第四章稳定性
第四章 稳定性分析——Nyquist 稳定性判据(4-2)
三、奈魁斯特稳定性判据 1.奈氏路径
s j j 0 j 0 j j
顺时针方向包围整个 s 右半面。 由于不能通过F(s)的任何零、极点,所以当F(s)有若干个极点 处于 s 平面虚轴(包括原点)上时,则以这些点为圆心,作 半径为无穷小的半圆,按逆时针方向从右侧绕过这些点。
5
(2)G(s)H(s)平面上的系统稳定性分析--奈氏判据
因为1+ G(s)H(s) 与G(s)H(s) 之间相差1,所以系统的稳定性 可表达成:
奈氏判据:闭环系统稳定的充要条件是:s沿着奈氏路绕一 圈,G(jω)H(jω)曲线逆时针绕(-1,j0)点的P圈。 P——为G(s)H(s)位于s右半平面的极点数。
j
j s平面
j1
R
F ( s ) 的极点
j0 j0
j1
j
4
2. 奈氏判据 设: F S 1 Gs H s ——闭环系统特征多项式 显然:F(s) 的零点就是闭环系统的极点。
(1) 1+G(S)H(S)平面上的系统稳定性分析 假如s沿着奈氏路径绕一圈,根据幅角定理,F(s)平 面上绘制的F(s)曲线ΓF逆时针方向绕原点的圈数N则为 F(s)在s右半开平面内极点个数P与的零点个数Z之差: N= P - Z 当Z=0时,说明系统闭环传递函数无极点在s右半开 平面,系统是稳定的;反之,系统则是不稳定的。
i
z1
2) –Pj在Γs外, 结论:相角无变化 1) –Zi在Γs内, 2) –Pj在Γs内,
s p j 0
。
0
s1
z2 s
Re
s zi 2。(顺时针
)
s p j 2
第四章(稳定性与李雅普诺夫方法)
1、构造Liaponov 函数没有确定的方法,要求一定的技巧,一般 用于非线性系统或时变系统; 2、必须是稳定性判据的标量函数,且有一阶连续偏导; 3、非唯一但不影响结论的正确性; 4、最简单的形式为二次型。
§4.4 Liaponov 方法在系统中的应用
一、线性定常连续系统渐近稳定判据 1、判据 的平衡状态xe =0 大范围渐进稳定充要条件是: 对于任意给定的正定实对称矩阵Q,存在正定的实对称矩阵P,满足 Liaponov方程: T
1、 Liyaponov意义下的稳定
0, ( , t 0 ) 0, s.t. if || x 0 x e || ( , t 0 ) || (t , x 0 , t 0 ) x e || then其解 (t 0 t )
称平衡状态xe为 Liyaponov意义下的稳定,简称稳定。
V (x) x T Px [ x1
x2
如果 pij =
p ji ,则称P
为实对称阵。例如
1 1 0 P 1 1 0 0 0 1
P为实对称阵,存在正交阵T,使当
V ( x) x Px x T PTx x T
T T T T 1
X T X
___
2 1 2 2 1 2 2 1 2 2 2 1 2
2
1
2
[例4-3]
判别下列各函数的符号性质.
(1)设 x x1
x2
x3
T
标量函数为
2 V ( x) ( x1 x2 )2 x3
因为有V(0)=0,而且对非零x,例如 x 所以V(x)为半正定(或非负定)的. (2)设
a a 0
设V(x)为由n维矢量x所定义的标量函数,x∈Ω,且x=0处,恒有 V(x)=0。对所有在域Ω中的任何非零矢量x,如果成立 ①V(x)>0,则称V(x)为正定的.例如,V (x) x 2x V ( x) ( x x ) ②V(x)≥0,则称V(x)为半正定(或非负定)的.例如, ③V(x)<0,则称V(x)为负定的.例如,V (x) (x 2x ) ④V(x)≤0,则称V(x)为半负定的.例如,V ( x) ( x x ) ⑤V(x)>0或V(x)<0,则称V(x)为不定的.例如, V ( x) x x
04第四章-李雅普诺夫稳定性理论
几何意义:
当t t0时,系统受扰动,平衡状态受破坏,产生对应初始状态 x0,当t t0后, 运动状态x(t)会发生变化。
若无论多么小球域S( ),总存在一个球域S( ),当
x0 S( )时, x(t)轨线不会超出S( ),则平衡点xe为
Lyapunov意义下稳定。 实际上,工程中的李氏 稳定是临界不稳定
说明:
J P1AP A~J 考察eJt即可看出 e At的有界性
例:
0 0 J1 0 -1
李氏稳定
0 1 J2 0 0
不稳定
0 0 J3 0 0
李氏稳定
0 0 A J1 0 -1
e At
1
0
0
e-t
x(t)
e At x0
1 0
0 e-t
x10
x20
x10
e-t x20
f1
xn
令
x x xe ,
A
f xT
f 2
xe
x1
f2 x2
f2
xn
xe
f
n
fn
fn
x1 x2 xn
则
.
x
x
( xe常数)
判定法:
.
x Ax
(1) A的所有特征值均有负实部,则xe是渐近稳定的, 与R(x)无关. (2) A的特征值至少有一个有正实部,则xe是不稳定的, 与R(x)无关. (3) A的特征值至少有一个实部为0,则xe的稳定性 与R( x)有关, 不能由A来决定.
P为实对称矩阵 , pij p ji
第二节 李雅普诺夫间接法
李氏间接法利用系统矩阵A的特征值 1, 2,, n 或者说系统极点来判断系统稳定性。
第四章 单个构件的承载能力-稳定性
3
4
y
b)
4 2 0 1 2 3 4 a/b
腹板和翼缘板的屈曲
系数k 和a/ b的关系
如图,当 a / b > 1时,k min = 4 时。从中可以看出,减小板的长度 并不能提高板的稳定临界力,但减小板宽却可以大大提高板件临 界力。 用同样的方法可以推出三边简支,一边自由的板件临界力的计算 公式,也可表示为 π2D N cr = k 2 b
第一类稳定(弯曲失稳 弯曲失稳): 弯曲失稳
第一类稳定(杆扭转失稳 扭转失稳): 扭转失稳
第一类稳定(杆弯扭失稳 弯扭失稳): 弯扭失稳
第二类稳定:
杆件局部失稳 局部失稳: 局部失稳
4.2 轴心受压构件的整体稳定性 影响轴心受压构件的整体稳定性的主要因素有: (1)截面的纵向残余应力 (2)构件的初弯曲 (3)荷载作用点的初偏心 (4)构件的端部约束条件 当轴心受压构件的长细比比较大而截面又没 有空洞削弱时,一般不会因截面的平均应力达到 抗压强度设计值而丧失承载能力,因而不必进行 强度计算。对轴心受压构件来说,整体稳定 整体稳定是确 整体稳定 定构件截面的最重要因素。
——板的柱面刚度
t ——板厚; a、b ——受压方向板的长度、宽度 m、n——纵向及横向屈曲半波数 ——单位宽度板所受的压力 当n=1时(即在y方向为一个半波),临界力有最小值
π2 D mb a 2 π2 D Ncr = 2 ( + ) = k 2 b a mb b
k
——屈曲系数
a)
o
b
x k m=1 a 8 2 6 a
根据边界条件确定 l ox , l oy 已 知 荷 载、 截 面, 验 算 截 面 计算
Ix A
现代控制理论 第四章 稳定性理论
这里 Φ ( t ) = e At ,当系统满足内部稳定性时,由式(5-7)有
lim Φ ( t ) = lim e At = 0
t →∞ t →∞
这样, ( t ) 的每一个元g ij ( t )( i = 1, 2,⋯ , q, j = 1, 2,⋯ , p ) 均是由一些指 G 数衰减项构成的,故满足
其中
Qi =
( s − λ i ) adj ( s I − A ) ( s − λ i )( s − λ 2 )⋯ ( s − λ n )
s = λi
显然,当矩阵 A 的一切特征值满足
R e λ i ( A ) < 0 i = 1, 2 , ⋯ , n
则式(4-7)成立。 内部稳定性描述了系统状态的自由运动的稳定性。
∫
∞ 0
g ij ( t ) d t ≤ k < ∞
这里 k 为有限常数。这说明系统是BIBO稳定的。证毕。
定理4.4 定理4.4 线性定常系统如果是BIBO稳定的,则 系统未必是内部稳定的。
证明 根据线性系统的结构分解定理知道,任一线性定常系
统通过线性变换,总可以分解为四个子系统,这就是能控能 观测子系统,能控、不能观测子系统,不能控、能观测子系 统和不能控不能观测子系统。系统的输入-输出特性仅能反映 系统的能控能观测部分,系统的其余三个部分的运动状态并 不能反映出来,BIBO稳定性仅意味着能控能观测子系统是渐 近稳定的,而其余子系统,如不能控不能观测子系统如果是 发散的,在BIBO稳定性中并不能表现出来。因此定理的结论 成立。
y ( t1 ) =
∫
t1 t0
g ( t1 , τ )u (τ ) d τ =
第四章稳定性分析——劳讲义斯判据4-1
21
THANKS
第二步:建立劳斯表(又叫劳斯阵列)。 例:五阶系统,其特征方程:
a 5 s 5 a 4 s 4 a 3 s 3 a 2 s 2 a 1 s a 0 0
9
s5
a5
a3
a1
s4
a4
a2
a0
s3
A1
a4a3 a5a2 a4
A2
a4a1 a5a0 a4
0
s2
B1
A1a 2 a 4 A2 A1
13
s5
1
52
s4
1
51
s3
0 ( )
10
s2
5 1
10
s1 5 1 2 0 0
5 1
s0
1
00
5 1 0
5 12
0
5 1
劳斯表中第一列元素符号的变化两次, 说明特征方程有两个正实部的根,所以系统不 稳定。
14
(2)某一行元素全为零 在劳斯表中,如果出现某一行元素全为零,
说明特征方程存在大小相等符号相反的实根 和(或)共轭虚根,或者共轭复根。
s0 2 0
因劳斯表中第一列元素无符号变化,所以系统稳 定。 令: ss1 1
20
原特征方程,经过整理,得到 s1 特征方程:
s1 35s1 23s110
s
3 1
1
3
s
2 1
5
1
s
1 1
2.8
0
s
0 1
1
0
劳斯表中第一列元素符号变化一次,所以有一 个特征方程根在垂线 s1右边。即有一个根在阴影 区内。
即输出增量收敛于原平衡工作点,线性系统稳定 。
第四章稳定性与李雅普诺夫方法
第四章稳定性与李雅普诺夫方法稳定性与李雅普诺夫方法是控制理论中的两个重要概念。
稳定性是控制系统分析中的基本问题之一,它描述了系统在受到干扰后能否回到平衡状态的能力。
李雅普诺夫方法是一种常用的稳定性分析方法,通过构造李雅普诺夫函数来判断系统的稳定性。
稳定性是控制系统设计中最基本的要求之一、一个稳定的系统能够在受到干扰后迅速恢复到平衡状态,而不会发生不可控制的震荡或不稳定的行为。
稳定性可以分为两种类型:渐近稳定性和有界稳定性。
渐近稳定性要求系统的状态能够收敛到一个稳定的平衡点,而有界稳定性要求系统的状态能够保持在一个有限范围内。
李雅普诺夫方法是一种通过构造李雅普诺夫函数来判断系统稳定性的方法。
李雅普诺夫函数是一个标量函数,它满足以下条件:1)对于任意非零的向量,李雅普诺夫函数的导数都是负的或零;2)当且仅当系统达到稳定时,李雅普诺夫函数的导数为零。
通过构造李雅普诺夫函数并分析其导数的符号,可以判断系统的稳定性。
在实际应用中,人们通常使用李雅普诺夫直接法、李雅普诺夫间接法和李雅普诺夫-克拉洛夫稳定性定理等方法来进行稳定性分析。
其中,李雅普诺夫直接法是最常用的方法之一,它通过选择一个合适的李雅普诺夫函数来判断系统的稳定性。
如果可以找到一个李雅普诺夫函数,使得该函数的导数对于所有非零的初始条件都是负的,则系统是渐近稳定的。
李雅普诺夫间接法是通过构造一个李雅普诺夫方程来判断系统的稳定性。
李雅普诺夫方程是一个微分方程,其中包含系统的状态向量和一个非负标量函数,满足一定的条件。
如果可以找到一个满足李雅普诺夫方程的解,并且该解是有界的,则系统是有界稳定的。
李雅普诺夫-克拉洛夫稳定性定理是李雅普诺夫方法的重要理论基础。
该定理表明,如果系统的李雅普诺夫函数存在并且连续可导,并且李雅普诺夫函数的导数满足一定的条件,则系统是渐近稳定的。
这个定理为李雅普诺夫方法的应用提供了重要的理论依据。
总之,稳定性与李雅普诺夫方法是控制理论中基础且重要的概念。
第四章 稳定性与李雅普诺夫方法
3、现代控制理论判稳方法: [俄]李雅普诺夫稳定性理论是稳定性判定的通用 方法,适用于各种系统。 李氏第一法:先求解系统微分方程,根据解 的性质判稳--间接法 李氏第二法:直接判稳。思路:构造一个李 氏函数V(x),根据V(x)的性质判稳。--对 任何复杂系统都适用。 4、本章内容:李氏第二法及其应用。
几何意义:在n维状态空间中,表示以x e为球心, 以ε为半径的一个球,记作S(ε)
四、稳定性的定义
在f作用下
有界 x → xe
x偏离x e 有三种 无界(无穷大)
& 1、李氏稳定性:设x = f ( x, t ), 若任意给定一个实数ε > 0, 总存在另一个实数δ,使当 x0 − xe ≤ δ时,从任意初态 x0出发的解x(t ) = φ (t , x0 , t0 )满足 x − xe ≤ ε, ≥ t0 ), (t 则称系统的平衡状态xe是稳定的,或称xe在李氏意义下稳定
引言:
第四章 李雅普诺夫稳定性 分析和应用
1、稳定性是控制系统的首要问题。 2、经典理论判稳方法及局限性。 A、直接判定:单入单出中,基于特征方程的 根是否都分布在复平面虚轴的左半部分,采用 劳斯-古尔维茨代数判据和奈魁斯特频率判据。 局限性是仅适用于线性定常,不适用于非线性 和时变系统。 B、间接判定:方程求解-对非线性和时变 通常很难。
,忽略高阶项,可得系统的线性化方程:
& δ x = Aδ x
∂f 其中:A = ∂x
可以采用线性系统判断稳定性的方法来判断系统的状态稳定性与输出稳定 性。
x = xe
某系统的状态方程为
& x1 = x1 − x1 x2 & x2 = − x2 + x1 x2
第四章 稳定性与李雅普诺夫方法
26
李雅普诺夫第一法又称间接法。 它的基本思路是通过系统状态方程的解来判别系统的稳定性。 对于线性定常系统,解出特征方程的根即可作出稳定性判断。
对于非线性不很严重的系统,可通过线性化处理,取其一次近 似得到线性化方程,然后根据其特征根来判断系统的稳定性。
16.06.2020
27
一、线性系统的稳定判据(特征值判据)
当A为非奇异矩阵时,满足Axe0的解xe=0是系统唯一存在的一 个平衡状态。
而当A为奇异矩阵时,则系统将有无穷多个平衡状态。
16.06.2020
16
对非线性系统,通常可有一个或多个平衡状态。
x 1 x1 x2 x1 x2 x23
0
0
0
xe1 0 ,xe2 1 ,xe1 1
稳定性问题都是相对于某个平衡状态而言的。
第四章 稳定性与李雅普诺夫方法
16.06.2020
1
一个实际的系统必须是稳定的,不稳定的系统是不可能付诸于 工程实施的。
系统的稳定性,表示系统在遭受外界绕扰动偏离原来的平衡状态, 而在扰动消失后,系统自身仍有能力恢复到原来平衡状态的一种 “顽性”。
可按两种方式来定义系统运动的稳定性:
通过输入―输出关系来表征的外部稳定性 通过零输入状态下的状态运动的响应来表征的内部稳定性
对于线性系统来说,由于满足叠加原理,如果平衡状态是渐近 稳定的,则必然是大范围渐近稳定的。
对于非线性系统,使xe为渐近稳定平衡状态的球域s()一般是不 大的,常称这种平衡状态为小范围渐近稳定。
16个实数>0和任一实数>0,不管这个实数多么小, 由s()内出发的状态轨线,至少有一个轨线越过s(),则称这种 平衡状态xe不稳定。
结论2:线性定常系统是BIBO稳定的,不能保证系统必是渐近稳 定的。
第四章李雅普诺夫稳定性理论
对概念的几点说明:
(5)线性系统渐近稳定等价于大范围渐近稳定。对非线 性系统,一般只考虑吸引区为有限定范围的渐近稳定。
第二节 李雅普诺夫间接法
思想:李氏间接法利用系统矩阵A的特征值 或者说系统极点来判断系统稳定性。
一、线性定常系统的稳定性
线性定常系统的稳定性判别定理:
(1)李氏稳定 A的约当标准形J中,实部为0的特征 值所对应的约当块的维数是一维的,其余特征值均 有负实部。 (2)渐近稳定 A的特征值均具有负实部。
,其中P为实对
称方阵,它的元素可以是定常的,可以是时变的,但
V(x)并不一定都是简单的二次型。
(4) V(x)函数只表示系统在平衡状态附近某邻域内局部运动的 稳定情况,但丝毫不能提供邻域外运动的任何信息。
(5) 由于V(x)构造需要技巧,因此Lyapunov第二法主要用 于那些使用别的方法无效或难以判断其稳定性的问题,如 高阶非线性系统或时变系统。
A奇异:
b. 非线性系统 例:
令
2. 孤立的平衡状态:在某一平衡状态的充分小的 邻域内不存在别的平衡状态。
说明: (1) 系统不一定都存在平衡点; (2) 但系统也可能有多个平衡点; (3) 平衡点多数在状态空间的原点,可通过适当
的坐标变换移到原点(针对孤立平衡点); (4) 稳定性问题都是相对于某个状态而言的,对
(3)不稳定 A的特征值中至少有一个有正实部。
说明:
(1)劳斯判据依然适用。 (2)状态稳定(内部的稳定)与BIBO稳定(输出稳定性)。
解释: 例1:
李氏稳定 不稳定 李氏稳定
李氏稳定 不稳定
例2:
求A的特征值: 得A特征值:
不稳定
二、非线性系统的稳定性 非线性系统的稳定性一般是局部的。用间接法判
第四章-配合物的稳定性
一、配合物热力学稳定性 二、金属离子性质对配合物稳定性配合物稳定性
五、溶剂对配合物稳定性的影响
六、冠醚配合物的特殊稳定性
七、配合物的氧化还原稳定性
一、配合物热力学稳定性
1. 化学体系的稳定性 体系的性质不随时间变化
[Cu(NH3)4]2+ = [Cu(NH3)3]2+ + NH3
K不稳1 = 1 / K稳4
[Cu(NH3)3]2+ = [Cu(NH3)2]2+ + NH3 [Cu(NH3)2]2+ = [Cu(NH3)]2+ + NH3 [Cu(NH3)]2+ = Cu2+ + NH3
K不稳2 = 1 / K稳3 K不稳3 = 1 / K稳2 K不稳4 = 1 / K稳1
1 K稳
4. 配合物的稳定性与热力学参数
G RT ln K H TS
0 0 0
0
配位平衡
(Coordination / Complex Equilibrium)
一、配位平衡(络合平衡):水溶液中逐级生成配合单元
例:Cu2+ + NH3 = [Cu(NH3)]2+
[Cu(NH3)]2+ + NH3 = [Cu(NH3)2]2+ K稳2 = [Cu(NH3)22+] / [Cu(NH3)2+] [NH3] = 4.7 103 [Cu(NH3)2]2+ + NH3 = [Cu(NH3)3]2+ K稳3 = [Cu(NH3)32+] / [Cu(NH3)22+] [NH3] = 1.1 103 [Cu(NH3)3]2+ + NH3 = [Cu(NH3)4]2+ K稳4 = [Cu(NH3)22+] / [Cu(NH3)2+] [NH3] = 2.0 102 总反应为: Cu2+ + 4NH3 = [Cu(NH3)4]2+
稳定性与李雅普诺夫
V(x)=(x1 +x2)2; 3)V(x) < 0,则称V(x)为负定。例如V(x)=-(x12 +2x22); 4)V(x) ≤ 0,则称V(x)为半负定(或非正定)。例如
p
Δ1
p11 , Δ2
11
p
21
p
12
p
,…
, Δn P
22
矩阵 P(或 V(x))定号性的充要条件是:
1)若 Δi 0, i (1,2,, n) ,则 P(或 V(x))为正定;
2)若
Δi
0, 0,
i为偶数 i为奇数
,则
P(或
V(x))为负定;
3)若
Δi
0, 0,
i i
(1,2,, n
需要根据舍弃旳髙 阶项再分析 采用李雅普诺夫第 二法
举例:用李雅普诺夫第一法判断下列系统旳稳定性
x1 x1 x1x2
x2
x2
x1x2
第一步:令 x1 0, x2 0
求得系统旳平衡状态 x1e (0,0)T , x1e (1,1)T
第二步:将系统在平衡状态x1e附近线性化
f1 f1
(1)V(x)是满足稳定性判据条件的一个正定的标量函数,且 对于 x 应具有连续的一阶偏导数; (2)对于一个给定系统,如果 V(x)可以找到,那么通常是非 唯一的,这并不影响结论的一致性。 (3)V(x)的最简单形式是二次型函数 V(x) = xTP x,其中 P 为 实对称方阵,它的元素可以是定常的或时变的。但 V(x)并不一 定都是简单的二次型。 (4)如果 V(x)为二次型,且可表示为:
测量系统分析培训--4 稳定性
计算 X 控制图的相关参数
计算 R 控制图的相关参数
UCL=X+A2R LCL=X - A2R
UCL=D4R LCL= D3R
Mean=R LCL可以不考虑
-5-
第四章
稳定性
稳定性检查判断原则
-6-
第四章
稳定性
稳定性检查判断原则
-7-时间-2源自量 值时间-1稳定性
时间
-2-
第四章
稳定性
不稳定的可能原因
仪器需要校准,需要减少校准时间间隔 仪器、设备或夹紧装置的磨损 正常老化或退化 缺乏维护─通风、动力、液压、过滤器、腐蚀、锈蚀、清洁 磨损或损坏的基准,基准出现误差 校准不当或调整基准的使用不当 仪器质量差─设计或一致性不好 仪器设计或方法缺乏稳健性 不同的测量方法─装置、安装、夹紧、技术 量具或零件变形 环境变化─温度、湿度、振动、清洁度 违背假定、在应用常量上出错 应用─零件尺寸、位置、操作者技能、疲劳、观察错误
-3-
第四章
稳定性
稳定性分析流程:
决定要分析的测量系统
产品特性/控制计划中所提及的过程特性 针对样本使用更高精密度等级的仪器进行精密测 量十次,加以平均,做为参考值。 计算每一组的平均值/R值。 计算出平均值的平均值/R的平均值。 1.计算控制界限: A)平均值图:Xbarbar+-A2Rbar, Xbarbar B)R值图:D4Rbar, Rbar, D3Rbar 2.划出控制界限,将点子绘上 3.先检查R图,以判定重复性是否稳定。 4.再看Xbar图,以判定偏移是否稳定。 5.若控制图稳定,可以利用Xbarbar-标准值,进行偏差检 定,看是否有偏差。 6. 若控制图稳定,利用Rbar/d2来了解仪器的重复性。
现代控制理论第四章稳定性理论及Lyapunov方法
【解】(1) 平衡状态为: xe 0 0 T
构造李雅普诺夫函数 V (x) x12 x22 V (x) (2x12 6x22 ) 0
系统在平衡状态渐近稳定,并且 x ,V (x) ,是
大范围渐近稳定。
(2) 平衡状态为: xe 0 0 T
主要知识点: 1、 BIBO (有界输入有界输出)稳定的定义、定理。
§4-3 李雅普诺夫稳定性的概念
主要知识点:
1、系统状态的运动和平衡状态
2、李雅普诺夫意义下稳定、渐近稳定、全局渐近稳 定和不稳定的定义
§4-4 李雅普诺夫间接法(第一法)/线性化局部稳定 主要知识点: 1、线性系统的稳定性判别定理 2、内部稳定和外部稳定的关系 3、非线性系统线性化方法和稳定性判别定理(李雅普诺夫间 接法/第一法)
1 2
x1 x2
x14
x12
2
x22
2
x1
x2
0
V(x) 4x13x1 2x1 x1 4x2 x2 2x1 x2 2x1 x2 2(x14 x22) 0
因此系统在坐标原点是渐近稳定的,并且 x ,V (x) ,
1 0 0
19/ 78 10/ 39 1/ 2
由方程 GT PG P I 解出 P 10 / 39 49 / 78
19
/13 26
不定号,因此系统不渐近稳定。
实际上,该系统的特征值为0.1173+2.6974i, 0.1173-2.6974i, -1.2346都在单位圆外,系统是不稳定的。
试确定其平衡状态的稳定性。
【解】 系统平衡状态为: xe 0 0 T
第四章稳定性(轴压)
第4章 单个构件的承载能力—稳定性
4.1 稳定的一般问题
失稳的类别 完善直杆沿轴心受压时其失稳时其平衡形式由 直变弯——分支点失稳; 实际的轴心受压杆由于存在几何缺陷(初始弯 曲),受力后,挠度不断增加,失稳时是以变 形的发展导致承载力达到极限——极值点失稳
实腹式轴心压杆的截面形式的选择
截面选择原则:
1、截面面积的分布应尽量开展,以增加截面的惯 性惯性矩和回转半径,提高它的整体稳定性和 刚度; 2、等稳定性:使两个主轴方向的稳定系数(长细 比)大致相等; 3、便于与其他构件进行连接; 4、尽可能构造简单,制造省工,取材方便。
常用的截面形式及特点:
4.3 格构式柱的截面选择计算
一、截面形式
有两个肢件,
用缀材把它们 连成整体。 缀材有缀条和 缀板两种
二、剪切变形对虚轴稳定性的影响
当格构式轴心受压杆绕实轴发生弯曲失稳时情况和实
腹式压杆一样。 当绕虚轴发生弯曲失稳时,因为剪力要由比较柔弱的 缀材负担,剪切变形较大,导致构件产生较大的附加 侧向变形,它对构件临界力的降低是不能忽略的。 采用换算长细比λox来代替对x轴的长细比λx,以此来考 虑剪切变形对格构式轴心压杆临界力的影响。 换算长细比的计算公式:4-30、4-31
角钢:单角钢截面适用于塔架、桅杆结构、起
重机臂杆以及轻型桁架中受力较小的腹杆。双 角钢能满足等稳定性的要求,常用于由节点板 连接杆件的平面桁架。 热轧普通工宇钢:制造省工,但两个主轴方向 的回转半径差别较大,适用于两个主轴方向计 算长度相差较大的情况,如:工作平台柱; 轧制H型钢:面积分布较合理,制造简单,生 产量少。轴压构件宜采用宽翼缘。 焊接工字形:在工厂制造,利用自动焊焊接所 需的尺寸,其腹板按局部稳定的要求作得很薄 以节省钢材,应用十分广泛。
稳定性与李雅普诺夫方法
只在李雅普诺夫意义下稳定,但不是渐近稳定旳系统则称临界 稳定系统,这在工程上属于不稳定系统。
经典控制理论(线性系统)不稳定 (Re(s)>0) 临界情况 (Re(s)=0) 稳定 (Re(s)<0)
Lyapunov意义下
不稳定
稳定
渐近稳定
2024/10/11
25
4.3 李雅普诺夫第一法
2024/10/11
x描述了系统在n维状态空间中从初始条件(t0,x0)出发旳一条状 态运动旳轨线,称系统旳运动或状态轨线
2024/10/11
15
平衡状态
若系统存在状态向量xe,对全部t,都使: f (xe , t) 0
成立,则称xe为系统旳平衡状态。
对于一种任意系统,不一定都存在平衡状态,有时虽然存在也 未必是唯一旳。
早在1892年,俄国数学家李雅普诺夫就提出将鉴定系统稳定性 旳问题归纳为两种措施:李雅普诺夫第一法和李雅普诺夫第二 法。
前者是经过求解系统微分方程,然后根据解旳性质来鉴定系统 旳稳定性。它旳基本思想和分析措施与经典理论是一致旳。
2024/10/11
3
本章要点讨论李雅普诺夫第二法。
它旳特点是不求解系统方程,而是经过一种叫李雅普诺夫函数旳 标量函数来直接鉴定系统旳稳定性。
所以,它尤其合用于那些难以求解旳非线性系统和时变系统。
李雅普诺夫第二法除了用于对系统进行稳定性分析外,还可用于 对系统瞬态响应旳质量进行评价以及求解参数最优化问题。
另外,在当代控制理论旳许多方面,例如最优系统设计、最优 估值、最优滤波以及自适应控制系统设计等,李雅普诺夫理论 都有广泛旳应用。
2024/10/11
所以,怎样拟定渐近稳定旳最大区域,而且尽量扩大其范围是 尤其主要旳。
《线性系统理论与设计》第四章
稳定性当系统承受这种干扰之后,能否稳妥地保持预定的运动轨迹或者工作状态,这就是稳定性。
使问题简化,而不得不忽略某些次要因素。
近似的数学模型能否如实反映实际的运动,在某种意义上说,也是稳定性(鲁棒性)问题。
平衡状态(4-2)受扰运动:平衡状态:(4-5)0 x t t"³?是李雅普诺夫意义下稳定的。
李雅普诺夫稳定性就是要研究微分方程的解在tÎ[t,+¥)上的有界性。
1. 此处d 随着e 、t 0而变化;时有‖x (t ;t 0,x 0)‖<e "t ≥t 0成立初值变化充分小时,解的变化(t ≥ t 0)可任意小(不是无变化);(t 0,e )£e 。
edt0x (t 0)d (t 0,e )x 0x (t )李雅普诺夫意义下稳定的几何意义(t 0)‖一致稳定:(4-9)00(,,)0(,,)T t T t m d m d >()S e ()H e 0x x()S d ()S e 0x ()x t T()S d t固定的吸引区,不是<m ,t >t 0+ T(m ,t 0,x 0)t 0mt 0+ T(m , t 0, x 0)e00lim (,,)0®¥=t x t t x数量吸引区局部幸好,就我们所讨论的线性系统而言,全局和局部是一致的。
可见,即使初始值很大地偏离了平衡状态,系统最终0x1otl nx 非线性系统的解,),<。
故系统是李氏稳定的。
又与t d ddx xdt tttd<,,故其零解一致稳定。
又0t t 0t t()S e 0x ()x t ()S d cx ()e指数渐近稳定稳定渐近稳定一致渐近稳定一致稳定第一方法线性化的间接第二方法直接判断直接法李雅普诺夫第二方法目前仍是研究非线性、时变系统最有效的方法,是许多系统控制律设计李雅普诺夫第二法的主要定理(4-16)李雅普诺夫函数充分条件4-17)),则称系统原点平衡状态为大范围一致渐近稳定。
第四章李氏稳定性
0 1 x x 1 1
A=[0 1;-1 -1]; Q=[1 0;0 1]; P=lyap(A’,Q) end 运行结果为: P=
1.5000 0.5000
3/ 2 1/ 2 P 1/ 2 1
0.5000
1.0000
二.线性定常离散系统李雅普诺夫稳定性分析
由 T P P Q 得:
p12 1 0 0 1 p22
p12 0 0.5 p11 0.5 1 p p22 12
52 40 由此解出 p11 p12 27 27 P 40 100 p11 0, p22 0 p12 p22 27 27 从而系统在原点的平衡状态是渐近稳定的.
第四章 李雅普诺夫稳定性分析
4.1 李氏稳定性理论的简介
4.2 预备知识
4.3 李雅普诺夫稳定性定义
4.4 李雅普诺夫第一方法
4.5 李雅普诺夫第二方法
4.6 线性定常系统的李雅普诺夫分析
小节:
李雅普诺夫第二法主要定理
设系统状态方程为
X f ( X , t ) Xe = 0为平衡状态 若存在 V ( X , t ) 当 X X e 时满足
现代控制理论
[扩展题]
(上海交大 2003 25分)
单级倒立摆系统如图所示,控制目标为通过外力u(t)使摆直立向上(即 θ(t)=0)。假设小车质量 M =0.5 Kg,匀质摆杆质量m = 0.2 Kg, 摆杆转动轴 心到杆质心的长度2l= 0.6m, x(t)为小车水平位移,θ为摆杆的角位移,忽略摆 及小车的 摩擦系数,g=9.8m/s2.该系统非线性模型为
设
V ( x ) X T PX 0
第四章-单个构件的承载能力-稳定性
实际结构总是存在缺陷的,这些缺陷通常
可以分为几何缺陷和力学缺陷两大类。杆件的 初始弯曲、初始偏心以及板件的初始不平度等 都属于几何缺陷;力学缺陷一般表现初始应力 和力学参数(如弹性模量,强度极限等)的不 均匀性。对稳定承载能力而言,残余应力是影 响最大的力学缺陷,它的存在使得构件截面的 一部分提前进入屈曲,从而导致该区域的刚度 提前消失,由此造成稳定承载能力的降低,所 有的几何缺陷实质上亦是以附加应力的形式促 使刚度提前消失而降低稳定承载能力的。
能力,因此,如果着眼于研究结构的极限承 载能力,可依屈曲后性能分为如下三类: (1)稳定分岔屈曲。分岔屈曲后,结构还可 以承受荷载增量。换言之,变形的进一步增 大,要求荷载增加。 (2)不稳定分岔屈曲。分岔屈曲后,结构只 能在比临界荷载低的荷载下才能维持平衡位 形。 (3)跃越屈曲。结构以大幅度的变形从一个 平衡位形跳到另一个平衡位形。
1.已知荷载、截面,验算截面。 2.已知截面求承载力。 3.已知荷载设计截面。 对于1,2两种情况,计算框图如下:
已 知 荷 载、 截 面, 验 算 截 面
根据边界条件确定 lox , loy
计算 A, Ix , I y
已
知
ix
Ix A
, iy
Iy A
截 面
求
x
l ox ix
, y
l oy iy
k ——屈曲系数
o
a)
y
b)
a a
腹板和翼缘板的屈曲
b1 =b/2
b
x k
m=1
8 23 4
6
4
2
0
1 2 3 4 a/b
系数k和a/b的关系
如图,当 a/b1 时km , in4时。从中可以看出,减小板的长度 并不能提高板的稳定临界力,但减小板宽却可以大大提高板件临 界力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、大范围渐近稳定
如果平衡状态xe是稳定的,而且从状态空间中所有初始状态出 发的轨线都具有渐近稳定性,称这种平衡状态xe大范围渐近稳 定。
显然,大范围渐近稳定的必要条件是在整个状态空间中只有一 个平衡状态。 对于线性系统来说,由于满足叠加原理,如果平衡状态是渐近 稳定的,则必然是大范围渐近稳定的。 对于非线性系统,使xe为渐近稳定平衡状态的球域s()一般是不 大的,常称这种平衡状态为小范围渐近稳定。
当A为非奇异矩阵时,满足Axe0的解xe=0是系统唯一存在的一 个平衡状态。 而当A为奇异矩阵时,则系统将有无穷多个平衡状态。
对非线性系统,通常可有一个或多个平衡状态。
1 x1 x 3 x x x x 1 2 2 2
0 0 0 x e1 , x e2 , x e1 0 1 1
衡状态就是不稳定的。如果系统的储能既不增加,也不消
耗,那么这个平衡状态就是李亚普诺夫意义下的稳定。
4.1 稳定性基本概念 4.2 李雅普诺夫意义下的稳定性
4.3 李雅普诺夫第一法
4.4 李雅普诺夫第二法 4.5 线性定常系统渐进稳定性判别法
4.2 李雅普诺夫关于稳 定性的定义
线性系统的稳定性只决定于系统的结构和参数,而与系统的初 始条件及外界扰动的大小无关。 非线性系统的稳定性则还与初始条件及外界扰动的大小有关。 因此在经典控制理论中没有给出稳定性的一般定义。 李雅普诺夫给出了对任何系统都普遍适用的稳定性的一般定义
t
如果x(t)为无界,则称xe不稳定。 在经典控制理论中,只有渐近稳定的系统才称做稳定系统。 只在李雅普诺夫意义下稳定,但不是渐近稳定的系统则称临界 稳定系统,这在工程上属于不稳定系统。
经典控制理论(线性系统) 不稳定 (Re(s)>0) 临界情况 (Re(s)=0) 稳定 (Re(s)<0) Lyapunov意义下 不稳定 稳定 渐近稳定
研究系统稳定性的方法:
经典方法:
罗斯-霍维兹稳定性判据
Routh-Hurwitz稳定性判 据 第一法 第二法
现代方法:李亚普诺夫稳定性
李亚普诺夫第一法
李亚普诺夫第一法又称间接法。它的基本思路是
通过系统状态方程的解来判别系统的稳定性。对
于线性定常系统,只需解出特征方程的根即可作
出稳定性判断;对于非线性不很严重的系统,则
稳定性问题都是相对于某个平衡状态而言的。 线性定常系统,其所有平衡状态的稳定性都是一样的,所以才 笼统地讲所谓的系统稳定性问题。 对其余系统则由于可能存在多个平衡点,而不同平衡点可能表 现出不同的稳定性,因此必须逐个加以讨论。
1、李雅普诺夫意义下稳定
若对应于每一个s(),都存在一个s(),使当t无限增长时,从 s()出发的状态轨线(系统的响应)总不离开s(),即系统响应的 幅值是有界的,则称平衡状态xe为李雅普诺夫意义下的稳定, 简称为稳定。
渐进稳定
如果平衡状态xe是稳定的,而且当t无限增长时,轨线不仅不超 出s(),而且最终收敛于xe,则称这种平衡状态xe渐近稳定。
从实际意义上说,渐近稳定比稳定更重要。 但渐近稳定是一个局部概念,通常只确定某平衡状态的渐近稳 定性并不意味着整个系统就能正常运行。
因此,如何确定渐近稳定的最大区域,并且尽可能扩大其范围 是尤其重要的。
第四章稳定性
1982年,俄国学者李雅普诺夫提出的 稳定性定理采用了状态向量来描述, 适用于单变量,线性,非线性,定常, 时变,多变量等系统。
一个实际的系统必须是稳定的,不 稳定的系统是不可能付诸于工程实 施的。 系统的稳定性,表示系统在遭 受外界扰动偏离原来的平衡状态, 而在扰动消失后,系统自身仍有能 力恢复到原来平衡状态的一种“顽 性”。
可通过线性化处理,取其一次近似得到线性化方
程,然后再根据其特征根来判Biblioteka 系统的稳定性。李亚普诺夫第二法
李亚普诺夫第二方法又称直接法。它的基本思想不是通过 求解系统的运动方程,而是借助了一个李亚普诺夫函数来
直接对系统平衡状态的稳定性做出判断,它是从能量观点
进行稳定性分析的。如果一个系统被激励后,其储存的能 量随着时间的推移逐渐衰减,到达平衡状态时,能量将达 最小值,那么,这个平衡状态是渐近稳定的。反之,如果 系统不断地从外界吸收能量,储能越来越大,那么这个平
4、不稳定
如果对于某个实数>0和任一实数>0,不管这个实数多么小, 由s()内出发的状态轨线,至少有一个轨线越过s(),则称这种 平衡状态xe不稳定。
球域s()限制着初始状态x0的取值,球域s()规定了系统自由响 应 x (t; x 0 , t 0 ) 的边界。
如果x(t)为有界,则称xe稳定。 如果x(t)不仅有界而且有: lim x(t ) 0 则称xe渐近稳定
x描述了系统在n维状态空间中从初始条件(t0,x0)出发的一条状 态运动的轨线,称系统的运动或状态轨线
平衡状态
若系统存在状态向量xe,对所有t,都使:
f (x e , t ) 0
成立,则称xe为系统的平衡状态。 对于一个任意系统,不一定都存在平衡状态,有时即使存在也 未必是唯一的。
f (x, t ) Ax x
一、系统状态的运动及平衡状态
设所研究的齐次状态方程为:
f ( x, t ) x
f为与x同维的向量函数,是x的各元素x1,x2,,xn和时间t的函数。
运动、状态轨线
设方程式在给定初始条件(t0,x0)下,有唯一解:
x (t; x 0 , t 0 ) x 0 (t 0 ; x 0 , t 0 ) 表示x在初始时刻t0的状态。