所述,原不等式的解集当20≤<a 时为{}a a x x 21|-+>,当2>a 时为⎭⎬⎫⎩⎨⎧≥2|a x x ;点评:本题也可用图形法求解;思维拓展14、k 为何值时,方程0412=++-k kx x 的二实根的绝对值都小于1 答案: 5285-≤<-k 解析: 作函数41)(2++-==k kx x x f y ;因为方程0412=++-k kx x 的二实根的绝对值都小于1,所以函数图象与x 轴的交点的横坐标在-1与1之间如图 ; 分析图形特点可得:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>+=->=<⨯--<-≥+--0452)1(045)1(11210)41(4)(2k f f k k k 解得5285-≤<-k ; 点评:已知一元二次方程的根在某个指定区间内时,常常数形结合,抓住判别式△、对称轴的位置以及区间端点的函数值列式解题;。
分式不等式的解法试题
分式不等式的解法试题分式不等式是由分式构成的不等式,其中包含有分子和分母,并且分子和分母都是关于未知数的代数表达式。
解决分式不等式的关键在于找到分式的定义域,并根据定义域的特点判断不等式的解集。
本文将介绍两种常用的解决分式不等式的方法:图像法和通分法。
一、图像法图像法是通过将分式转换为对应的图像来解决不等式。
首先,我们需要将分式化简为一个非零的分数。
然后,根据分式的性质作出分式图像。
接着,我们需要找到分母为零的情况,并将其表示在图像中。
最后,根据图像的特点确定不等式的解集。
举个例子来说明图像法的解决过程。
假设我们有以下的分式不等式:(2x-1)/(x+3) > 1第一步,化简分式,得到:2x-1 > x+3第二步,将分式转换为对应的图像。
在这个例子中,图像应该是一条直线。
根据分式的性质,我们知道当分子大于分母时,分式的值大于1;当分子小于分母时,分式的值小于1。
因此,我们可以得到如下的图像:___//______/第三步,找到分母为零的情况。
分母为零时,分式无定义。
因此,我们需要解方程x+3=0,得到x=-3。
将该点表示在图像中: ___/(-3)/______/第四步,根据图像的特点确定不等式的解集。
观察图像可知,当x小于-3时,分式的值大于1;当x大于-3时,分式的值小于1。
因此,不等式的解集为x<-3或x>1。
二、通分法通分法是通过将分式不等式的分母通分,并简化不等式来解决问题。
首先,我们需要找到分式的公共分母。
然后,将不等式的两边分别乘以公共分母,并化简不等式。
最后,根据分式的特点确定不等式的解集。
让我们通过一个例子来说明通分法的解决过程。
假设我们有以下的分式不等式:(3x+2)/(x-4) < 2第一步,找到分式的公共分母,这里是(x-4)。
第二步,将不等式的两边乘以公共分母,得到:(3x+2)*(x-4) < 2*(x-4)第三步,化简不等式,得到:3x^2 - 10x - 8 < 0第四步,根据分式的特点确定不等式的解集。
微专题05 一元二次不等式、分式不等式(原卷版)
微专题05 一元二次不等式、分式不等式【知识点总结】 一、一元二次不等式一元二次不等式20(0)ax bx c a ++>≠,其中24b ac ∆=-,12,x x 是方程20(0)ax bx c a ++>≠的两个根,且12x x <(1)当0a >时,二次函数图象开口向上. (2)①若0∆>,解集为{}21|x x x x x ><或. ②若0∆=,解集为|2b x x R x a ⎧⎫∈≠-⎨⎬⎩⎭且. ③若0∆<,解集为R .(2) 当0a <时,二次函数图象开口向下. ①若0∆>,解集为{}12|x x x x << ②若0∆≤,解集为∅ 二、分式不等式 (1)()0()()0()f x f xg x g x >⇔> (2)()0()()0()f x f xg x g x <⇔< (3)()()0()0()0()f x g x f x g x g x ≥⎧≥⇔⎨≠⎩ (4)()()0()0()0()f x g x f x g x g x ≤⎧≤⇔⎨≠⎩ 三、绝对值不等式(1)22()()[()][()]f x g x f x g x >⇔>(2)()()(()0)()()()()f x g x g x f x g x f x g x >>⇔><-或;()()(()0)()()()f x g x g x g x f x g x <>⇔-<<;(3)含有两个或两个以上绝对值符号的不等式,可用零点分段法和图象法求解 【方法技巧与总结】(1)已知关于x 的一元二次不等式02>++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆>00a ;(2)已知关于x 的一元二次不等式02>++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆<00a ;(3)已知关于x 的一元二次不等式02<++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆<00a ;(4)已知关于x 的一元二次不等式02<++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆>00a .【题型归纳目录】题型一:一元二次不等式的解法 题型二:分式不等式的解法 题型三:绝对值不等式的解法 题型四:高次不等式的解法 题型五:一元二次不等式恒成立问题 【典型例题】题型一:一元二次不等式的解法例1.(2022·全国·高一课时练习)不等式20x ax b --<的解集是{|23}x x <<,则210bx ax -->的解集是( ) A .{|23}x x << B .11{|}32x x <<C .11{|}23x x -<<- D .{|32}x x -<<-例2.(2022·福建·厦门一中高一期中)已知关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,则下列说法正确的是( ) A .0a > B .不等式20ax cx b ++>的解集为{|2727}x x < C .0a b c ++< D .不等式0ax b +>的解集为{}|3x x >例3.(2022·江苏南京·高一期末)已知,b c ∈R ,关于x 的不等式20x bx c ++<的解集为()2,1-,则关于x 的不等式210cx bx ++>的解集为( ) A .1,12⎛⎫- ⎪⎝⎭B .11,2⎛⎫- ⎪⎝⎭C .()1,1,2∞∞⎛⎫--⋃+ ⎪⎝⎭D .()1,1,2∞∞⎛⎫--⋃+ ⎪⎝⎭例4.(2022·全国·高一课时练习)已知不等式组22430680x x x x ⎧-+<⎨-+<⎩的解集是关于x 的不等式230x x a -+<解集的子集,则实数a 的取值范围是( ). A .0a < B .0a ≤ C .2a ≤ D .2a <例5.(多选题)(2022·江苏·苏州中学高一阶段练习)关于x 的不等式20ax bx c ++<的解集为(,2)(3,)-∞-⋃+∞,则下列正确的是( )A .0a <B .关于x 的不等式0bx c +>的解集为(,6)-∞-C .0a b c ++>D .关于x 的不等式20cx bx a -+>的解集为121,,3⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭例6.(多选题)(2022·全国·高一)若不等式20ax bx c ++>的解集为()1,2-,则下列说法正确的是( ) A .0a <B .0a b c ++>C .关于x 的不等式230bx cx a ++>解集为()3,1-D .关于x 的不等式230bx cx a ++>解集为()(),31,-∞-⋃+∞例7.(2022·全国·高一专题练习)关于x 的不等式22430(0)x ax a a -+-≥>的解集为[]12,x x ,则12123a x x x x ++的最小值是_____________.例8.(2022·江苏·盐城市大丰区新丰中学高一期中)已知关于x 的一元二次不等式220bx x a -->的解集为{|}x x c ≠,且a ,b ,R c ∈,0b c +≠,则2210a b b c+++的最小值为_______.题型二:分式不等式的解法 例9.(2022·河南·高一期中)不等式351x x x +>-的解集是______.例10.(2022·全国·高一专题练习)不等式3113x x+>--的解集是_______.例11.(2022·湖南·新邵县第二中学高一开学考试)不等式2131x x +>-的解是___________.例12.(2022·上海市延安中学高一期中)已知关于x 的不等式221037kx kx x x -+≤-+的解集为空集,则实数k 的取值范围是___________.例13.(2022·湖北·武汉市钢城第四中学高一阶段练习)不等式301x x -≥+的解集是____________.例14.(2022·上海市奉贤区曙光中学高一阶段练习)设关于x 的不等式0ax b +>的解集为(,1)-∞,则关于x 的不等式06ax bx -≥-的解集为______;例15.(2022·黑龙江·牡丹江市第三高级中学高一开学考试)若不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,则不等式13x a x -≤-的解集为______.例16.(2022·上海·高一专题练习)关于x 的不等式212x ax -≤--的解集是523x x ⎧⎫≤<⎨⎬⎩⎭,则a 的值为____.题型三:绝对值不等式的解法例17.(2022·上海交大附中高一阶段练习)不等式组12511x x ⎧-≤⎪⎨≥⎪+⎩的解集为______________;例18.(2022·上海交大附中高一期中)已知集合102x A xx ⎧⎫-=≤⎨⎬+⎩⎭,{|}1||2B x x =-≤,则A B =___.例19.(2022·上海浦东新·高一期中)不等式221x x ->+的解集是_________.例20.(2022·全国·高一专题练习)设集合A ={x ||x ﹣a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A 是B 的真子集,则a 的取值范围为___.题型四:高次不等式的解法例21.(2022·全国·高一课时练习)不等式22132x x x +≥-+的解集为___________.例22.(2022·天津·静海一中高一阶段练习)不等式()()222344032x x x x x+-+≤+-的解集为___________.例23.(2022·上海·华师大二附中高一阶段练习)不等式201712xx x <≤-+的解集为________.例24.(2022·上海·华师大二附中高一期末)不等式2411x x x --≥-的解集为______.例25.(2022·上海·高一专题练习)不等式()()()()2321120x x x x ++--≤的解集为________例26.(2022·浙江·诸暨中学高一期中)不等式()()2160x x x -+-<的解集为______.例27.(2022·上海·高一专题练习)不等式()()22221221x x x x x x ++>++的解集为_________.例28.(2022·上海市复兴高级中学高一期中)不等式()()()()2233021x x x x x --≥-+-的解集是______.例29.(2022·贵州·遵义航天高级中学高一阶段练习)不等式()()232101xx x x -++≤-的解集为( )A .[-1,2]B .[-2,1]C .[-2,1)∈(1,3]D .[-1,1)∈(1,2]题型五:一元二次不等式恒成立问题例30.(2022·江苏·高一专题练习)若正实数,x y 满足244x y xy ++=,且不等式()2222340x y a a xy +++-≥恒成立,则实数a 的取值范围是( ) A .532⎡⎤-⎢⎥⎣⎦,B .(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭C .532⎛⎤- ⎥⎝⎦,D .(]5,3,2⎛⎫-∞-+∞ ⎪⎝⎭例31.(2022·全国·高一单元测试)在R 上定义运算():1x y x y ⊗⊗=-.若不等式()()1x a x a -⊗+<对任意实数x 都成立,则实数a 的取值范围为( )A .1322a a ⎧⎫-<<⎨⎬⎩⎭B .{}02a a <<C .{}11a a -<<D .3122a a ⎧⎫-<<⎨⎬⎩⎭例32.(2022·河南濮阳·高一期末(理))已知命题“R x ∀∈,214(2)04x a x +-+>”是假命题,则实数a 的取值范围为( ) A .(][),04,-∞+∞ B .[]0,4 C .[)4,+∞ D .()0,4例33.(2022·浙江·金华市曙光学校高一阶段练习)“不等式20x x m -+>在R 上恒成立”的充要条件是( ) A .14m >B .14m <C .1m <D .1m例34.(2022·四川·广安二中高一阶段练习(理))已知关于x 的不等式()()221110a x a x ----<的解集为R ,则实数a 的取值范围( ) A .3,15⎛⎫- ⎪⎝⎭B .3,15⎛⎤- ⎥⎝⎦C .[)3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭D .()3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭例35.(2022·全国·高一单元测试)已知12x ≤≤,20x ax ->恒成立,则实数a 的取值范围是( ) A .{}1a a ≥ B .{}1a a > C .{}1a a ≤ D .{}1a a <例36.(2022·陕西安康·高一期中)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是( ) A .[4,)+∞ B .[2,)+∞ C .(,4]-∞ D .(,2]-∞例37.(2022·广西·南宁市东盟中学高一期中)已知命题“21,2,2102x x ax ⎡⎤∃∈-+≤⎢⎥⎣⎦”为假命题,则实数a 的取值范围是( ) A .2222a -<B .22a <C .3a <D .92a <例38.(2022·全国·高一课时练习)已知命题p :“15x ∃≤≤,250x ax -->”为真命题,则实数a 的取值范围是( )A .4a <B .4aC .4a >D .4a >-【过关测试】 一、单选题1.(2022·江西·丰城九中高一期末)已知集合{}2870A x x x =-+<,{}14B x x =<<,则“x A ∈”是“x B ∈”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.(2022·全国·高一)若关于x 的不等式()2330x m x m -++<的解集中恰有3个整数,则实数m 的取值范围为( ) A .(]6,7B .[)1,0-C .[)(]1,06,7-⋃D .[]1,7-3.(2022·江苏·高一专题练习)若存在正实数y ,使得54y xx y xy-=+,则实数x 的最大值为( ) A .15B .54C .1D .44.(2022·江苏·高一)已知关于x 的不等式ax b >的解集是{|2}x x <,则关于x 的不等式()()10ax b x +->的解集是( )A .()()12-∞⋃+∞,, B .()12, C .()()21-∞-⋃+∞,, D .()21-,5.(2022·全国·高一课时练习)关于x 的不等式22(11)m x mx m x +<+++对R x ∈恒成立,则实数m 的取值范围是( ) A .(0)∞-,B .30,(4)⎛⎫∞+∞⎪- ⎝⎭,C .(]0-∞,D .(]40,3∞∞⎛⎫-⋃+ ⎪⎝⎭,6.(2022·江苏·高一)已知不等式20ax bx c ++>的解集为{}|21x x -<<,则不等式20cx bx a -+<的解集为( ) A .11,2⎛⎫- ⎪⎝⎭B .1,12⎛⎫- ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()2,1-7.(2022·北京师大附中高一期末)关于x 的不等式21x x a x +≥-对任意x ∈R 恒成立,则实数a 的取值范围是( ) A .[]1,3- B .(],3-∞ C .(],1-∞D .(][),13,-∞⋃+∞8.(2022·广西·桂林中学高一期中)已知0ax b ->的解集为(,2)-∞,关于x 的不等式2056ax bx x +≥--的解集为( )A .(,2](1,6)-∞--B .(,2](6,)-∞-+∞C .[2,1)(1,6)---D .[2,1)(6,)--+∞ 二、多选题9.(2022·湖北黄石·高一阶段练习)下列结论错误的是( ) A .不存在实数a 使得关于x 的不等式210ax x ++≥的解集为∅B .不等式20ax bx c ++≤在R 上恒成立的必要条件是0a <且240b ac ∆=-≤C .若函数()20y ax bx c a =++≠对应的方程没有实根,则不等式20ax bx c ++>的解集为RD .不等式11x>的解集为1x < 10.(2022·黑龙江·尚志市尚志中学高一阶段练习)设p :实数x 满足1021x x -≤-,则p 成立的一个必要不充分条件是( ) A .11?2x ≤≤ B .112x <≤ C .01x ≤≤ D .01x <≤11.(2022·江苏南京·高一阶段练习)定义区间(),m n 的长度为n m -,若满足()()2012x ax x -<--的x 构成的区间的长度之和为3,则实数a 的可能取值是( )A .14B .13C .3D .412.(2022·全国·高一专题练习)下列条件中,为 “关于x 的不等式210mx mx -+>对R x ∀∈恒成立”的充分不必要条件的有( ) A .04m ≤< B .02m << C .14m << D .16m -<<三、填空题13.(2022·广东·梅州市梅江区梅州中学高一阶段练习)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则不等式(ax +b )(cx -b )<0的解集是________.14.(2022·江苏·南京市金陵中学河西分校高一阶段练习)若对任意R x ∈,2222224x ax bx c x x +≤++≤-+ 恒成立,则ab 的最大值为_________.15.(2022·江苏·扬州大学附属中学高一期中)不等式20ax bx c ++≤的解集为R ,则2222b a c +的最大值为____________.16.(2022·上海·格致中学高一期末)已知关于x 的不等式()226300x ax a a -+-≥>的解集为[]12,x x ,则12123ax x x x ++的最小值是___________.。
分式不等式
§2.6 分时不等式一、教学目标1、了解分式不等式的概念; 2、研究分式不等式的解法; 3、 会求解简单的分式不等式。
二、教学重点分式不等式的解法三、教学难点分式不等式的解法四、教学课时2课时五、教学过程(一)、复习回顾分式———B A 的形式,A,B 为整式(单项式和多项式的统称),当B 中含有字母时,BA 为分式,其中0≠B 。
(二)、引入定义分式不等式———在分式的分母中含有未知数的不等式叫做分式不等式。
(三)、典型例题eg 1、解分式不等式053>-+x x (解法一):根据除法运算的符号法则,原分式不等式等价于⎩⎨⎧>->+0503x x 或⎩⎨⎧<-<+0503x x 解得:}5{>x x 或}3{-<x x∴原分式不等式的解集为),5()3,(+∞--∞ (解法二):区间分析法(穿针引线) 053>-+x x ⇔⎩⎨⎧≠->-+050)5)(3(x x x ⇔0)5)(3(>-+x x 零点:31-=x ;52=x∴原分式不等式的解集为:()()+∞-∞-,53, eg 2、解分式不等式04352<-+x x (根据例一两种方法求解)eg 3、解分式不等式173-≤-+x x eg 4、解分式不等式021≤--x x (四)、总结 ①0>++dcx b ax ⇔ 0))((>++d cx b ax ; ②0<++d cx b ax ⇔0))((<++d cx b ax ; ③0≥++dcx b ax ⇔⎩⎨⎧≠+≥++00))((d cx d cx b ax ; ④0≤++dcx b ax ⇔ ⎩⎨⎧≠+≤++00))((d cx d cx b ax ;(五)、课堂练习求不等式0)1(12≤+-x x 的解集。
六、课堂小结1、 简单不等式的求解;2、 分式不等式的等价转换。
七、布置作业思考:求解不等式1523-+>-+x x x x感谢您的阅读,祝您生活愉快。
分式不等式的解法
一 不等式的解法1 含绝对值不等式的解法(关键是去掉绝对值)利用绝对值的定义:(零点分段法)利用绝对值的几何意义:||x 表示x 到原点的距离||(0){|}x a a x x a =>=±的解集为}|{)0(||a x a x a a x <<-><的解集为}|{)0(||a x a x x a a x -<>>>或的解集为 公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.2 整式不等式的解法根轴法(零点分段法)1) 化简(将不等式化为不等号右边为0,左边x 的最高次项系数为正);2) 分解因式;3) 标根(令每个因式为0,求出相应的根,并将此根标在数轴上。
注意:能取的根打实心点,不能去的打空心);4) 穿线写解集(从右到左,从上到下依次穿线。
注意:偶次重根不能穿过);一元二次不等式解法步骤:1) 化简(将不等式化为不等号右边为0,左边x 的最高次项系数为正);2) 首先考虑分解因式;不易分解则判断∆,当0∆≥时解方程(利用求根公式)3) 画图写解集(能取的根打实心点,不能去的打空心)3 分式不等式的解法1)标准化:移项通分化为()0()f x g x >(或()0()f x g x <);()0()f x g x ≥(或()0()f xg x ≤)的形式, 2)转化为整式不等式(组)()()0()()0()()00()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩; 4 指数、对数不等式的解法①当1a >时()()()()f x g x a a f x g x >⇔> log ()log ()()()0a a f x g x f x g x >⇔>> ②当01a <<时()()()()f x g x a a f x g x >⇔< log ()log ()0()()a a f x g x f x g x >⇔<<x =0x x ≥ 0x x -<二.练习1. 不等式222310372x x x x ++>-+的解集是2. 不等式3113x x+>--的解集是 3. 不等式2223712x x x x +-≥--的解集是 4. 不等式1111x x x x -+<+-的解集是 5. 不等式229152x x x --<+的解集是 6. 不等式22320712x x x x -+>-+的解集是 7. 不等式2121x x x +≤+的解集是 8. 不等式2112x x ->-+的解集是 9. 不等式23234x x -≤-的解集是 10. 不等式2212(1)(1)x x x -<+-的解集是 11. 不等式2206x x x x +<+-的解集是 12. 不等式2121x x x +<-的解集是 13. 不等式2321x x x x +>++的解集是 14. 不等式211(3)x >-的解集是 15. 不等式(23)(34)0(2)(21)x x x x -->--的解集是 16. 不等式2311x x +≥+的解集是 17. 不等式1230123x x x +->---的解集是 18. 不等式25214x x+≤--的解集是 19. 不等式221421x x x ≥--的解集是 20. 不等式221(1)(2)x x x -<+-的解集是答案1. 2. (-2,3)3. 4.5. 6.7. 8. (1,2)9. 10.11. 12.13. 14.15. 16. [-1,2]17. 18.19. 20.。
不等式专题:分式不等式、高次不等式、绝对值不等式的解法-【题型分类归纳】2022-2023学年高一数
不等式专题:分式不等式、高次不等式、绝对值不等式的解法一、分式不等式的解法解分式不等式的实质就是讲分式不等式转化为整式不等式。
设A 、B 均为含x 的多项式(1)00>⇔>AAB B(2)00<⇔<AAB B(3)000≥⎧≥⇔⎨≠⎩AB AB B (4)000≤⎧≤⇔⎨≠⎩AB AB B 【注意】当分式右侧不为0时,可过移项、通分合并的手段将右侧变为0;当分母符号确定时,可利用不等式的形式直接去分母。
二、高次不等式的解法如果将分式不等式转化为正式不等式后,未知数的次数大于2,一般采用“穿针引线法”,步骤如下:1、标准化:通过移项、通分等方法将不等式左侧化为未知数的正式,右侧化为0的形式;2、分解因式:将标准化的不等式左侧化为若干个因式(一次因式或高次因式不可约因式)的乘积,如()()()120--->…n x x x x x x 的形式,其中各因式中未知数的系数为正;3、求根:求如()()()120---=…n x x x x x x 的根,并在数轴上表示出来(按照从小到大的顺序标注)4、穿线:从右上方穿线,经过数轴上表示各根的点,(奇穿偶回:经过偶次根时应从数轴的一侧仍回到这一侧,经过奇数次根时应从数轴的一侧穿过到达数轴的另一侧)5、得解集:若不等式“>0”,则找“线”在数轴上方的区间;若不等式“<0”,则找“线”在数轴下方的区间三、含绝对值不等式1、绝对值的代数意义正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩2、绝对值的几何意义一个数的绝对值,是数轴上表示它的点到原点的距离.3、两个数的差的绝对值的几何意义b a -表示在数轴上,数a 和数b 之间的距离.4、绝对值不等式:(1)(0)<>x a a 的解集是{|}-<<x a x a ,如图1.(2)(0)>>x a a 的解集是{|}<->或x x a x a ,如图2.(3)(0)+<>⇔-<+<ax b c c c ax b c .(4)(0)+>>⇔+>ax b c c ax b c 或ax b c+<-题型一解分式不等式【例1】不等式02xx ≤-的解集为()A .[0,2]B .(0,2)C .(,0)[2,)-∞+∞ D .[0,2)【答案】D【解析】原不等式可化为()2020⎧-≤⎨-≠⎩x x x ,解得02≤<x .故选:D .【变式1-1】不等式2112x x +≥-的解集为()A .[3,2]-B .[3,2)-C .(,3][2,)-∞-⋃+∞D .(,3](2,)-∞-+∞U 【答案】D【解析】∵21310022++-⇒--x x x x ,解得:2>x 或3-x ,∴不等式的解集为(,3](2,)-∞-+∞U ,故选:D.【变式1-2】解下列分式不等式:(1)123x x +-≤1;(2)211x x+-<0.【答案】(1){3|2x x <或4x ≥};(2){1|2x x <-或1x >}.【解析】(1)∵123x x +-≤1,∴123x x +--1≤0,∴423x x -+-≤0,即432x x --≥0.此不等式等价于(x -4)32x ⎛⎫- ⎪⎝⎭≥0且x -32≠0,解得x <32或x ≥4.∴原不等式的解集为{3|2x x <或4x ≥}(2)由211x x +-<0得121x x +->0,此不等式等价于12x ⎛⎫+ ⎪⎝⎭(x -1)>0,解得x <-12或x >1,∴原不等式的解集为1{|2x x <-或1x >}.【变式1-3】解不等式:2121332x x x x ++≥--【答案】21332⎧⎫><≠-⎨⎬⎩⎭或且x x x x 【解析】通分整理,原不等式化为:2(12)0(3)(32)+>--x x x ,它等价于:(3)(32)0210-->⎧⎨+≠⎩x x x ,得到:3>x 或23<x 且12≠-x 【变式1-4】不等式()2131x x +≥-的解集是()A .1,23⎡⎤⎢⎥⎣⎦B .1,23⎡⎤-⎢⎥⎣⎦C .(]1,11,23⎡⎫⎪⎢⎣⎭U D .(]1,11,23⎡⎫-⎪⎢⎣⎭【答案】C 【解析】因为()2131x x +≥-,所以213(1)x x +≥-且10x -≠,所以23720x x -+≤且10x -≠,所以123x ≤≤且1x ≠,所以不等式的解集为(]1,11,23⎡⎫⋃⎪⎢⎣⎭,故选:C题型二解高次不等式【例2】不等式()()()21350x x x ++->的解集为___________.【答案】1(,3),52⎛⎫-∞-⋃- ⎪⎝⎭【解析】不等式()()()()()()2135021350++->⇔++-<x x x x x x ,由穿针引线法画出图线,可得不等式的解集为1(,3),52⎛⎫-∞-⋃- ⎪⎝⎭.故答案为:1(,3),52⎛⎫-∞-- ⎪⎝⎭⋃.【变式2-1】解不等式(x +2)(x -1)9(x +1)12(x -3)≥0.【答案】[][)-213⋃+∞,,.【解析】根据不等式标根所以原不等式的解为[][)-213⋃+∞,,.故答案为:[][)-213⋃+∞,,.【变式2-2】不等式()()1203x x x +-≥-的解集为()A .{1x x ≤-或}23x ≤<B .{1x x ≤-或}23x ≤≤C .{3x x ≥或}12x -≤≤D .{3x x >或}12x -≤≤【答案】A【解析】不等式(1)(2)03x x x +-≥-,化为:(1)(2)0330x x x x +-⎧≤⎪-⎨⎪-≠⎩,由穿根法可知:不等式的解集为:{1x x ≤-或}23x ≤<.故选:A.【变式2-3】解下列分式不等式:(1)23221x x x -+≥-;(2)22520(32)(11)x x x x -+≥-+;(3)2256034x x x x ++≤--;(4)222232x x x x x +-<+-.【答案】(1)[4,)+∞;(2)12(,11)[,)[2,)23-∞-+∞ ;(3)4[3,2](1,)3--- ;(4)(1,2)(3,)-⋃+∞.【解析】(1)23221x x x -+≥-,所以232201x x x -+-≥-,所以()2322101x x x x -+--≥-,即()()24154011x x x x x x ---+=≥--,解得4x ≥,故原不等式的解集为[4,)+∞;(2)22520(32)(11)x x x x -+≥-+,所以()()2120(32)(11)x x x x --≥-+等价于()()()()()()2123211032110x x x x x x ⎧---+≥⎪⎨-+≠⎪⎩,解得2x ≥或1223x ≤<或11x <-,故原不等式的解集为12(,11)[,[2,)23-∞-+∞ (3)2256034x x x x ++≤--,所以()()()()230341x x x x ++≤-+,等价于()()()()()()2334103410x x x x x x ⎧++-+≤⎪⎨-+≠⎪⎩,解得32x --≤≤或413x -<<,故原不等式的解集为4[3,2](1,)3--- ;(4)222232x x x x x +-<+-,所以2222032x x x x x +--<+-,即()2222232032x x x x x x x +--+-<+-,即()()()()201231x x x x x -+++>-,因为210x x ++>恒成立,所以原不等式等价于()()2031x x x ->-+,即()()()2310x x x --+>,解得12x -<<或3x >,故原不等式的解集为(1,2)(3,)-⋃+∞【变式2-4】关于x 的不等式0ax b +>的解集为{|1}x x >,则关于x 的不等式2056ax bx x +>--的解集为()A .{|11x x -<<或6}x >B .{|1x x <-或16}x <<C .{|1x x <-或23}x <<D .{|12x x -<<或3}x >【答案】A【解析】因为关于x 的不等式0ax b +>的解集为{|1}x x >00a a b >⎧∴⎨+=⎩,则原式化为:()()()()()()()10061106161-->⇔>⇔-+->-+-+ax a x x x x x x x x 所以不等式的解为11x -<<或6x >.故选:A.题型三解绝对值不等式【例3】解不等式:(1)3<x ;(2)3>x (3)2≤x 【答案】(1){|33}-<<x x (2){|33}<->或x x x (3){|22}-≤≤x x 【变式3-1】解不等式:(1)103-<x ;(2)252->x ;(3)325-≤x ;【答案】(1){|713}<<x x ;(2)73{|}22><或x x x ;(3){|14}-≤<x x 【解析】(1)由题意,3103-<-<x ,解得713<<x ,所以原不等式的解集为{|713}<<x x .(2)由题意,252->x 或252-<-x ,解得72>x 或32<x ,所以原不等式的解集为73{|}22><或x x x .(3)由题意,5325-<-≤x ,解得14-≤<x ,所以原不等式的解集为{|14}-≤<x x .【变式3-2】不等式1123x <-≤的解集是___________【答案】[)(]1,01,2- 【解析】不等式可化为1213x <-≤,∴1213x <-≤,或3211x --<-≤;解之得:12x <≤或10x -≤<,即不等式1123x <-≤的解集是[)(]1,01,2- .故答案为:[)(]1,01,2- .【变式3-3】不等式111x x +<-的解集为()A .{}{}011x x x x <<⋃>B .{}01x x <<C .{}10x x -<<D .{}0x x <【答案】D 【解析】不等式()()221111111101+<⇔+<-≠⇔+<-≠⇔<-x x x x x x x x x .故选:D.【变式3-4】解不等式:4321->+x x 【答案】1{|2}3<>或x x x 【解析】方法一:(零点分段法)(1)当34≤x 时,原不等式变为:(43)21-->+x x ,解得13<x ,所以13<x ;(2)当34>x 时,原不等式变为:4321->+x x ,解得2>x ,所以2>x ;综上所述,原不等式的解集为1{|2}3<>或x x x .方法二:43214321->+⇔->+x x x x 或43(21)-<-+x x ,解得13<x 或2>x ,所以原不等式的解集为1{|2}3<>或x x x .【变式3-5】不等式125-+-<x x 的解集为【答案】(1,4)-【解析】当1x ≤时,1251x x x -+-<⇒>-,故11x -<≤;当12x <<时,12515x x -+-<⇒<恒成立,故12x <<;当2x ≥时,1254x x x -+-<⇒<,故24x ≤<综上:14x -<<故不等式的解集为:(1,4)-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)分式不等式:型如:0)()(>x x f ϕ或0)()(<x x f ϕ(其中)(、x x f ϕ)(为整式且0≠)(x ϕ)的不等式称为分式不等式。
(2)归纳分式不等式与整式不等式的等价转化:(1)0)()(0)()(>⋅⇔>x x f x x f ϕϕ (3)0)()(0)()(<⋅⇔<x x f x x f ϕϕ(2)⎩⎨⎧≠≥⋅⇔≥0)(0)()(0)()(x x x f x x f ϕϕϕ (4)⎩⎨⎧≠≤⋅⇔≤0)(0)()(0)()(x x x f x x f ϕϕϕ (3)小结分式不等式的解法步骤:(1)移项通分,不等式右侧化为“0”,左侧为一分式 (2)转化为等价的整式不等式(3)因式分解,解整式不等式(注意因式分解后,一次项前系数为正) (1)分式不等式的解法:解关于x 的不等式0231>-+x x方法一:等价转化为: 方法二:等价转化为:⎩⎨⎧>->+02301x x 或⎩⎨⎧<-<+02301x x 0)23)(1(>-+x x变式一:0231≥-+x x等价转化为:⎩⎨⎧≠-≥-+0230)23)(1(x x x比较不等式0231<-+x x 及0231≤-+x x 的解集。
(不等式的变形,强调等价转化,分母不为零)练一练:解关于x 的不等式 051)1(>--x x 3532)2(≤-x例1、 解关于x 的不等式:232≥+-x x 解:0232≥-+-x x 03)3(22≥++--x x x即,038≥+--x x038≤++x x (保证因式分解后,保证一次项前的系数都为正)等价变形为:⎩⎨⎧≠+≤++030)3)(8(x x x∴原不等式的解集为[)3,8--例2、解关于x 不等式23282<+++x x x 方法一:322++x x恒大于0,利用不等式的基本性质方法二:移项、通分,利用两式同号、异号的充要条件,划归为一元一次或一元二次不等式。
例3、 解关于x 的不等式:1≥xa 解:移项01≥-x a通分 0≥-x x a 即,0≤-xa x等价转化为,⎩⎨⎧≠≤-0)(x a x x当a>0时,原不等式的解集为],0(a 当a<0时,原不等式的解集为)0,[a 当a=0时,原不等式的解集为φ⒈ 一元二次不等式与特殊的高次不等式解法 例1 解不等式0)1)(4(<-+x x . 分析一:利用前节的方法求解;分析二:由乘法运算的符号法则可知,若原不等式成立,则左边两个因式必须异号,∴原不等式的解集是下面两个不等式组:⎩⎨⎧<+>-0401x x 与⎩⎨⎧>+<-0401x x 的解集的并集,即{x|⎩⎨⎧<+>-0401x x }∪⎩⎨⎧>+<-0401|{x x x }=φ∪{x|-4<x<1}={x|-4<x<1}.书写时可按下列格式:解二:∵(x-1)(x+4)<0⇔⎩⎨⎧<+>-0401x x 或⎩⎨⎧>+<-0401x x⇔x ∈φ或-4<x<1⇔-4<x<1, ∴原不等式的解集是{x|-4<x<1}.小结:一元二次不等式)a ()c bx ax (c bx ax 00022≠<++>++或的代数解法:设一元二次不等式)a (c bx ax 002≠>++相应的方程)a (c bx ax 002≠=++的两根为2121x x x x ≤且、,则00212>--⇔>++)x x )(x x (a c bx ax ;①若⎩⎨⎧>>⎩⎨⎧<<⇒⎩⎨⎧>->-⎩⎨⎧<-<->.x x ,x x ,x x ,x x .x x ,x x ,x x ,x x ,a 2121212100000或或则得 当21x x <时,得1x x <或2x x >;当21x x =时,得1x x ,R x ≠∈且. ②若⎩⎨⎧><⎩⎨⎧><⇒⎩⎨⎧>-<-⎩⎨⎧>-<-<.x x ,x x ,x x ,x x .x x ,x x ,x x ,x x ,a 2121212100000或或则得 当21x x <时,得21x x x <<;当21x x =时,得∅∈x .分析三:由于不等式的解与相应方程的根有关系,因此可求其根并由相应的函数值的符号表示出来即可求出不等式的解集.解:①求根:令(x-1)(x+4)=0,解得x (从小到大排列)分别为-4,1,这两根将x 轴分为三部分:(-∞,-4)(-4,1)(1,+∞);②分析这三部分中原不等式左边各因式的符号x+4 - + +x-1 - - +(x-1)(x+4) + - +③由上表可知,原不等式的解集是{x|-4<x<1}.例2:解不等式:(x-1)(x+2)(x-3)>0;解:①检查各因式中x的符号均正;②求得相应方程的根为:-2,1,3;③列表如下:-2 1 3x+2 - + + +x-1 - - + +x-3 - - - +各因式积- + - +④由上表可知,原不等式的解集为:{x|-2<x<1或x>3}.小结:此法叫列表法,解题步骤是:①将不等式化为(x-x1)(x-x2)…(x-x n)>0(<0)形式(各项x的符号化“+”),令(x-x1)(x-x2)…(x-x n)=0,求出各根,不妨称之为分界点,一个分界点把(实数)数轴分成两部分,n个分界点把数轴分成n+1部分……;②按各根把实数分成的n+1部分,由小到大横向排列,相应各因式纵向排列(由对应较小根的因式开始依次自上而下排列);③计算各区间内各因式的符号,下面是乘积的符号;④看下面积的符号写出不等式的解集.练习:解不等式:x(x-3)(2-x)(x+1)>0. {x|-1<x<0或2<x<3}.思考:由函数、方程、不等式的关系,能否作出函数图像求解例2图练习图直接写出解集:{x|-2<x<1或x>3}. {x|-1<x<0或2<x<3}在没有技术的情况下:可大致画出函数图星求解,称之为串根法①将不等式化为(x-x 1)(x-x 2)…(x-x n )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.注意:奇穿偶不穿例3 解不等式:(x-2)2(x-3)3(x+1)<0. 解:①检查各因式中x 的符号均正;②求得相应方程的根为:-1,2,3(注意:2是二重根,3是三重根); ③在数轴上表示各根并穿线,每个根穿一次(自右上方开始),如下图:④∴原不等式的解集为:{x|-1<x<2或2<x<3}.说明:∵3是三重根,∴在C 处穿三次,2是二重根,∴在B 处穿两次,结果相当于没穿.由此看出,当左侧f(x)有相同因式(x-x 1)n 时,n 为奇数时,曲线在x 1点处穿过数轴;n 为偶数时,曲线在x 1点处不穿过数轴,不妨归纳为“奇穿偶不穿”.练习:解不等式:(x-3)(x+1)(x 2+4x+4)≤0. 解:①将原不等式化为:(x-3)(x+1)(x+2)2≤0;②求得相应方程的根为:-2(二重),-1,3; ③在数轴上表示各根并穿线,如图:④∴原不等式的解集是{x|-1≤x ≤3或x=-2}.说明:注意不等式若带“=”号,点画为实心,解集边界处应有等号;另外,线虽不穿-2点,但x=-2满足“=”的条件,不能漏掉.2.分式不等式的解法 例4 解不等式:073<+-x x .错解:去分母得03<-x ∴原不等式的解集是{}3<x |x . 解法1:化为两个不等式组来解: ∵073<+-x x ⇔⎩⎨⎧>+<-⎩⎨⎧<+>-07030703x x x x 或⇔x ∈φ或37<<-x ⇔37<<-x , ∴原不等式的解集是{}37<<-x |x . 解法2:化为二次不等式来解: ∵073<+-x x ⇔⎩⎨⎧≠+<+-070)7)(3(x x x ⇔37<<-x , ∴原不等式的解集是{}37<<-x |x说明:若本题带“=”,即(x-3)(x+7)≤0,则不等式解集中应注意x ≠-7的条件,解集应是{x| -7<x ≤3}.小结:由不等式的性质易知:不等式两边同乘以正数,不等号方向不变;不等式两边同乘以负数,不等号方向要变;分母中有未知数x ,不等式两边同乘以一个含x 的式子,它的正负不知,不等号方向无法确定,无从解起,若讨论分母的正负,再解也可以,但太复杂.因此,解分式不等式,切忌去分母.解法是:移项,通分,右边化为0,左边化为)x (g )x (f 的形式. 例5 解不等式:0322322≤--+-x x x x . 解法1:化为不等式组来解较繁.解法2:∵0322322≤--+-x x x x ⇔⎪⎩⎪⎨⎧≠--≤--+-0320)32)(23(222x x x x x x ⇔⎩⎨⎧≠+-≤+---0)1)(3(0)1)(3)(2)(1(x x x x x x , ∴原不等式的解集为{x| -1<x ≤1或2≤x<3}.练习:1.课本P 21练习:3⑴⑵;2.解不等式253>+-x x . 答案:1.⑴{x|-5<x<8};⑵{x|x<-4,或x>-1/2};2.{x|-13<x<-5}.练习:解不等式:123422+≥+--x x x x.(答:{x|x ≤0或1<x<2})1. 不等式222310372x x x x ++>-+的解集是2. 不等式3113x x+>--的解集是3. 不等式2223712x x x x +-≥--的解集是4. 不等式1111x x x x -+<+-的解集是 5. 不等式229152x x x --<+的解集是 6. 不等式22320712x x x x -+>-+的解集是 7. 不等式2121x x x +≤+的解集是 8. 不等式2112x x ->-+的解集是 9. 不等式23234x x -≤-的解集是 10. 不等式2212(1)(1)x x x -<+-的解集是 11. 不等式2206x x x x +<+-的解集是 12. 不等式2121x xx +<-的解集是 13. 不等式2321x xx x +>++的解集是 14. 不等式211(3)x >-的解集是 15. 不等式(23)(34)0(2)(21)x x x x -->--的解集是 16. 不等式2311x x +≥+的解集是17. 不等式1230123x x x +->---的解集是 18. 不等式25214x x+≤--的解集是 19. 不等式221421x x x ≥--的解集是 20. 不等式221(1)(2)x x x -<+-的解集是答案1. 2. (-2,3)3. 4.5. 6.7. 8. (1,2)9. 10.11. 12.13. 14.15. 16. [-1,2] 17. 18.19. 20.。