冲击电压发生器MATLAB程序
冲击电压试验操作流程(全波实验)
冲击试验操作流程
全波实验:
(1)试品接线和设备调整:
①试品高压单相或试品高压短接连电容分压器高压输出
②试品接线和设备调整完成之后把接地棒放在指定位置
(2)波形分析软件的设置:
①双击软件图标
②单击@选项
键入密码:111111
③冲击参数设置:
改变各个通道所对应的变比
电压波形显示参数里选择:
T1(30%-90%) T2(50%波尾)UpMax(波形最大值)
UpMin(波形最小值)
选择好之后点确定
设置电压的量程
设置示波器采集极性和控制软件对应
选择使用的通道
选择10us
点击设置示波器
点击开始测试
(3)冲击控制系统操作:
双击冲击控制器图标进入软件
①点击本体设置
②在弹出的对话框里的输入所需要的级电压和
充电时间
③点击确定
④将截球手动增大至最大
⑤点击
⑥待电压充到设定电压之后自动触发
⑦待触发完成后点击高压分断
半电压调波形半电压波形调完之后做全电压试验
波头时间1.2us±30%=0.84us—1.56us标准波尾时间50us±20%=40us-60us 标准波头时间长减小电阻波头时间短增大电阻波尾时间长减小电阻波尾时间短增大电阻。
冲击电压发生器
高电压技术课程设计姓名:赖智鹏学号:U200811806班级:电气0809班邮箱:冲击电压发生器的设计一、引言冲击电压发生器是一种产生脉冲波的高电压发生装置,在电力系统中主要用于研究电力设备遭受大气过电压和操作过电压时的绝缘性能。
本文是高电压技术课程的课程设计,参考相关文献完成了冲击电压发生器设计,了解了该装置基本原理、设计流程、注意事项等。
二、设计过程1. 最大输出电压300~800kV2. 冲击电容为保证冲击电压发生器有较大适用范围,考虑试验可能遇到的最大的试品电容(不考虑大电力变压器和整卷电缆试验的情况)(1)试品中互感器电容最大,约1000pF(2)冲击电压发生器的对地杂散电容和高压引线及球隙等的电容估计值取500pF (3)电容分压器(分压器采用电容式分压器)的电容估计值取600pF 由此得出,总的负荷电容约为210005006002100C pF=++=为保证发生器有足够高的效率,同时兼顾经济性,冲击电容取负荷电容10至20倍,则冲击电容为12(1020)(2100031500)C ~C ~pF==3. 电容器的选择型号MY110—0.2脉冲电容器参数如下表需满足两个要求:(1)电压发生器额定电压要求:300~800kV (2)冲击电容要求:21000~31500pF采用MY110—0.2脉冲电容器,7级串联,此时冲击电压发生器串联放电时,峰值电压约为770kV 满足(300~800kV ),且冲击电容为200000/7=28571满足(21000~31500pF )4. 回路选择采用高效回路,单边充电。
图 1 高效回路上图中C为型号MY110-0.2脉冲电容器, R为充电电阻,r为保护电阻(同时起均压作用,使电容充电比较均匀),大小取10R,rf为波头电阻,rt为波尾电阻。
回路化简及等效如下图图 2 等效回路充电测量:毫安表测量充电电流,微安表与大电阻串联测量充电电压。
图 3 充电回路电参数测量5. 冲击电压发生器主要参数(1)额定电压U1=7*110=770kV (2)冲击电容C1=200000/7=28571pF(3)能量W=1/2*0.028571*10^-6*(770*10^3)^2= 8.4699e+003J=8.47kJ6. 波头电阻和波尾电阻计算假定(1)试品电容为1000pF (2)负荷电容为2100pF 则由于波前时间等效回路:图 4 波前时间等效回路:波头长1212612121221001028571101.2103.24 3.24122100102857110f f f C C t r r C C -----⨯⨯⨯=⨯=⨯⨯=⨯⨯+⨯+⨯∑∑得189.33189fr =Ω=Ω∑, 27.047127.0189.33/7f r =Ω==Ω波长时间等效回路图 5 波长时间等效回路:波长时间61250100.69(285712100)10t tt r --=⨯=⨯⨯+⨯∑得2362.6=2363t r =ΩΩ∑,2362.6/3377.5t r ==Ω7. 充电电阻和保护电阻阻值计算及电阻材料的选择下图为充电回路内部环流,为减小充电回路内部放电回路对冲击电压发生器放电回路的影响,要求R+rf>10~20rt 。
高电压技术课程设计——冲击电压发生器的设计 精品
高电压技术课程设计——冲击电压发生器的设计电气与电子工程学院冲击电压发生器的设计电力系统种的高压电气设备,除了承受长时期的工作电压外,在运行过程种,还可能会承受短时的雷电过电压和操作过电压的作用。
一般用冲击高压试验来检验高压电气设备的雷电过电压和操作过电压作用下的绝缘性能或保护性能。
雷电冲击高压试验采用全波冲击电压波形或截波冲击电压波形,这种冲击电压持续时间较短,约数微秒至数十微秒,它可以由冲击电压发生器产生;操作冲击电压试验采用操作冲击电压波形,其持续时间较长,约数百微秒至数千微秒,它利用变压器产生,也可利用冲击电压发生器产生。
许多高电压试验室的冲击电压发生器既可以产生雷电冲击电压波,也可以产生操作冲击电压波。
冲击电压发生器是产生冲击电压波的装置。
雷电冲击电压波是一个很快地从零上升到峰值然后较慢地下降地单向性脉冲电压。
一.设计目标:输出波形为1.2/50μs标准波形,回路采用高效率回路,输出电压为300~800kV,发生器级数为4~8级。
二.设计过程:1.试品电压等级的确定表1.冲击电压发生器标称电压与被测试设备额定电压间关系试品额定电压/ kV 35 110 220 330 500冲击电压发生器标称电压/ MV0.4~0.6 0.8~1.5 1.8~2.7 2.4~3.6 2.7~4.2要求的输出电压为300~800kV,根据上表,可以暂定试品的电压等级为66kV。
根据66kV设备雷电冲击耐受电压(峰值)表,可知变压器类设备的内绝缘的耐受电压最高,为385kV,击穿电压和闪络电压都高于试验电压,考虑为研究试验取裕度系数1.3;长期工作时冲击电压发生器会发生绝缘老化,考虑老化系数取1.1;假定冲击电压发生器的效率为85%,故冲击电压发生器的标称电压应不低于:1385 1.3 1.1/0.85647U kV kV =⨯⨯=所以可取冲击电压发生器的标称电压为660kV2.冲击电容的选定如不考虑大电力变压器试验和整卷电缆试验,就数互感器的电容较大,约1000pF ,冲击电压发生器的对地杂散电容和高压引线及球隙等的电容如估计为500pF ,电容分压器的电容如估计为600pF ,则总的负荷电容为2(1000500600)2100C pF pF =++=如按冲击电容为负荷电容的10倍来估计,约需冲击电容为121021000C C pF ==从国产脉冲电容器的产品规格中找到MY110—0.2瓷壳高压脉冲电容器比较合适,这种电容器的规格如表3所示。
(完整word版)冲击电压发生器仿真设计
冲击电压发生器仿真设计一、设计目的1.理解冲击电压发生器的工作原理和绝缘冲击试验的内容;2.掌握冲击电压发生器的设计方法和matlab仿真软件的使用;3.学习分析冲击电压发生器充电回路的效率及波形参数。
二、设计要求1.设计一台冲击电压发生器,产生冲击电压波。
冲击波形的参数:波前时间为2.0us,半峰值时间为36us;试品电压等级110kV。
2.参考《高电压试验技术》(清华大学版)。
三、设计任务1.画出电路设计原理图选用高效率双边对称充电回路,如图3、4所示图3 发生器的充电回路图4 发生器的放电回路2.确定各元件参数2.1额定电压的选择:110kV产品的雷电冲击试验电压如表所示(按GB311.1-1997)表1 110kV产品的雷电冲击耐受电压上表所示的都是耐受电压。
击穿电压和闪络电压都高于试验电压,考虑为研究试验取裕度系数1.3;长期工作时冲击电压发生器会发生绝缘老化,考虑老化系数1.1;假定冲击电压发生器的效率为85%,故冲击电压发生器的标称电压应不低于U1=550×1.3 ×1.1 /0.85kV=925.3kV2.2冲击电容的选择:如不考虑大电力变压器试验和整卷电缆试验和互感器试验,就绝缘子的电容按100pF冲击电压发生器的对地杂散电容和高压引线及球隙等的电容如估计为500pF ,电容分压器的电容估计为600pF,则总的负荷电容为C2=100+500+600=1200pF如按冲击电容为负荷电容的10倍来估计,约需冲击电容为C1=10C2=12000pF2.3电容量的选择:从国产脉冲电容器的产品规格中找到MY220-0.1瓷壳高压脉冲电容器比较合适,电容器规格如下表2表2用此电容器5级串联,标称电压可达到1100 kV ,基本上满足前述需要。
每级由两个电容器串联,使冲击电容C 1=0.1/5=0.02μF此值>10C 2 可使(电压)效率不致很低。
2.4冲击电压发生器主要参数:标称电压 1=22051100U k ⨯=冲击电容 10.02C F μ=标称能量 2211/20.02(1100)/212.1n W C U F kV kJ μ==⨯=2.4波前电阻和放电电阻的计算当试品电容为100pF ,负荷总电容1200pF 时,波前时间12122.0 3.24/()3.240.020.0012/(0.0212)f f f T s R C C C C R F F F μμμμ==⨯+=⨯⨯求得545.26f R =Ω,每级电阻/5109.1f f r R ==Ω 考虑回路电感影响时,12122.33/()f f T R C C C C =⨯+求得758.22f R =Ω,每级电阻/5151.6f f r R ==Ω。
冲击电压发生器的MathCAD程序设计
6.硅堆选择
3 Uc 10
短时最大电流: Imax:= 1.1 Rb
Imax = 0.303
Imax If :=
额定整流电流:
2 30
If = 0. 055
硅堆反峰电压: Uf := 2. 1Uc Uf = 231
G(Uf ,If ) := cur ve ←
i ←0
j← 0
f or j ∈0.. 23
62
7.变压器的容量:P := 2.5 K C 10 Uc
t
P = 5.042×10 3
变压器电压有效值: Uvt := 0.8Uc Uvt = 88
变压器选择全绝缘变压器,100 kV,10 kVA 容量即可。
8.球隙参数选择
ф2 50 m m 球 隙在 距 离为 45 m m 时放 电 电压 为
PP0 ,i ← Uc
PP1 ,i ← cu rve1 , j
PP ← K 2 ,i
i ←i+ 1
PP
110 220 C(600, 0.0034) = 0.2 0.1
63
图 1 冲击电压发生器原理图 其中:C 0- 主电容,G- 隔离间隙,Rf-波前电阻, R t -波尾电阻,C f - 波前电容,C x-被试品 Ma th C AD 程序设计的算例参数要求: 电 压 等 级 6 00 k V, 波 形 参 数 1.2 / 5 0 μs , 试 品 电 容 4 00 PF ,效率η=8 5%。 二、冲击电压发生器的 Mat hCAD程序设计 Ma th C AD 是大家熟知的数学计算软件,该软件对解决 需要反复调试 参数的计算问题很直观方便 。其中的校核程序 和查表程序还 可以很大程度上提高设计过 程的自动化程度。 对不同的方案 ,设计人员一般只需修改初 始值和几个重定义 值,就可以得 到新的设计结果,程序设计 的通用性比较好。 以 6 00 kV 冲击电压发生器为例,其 M a th C AD 程序设计如 下: 1.脉冲电容器的选择 冲击电压发生器的额定电压:U1 :=6 60 波前电容:C 2:= 0.0 03 4
冲击电压发生器说明书
冲击电压发生器说明书江苏新亚高电压测试设备有限公司目录一、概述二、产品型号编制说明三、使用条件四、主要技术参数五、设备组成六、使用方法七、注意事项八、日常维护九、成套设备的主要部件十、随机文件及附件一、概述冲击电压发生器是产生冲击电压波的装置,用于试验电力耐受大气过电压和操作过电压时的绝缘性能,所以冲击电压发生器不仅能产生雷电冲击电压波形、雷电冲击电压截波,雷电冲击电压陡波,还能产生操作冲击电压波形等。
本系列冲击电压发生器可对绝缘子串、长空气间隙、套管、互感器、变压器等试品进行冲击电压试验和其它科学研究。
二、产品型号编制说明C JD Y -----设备标称电压(kV)设备标称能量(kJ)“电压”型发生器“冲击”波CJDY系列冲击电压发生器主回路电路如下:图中:T:充电变压器(220V/80KV)D1 D2:高压硅整流器(200KV/200mA)K1 K2:自动接地开关(电磁铁220V/5Kg)R01 R02 R03:充电保护电阻(100KV/15K)R1、R2:直流电阻分压器(100KV/300MΩ)C P:耦合电容器(100KV/1000PF)R0:触发电阻(2W/1.2MΩ)C:主电容器(50KV/2×1.0UF)R:充电电阻(100KV/30KΩ)R´:充电箝位电阻(100KV/12-30KΩ)R t R,t:波尾电阻R f R,f:波头电阻C´:充电兼操作波尾电阻R´f:操作波外波头电阻C´s0:点火电容C0:串联放电球隙R0´:触发球箝位电阻R0:分压器阻尼电阻C0 C0´:弱阻尼电容分压器(400KV/300PF)C0´´:电容分压器低压臂0.4UFC3:截波装置(400KV/300PF)三、使用条件安装、使用处海拔高度不超过1000米周围空气温度:-20℃~+40℃,空气相对湿度不大于90%(20℃),最大温差:25℃无导电尘埃存在无火灾及爆炸危险品不含有腐蚀金属和绝缘的气体和蒸汽无剧烈振动、碰撞和强烈颠簸地平水平面不超过3度,移动式装置地面不平度±1mm/m2电源电压的波形为正弦波,波形畸变率小于3%,频率50Hz,电源侧应不受来自外部的过电压。
特高压变压器雷电冲击电压发生器设计虚拟仿真实验教学项目 -回复
特高压变压器雷电冲击电压发生器设计虚拟仿真实验教学项目-回复如何设计特高压变压器雷电冲击电压发生器的虚拟仿真实验教学项目。
第一步:项目背景介绍特高压变压器雷电冲击电压发生器是用于模拟变压器在雷电冲击下的电压响应情况,用于测试特高压变压器的抗雷击能力。
由于特高压变压器在实际操作中难以进行雷电冲击试验,因此虚拟仿真实验成为一种有效的方式。
本文将介绍如何设计特高压变压器雷电冲击电压发生器的虚拟仿真实验教学项目。
第二步:设定实验目标在设计实验前,我们需要设定实验的目标。
根据特高压变压器的特点和雷电冲击的影响因素,我们可以设定如下的实验目标:1. 模拟特高压变压器在雷电冲击下的电压响应情况。
2. 分析特高压变压器的抗雷击能力,提高其设计和维护技术。
3. 提供虚拟仿真实验平台,方便学生学习和实践。
第三步:确定实验内容和步骤根据实验目标,我们可以确定相应的实验内容和步骤。
在这里,我们可以列举以下几个重要环节:1. 特高压变压器的基本原理介绍。
2. 雷电冲击对特高压变压器的影响分析。
3. 设计特高压变压器雷电冲击电压发生器的虚拟仿真实验平台。
4. 确定实验参数和测试范围。
5. 进行仿真实验并记录实验数据。
6. 分析实验结果和验证仿真平台的有效性。
7. 提供实验报告和学习资料。
第四步:选择仿真软件和工具为了设计特高压变压器雷电冲击电压发生器的虚拟仿真实验项目,我们需要选择适用的仿真软件和工具。
常用的仿真软件包括MATLAB/Simulink、PSCAD等。
这些软件可模拟电力系统中的各种电气设备和电力故障,具有强大的建模和仿真能力,非常适合本实验的需求。
第五步:进行仿真模型设计和参数设定在设计过程中,我们需要进行仿真模型的设计和参数设定。
根据特高压变压器的电气特性和雷电冲击的电压波形,我们可以建立相应的模型,并设定合适的参数。
以MATLAB/Simulink为例,可以使用电路建模和电源模块构建特高压变压器雷电冲击电压发生器的仿真模型,并进行参数设定,包括变压器的阻抗、雷电冲击波形的幅值和时间间隔等。
第5章冲击电压发生器第5章冲击电压发生器主要内容
雷电冲击电压全波参数定义(波前时间,半峰值时间):1.2 冲击电压的波形波峰附近振荡的全波全波波形雷电冲击电压截波参数定义(波前时间,半峰值时间,截断时间,电压跌落持续时间,电压跌落陡度):1.2 冲击电压的波形波尾截断雷电波形波头截断雷电波形操作冲击电压参数定义(波前时间,半峰值时间,90%峰值时间):1.2 冲击电压的波形操作冲击电压波形试品额定电压(kV)35110220330500750冲击发生器0.4~0.60.8~1.5 1.5~2.7 2.4~3.6 2.7~4.2 3.6~6.0 2.1 基本Marx冲击回路原理r—硅堆保护电阻,r>>R,r=(10~20)R;R—充电电阻;C1~C4主电容;r d—阻尼电阻(阻尼波形振荡)几~几十Ω;g1:点火球隙,g2~g4中间球隙;g0隔离球隙;C’:对地杂散电容;R f:波头电阻;R t:波尾电阻;C0:被试及测量设备的电容2.1.4 串联放电时的等效电路原理可概述为:电容并联充电,而后串联放电,而串联放电的实现是靠一组球隙来达到的。
2.1.5 输出波形2.2 双边充电的冲击电压发生器双边充电回路在不增加级数,相同充电电压下,输出电压增加一倍。
对于充电用的试验变压器,正负半波在充电时都发挥了作用。
但所用的电容器台数增加一倍。
2.3 冲击电压发生器的高效回路只有一边有R,另一边由rf、rt兼作充电电阻,rf、rt分散在各级内,无专门的rd,也无g(隔离球隙),其充电原理与前述相同,串联放电后的回路不同。
2.3 冲击电压发生器的高效回路高效回路串联放电的等效回路没有了专门阻尼电阻r d ,C 1上电压全部加到r t 上(不象前述有分压),所以输出电压较高,为高效率回路(r f 也同样阻尼了振荡)。
3 冲击电压发生器放电回路的数学分析3.1 基本分析基本Marx 回路和高效回路均有相同的等值回路,只是各自的R d 、R f 、R t 取值不同而已,对高效回路R d =0 。
基于MATLAB仿真的智能台区雷电冲击参数优化
基于MATLAB仿真的智能台区雷电冲击参数优化作者:宋杰张炳建于春雷顾小虎杨庆福张云来源:《电子技术与软件工程》2015年第05期摘 ;要智能台区建设是智能电网研究的重要组成部分,台区防雷问题是建设智能台区过程中的重要问题。
本文在介绍智能台区防雷技术的基础上,对雷电冲击电路模型进行分析,并且利用MATLAB软件对电路模型进行仿真和参数优化。
为智能台区防雷研究仿真及实验提供了很好的参考。
【关键词】智能台区防雷雷电冲击 MATLAB仿真1 引言随着计算机、网络和通信技术的发展及其在电力系统中的广泛应用,全球电力企业正面临着一次把电力体系效益最大化的建设智能电网的历史机遇。
智能台区的构建是智能电网建设中的重要支撑,其研究具有重大意义。
所谓智能台区,就是对现有的台区进行改造,使之在操作上实现自动化、在生产管理上实现信息化、在用户管理上实现互动化、在信息发布上实现可视化,并体现在生产管理、资产管理、用户管理及服务上,使台区的管理更加科学规范,并减少人工干预,实现全智能化。
狭义上,智能台区包含10kV高压进线、配电变压器、低压综合配电箱以及配套的开关设备、安装辅件和控制保护设备。
配电台区广泛应用于农村电网和城市配电网,是实现供电可靠性的重要基础设施。
2 智能台区防雷介绍我国是雷电多发国家,雷电一直是威胁电力系统安全稳定运行的因素,而且雷电是年年重复发生的自然现象,因此雷电灾害势必对电力的稳定发展和可靠供电造成一定的负面影响。
低压配电系统遭雷击的案例也时有发生,所以智能台区防雷不容忽视。
通常,雷电造成的危害可以分为直击雷害和感应雷害。
直击雷害是指由于闪电直接击中目标物而造成的破坏,如建筑物损坏、森林火灾、油库爆炸、人员伤亡等;感应雷害是指在雷电放电过程中,由于强大的雷击电磁脉冲对附近的电子设备、通讯设备等产生的破坏,这种灾害往往造成严重的经济损失,也是经济发达地区雷电灾害的主要形式。
智能台区防雷具体包括10kV柱上开关、配电变压器、低压配电箱和用户低压供电系统。
基于Matlab语言的射流式冲击器冲击系统仿真计算
Itr rf w f l s lt nc mp tt n i e l n f ude lxh mme i t bln u g nei o e i ai o uai jt e t i fu a o l i d mu o o n e me o f l rw t mal g a e h a a
2 工作 原理
1 一上接 头 ;一射 流元件 ; 一外缸 ;一 内缸 ; 一调 整锥 2 3 4 5
杆 ;一 铜套 ;一 缸盖 ;一 中接 头 ;一活 塞 ;0 冲锤 ; 6 7 8 9 1一 1—外管 ;2 砧子 ;3 八方套 1 1一 1~
射流冲击器结构与线路示 意图如图 1、 2所 图
4 . 冲程结束元件切换阶段计算结果分析 .4 2
计算结果 : 切换压力 :. 3 +O6a 切换 时 98 3 9 e 0P ,
Ab ta t T e sr c: h Malb ln u g wt s h k te p icp l o l a a pid o i lt a d o ue mp c ytm, atr t a g ae i a h i mu n , h rn ia to w s p le t smuae n c mp t i a ts se f e
C E i— a g I u T N F n j o H N J w n ,Y N K n, A a -i a a ( oeeo os u t n& E gnei ,Ji n e t,C o @h n 10 2 ,E i ) C lg fC nt ci l r o n i r g inU w ni e n l y hr u 30 6 hn e a
始位置 , 又从 A输 出, 如此往返实现冲击动作 , 上下
射流式液动冲击器采用的是双稳射流元件作为
李智威400KV冲击电压发生器设计
《高电压技术》课程设计冲击电压发生器的设计冲击电压发生器的设计非著名非著名准研究生准研究生准研究生李智威李智威李智威2010年盛大发布盛大发布大纲课程:高电压技术题目:冲击电压发生器设计内容简介:高压冲击电压的产生常采用多级冲击电压发生器实现。
冲击发生器的器件类型和杂散参数对电压波形均有影响。
本项设计的目的在于设计一套冲击电压发生器及其测量系统。
通过课程设计,掌握有关设计的基本步骤与规范;掌握冲击电压发生器的工作原理、波形形成过程、波形参数描述与计算方法等,巩固高电压的知识,增强感性认识。
掌握冲击电压发生器的参数设计、总体结构、器件选型和绝缘设计。
课设方式(软件或硬件方面的内容和条件):对冲击电压发生器及其测量系统进行回路设计、波形仿真分析、器件选型和结构设计。
通过查阅高电压技术参考教材、产品手册和计算机仿真,获得比较符合工程实际的设计。
课程设计要求:画出冲击电压发生器的总体结构布置图 (含接地系统设计),各主要部件或器件的型号、参数,绝缘距离与净空 (空间布置),各参数之间的匹配关系,波形测量系统等。
对冲击电压发生器设计的要求为:(1) 高效回路(2) 最大输出电压300~800kV(3) 级数3级以上(4) 电阻(含线径和材料)(5) 球隙大小和距离(6) 输出波形 1.2/50波形(7) 测量装置(充电、放电)(8) 测量装置抗干扰措施(9) 充电电源(各器件参数)(10)本体、分压器、电源、测量系统(11)绝缘材料、绝缘距离选取(12)触发器(13)容性试品目录一、冲击电压发生器基本原理 (1)1.1、标准雷电冲击波波形 (1)1.2、冲击电压发生器基本原理 (2)1.3、多级冲击电压发生器 (2)二、冲击电压发生器基本设计 (3)2.1、设计目标 (3)2.2、冲击电压发生器组成 (4)三、各部分具体设计 (4)3.1、充电回路的选取 (4)3.2、主电容(冲击)、负荷电容计算 (5)3.3、电阻的计算 (5)3.4、变压器的选择 (7)3.5、高压硅堆的选择 (8)3.6、球隙直径的选择 (8)3.7、充电装置 (8)3.8、测量部分设计 (9)3.9、屏蔽罩,移动装置,绝缘支柱 (10)3.10、冲击电压发生器的控制系统 (11)3.11、matlab仿真 (12)四、设计总结 (13)五、参考资料 (14)冲击电压发生器的设计一、冲击电压发生器基本原理电力系统中的高压电气设备,除了承受长时期的工作电压外,在运行过程中,还可能会承受短时的雷电过电压和操作过电压的作用。
冲击电压发生器仿真设计 (2)
冲击电压发生器的设计杨垄2010302540039一、工作原理冲击电压发生器通常都采用Marx回路,如图1所示。
图中C为级电容,它们由充电电阻R 并联起来,通过整流回路T-D-r充电到V。
此时,因保护电阻r 一般比R 约大10倍,它不仅保护了整流设备,而且还能保证各级电容充电比较均匀。
在第1级中g0为点火球隙,由点火脉冲起动;其他各级中g为中间球隙,它们调整在g0起动后逐个动作。
这些球隙在回路中起控制开关的作用,当它们都动作后,所有级电容C 就通过各级的波头电阻Rf串联起来,并向负荷电容C0充电。
此时,串联后的总电容为C/n,总电压为nV。
n为发生器回路的级数。
由于C0较小,很快就充满电,随后它将与级电容C一起通过各级的波尾电阻Rt放电。
这样,在负荷电容C0上就形成一很高电压的短暂脉冲波形的冲击电压。
在此短暂的期间内,因充电电阻R 远大于Rf和Rt,因而它们起着各级之间隔离电阻的作用。
冲击电压发生器利用多级电容器并联充电、串联放电来产生所需的电压,其波形可由改变Rf和Rt的阻值进行调整, 幅值由充电电压V 来调节,极性可通过倒换硅堆D两极来改变。
图1 冲击电压发生器回路(Marx回路)二、Simulink设计1、冲击电压发生器主要参数标称电压:U1=100*8=800 kV冲击电容:C1=0.025 μF负荷总电容:C2=0.0021μF2、等效电路图如下图2 简化等效图图3 C2电压波形图图3是C2的电压波形图三、程序设计1、Rd=15; Rf=184.14; Rt=2035; C1=2.5e-2; C2=2.1e-3; U1=800000;A=1/(C2*C1*(Rd*Rf+Rd*Rt+Rf*Rt)) ; A1=A*(C1*(Rd+Rt)+C2*(Rf+Rt)); A2=A; B=A*Rt*C1; num=[B*U1]; den=[1 A1 A2]; U2=tf(num,den); impulse(num,den);2、图形如下图表 4 C2电压波形图四、冲击电压发生器的效率根据公式,η=C1/(C1+C2)=0.025/0.0271=0.923 此值比原估计的效率高,所以所选电容是合适的。
冲击电压发生器仿真设计
冲击电压发生器仿真设计1.设计目标:2.选择元器件:在设计冲击电压发生器时,首先需要选择合适的元器件。
需要选择能够承受高电压的电容器、继电器、电阻器等元件,并且要考虑元器件的寿命和可靠性。
3.设计电路:冲击电压发生器的电路通常由充电电路和放电电路组成。
充电电路可以采用稳压电源、直流电源或者信号发生器等。
放电电路可以采用开关元件和负载电阻等。
需要根据实际应用需求,选择适当的电路拓扑结构,比如串联、并联等。
4.波形控制:冲击电压发生器的波形控制主要包括上升时间、下降时间和衰减系数的控制。
可以通过调整电容器的参数、电阻器的数值、放电电路的设计等手段来实现对波形的控制。
例如,通过增加电容器的容值可以增加充电时间;通过调整放电电路的阻值可以改变波形的下降时间;通过设计合适的阻尼电路可以控制波形的衰减系数。
5.仿真设计:在进行冲击电压发生器的仿真设计过程中,可以使用电路设计软件进行模拟。
通过输入设计参数,可以模拟电路的工作过程和波形输出结果,以验证设计的合理性和准确性。
常用的电路设计软件包括Cadence Allegro、Altium Designer、PSpice等。
6.优化与改进:在进行仿真设计后,可以根据仿真结果对电路进行优化和改进。
例如,如果波形的上升时间过长,可以尝试增加充电电路的输出电压或者调整电容器的参数;如果波形的下降时间较短,可以调整放电电路的参数或者增加负载电阻来实现延长。
通过不断优化和改进,可以得到更加符合要求的冲击电压发生器设计。
7.实际制作与测试:在完成仿真设计后,可以进行实际制作与测试。
根据设计图纸进行元器件的选择与焊接,然后进行电路的组装与调试。
实际测试中,可以使用示波器、实验室电压表等设备来测量输出波形,并与仿真结果进行对比,验证设计的准确性与稳定性。
总结:冲击电压发生器的仿真设计是一个综合性的工作,需要考虑到元器件选择、电路设计、波形控制、仿真设计、优化与改进等多个方面。
通过合理的设计与仿真模拟,可以获得符合要求的冲击电压发生器,并用于电气工程和电子器件的测试与研究中。
Matlab 在电力系统仿真中的应用
Matlab 在电力系统仿真中的应用摘要Matlab在电力系统仿真研究中应用范围越来越广泛,为电力系统自动化分析带来了极大方便。
利用电力系统仿真模块系统,可以方便地实现各种要求的非线性电源运用到电力网自动化控制中,拓宽了PSB活用范围。
运用实例仿真,该方法能够分析正确,使用便捷,在实际仿真过程中经检验切实可行。
关健词Matlab;仿真;电力系统;非线性电源电源在电力系统分析和设计中是必不可少的组成部分,每个仿真模型都对电源有着不同的要求。
一般而言,大多数仿真模型使用都是通过交流电或直流电源来实现的。
但根据实际工程实践情况来看,理想的交流或直流电源,有时候也是不能很好地模拟出实际工程情况的,需要通过仿真来实现。
通过以下几个方面,来阐述Matlab 在电力系统仿真领域中的应用。
1)实际工程中的电源不可能是理想的交流或直流电,电源经常会出现波动或突变,而这种波动或突变在有些情况下是不能被忽略的。
2)在实际工程中,电力系统经常用到非交流性电源或直流电源,类如雷电冲击电流实验等。
一些实验需要特殊的电源来测试,因些这些实验品具有许多特殊性能,如:绝缘材料耐压性所需要用到缓慢递增电源。
因此,电力系统需要考虑使用其它方法,来实际真正意义上能够满足要求的非线性电源。
1可按电压、电流源的应用到电力系统中在PSB系统模型库中,提供了一个可控电源,该电源除了有和普通电源一样的输入、输出信号端口外,还有一个普通电源不具备的端口,即“S-端口”。
该端口作为一个控制信号输入端口,可控电源输出的电压、电流波形,就是基于该控制信号作用的。
1.1可控电源在仿真模型中的连接可控电源有三个端口,其中的“+”“-”端口和普通电源端口是一致的,可以和普通电源一样直接连接在仿真模型电路中。
其中的“+”端口相当于电源的正极,而“-”端口相当于电源的负极。
但这样的连接是没有电信号的,需要在可控电源的特殊端口处,即“S”端口输入一个可控制信号,根据仿真结果来看,输出电压波形和该控制信号波形是一致的,也就是说,可控制电源信号变换成仿真模型中的电信号。
matlab计算单位冲击响应,冲击响应谱计算的matlab程序
matlab计算单位冲击响应,冲击响应谱计算的matlab程序《冲击响应谱计算的matlab程序》由会员分享,可在线阅读,更多相关《冲击响应谱计算的matlab程序(7页珍藏版)》请在⼈⼈⽂库⽹上搜索。
1、disp( )disp( srs.m ver 2.0 July 3, 2006)disp( by Tom Irvine Email: )disp( )disp( This program calculates the shock response spectrum)disp( of an acceleration time history, which is pre-loaded into Matlab.)disp( The time history must have two columns: time(sec) & acceleration)disp( )%。
2、clear t;clear y;clear yy;clear n;clear fn;clear a1;clear a2clear b1;clear b2;clear jnum;clear THM;clear resp;clear x_pos;clear x_neg;%iunit=input( Enter acceleration unit: 1= G 2= m/sec2 );%disp( )disp( Select file input method );disp( 1=external ASCII file );disp( 2=file preloaded into Matlab );fil。
3、e_choice = input();%if(file_choice=1)filename, pathname = uigetfile(*.*);filename = fullfile(pathname, filename);% fid = fopen(filename,r);THM = fscanf(fid,%g %g,2 inf);THM=THM;elseTHM = input( Enter the matrix name:);end%t=double(THM(:,1);y=double(THM(:,2);%tmx=max(t);tmi=min(t);n = length(y);%out。
脉冲发生器matlab程序
function p=pulsegen(fs,T,edge,type,f,opt);%p=pulsegen(fs,T,edge,type,f,opt);%a signal generation program%fs is the sampling frequency%T is the total signal length%edge is a decay parameter for some waveforms% it is used in 'gaussian', 'monocycle', 'biexponential', 'mexican hat', 'sinc', 'double sinc', 'sinc squared'% and windowed sweep% it is mostly a parameter to describe how much the edge of the pulse is decayed.%type is the type of the waveform desired% allowable types are 'gaussian', 'square', 'triangle', 'monocycle',% 'biexponential', 'mexican hat', 'sinc', 'double sinc', 'sinc squared','sweep', and 'windowed sweep'%f is the modulation frequency if left out it is assumed 0.%opt is an optional argument for pulse waveforms requiring a lower and higher frequency% it is used in 'double sinc' ,'sweep' and 'windowed sweep' for the low and high frequency.% the pulses are always normalized to a peak amplitude of 1if nargin<4 %test for optional argumentserror('not enough input arguments');elseif nargin==4f=0;opt=[16*edge/(5*T),64*edge/(5*T)];elseif nargin==5opt=[16*edge/(5*T),64*edge/(5*T)];endif (edge==0)edge==1;endt=-T/2:1/fs:T/2;sig=(T/8/edge)^2;switch typecase {'guassian'} %generate a guassian pulsey=exp(-(t).^2/sig);case {'square'} %generate a square pulsey=ones(size(t));case {'triangle'} %generate a triangle pulsey=(t+T/2).*(t<0)-(t-T/2).*(t>=0);case {'monocycle'} %generate a gaussian monocycley=2*t./sig.*exp(-(t).^2/sig);case {'biexponential'} %generate a biexponential pulsey=exp(-abs(t)*8*edge/T);case {'mexican hat'} %generate a gaussian second deriviativez=t./sqrt(0.75*sig);y=sqrt(1/2*pi).*(1-z.^2).*exp(-z.^2/2);case {'sinc'} %generate a sinc functiony=sinc(2*pi*edge*16.*t/(5*T));case {'double sinc'} %generate a bandlimited function from two sinc functions y=opt(1)*sinc(2*opt(1).*t)-opt(2)*sinc(2*opt(2).*t);case {'sinc squared'} %generates sinc squared functiony=sinc(2*pi*edge*16.*t/(5*T)).^2;case {'sweep'} %generate frequency sweeptheta=(opt(1)+(opt(2)-opt(1))/T).*(t+T/2);y=real(exp(j*(theta.*(t+T/2)-pi/2)));case {'windowed sweep'} %generate a windows frequency sweeptheta=(opt(1)+(opt(2)-opt(1))/T).*(t+T/2);y=real(exp(j*(theta.*(t+T/2)-pi/2)));c=length(y);edge=min(1,edge);edge=max(0,edge);w=hamming(ceil(c*(1-edge)));w2=[w(1:ceil(length(w)/2));ones(c-length(w),1);w(ceil(length(w)/2)+1:end)]';y=w2.*y;otherwiseerror('invalid pulse type');end%apply a modulationif f~=0y=y.*cos(2*pi*t*f);end%normalize the peak of the pulse to 1p=y./max(abs(y));。
雷电波发生器的MATLAB仿真及参数选取sc
雷电波冲击电流发生器的MATLAB/Simulink仿真及参数选取摘要:本文介绍了雷电波冲击电流发生器的工作原理,对冲击电流发生器的放电回路进行了理论分析。
介绍了一种在MA TLAB/Simulink仿真环境下,通过模拟冲击电流发生器放电回路来进行电阻和电感等参数选取及冲击电流波形调试的方法,为实际检测中雷电波冲击电流发生器的波形调节提供理论依据及软件参考。
关键词:冲击电流发生器,MA TLAB,Simulink,仿真1. 引言在通信上为了考核电涌保护器和通信设备抗感应雷能力的测试,检测实验室需要具备模拟雷电流的设备——雷电波冲击电流发生器,根据GB18802.1-2002[1]《低压配电系统的电涌保护器》以及通信行业标准1235.2-2002[2]《通信局(站)低压配电系统用电涌保护器测试方法》的规定,8/20μs标准雷电流是测试电涌保护器动作负载试验以及残压测试的规定波形。
标准中对8/20μs波形图及其参数规定如图1所示:图1 冲击电流波形视在原点(O1):通过冲击电流峰值的10%和90%所画直线与时间坐标轴的相交点;视在波头时间(T f):其值等于冲击电流峰值的10%增加到90%(见图1)所需时间T的1.25倍;视在波尾(或半峰值)时间(T t):冲击电流视在原点O1与电流下降到峰值一半的时间间隔。
容许偏差:峰值±10%波前时间T f ±10%半峰值时间T t ±10%在冲击峰值附近,允许小的过冲或振荡,但是单个幅值不应超过其峰值的5%。
当电流下降到零后,反极性的振荡幅值不应超过峰值的20%。
2. 冲击电流发生器的工作原理[3]冲击电流发生器的基本原理是:数台或数组大容量的电容器经由高压直流装置,以整流电压或恒流方式进行并联充电,然后通过间隙放电使试品上流过冲击大电流。
以信息产业防雷质量监督检验中心防雷实验室的冲击电流发生器为例,如图2所示,它包括充电回路和放电回路两部分。
冲击电压发生器的MathCAD程序设计
冲击电压发生器的MathCAD程序设计
董飞;魏文轩;王庆红
【期刊名称】《中国水运(下半月)》
【年(卷),期】2011(011)001
【摘要】文中提出了一种采用MathCAD数学计算功能进行冲击电压发生器在任意波形下的参数计算方法,并对1.2/50μs标准波下得出的冲击电压发生器参数进行了ATP-EMTP波形仿真.
【总页数】3页(P91-92,111)
【作者】董飞;魏文轩;王庆红
【作者单位】中国舰船研究设计中心,湖北,武汉,430064;中国舰船研究设计中心,湖北,武汉,430064;中国舰船研究设计中心,湖北,武汉,430064
【正文语种】中文
【中图分类】TP216
【相关文献】
1.实现冲击电压发生器极性自动转换及接地的高电压气动开关
2.国内电压等级最高的冲击电压发生器安装完成
3.1200 kV冲击电压发生器雷电冲击全波调节方法
4.特高压直流试验基地7200kV冲击电压发生器输出电压创世界记录
5.我国7200kV 冲击电压发生器输出电压创世界记录
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高电压综合实验》冲击电压发生器设计MATLAB分析部分
一〃冲击电压发生器的功用及原理
冲击电压发生器是一种产生脉冲波的高电压发生装臵。
原先它只被用于研究电力设备遭受大气过电压(雷击)时的绝缘性能,近年来又被用于研究电力设备遭受操作过电压时的绝缘性能。
所以对冲击电压发生器的要求,不仅能产生出现在电力设备上的雷电波形,还能产生操作过电压波形。
冲击电压的破坏作用不仅决定于幅值,还与波形陡度有关,对某些设备要采用截断波来进行试验。
冲击电压发生器要满足两个要求:首先要能输出几十万到几百万伏的电压,同时这电压要具有一定的波形。
它的原理如下:(图见纸质报告)
实验变压器T和高压硅堆D构成整流电源,经过保护电阻r及充电电阻R向主电容器C1 —C4 充电,充电到U,出现在球隙g1—g4上的电位差也为U,若事先把球间隙距离调到稍大于U,球隙不会放电。
当需要使冲击机动作时,可向点火球隙的针极送去一脉冲电压,针极和球皮只见产生一小火花,引起点火球隙放电,于是电容器C1的上极板经g1接地,点1电位由地电位变为-U。
电容器C1与C2间有充电电阻R隔开,R比较大,在g1放电瞬间,点2和点3电位不可能突然改变,点3电位仍为+U,中间球隙g2上的电位差突然升到2U,g2马上放电,于是点2电位变为-2U。
同理,g3,g4也跟着放电,电容器C1—C4串联起来了,最后球隙g0也放电,此时输出电压为C1—C4上电压的总和,即-4U。
上述一系列过程可被概括为“电容器并联充电,而后串联放电”
二.设计目标:
输出波形为0.5/55μs标准波形,回路采用高效率回路,输出电压为100kV,发生器级数为8级。
MATLAB仿真分析:
Rf=79.7;Rt=2928.6;
C1=0.025e-6;C2=2100e-12;
b=1/(C1*C2*Rf*Rt);a=b*(C1*Rt+C2*(Rt+Rf));d=Rt*C1*b;
syms s t
U1=100;
U2=U1*d/(s*s+a*s+b);
u2=ilaplace(U2,s,t),ezplot(u2,[0,0.00001])
输出电压波形:
00.10.20.30.40.5
0.60.70.80.91x 10-5
76
78
80
82
84
86
88
90
92
t 2147309088461037862236491/2 sinh((481897192147309088461037862236491/2 t)/2147483648))/(16063239738243636282034595407883 exp(。