1 液体散热技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现在最常用的风冷技术已经达到了它的极限,随着CPU芯片集成技术的发展,风冷技术将无法满足市场的要求。新型的液体金属散热方法虽然理论上具有很大的发展潜力,但昂贵的价格不利于大规模生产,而且在实际应用中其散热效果并不理想,与目前最先进的风冷散热器相比,并没有完全处于优势地位。液体具有良好的流动性和导热性,因此液体散热技术的应用非常广泛,成为各种台式计算机及大型工作站散热的首选,而且效果也明显优于常规的风冷散热。目前对于液体冷却主要是研究其流道结构和冷却液成分,冷却液主要包括水、纳米流体、液体金属。液态金属的导热系数最高,其次是纳米流体,最后是水。谢开旺提出在液体金属中加入纳米粉体,可以形成导热系数更高的纳米金属流体。宋思洪等通过研究表明,不同功率下芯片温度随导热系数的升高而降低,但导热系数越高,芯片温度降低的幅度越小,可见单纯提高导热系数并不能大幅提高冷却液的散热性能。因此,还需从冷却液的其他热物性方面入手(如提高比热)来增强工质的散热性能,以期获得一种具有较高导热系数以及较大等效比热的潜热型低熔点液态金属功能热流体。
1 液体散热技术
CPU芯片过热所导致的“电子迁移”是造成CPU内部芯片损坏的主要原因。电子迁移是指电子流动所引起的金属原子迁移的现象。在芯片内部电流强度很高的金属导线上,电子的流动会给金属原子一个动量,当电子与金属原子碰撞时,可能会使金属原子脱离金属表面四处流动,导致金属表面上形成坑洞或凸起,这是一个不可逆转的永久性伤害。如果这个慢性过程一直持续,则将最终造成内部核心电路的短路或断路,彻底损坏CPU。
液体冷却是一种非常有效的散热手段,被广泛应用在工业上,如强激光和高功率微波技术的散热系统、汽车发动机的热交换等。液体具有非常高的比热容,可以在CPU 芯片的发热部位吸收大量的热,而且由于良好的流动性,液体可以流动到其他低温部位再将热量排出,这样连续不断地吸热和散热,保证了芯片部位一直处于较低温度,从而达到保护芯片的目的。
表1 目前CPU芯片的散热方式
散热方式散热介质原理器件优点缺点
风冷散热液冷散热
半导体散热
化学制冷
散热
空气
水及其他几种液
体
半导体
干冰、液氮等超低
温物质
空气流动带走热量
液体流动吸热并带走热量
利用帕尔贴效应,通电的半
导体一端发热,一端吸热
利用物质的相变大量吸热
风扇
液体循环
系统
一组串联
的半导体
未见产品
简单,方便,廉价
散热效果好,廉价
能够较精确地控制温度,
无噪音
散热效果好
散热效果差,噪音大
器件大,安装不方便
易凝结露水,工艺不成熟,
价格高
价格昂贵,持续时间短常用的液体冷却方式有三种:大器件的液体冷却循环技术、热管技术和雾化喷射冷却技
术。大器件的液体冷却循环系统最常用,也已经有多种产品问世;热管技术在笔记本电脑中的应用较多,在台式电脑中应用较少;而液体喷射冷却技术只见文献报道,未见实际应用。目前研究较多的冷却液是水、液态金属和纳米流体。纳米流体多用于汽车发动机的冷却,其优异的传热性能备受关注,在电子芯片散热方面也有很大的发展潜力。
2液体散热器的结构
2.1常用液冷循环系统
通常的液体散热器即大器件的液体循环冷却系统如图1所示,由一根出水管、一根进水管和与芯片接触的蓄水槽组成。其中蓄水槽的部分是最重要的部分,其内部构造决定散热效果的优劣,以微槽通道联通液体循环的路径。另外液体的循环需要外加动力源,于是在系统中还必须要有一个水泵给液体施加压力,使其流动起来。
图1常用液冷循环系统示意图
如果电脑发热量较大或需要长时间大负荷运行,还可在散热器的冷凝段加风扇,用以加速液体的冷却,但这样做也会产生负面影响,如耗电、传送距离短、有噪音、体积大、安装麻烦等。为了解决外接动力源,达到节能的目的,可以使用电渗流微泵(EOF-micro-pump)作为流体驱动装置,微通道冷却系统(Micro-channel cooling system)就是一种具有非常理想的散热效率的装置,系统的最大散热功率超过200W,完全能够满足芯片的散热要求。电渗泵原理如图2所示。
图2电渗泵原理图
杨涛对多孔介质电渗泵性能进行了研究,分析了电渗泵的流率和压力,研究证明电渗泵符合液体冷却系统的要求。电渗泵基于电渗作用驱动电解液向前流动,称之为电渗流,可在液体中利用其中的离子进行能量转换,使液体流动。这种方法可以很好地实现外加动力、减小体积和方便安装等功能目标。电渗泵无可移动部件,性能优良,是微流体系统首选的驱动泵。
2.2雾化喷射冷却系统
雾化喷射冷却是通过雾化喷管借助高压气体(气助喷射)或依赖液体本身的压力(压力喷射)使液体雾化,将其强制喷射到发热物体表面,从而实现对物体的有效冷却技术。雾化喷射冷却是大量雾化后的微小液滴群撞击被冷却壁面的行为,该物理过程的换热机理十分复
杂,众多影响因素相互牵连,给实验研究带来了很大困难。雾化喷射冷却的简化示意图如图3所示。雾化喷射冷却是一种非常有前景的高热流强制冷却技术,其换热强烈,具有很高的临界热流密度值(CHF ),且冷却均匀,适用于一些对温度要求很严格的领域(如在微电子、激光技术、国防、航天技术等),并显出独特的优势和重要性。液体喷射冷却是一种利用液体吸收热量并依靠液体良好的流动性带走热量的高传热率的散热手段,当液流喷射速度达到47m/s 时,其散热能力高达17002/cm W ,该技术已应用于冶金、化工等多种工业过程中。刘天军设计了一种基于叠堆式压电陶瓷驱动流体对芯片底层进行喷射冷却的冷却器,叠堆式压电陶瓷微位移器与压电薄膜相比,具有位移分辨率高、频响高、承载力大的优点。这种方法对电子元器件的冷却效果非常理想,可以使器件表面的温度降低到所要求的温度,而且冷却的速度非常快,能够满足电子元器件持续增加的发热功率对散热的要求。但对于电子元器件而言,冷却液还需具有惰性、绝缘性和优良的导热性,同时散热器也应具有完善的封装技术。