常用逻辑用语测试题
集合与常用逻辑用语》综合测试卷
集合与常用逻辑用语》综合测试卷1.选择题1.下列命题的否定是真命题的是()A。
有些实数的绝对值是正数B。
所有平行四边形都不是菱形C。
任意两个等边三角形都是相似的D。
3是方程的一个根答案:B2.已知R为实数集,集合A={x|x>1},B={x|x≥2},则(R-B)∩A=()A。
(1,2)B。
[1,2)C。
(-∞,1]D。
[2,+∞)答案:B3.已知集合A={-2,1,9,π},B={1,9},则A-B=()A。
{0,1,9}B。
{1,9}C。
{0,1,9,π}D。
{-2,0,1,9}答案:D4.以下四个命题既是特称命题又是真命题的是()A。
锐角三角形的内角是锐角或钝角B。
至少有一个实数x,使x2+x+1>0C。
两个无理数的和必是无理数D。
存在一个负数,使它的平方大于100答案:A5.“p是q的充要条件”是()A。
充分不必要条件B。
必要不充分条件C。
充要条件D。
既不充分也不必要条件答案:C6.已知全集U={x∈Z|0<x<6},集合A={3,4,5},则(U-C)∩A=()A。
{1,2}B。
{0,1,2}C。
{1,2,3}D。
{0,1,2,3}答案:B7.已知R是实数集,集合A={x|1<x<2},B={x|2<x<3},则阴影部分表示的集合是()A。
[0,1]B。
(0,1]C。
[0,1)D。
(0,1)答案:D8.设命题p:∀x∈R,x-4x+2m≥0(其中m为常数),则“m≥1”是“命题p为真命题”的()A。
充分不必要条件B。
必要不充分条件C。
充分且必要条件D。
既不充分也不必要条件答案:C9.若命题“存在x∈R,使得x/(4x+1)<1/4”是假命题,则实数m的取值范围是()A。
(-∞,-1)B。
(-∞,2)C。
[-1,1]D。
(-∞,0)答案:B10.已知集合A={x|x=x},B={1,m,2},若A⊆B,则实数m 的值为()A。
2B。
√2C。
考验罗辑思维的题目
考验罗辑思维的题目
以下是一些可以考验逻辑思维的题目:
1.猜数字:甲乙丙丁四人,分别拥有1、2、3、4这四个数字中
的两个数字。
他们各自猜了对方的数字,其中甲说:“乙有两个数码,一个是2,另一个数码我不知道。
”乙说:“丁和乙数码之和被3除余1。
”丙说:“丁和甲数码之和正好是10。
”丁说:“乙不是数码2。
”那么谁是2的持有者?2.三条路:在一个岛屿上有三条路通往不同的地方,你来到这
个岛屿,如何选择才能最大程度地确保自己能到达目的地?
3.称量水:如果你有无穷多的水和一个3公升的提捅和一个5
公升的提捅,如何准确地称出4公升的水?
4.两人路口:一个岔路口分别通向诚实国和说谎国。
来了两个
人,已知一个是诚实国的,另一个是说谎国的。
诚实国的人永远说实话,说谎国的人永远说谎话。
现在你要去说谎国,但不知道应该走哪条路,需要问这两个人中的哪一个?
5.12个球:有12个球,其中有一个球的重量与其他球不同,但
外观相同。
你只有一架天平,如何用三次称重的方法确定哪个球的重量是轻还是重?
6.九点十线:在9个点上画10条直线,每条直线上至少有三个
点,如何画?
7.时钟指针重合:在一天的24小时之中,时钟的时针、分针和
秒针完全重合在一起的时候有几次?都分别是什么时间?
8.四棵树的距离:如何种植4棵树木,使其中任意两棵树的距
离相等?
以上题目可以测试你的逻辑推理能力。
高二数学第一章 常用逻辑用语测试题及答案
高二数学(选修1-1 第一章 常用逻辑用语)姓名:_________班级:________ 得分:________一:选择题1、判断下列语句是真命题的为( ). (供题)A .若整数a是素数,则a是奇数B .指数函数是增函数吗?C .若平面上两条直线不相交,则这两条直线平行D .x>151.已知P :A ∩¢=¢,Q: A ∪¢=A,则下列判断错误的是( )(铁一中 张爱丽 供题)A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真1.已知P :2+2=5,Q:3>2,则下列判断错误的是( )(十二厂 闫春亮 供题)A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真3、对于两个命题:①,1sin 1x R x ∀∈-≤≤,②22,sin cos 1x R x x ∃∈+>,下列判断正确的是( )。
( 金台中学 唐宁 供题 两个数学符号教材未涉及,可以换为文字语言)A. ① 假 ② 真B. ① 真 ② 假C. ① ② 都假D. ① ② 都真2.在下列命题中,真命题是( )(十二厂 闫春亮 供题)A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题2.在下列命题中,真命题是( )(铁一中 张爱丽 供题)A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题2. “2x >”是“24x >”的( ). (斗鸡中学 张永春 供题)A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3.已知P:(2x -3)2<1, Q:x(x -3)<0, 则P 是Q 的( )(铁一中 张爱丽 供题)A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件2、设,,l m n 均为直线,其中,m n 在平面a 内,则“”l α⊥是“l m ⊥且”l n ⊥的( )( 金台中学 唐宁 供题)A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3.条件210p x ->:,条件2q x <-:,则p ⌝是q ⌝的( ). (斗鸡中学 张永春 供题)A. 充分但不必要条件B. 必要但不充分条件C. 充分且必要条件D. 既不充分也不必要条件3.已知P:|2x -3|<1, Q:x(x -3)<0, 则P 是Q 的( )(十二厂 闫春亮 供题)A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件二:填空题11.在下列四个命题中,①若A 是B 的必要不充分条件,则非B 也是非A 的必要不充分条件②“⎩⎨⎧≤-=∆>04,02ac b a ”是“一元二次不等式20ax bx c ++≥的解集为R 的充要条件③“1x ≠”是“21x ≠”的充分不必要条件④“0x ≠”是“0x x +>”的必要不充分条件正确的有________.(填序号)(斗鸡中学 张永春 供题)11、已知命题p :x ∀∈R ,sin x x >,则p ⌝形式的命题是__ ( 金台中学 唐宁 供题)三:解答题15.已知集合{}{}22320,20A x x x B x x x m =-+==-+=且AB A =,求m 的取值范围.(斗鸡中学 张永春 供题)17.(命题甲:“方程x 2+mx+1=0有两个相异负根”,命题乙:“方程4x 2+4(m -2)x+1=0无实根”,这两个命题有且只有一个成立,试求实数m 的取值范围。
常用逻辑用语测试题
选修2-1常用逻辑用语测试题一.选择题(每小题5分,共60分)1.一个命题与他们的逆命题、否命题、逆否命题这4个命题中( )A 真命题与假命题的个数相同B 真命题的个数一定是奇数C 真命题的个数一定是偶数D 真命题的个数可能是奇数,也可能是偶数 2.(06天津)设集合M={x|0<x ≤3},N={x|0<x ≤2},那么“a ∈M”是“a ∈N”的( ) A 充分而不必要条件 B 必要而不充分条件 C 充要条件 D 既不充分又不必要条件 3.下列命题中正确的是( )①“若x 2+y 2≠0,则x ,y 不全为零”的否命题②“正多边形都相似”的逆命题③“若m>0,则x 2+x -m=0有实根”的逆否命题④“若3-x 是有理数,则x 是无理数”的逆否命题 A ①②③④ B ①③④ C ②③④ D ①④ 4.(05北京)“m=21”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的( ) A 充分而不必要条件 B 必要而不充分条件 C 充要条件 D 既不充分又不必要条件 5.“a ≠1或b ≠2”是“a +b ≠3”的() A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要 6.“若x ≠a 且x ≠b ,则x 2-(a +b )x +ab ≠0”的否命题( ) A 若x =a 且x =b ,则x 2-(a +b )x +ab =0B 若x =a 或x =b ,则x 2-(a +b )x +ab ≠0 C 若x =a 且x =b ,则x 2-(a +b )x +ab ≠0D 若x =a 或x =b ,则x 2-(a +b )x +ab =07.(06北京)若a 与b -c 都是非零向量,则“a ·b =a•c ”是“a ⊥(b -c )”的( )A 充分而不必要条件B 必要而不充分条件C 充要条件D 既不充分又不必要条件8.(07山东)命题“对任意的R x ∈, 0123≤+-x x ”的否定是( ) A 不存在R x ∈,0123≤+-x x B 存在R x ∈,0123≤+-x xC 存在R x ∈, 0123>+-x xD 对任意的R x ∈,0123>+-x x9.(04天津)已知数列{a n },那么“对任意的n ∈N *,点P n (n,a n )都在直线y=2x+1上”是“{a n }为等差数列”的( )A 充分而不必要条件B 必要而不充分条件C 充要条件D 既不充分又不必要条件10.数列{a n }的前n 项和S n =2•3n-a,“a=2”是“数列{a n }为公比等于3的等比数列”的( ) A 充分而不必要条件 B 必要而不充分条件 C 充要条件 D 既不充分又不必要条件 11.已知p :{}0⊆∅,q :∅⊆∅,则命题q p ∨, q p ∧和p ⌝形式的命题中,真命题个数为( )A0 B1 C2 D312.(07湖北)已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s的必要条件,现有下列命题:①r 是q 的充要条件; ②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④┐p 是┑s 的必要条件而不是充分条件; ⑤r 是s 的充分条件而不是必要条件. 则正确命题的序号是 A ①④⑤ B ①②④ C ②③⑤ D ②④⑤ 二.填空题(每小题4分,共16分) 13.命题“若ab=0,则a 、b 至少有一个为0”的的逆否命题是14.用符号“∀”与“∃”表示含有量词的命题: (1)实数的平方大于等于0_____(2)存在一对实数,使2x +3y +3>0成立_________ 15.关于x 的方程062)1(22=++-+a x a x 有一正一负两实数根的充要条件是 16.集合}1{>=x x A ,}2{<=x x B ,则“B x A x ∈∈或 ”是“B A x ∈”的 条件 三.解答题(共74分) 17.写出命题:“若1<m ,则042=++m x x 有实数根”的逆否命题,并判断真假,给出理由18.若022>++bx ax 的充要条件是⎭⎬⎫⎩⎨⎧<<-3121x x ,试求a+b 的值19. 01,0200>-+∈∃x ax R x ,求a 的取值范围20.ABC ∆中A ,B 的对边分别是a ,b ,证明:A>B 的充要条件是sinA>sinB21.已知a>0且a ≠1,设p:函数y =a x在(-∞,+∞)上是减函数;q:方程0212=++x ax 有两个不等的实数根.若“p ∧q ”为假命题,“p ∨q ”为真命题,求a 的取值范围22.已知2311:≤--x p , 012:22≤-+-m x x q ,且p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围答案CBBAB DCCACC CB13.若a ≠0且b ≠0,则ab ≠0 14.(1)∀R x ∈,02≥x(2) ∃(x,y)∈{(x,y)∣x ∈R ,y ∈R},2x+3y+3≥0 15.a<-316.必要不充分17.若042=++m x x 无实数根,则1≥m ,真命题18.-14 19.a>-1/4 20.略21.1/2≤a<122.m ≤-9,或m ≥9。
逻辑能力测试题
20 道逻辑能力测试题一、图形推理题1. 观察以下图形序列,找出下一个图形应该是什么?□△○,△○□,○□△,()。
答案:□△○。
规律是三个图形依次循环。
2. 给出一组图形:圆形、正方形、三角形、圆形、正方形、()。
答案:三角形。
圆形、正方形、三角形依次循环出现。
二、数字推理题1. 2,4,6,8,()。
答案:10。
后一个数比前一个数大2。
2. 5,10,15,20,()。
答案:25。
后一个数比前一个数大5。
三、类比推理题1. 苹果:水果,香蕉:()。
答案:水果。
苹果和香蕉都属于水果。
2. 医生:医院,教师:()。
答案:学校。
医生在医院工作,教师在学校工作。
四、逻辑判断1. 所有的猫都有四条腿,小花是一只猫,所以小花有四条腿。
这个推理是否正确?答案:正确。
根据所有猫都有四条腿这个前提,小花是猫,可推出小花有四条腿。
2. 如果今天是星期一,那么明天是星期二。
今天是星期一,所以明天是星期二。
这个推理是否正确?答案:正确。
符合“如果……那么……”的逻辑关系。
五、真假推理1. 甲说:“今天是晴天。
”乙说:“今天不是晴天。
”已知两人中只有一人说的是真话,那么今天到底是不是晴天?答案:如果甲说的是真话,那么乙说的就是假话,反之亦然。
所以今天是晴天。
2. 丙说:“这个东西是红色的。
”丁说:“这个东西不是红色的。
”已知两人中只有一人说的是假话,那么这个东西到底是不是红色的?答案:如果丙说的是假话,那么丁说的就是真话,反之亦然。
所以这个东西是红色的。
六、排序推理1. 四个人跑步比赛,甲比乙快,丙比丁慢,丁比乙快,那么最快的是谁?答案:由题可知,甲>乙,丁>丙,丁>乙,所以最快的是甲。
2. 五个水果按重量从大到小排列,苹果比香蕉重,橘子比梨重,梨比草莓重,香蕉比橘子重,那么最重的水果是什么?答案:由题可知,苹果>香蕉,橘子>梨,梨>草莓,香蕉>橘子,所以最重的水果是苹果。
七、分析推理1. 有三个人,分别是医生、教师和警察。
逻辑测试题目及答案
逻辑测试题目及答案1. 如果所有的猫都会爬树,而Tom是一只猫,那么Tom会爬树吗?A. 会B. 不会C. 不确定D. 以上都不是答案:A2. 假设在一个房间里,所有的人都是医生,所有的医生都戴眼镜。
如果John戴眼镜,那么John是医生吗?A. 是B. 不是C. 不确定D. 以上都不是答案:C3. 以下哪项陈述是逻辑上正确的?A. 如果今天下雨,那么地面会湿。
B. 如果今天不下雨,那么地面不会湿。
C. 如果地面湿了,那么今天下雨了。
D. 如果地面不湿,那么今天没有下雨。
答案:D4. 一个逻辑上有效的论证是:A. 一个前提为假,结论为假的论证。
B. 一个前提为真,结论为假的论证。
C. 一个前提为假,结论为真的论证。
D. 一个前提为真,结论为真的论证。
答案:D5. 如果所有的苹果都是水果,而所有的水果都是食物,那么苹果是食物吗?A. 是B. 不是C. 不确定D. 以上都不是答案:A6. 如果一个命题的否定是真的,那么原命题是:A. 真的B. 假的C. 不确定D. 以上都不是答案:B7. 以下哪个选项是“如果P,则Q”的逆否命题?A. 如果非Q,则非PB. 如果Q,则PC. 如果非P,则非QD. 如果P,则非Q答案:A8. 如果一个逻辑论证的前提都为真,但结论为假,那么这个论证是:A. 有效的B. 无效的C. 有效的,但结论不是由前提推导出来的D. 以上都不是答案:B9. 以下哪个选项是“如果P,则Q”的逆命题?A. 如果非Q,则非PB. 如果Q,则PC. 如果非P,则非QD. 如果P,则Q答案:B10. 如果一个命题的逆命题是真的,那么原命题也是真的吗?A. 是B. 不是C. 不确定D. 以上都不是答案:C。
常用逻辑用语练习题
常用逻辑用语练习题逻辑用语是数学和哲学中非常重要的工具,它帮助我们清晰地表达思想和论证。
以下是一些常用的逻辑用语练习题,旨在帮助学生熟悉和掌握这些基础概念。
# 练习题1:命题逻辑1. 给出命题P:今天是星期三。
命题Q:明天是星期四。
写出这两个命题的逻辑表达式。
2. 判断命题P和Q的逻辑关系,是互斥的、等价的还是既不互斥也不等价?3. 写出命题P或Q的逻辑表达式。
4. 写出命题P且Q的逻辑表达式。
5. 写出命题非P的逻辑表达式。
# 练习题2:条件语句1. 将“如果今天是星期三,那么明天是星期四”这个条件语句转化为逻辑表达式。
2. 给出一个条件语句的例子,并说明其真假条件。
3. 判断以下条件语句的真假:如果今天是星期一,那么明天是星期二。
# 练习题3:逻辑等价1. 证明以下两个逻辑表达式是等价的:(P → Q) ≡ ¬P ∨ Q。
2. 给出一个逻辑表达式,并找出它的逻辑等价表达式。
3. 使用逻辑等价规则简化以下表达式:(P ∨ Q) ∧ (¬P ∨ ¬Q)。
# 练习题4:逻辑推理1. 已知命题P:如果下雨,我就不去跑步。
命题Q:今天下雨了。
请使用逻辑推理判断我今天是否去跑步。
2. 给出一个包含两个前提的逻辑推理问题,并解答它。
3. 使用逻辑推理证明以下命题:如果所有的人都是动物,那么苏格拉底是动物。
# 练习题5:逻辑运算1. 给出命题P:今天是晴天。
命题R:我会去公园。
写出命题P且R的逻辑表达式。
2. 写出命题P或R的逻辑表达式。
3. 使用逻辑运算符,将命题P和R组合成一个复合命题,并判断其真假。
# 练习题6:逻辑谬误1. 识别并解释以下论证中的逻辑谬误:所有的鸟都会飞,企鹅是鸟,所以企鹅会飞。
2. 给出一个常见的逻辑谬误的例子,并解释为什么它是谬误。
3. 判断以下论证是否包含逻辑谬误:如果一个学生学习努力,他就会取得好成绩。
小明学习努力,所以小明会取得好成绩。
# 练习题7:量化逻辑1. 将“有些学生喜欢数学”这个命题转化为量化逻辑表达式。
逻辑能力测试题及答案
逻辑能力测试题及答案1. 如果所有的植物都需要水,而玫瑰是植物,那么玫瑰需要水。
A. 正确B. 错误C. 不确定D. 不相关答案:A2. 如果所有的狗都吠叫,而托托是狗,那么托托吠叫。
A. 正确B. 错误C. 不确定D. 不相关答案:C3. 如果所有的学生都通过了考试,而小明没有通过考试,那么小明不是学生。
A. 正确B. 错误C. 不确定D. 不相关答案:B4. 如果所有的猫都是哺乳动物,而老虎不是猫,那么老虎不是哺乳动物。
A. 正确B. 错误C. 不确定D. 不相关答案:B5. 如果所有的鸟都会飞,而企鹅是鸟,那么企鹅会飞。
A. 正确B. 错误C. 不确定D. 不相关答案:B6. 如果所有的苹果都是水果,而水果是食物,那么苹果是食物。
A. 正确B. 错误C. 不确定D. 不相关答案:A7. 如果所有的汽车都有四个轮子,而自行车有两个轮子,那么自行车不是汽车。
A. 正确B. 错误C. 不确定D. 不相关答案:A8. 如果所有的老师都穿制服,而张老师没有穿制服,那么张老师不是老师。
A. 正确B. 错误C. 不确定D. 不相关答案:B9. 如果所有的书都有页码,而这本书没有页码,那么这本书不是书。
A. 正确B. 错误C. 不确定D. 不相关答案:B10. 如果所有的鱼都生活在水中,而鲨鱼生活在水中,那么鲨鱼是鱼。
A. 正确B. 错误C. 不确定D. 不相关答案:C11. 如果所有的学生都参加考试,而小红没有参加考试,那么小红不是学生。
A. 正确B. 错误C. 不确定D. 不相关答案:B12. 如果所有的人都需要氧气,而植物也需要氧气,那么植物是人。
A. 正确B. 错误C. 不确定D. 不相关答案:B13. 如果所有的电脑都可以上网,而这台电脑不能上网,那么这台电脑不是电脑。
A. 正确B. 错误C. 不确定D. 不相关答案:B14. 如果所有的动物都有心脏,而鲸鱼有心脏,那么鲸鱼是动物。
A. 正确B. 错误C. 不确定D. 不相关答案:A15. 如果所有的人都有两只眼睛,而小明有两只眼睛,那么小明是人。
50道经典逻辑题及答案
一、逻辑判断: 每题给出一段陈述, 这段陈述被假设是正确的, 不容置疑的。
要求你根据这段陈述, 选择一个答案。
注意, 正确的答案应与所给的陈述相符合, 不需要任何附加说明即可以从陈述中直接推出1. 以下是一则广告: 就瘘痛而言, 四分之三的医院都会给病人使用"诺维克斯"镇痛剂。
因此, 你想最有效地镇瘘痛, 请选择"诺维克斯"。
以下哪项如果为真, 最强地削弱该广告的论点?( )A. 一些名牌的镇痛剂除了减少瘘痛外, 还可减少其他的疼痛B. 许多通常不用"诺维克斯"的医院, 对那些不适应医院常用药的人, 也用"诺维克斯" C.许多药物制造商, 以他们愿意提供的最低价格, 销售这些产品给医院, 从而增加他们产品的销售额D. 和其他名牌的镇痛剂不一样, 没有医生的处方, 也可以在药店里买到"诺维克斯"正确答案:C2. 会骑自行车的人比不会骑自行车的人学骑三轮车更困难。
由于习惯于骑自行车, 会骑自行车的人在骑三轮车转弯时, 对保持平衡没有足够的重视。
据此可知骑自行车( )。
A. 比骑三轮车省力B. 比三轮车更让人欢迎C. 转弯时比骑三轮车更容易保持平衡D. 比骑三轮车容易上坡正确答案:C 解题思路: 题干已知, 不会骑自行车的人反而比会骑的人更容易学习骑三轮车, 原因是骑三轮车在转弯时需要更多地控制平衡, 由此可以推断出选项C为正确答案, 选项A、B、D与题干无关。
故选C。
3. 长久以来认为, 高水平的睾丸激素荷尔蒙是男性心脏病发作的主要原因。
然而, 这个观点不可能正确, 因为有心脏病的男性一般比没有心脏病的男性有显著低水平的睾丸激素。
上面的论述是基于下列哪一个假设的?( )。
A. 从未患过心脏病的许多男性通常有低水平的睾丸激素B. 患心脏病不会显著降低男性的睾丸激素水平C. 除了睾丸激素以外的荷尔蒙水平显著影响一个人患心脏病的可能性D. 男性的心脏病和降低睾丸激素是一个相同原因的结果正确答案:B 解题思路:题干推理过程为:有心脏病的男性的睾丸激素水平低于无心脏病的, 所以高水平的睾丸激素荷尔蒙不是男性心脏病发作的主要原因。
常用逻辑用语
常用逻辑用语 题组一一、选择题1.(安徽省百校论坛2011届高三第三次联合考试理)已知命题p :对任意,cos 1x R x ∈≤有,则 ( )A .00:,cos 1p x R x ⌝∈≥存在使B .:,cos 1p x R x ⌝∈≥对任意有C .00:,cos 1p x R x ⌝∈>存在使D .:,cos 1p x R x ⌝∈>对任意有答案 C.2. (河南省焦作市部分学校2011届高三上学期期终调研测试理)给出定义:若(其中m 为整数),则m 叫做离实数x 最近的整数,记作= m . 在此基础上给出下列关于函数的四个命题:①函数y =的定义域为R ,值域为;②函数y =的图像关于直线()对称;③函数y =是周期函数,最小正周期为1;④函数y =在上是增函数.其中正确的命题的序号是A . ①B .②③C . ①②③D . ①④ 答案 C.3.(湖北省八校2011届高三第一次联考理)“1a =-”是“直线260a x y -+=与直线4(3)90x a y --+=互相垂直”的( ) .A 充分不必要条件.B 必要不充分条件.C 充要条件 .D 既不充分也不必要条件 答案 B. 4.(安徽省蚌埠二中2011届高三第三次质量理)下列命题错误的是( )A .对于等比数列{}n a 而言,若m n p q +=+,则有m n p q a a a a ⋅=⋅B .点(,0)8π为函数()tan(2)4f x x π=+的一个对称中心C .若||1,||2a b ==,向量a 与向量b 的夹角为120°,则b 在向量a 上的投影为1 D .“s i n s i n αβ=”的充要条件是“(21)k αβπ+=+或2k αβπ-=(k Z ∈)” 答案 C. 5.(吉林省东北师大附中2011届高三上学期第三次模底考试理)关于两条不同的直线m 、n与两个不同的平面α、β,下列命题正确的是: ( ) A .βα//,//n m 且βα//,则n m //; B .βα⊥⊥n m ,且βα⊥,则m //n ; C .βα//,n m ⊥且βα//,则n m ⊥;D .βα⊥n m ,//且βα⊥,则n m //.答案 C. 6.(安徽省合肥八中2011届高三第一轮复习四考试理)下列命题中,真命题的个数是①已知平面α、β知直线a 、b ,若,a b αβααβ=⊂⊥⊥ 且a b,则; ②已知平面α、β和两异面直线a 、b ,若,//,//,//a b a b αββααβ⊂⊂且则 ③已知平面α、β、γ和直线,,,l l l αγβγαβγ⊥⊥=⊥ 若且则 ④已知平面α、β和直线a ,若,//a a a ββαα⊥⊥⊂且a 则或A .0个B .1个C .2个D .3个 答案 D.7. (安徽省野寨中学、岳西中学2011届高三上学期联考文)设集合A 、B 是全集U 的两个子集,则AB ⊂≠是()U C A B U ⋃=的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A.8. (北京市房山区2011年高三上学期期末统练试卷文)下列命题中,真命题是 ( ) A .221,sincos 222x x x R ∃∈+= B .(0,),sin cos x x x π∀∈> C .2,1x R x x ∃∈+=-D .(0,),1x x e x ∀∈+∞>+ 答案 D.9.(北京市西城区2011届高三第一学期期末考试文) 命题“若a b >,则1a b +>”的逆否命题是(A )若1a b +≤,则a b > (B )若1a b +<,则a b > (C )若1a b +≤,则a b ≤(D )若1a b +<,则a b <答案 C. 10、(福建省莆田一中2011届高三上学期第三次月考试题文)已知条件p :1x ≤,条件q :1x<1,则p 是⌝q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既非充分也非必要条件 答案 B.11.(福建省莆田一中2011届高三上学期期中试题理)函数2()2cos sin 21f x x x =+-,给出下列四个命题: (1)函数在区间5[,]88ππ上是减函数;(2)直线8π=x 是函数图象的一条对称轴;(3)函数)(x f 的图象可由函数x y 2sin 2=的图象向左平移4π而得到;(4)若 [0,]2x π∈ ,则)(x f 的值域是.其中正确命题的个数是 ( ).A .1B .2C .3D .4答案 B. 12.(福建省莆田一中2011届高三上学期期中试题文)在下列结论中,正确的是 ( ) ①""q p ∧为真是""q p ∨为真的充分不必要条件; ②""q p ∧为假是""q p ∨为真的充分不必要条件; ③""q p ∨为真是""p ⌝为假的必要不充分条件; ④""p ⌝为真是""q p ∧为假的必要不充分条件A. ①②B. ①③C. ②④D. ③④ 答案 B.13.(广东省肇庆市2011届高三上学期期末考试文)设a ,b 是两条直线,α,β是两个平面,则a ⊥b 的一个充分条件是A .a ⊥α,b //β,α⊥βB .a ⊥α,b ⊥β,α//βC .a ⊂α,b //β,α⊥βD .a ⊂α,b ⊥β,α//β答案 D. 14.(河南省辉县市第一高级中学2011届高三12月月考理)下列命题中是假命题...的是 A .,)1()(,342是幂函数使+-⋅-=∈∃m m xm x f m R ),0(+∞且在上递减B .有零点函数a x x x f a -+=>∀ln ln )(,02C .βαβαβαsin cos )cos(,,+=+∈∃使R ;D .,()sin(2)f x x ϕϕ∀∈=+R 函数都不是偶函数答案 D.15.(河南省焦作市部分学校2011届高三上学期期终调研测试理)“”是“”的A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件 答案A.16. (安徽省百校论坛2011届高三第三次联合考试文) 设函数)1(log )(223+++=x x x x f ,则对任意的实数b a ,,0≥+b a 成立是式子0)()(≥+b f a f 成立的 ( )A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件 答案 A. 17.(黑龙江省佳木斯大学附属中学2011届高三上学期期末考试理) 函数2()2cos sin 21f x x x =+- ,给出下列四个命题 (1)函数在区间5[,]88ππ上是减函数;(2)直线8π=x 是函数图象的一条对称轴;(3)函数)(x f 的图象可由函数x y 2sin 2=的图象向左平移4π而得到;(4)若[0,]2x π∈ ,则)(x f 的值域是其中正确命题的个数是 ( ) A .1 B .2 C .3 D .4 答案 B.18.(湖北省八校2011届高三第一次联考理)命题p : 若0a b ⋅< ,则a 与b的夹角为钝角.命题q :定义域为R 的函数()f x 在(,0)-∞及(0,)+∞上都是增函数,则()f x 在(,)-∞+∞上是增函数.下列说法正确的是( ).A “p 或q ”是真命题 .B “p 且q ”是假命题 .C p ⌝为假命题.D q ⌝为假命题答案 A.19 . (湖北省补习学校2011届高三联合体大联考试题理)在ABC ∆中,“6A π>”是“1sin 2A >”的( ) A .充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D.既不充分也不必要条件 答案 B. 20.(安徽省蚌埠二中2011届高三第二次质检文)已知命题)0,(:-∞∈∃x P ,x x 32<;命题)2,0(:π∈∀x q ,x x sin tan >.则下列命题为真命题的是 ( ) A. q p ∧ B. )(q p ⌝∨ C. )(q p ⌝∧ D. q p ∧⌝)( 答案 D.21.(湖北省部分重点中学2011届高三第二次联考试卷文)"|1|2"x -<是"3"x <的 ( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A.22.(湖北省涟源一中、双峰一中2011届高三第五次月考理) 设{}n a 是等比数列,则“123a <a <a ”是数列{}n a 是递增数列的 ( ) A .充分而不必要条件 B .必要而不充分条件、 C .充分必要条件 D .既不充分也不必要条件答案 C.23.(湖南省嘉禾一中2011届高三上学期1月高考押题卷)0a <是方程2210ax x ++=至少有一个负数根的 ( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件答案C.24.(吉林省东北师大附中2011届高三上学期第三次模底考试理)命题“存在0x ∈R ,02x ≤0”的否定是 ( )A .不存在0x ∈R , 02x>0 B .存在0x ∈R ,02x ≥0C .对任意的x ∈R ,2x ≤0D .对任意的x ∈R , 2x>0答案 D.25.(安徽省合肥八中2011届高三第一轮复习四考试理)设32()log (f x x x =++,则对任意实数,"0""()()0"a b a b f a f b ⋅+≥+≥是的( )A .充分必要条件B .充分而非必要条件C .必要而非充分条件D .既非充分也非必要条件 答案 A 26.(宁夏银川一中2011届高三第五次月考试题全解全析理) 下列结论错误的...是 ( )A .命题“若p ,则q ”与命题“若,q ⌝则p ⌝”互为逆否命题;B .命题:[0,1],1x p x e ∀∈≥,命题2:,10,q x R x x ∃∈++<则p q ∨为真; C .“若22,am bm <则a b <”的逆命题为真命题; D .若q p ∨为假命题,则p 、q 均为假命题. 【答案】C【分析】根据命题的知识逐个进行判断即可。
(完整版)常用逻辑用语测试题一和答案
1 / 11 常用逻辑用语测试题一一、选择题。
1.下列命题 :①2x x x ∀∈,≥R ;②2x x x ∃∈,≥R ; ③43≥;④“21x ≠”的充要条件是“1x ≠,或1x ≠-”. 中,其中正确命题的个数是 ( )A .0B .1C .2D .32.已知命题p :x ∀∈R ,||0x ≥,那么命题p ⌝为( )A .x ∃∈R ,||0x ≤B .x ∀∈R ,||0x ≤C .x ∃∈R ,||0x <D .x ∀∈R ,||0x <3.已知命题 :p x ∀∈R ,2x ≥,那么命题p ⌝为( )A .2x x ∀∈≤R ,B .2x x ∃∈<R ,C .2x x ∀∈≤-R ,D .2x x ∃∈<-R ,4.下列命题中的真命题是( )A .R x ∈∃使得5.1cos sin =+x xB . x x x cos sin ),,0(>∈∀πC .R x ∈∃使得12-=+x xD . 1),,0(+>+∞∈∀x e x x2 / 11 5.已知命题p :0x ∃∈R ,200220x x ++≤,那么下列结论正确的是( )A .0:p x ⌝∃∈R ,200220x x ++>B .:p x ⌝∀∈R ,2220x x ++>C .0:p x ⌝∃∈R ,200220x x ++≥D .:p x ⌝∀∈R ,2220x x ++≥ 6.“2a =”是“直线20ax y +=与1x y +=平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.命题p :∃实数∈x 集合A ,满足032x x 2<--,命题q :∀实数∈x 集合A ,满足032x x 2<--,则命题p 是命题q 为真的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、非充分非必要条件8.如果对于任意实数x ,[]x 表示不超过x 的最大整数. 例如[]3.273=,[]0.60=.那么“[][]x y =”是“1x y -<”的( )A .充分而不必要条件B 必要不充分条件C .充分必要条件D .既不充分也不必要条件9.“b a <<0”是“ba )41()41(>”的( )A 充分不必要条件B .必要不充分条件C .充要条件D .既不充分条件也不必要条件3 / 1110.“2=a ”是“直线03:21=+-y x a l 与直线14:2-=x y l互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.“2m =-”是“直线(1)20m x y ++-=与直线(22)10mx m y +++=相互垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.在ABC ∆中,AB AC BA BC ⋅=⋅u u u r u u u r u u u r u u u r “” 是AC BC =u u u r u u u r “”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要二、填空题。
(完整版)逻辑连接词测试题
常用逻辑用语检测题1. 用反证法证明命题“a 、b ∈N *,ab 可被5整除,那么a 、b 中至少有一个能被5整除”,那么假设内容是 ( )A.a 、b 都能被5整除B.a 、b 都不能被5整除C.a 不能被5整除D.a 、b 有一个不能被5整除2. 命题∃ x ∈R,x+1<0的否定是 ( )A.∃ x ∈R,x+1≥0B.∀ x ∈R,x+1≥0C.∃ x ∈R,x+1>0.D.∀∃ x ∈R,x+1>03.若﹁p 是﹁q 的必要不充分条件,则p 是q 的 ( )A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件 4. 若条件p :|x +1|≤4,条件q :x 2<5x -6,则⌝p 是⌝q 的 ( )A.必要不充分条件B. 充分不必要条件C.充要条件D.既不充分又不必要条件5. “0<x <5”是“不等式|x -2|<3”成立的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.不充分不必要条件6. 若p r q p ⇒⇔,则q 是r 的( )条件。
A.充分不必要条件B.必要不充分条件C.充要条件D.非充分又非必要条件7. a= -1是直线ax+(2a-1)y+1=0和直线3x+ay+3=0垂直的A.充分不必要条件B.必要不充分条件C.充要条件D.不充分也不必要条件8. 已知p 且q 为真,则下列命题中真命题的个数为 ( ) ① p ② q ③p 或q ④非pA.1B.2C.3D.49. 下列理解错误的是 ( )A.命题3≤3是p 且q 形式的复合命题,其中p :3<3,q :3=3.所以“3≤3”是假命题B.“2是偶质数”是一个p 且q 形式的复合命题,其中p :2 是偶数,q :2是质数C.“不等式|x |<-1无实数解”的否定形式是“不等式|x |<-1有实数解”D.“2001>2008或2008>2001”是真命题10. 已知命题p 、q ,则“命题p 或q 为真”是“命题p 且q 为真”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11. 命题“若△ABC 不是等腰三角形,则它的任何两个内角不相等”的逆否命题是 ( )A.若△ABC 是等腰三角形,则它的任何两个内角相等B.若△ABC 任何两个内角不相等,则它不是等腰三角形C.若△ABC 有两个内角相等,则它是等腰三角形D.若△ABC 任何两个角相等,则它是等腰三角形12. 已知命题p: | x – 2 | < a (a > 0 ), 命题q :| x 2 – 4 | < 1 , 若p 是q 的充分不必要条件,则实数a 的取值范围是 .13. 命题“若b a ,都是偶数,则b a +是偶数”的否命题是_________14. “两个角是对顶角”是“这两个角相等”的 条件;15. “至少有一组对应边相等”是“两个三角形全等”的 条件;16. 命题p :∀x ∈R ,2x 2+ 1>0的否定是________。
常用逻辑用语测试1
常用逻辑用语测试题姓名 ________ 班级_________ 学号____________ 成绩___________一、选择题1.下列语句不是命题的有( ).①230x -=;②与一条直线相交的两直线平行吗?③315+=;④536x ->A.①③④B.①②③C.①②④D.②③④2.给出命题:p :31>,q :4{2,3}∈,则在下列三个复合命题:“p 且q ” “p 或q ” “非p ”中,真命题的个数为( ).A.0B.3C.2D.13.如果命题“p 且q ”与命题“p 或q ”都是假命题,那么( ).A.命题“非p ”与命题“非q ”的真值不同B.命题p 与命题“非q ”的真值相同C.命题q 与命题“非p ”的真值相同D.命题“非p 且非q ”是真命题4.命题“若a b >,则22ac bc >(a b R ∈、)”与它的逆命题、否命题中,真命题的个数为( ).A.3B.2C.1D.05.若p 、q 是两个简单命题,且“p 或q ”的否定是真命题,则必有( ).A.p 真,q 真B.p 假,q 假C .p 真,q 假 D.p 假,q 真6.有下列三个命题:①“若0x y +=,则x y 、互为相反数”的逆命题;②“若x y >,则22x y >”的逆否命题;③“若3x ≤-,则260x x +->”。
其中假命题的个数为( ).A.0B.3C.2D.17.如果命题“非p 或非q ”是假命题,则在下列各结论中,正确的为( ).①命题“p 且q ”是真命题②命题“p 且q ”是假命题③命题“p 或q ”是真命题④命题“p 或q ”是假命题A.①③B.②④C.②③D.①④8.若命题p 的逆命题是q ,命题p 的否命题是r ,则q 是r 的( ).A.逆命题B.否命题C.逆否命题D.以上结论都不正确9.若a b c 、、是常数,则“2040a b ac >-<且”是“对任意x R ∈,有20a x b x c ++>”的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件10.一元二次方程2210ax x ++=(0a ≠)有一个正根和一个负根的充分不必要条件是( ).A.0a <B.0a >C.1a <-D.1a >11.若非空集合M 是集合N 的真子集,则“a M ∈或a N ∈”是“a M N ∈ ”的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件12.已知αβ、均为锐角,若p :sin sin()ααβ<+,q :2παβ+<,则p 是q 的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件13.设a b c 、、分别是ABC ∆的三个内角A 、B 、C 所对的边,则2()a b b c =+是A=2B 的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件14.已知p :0a ≠;q :0ab ≠,则p 是q 的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件15.在ABC ∆中,设命题p :sin sin sin a b c B C A==,命题q :ABC ∆是等边三角形,那么命题p 是命题q 的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件16.如果p 是q 的充分不必要条件,r 是q 的必要不充分条件;那么( ).A.p r ⇒⌝⌝B.p r ⇐⌝⌝C.p r ⇔⌝⌝D.p r ⇔二 填空题17.已知a ,b 是两个命题,如果a 是b 的充分条件,那么a ⌝是b ⌝的 条件.18.“5a ≥且2b ≥”的否定是19.若p :“平行四边形一定是菱形”,则“非p ”为 .(真命题或假命题).20.“tan tan αβ≠”的 条件是“αβ≠”.21.“若A 则B ”为真命题,而“若B 则C ”的逆否命题为真命题,且“若A 则B ”是“若C 则D ”的充分条件,而“若D 则E ”是“若B 则C ”的充要条件,则B 是E 的 条件;A ⌝是E ⌝的 条件.三 解答题22.写出下列命题的否定命题和否命题:(1)若0abc =,则a b c 、、中至少有一个为零;(2)若220x y +=,则x y 、全为零;(3)平行于同一条直线的两条直线平行.23. 写出命题“若2780x x +-=,则8x =-或1x =”的逆命题、否命题、逆否命题,并分别判断它们的真假.例3 给出下列命题:p :关于x 的不等式22(1)0x a x a --+>的解集是R ,q :函数2lg(2)x y a a =-是增函数.(1) 若p q ∨为真命题,求a 的取值范围.(2) 若p q ∧为真命题,求a 的取值范围.。
(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试题(答案解析)
一、选择题1.使不等式2x x 60--<成立的一个充分不必要条件是( )A .2x 0-<<B .3x 2-<<C .2x 3-<<D .2x 4-<< 2.“a b >”是“b a a b e e ->-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知命题p :若实数,x y 满足330x y +=,则,x y 互为相反数;命题q :若0a b >>,则11a b<.下列命题p q ∧,p q ∨,p ⌝,q ⌝中,真命题的个数是( ) A .1B .2C .3D .44.已知命题p 、q ,如果p ⌝是q ⌝的充分而不必要条件,那么q 是p 的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要 5.若命题p 是真命题,命题q 是假命题,则下列命题一定是真命题的是( )A .p ∧qB .¬p ∨qC .¬p ∧qD .¬p ∨q ⌝6.已知命题():0,p x ∀∈+∞,1102xm ⎛⎫+-> ⎪⎝⎭;命题():0,q x ∃∈+∞,2410mx x +-=,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.下列说法中正确的是( )A .命题“若x y =,则22x y =”的逆命题为真命题B .若p q ∧为假命题,则,p q 均为假命题C .若p q ∧为假命题,则p q ∨为真命题D .命题“若两个平面向量,a b 满足||||||a b a b ⋅>⋅,则,a b 不共线”的否命题是真命题. 8.命题:p “1a >”是命题:q “函数()cos f x ax x =+在R 上是单调递增”成立的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件 9.若函数()sin f x x x =,则对a ,,22b ππ⎛⎫∈- ⎪⎝⎭,不等式()()f a f b >成立的一个充要条件是( ) A .a b >B .a b <C .a b >D .22a b >10.下列命题中真命题的是( )A .命题:若21x =,则1x =或1x =-的逆否命题为:若1x ≠且1x ≠-,则21x ≠B .“22am bm <”是“a b <”的充要条件C .若p q ∧为假命题,则,p q 均为假命题D .对于实数,x y ,:8p x y +≠,:2q x ≠或6y ≠,则p 是q 的必要不充分条件 11.已知命题2:230p x x --<,命题:q x a <,若q 的一个充分不必要条件是p ,则a 的取值范围是( ) A .[)3,+∞ B .()3,+∞ C .(],1-∞- D .(),1-∞-12.已知2:11xp x <+,:()(3)0q x a x -->,p 为q 的充分不必要条件,则a 的范围是( ) A .[)1,+∞B .()1,+∞C .[)0,+∞D .()1,-+∞二、填空题13.给出如下四个命题:①把二进制数(2)110011化为十进制数,结果为51;②将一组数据中的每个数据都加上或减去同一个常数后,平均值不变,方差不变;③从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,则事件“至多一个红球”与“都是红球”互斥且对立;④若“p q ∧”为假命题,则p 、q 均为假命题.其中正确的命题的序号是________. 14.命题p :(x ﹣m )2>3(x ﹣m )是命题q :x 2+3x ﹣4<0成立的必要不充分条件,则实数m 的取值范围为____.15.若命题“存在,x R ∈220x x a ++≤”是假命题,则实数a 的取值范围是________. 16.函数()y f x =的定义域为[)(]1,00,1-,其图象上任一点(,)P x y 都满足221x y +=.①函数()y f x =一定是偶函数;②函数()y f x =可能既不是偶函数也不是奇函数; ③函数()y f x =若是偶函数,则值域是(]1,0-或[)0,1;④函数()y f x =可以是奇函数;⑤函数()y f x =的值域是(1,1)-,则()y f x =一定是奇函数. 其中正确命题的序号是__________(填上所有正确的序号)17.若命题“存在实数x ,使得()222(2)40a x a x -+--≥成立”是假命题,则实数a 的取值范围是________.18.设:12p x <<,:21x q >,则p 是q 成立的________条件19.已知集合{}|A x x a =>,{}|22,B x x x R =-<∈,若“x A ∈”是“x B ∈”的必要不充分条件,则a 的取值范围_________. 20.给出如下四个命题:①若“p 或q ”为真命题,则p 、q 均为真命题; ②命题“若且,则”的否命题为“若且,则”;③在中,“”是“”的充要条件;④已知条件,条件,若是的充分不必要条件,则的取值范围是;其中正确的命题的是________.三、解答题21.已知命题p :实数x 满足27100,x x -+≤命题q :实数x 满足22430.x mx m -+≤其中m > 0.(1)若m =4且命题p , q 都为真命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数m 的取值范围.22.已知{}2|8200A x x x =--≤,{}|2B x x m =-≤(1)若“∃x ∈A ,使得x ∈B ”为真命题,求m 的取值范围;(2)是否存在实数m ,使“x ∈A ”是“X ∈B ”必要不充分条件,若存在,求出m 的取值范围;若不存在,请说明理由.23.给定两个命题:p 对任意实数x 都有不等式210ax ax ++>恒成立;:q 关于x 的方程20x x a --=有实数根;若p q ∨为真命题,p q ∧为假命题,求实数a 的取值范围.24.已知a R ∈,设集合(){}22|619320A x x a x a a =-+++-<,{}|10B x x a =-+≥. (1)当1a =时,求集合B . (2)问:12a ≥是A B =∅的什么条件.(充分非必要条件、必要非充分条件、充要条件、既非充分也非必要条件)?并证明你的结论.25.设:p 实数x 满足22430x ax a -+<,其中0a <;:q 实数x 满足260x x --≤,且p 是q 的充分不必要条件,求a 的取值范围.26.已知命题p :任意2,230x R x mx m ∈-->成立;命题q :存在2,410x R x mx ∈++<成立.(1)若命题p 为真命题,求实数m 的取值范围;(2)若命题,p q 中恰有一个为真命题,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先求解二次不等式,然后确定其成立的一个充分不必要条件即可. 【详解】由260x x --<得()()230x x +-<,得23x -<<, 若使不等式260x x --<成立的一个充分不必要条件, 则对应范围是()2,3-的一个真子集, 即20x -<<,满足条件, 故选A . 【点睛】本题主要考查充分条件和必要条件的应用,转化为集合真子集关系是解决本题的关键.2.C解析:C 【分析】构造函数()x f x e x =+利用单调性判断. 【详解】设()x f x e x =+,()e 10x f x '=+>,所以()f x 为增函数, 由于a b >,所以()()f a f b >,所以b a a b e e ->-; 反之b a a b e e ->-成立,则有()()f a f b >,所以a b >. 所以是充要条件,故选C. 【点睛】本题主要考查充要条件的判定,明确两者之间的推出关系是判定的关键.3.B解析:B 【分析】根据条件分别判断两个命题的真假,结合复合命题的真假关系,进行判断,即可判定. 【详解】由题意,例如0x y ==时,此时330x y +=,所以命题p 为假命题;命题q :中当0a b >>时,110b a a b ab --=<成立,所以11a b<,所以命题q 为真命题,所以命题p q ∧假命题;p q ∨为真命题;p ⌝为真命题;q ⌝为假命题,真命题的个数是2个,故选B. 【点睛】本题主要考查了命题的真假判断,其中解答中先判定命题,p q 的真假,再结合复合命题的真假关系判定真假是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4.B解析:B【解析】p ⌝是q ⌝的充分不必要条件,∴根据逆否命题与原命题的等价性可知,q 是p 的充分不必要条件,故选B.5.D解析:D 【分析】根据命题q 是假命题,命题p 是真命题,结合复合命题真假判断的真值表,可判断出复合命题的真假,进而得到答案. 【详解】∵命题q 是假命题,命题p 是真命题, ∴“p ∧q”是假命题,即A 错误; “¬p ∨q”是假命题,即B 误; “¬p ∧q”是假命题,即C 错误; “p q ⌝∨⌝ ”是真命题,故D 正确错; 故选D . 【点睛】本题考查的知识点是复合命题的真假,熟练掌握复合命题真假判断的真值表,是解答的关键.6.A解析:A 【分析】分别计算得到m 1≥和4m ≥-,根据范围大小判断得到答案. 【详解】():0,p x ∀∈+∞,1102xm ⎛⎫+-> ⎪⎝⎭,即112xm ⎛⎫>- ⎪⎝⎭,易知函数()112xf x ⎛⎫=- ⎪⎝⎭单调递增,故m 1≥.命题():0,q x ∃∈+∞,2410mx x +-=, 2214124m x x x ⎛⎫=-=-- ⎪⎝⎭,故4m ≥-. 故命题p 是命题q 的充分不必要条件. 故选:A . 【点睛】本题考查了根据命题求参数,充分不必要条件,意在考查学生的推断能力.7.D解析:D 【分析】A 中,利用四种命题的的真假判断即可;B 、C 中,命题“p q ∧”为假命题时,p 、q 至少有一个为假命题;D 中,写出该命题的否命题,再判断它的真假性. 【详解】对于A ,命题“若x y =,则22x y =”的逆命题是:若22x y =,则x y =;因为y x =-也成立.所以A 不正确;对于B ,命题“p q ∧”为假命题时,p 、q 至少有一个为假命题,所以B 错误;C 错误; 对于D ,“平面向量,a b 满足||||||a b a b ⋅>⋅”,则,a b 不共线的否命题是,若“平面向量,a b 满足||||||a b a b ⋅≤⋅”,则,a b 共线; 由||||cos a b a b θ⋅=⋅⨯知:||||||a b a b ⋅≥⋅,一定有||||||a b a b ⋅=⋅,cos 1θ=±, 所以,a b 共线,D 正确. 故选:D. 【点睛】本题考查了命题的真假性判断问题,也考查了推理与判断能力,是基础题.8.B解析:B 【分析】利用导数法求出()cos f x ax x =+为R 上的增函数等价命题,进而根据集合的包含关系即可判断. 【详解】()cos f x ax x =+,()sin f x a x '=-,若函数()y f x =在R 上单调递增,则()0f x '≥在R 上恒成立,即()max sin 1a x ≥=. 由于{}1a a > {}1a a ≥,故命题:p “1a >”是命题:q “函数()cos f x ax x =+在R 上是单调递增”成立的充分不必要条件, 故选:B. 【点睛】本题考查充分不必要条件的判断,同时也考查了利用函数的单调性求参数,一般转化为导数不等式恒成立问题,考查推理能力与运算求解能力,属于中等题.9.D解析:D 【分析】先分析函数的奇偶性,由导数得出函数的单调性,利用这两个性质求解. 【详解】()sin f x x x =,()sin()sin ()f x x x x x f x -=--==,()f x 是偶函数,()sin cos f x x x x '=+,在02x π≤<时,()0f x '≥,()f x 递增,所以22()()()()f a f b f a f b a b a b >⇔>⇔>⇒>. 故选:D. 【点睛】本题考查函数的奇偶性与单调性,用函数的这两个性质求解不等式.本题还考查了导数与单调性的关系.掌握用导数研究不等式的方法是解题关键.10.A解析:A 【分析】A. 根据四种命题的结构形式及转化来判断.B.利用特殊值法,当 0m =时,逆命题不成立.C. 若p q ∧为假命题,由结论“一假则假”来判断. D 用等价命题来判断. 【详解】命题:若21x =,则1x =或1x =-的逆否命题为:若1x ≠且1x ≠-,则21x ≠, 故A 正确;若22am bm <,则0m ≠,可得a b <,反之a b <,0m =,22am bm <不成立,故B 错误;若p q ∧为假命题,则p ,q 中至少有一个为假命题,故C 错误;对于实数x ,y ,p :8x y +≠,q :2x ≠或6y ≠,由2x =且6y =,可得8x y +=,即p 可得q ,反之由q 推不到p ,则p 是q 的充分不必要条件,故D 错误.故选:A 【点睛】本题主要考查命题的转化及关系以及逻辑条件,还考查了理解辨析的能力,属于基础题.11.A解析:A 【分析】根据充分条件和必要条件的定义进行求解即可. 【详解】解:由2230x x --<得13x ,q 的一个充分不必要条件是p ,3a ∴,故选:A . 【点睛】本题主要考查充分条件和必要条件的应用,根据不等式关系是解决本题的关键,属于基础题.12.A解析:A 【分析】由p 为q 的充分不必要条件可得211xx <+的解集是()(3)0x a x -->的解集的真子集,从而可求出答案. 【详解】 解:∵211x x <+,∴2101x x x --<+,即101x x -<+, ∴()()110x x +-<,解得11x -<<, ∴:11p x -<<,由p 为q 的充分不必要条件可得211xx <+的解集是()(3)0x a x -->的解集的真子集, 当3a =时,解得:3q x ≠,满足条件; 当3a >时,解得:q x a >或3x <,满足条件; 当3a <时,解得:3q x >或x a <,∴13a ≤<, 综上:1a ≥, 故选:A . 【点睛】本题主要考查充分条件和必要条件的应用,根据不等式的性质求出命题的等价条件是解决本题的关键,属于基础题.二、填空题13.①③【分析】①根据二进制与十进制的关系转换后可判断②利用均值与方差的计算公式可判断③根据事件的关系判断④根据且的真假判断【详解】对于①正确;对于②将一组数据中的每个数据都加上或减去同一个常数后平均值解析:①③ 【分析】①根据二进制与十进制的关系转换后可判断,②利用均值与方差的计算公式可判断,③根据事件的关系判断,④根据“且”的真假判断. 【详解】对于①543210(2)11001112120202121251=⨯+⨯+⨯+⨯+⨯+⨯=正确;对于②,将一组数据中的每个数据都加上或减去同一个常数后,平均值为加上或减去这个常数,均值改变,方差不变,错误;对于③,从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,“至多一个红球”为“一红一白或两白”,“都是红球”为“两红”,则事件“至多一个红球”与“都是红球”互斥且对立,正确;对于④,若“p q ∧”为假命题,则p ,q 至少有一个为假命题,则④不正确;答案:①③. 【点睛】方法点睛:本题命题的真假判断,解题时需对每个命题进行判断,要求掌握相应的知识,考查的知识点较多,属于中档题.14.m≥1或m ≤﹣7【分析】先求出命题p 和命题q 中不等式的解再根据必要不充分条件列不等式求解【详解】解:由x2+3x ﹣4<0得﹣4<x <1由(x ﹣m )2>3(x ﹣m )得(x ﹣m ﹣3)(x ﹣m )>0即x >解析:m ≥1或m ≤﹣7【分析】先求出命题p 和命题q 中不等式的解,再根据必要不充分条件列不等式求解. 【详解】解:由x 2+3x ﹣4<0得﹣4<x <1,由(x ﹣m )2>3(x ﹣m )得(x ﹣m ﹣3)(x ﹣m )>0, 即x >m +3或x <m , 若p 是q 的必要不充分条件, 则1≤m 或m +3≤﹣4, 即m ≥1或m ≤﹣7, 故答案为:m ≥1或m ≤﹣7. 【点睛】本题考查二次不等式的求解,考查充分性,必要性的应用,是中档题.15.【分析】根据所给的特称命题的否定:任意实数是真命题得到判别式小于0解不等式即可【详解】命题存在的否定任意实数是真命题解得:故答案为:【点睛】本题考查命题的否定写出正确的全称命题并且根据这个命题是一个 解析:1a >【分析】根据所给的特称命题的否定:任意实数x ,220x x a ++>是真命题,得到判别式小于0,解不等式即可. 【详解】命题“存在x ∈R , 220x x a ++≤”的否定 “任意实数x , 220x x a ++>”是真命题,∴440a ∆=-<,解得:1a >,故答案为:1a >. 【点睛】本题考查命题的否定,写出正确的全称命题,并且根据这个命题是一个真命题,得到判别式的情况,属于容易题.16.②④⑤【分析】因为函数的定义域为其图象上任一点都满足所以函数的图象为圆上的一部分故对每个命题通过画反例图或者结合圆的性质分析判断即可得到结果【详解】因为函数的定义域为其图象上任一点都满足所以函数的图解析:②④⑤ 【分析】因为函数()y f x =的定义域为[)(]1,00,1-,其图象上任一点(,)P x y 都满足221x y +=,所以,函数的图象为圆221x y +=上的一部分.故对每个命题通过画反例图或者结合圆的性质分析判断即可得到结果. 【详解】因为函数()y f x =的定义域为[)(]1,00,1-,其图象上任一点(,)P x y 都满足221x y +=,所以,函数的图象为圆221x y +=上的一部分.命题①:可举出反例如图,则可知函数()y f x =不一定是偶函数,故命题①错误; 命题②:举出存在的例子,由图可知函数()y f x =可能既不是偶函数,也不是奇函数,故命题②正确; 命题③:举出反例如图,则可知函数()y f x =如果是偶函数,则值域不一定是(]1,0-或[)0,1,故命题③错误; 命题④:由命题①中图象可知,函数()y f x =可以是奇函数,故命题④正确; 命题⑤:由函数图象性质可知,若函数()y f x =值域是(1,1)-,则函数一定是奇函数,故命题⑤正确.故其中正确的命题的序号是②④⑤. 故答案为:②④⑤. 【点睛】本题主要考查函数的性质,以及圆的方程的性质,通过举反例排除是判断命题正确与否的常用手段,属中档题.17.(﹣22【分析】由原命题的否定为真命题得到∀实数x 使得(a ﹣2)x2+2(a ﹣2)x ﹣4<0成立然后分二次项系数为0和不为0讨论当二次项系数不为0时需要二次项系数小于0且判别式小于0求解【详解】命题解析:(﹣2,2]. 【分析】由原命题的否定为真命题得到∀实数x ,使得(a ﹣2)x 2+2(a ﹣2)x ﹣4<0成立,然后分二次项系数为0和不为0讨论,当二次项系数不为0时,需要二次项系数小于0,且判别式小于0求解. 【详解】命题“存在实数x ,使得(a ﹣2)x 2+2(a ﹣2)x ﹣4≥0成立”是假命题, 则其否定为“∀实数x ,使得(a ﹣2)x 2+2(a ﹣2)x ﹣4<0成立”是真命题, 当a =2时,原不等式化为﹣4<0恒成立; 当a ≠2时,则()2204(2)1620a a a -⎧⎨=-+-⎩<<,解得﹣2<a <2. 综上,实数a 的取值范围是(﹣2,2]. 故答案为:(﹣2,2]. 【点睛】本题考查命题的真假判断与应用,考查了复合命题的真假判断,训练了不等式恒成立的解法,是中档题.18.充分不必要【解析】【分析】根据充分必要条件的定义判断即可【详解】由解得即因为所以是成立的充分不必要条件故答案为:充分不必要【点睛】本题主要考查了充分条件必要条件的判定属于中档题解析:充分不必要 【解析】 【分析】根据充分必要条件的定义判断即可. 【详解】由21x >解得0x >,即:0q x >, 因为120x x <<⇒>,012x x ><<,所以p 是q 成立的充分不必要条件,故答案为:充分不必要 【点睛】本题主要考查了充分条件,必要条件的判定,属于中档题.19.【分析】根据必要不充分条件得到集合之间的关系从而求解出参数的取值范围【详解】因为是的必要不充分条件所以又因为所以因为所以即的取值范围是:【点睛】集合:若是的必要不充分条件则有:;若是的充分不必要条件 解析:0a ≤【分析】根据必要不充分条件得到集合,A B 之间的关系,从而求解出参数的取值范围.【详解】因为“x A ∈”是“x B ∈”的必要不充分条件,所以BA ,又因为{}|22,B x x x R =-<∈,所以()0,4B =,因为(),A a =+∞,所以0a ≤,即a 的取值范围是:0a ≤. 【点睛】集合()(){|},{|}A x x p x B x x q x =∈=∈: 若“x A ∈”是“x B ∈”的必要不充分条件,则有:B A ;若“x A ∈”是“x B ∈”的充分不必要条件,则有:AB .20.④【解析】试题分析:若或为真命题则pq 至少有一真所以命题 错误;命题若且则的否命题为若或则故命题‚错误;三角形ABC 中角A 时故命题 错误;若是的充分不必要条件即p 是q 的充分不必要条件由因p:所以由一解析:④ 【解析】试题分析:若“p 或q ”为真命题,则p 、q 至少有一真,所以命题•错误;命题“若且,则”的否命题为“若或,则”,故命题 错误;三角形ABC 中,角A时,,故命题 错误;若是的充分不必要条件即p 是q 的充分不必要条件.由因p:,所以由一元二次方程根的分布可得,解得,.故正确的命题是④.考点:命题的真假性判断.三、解答题21.(1)[]4,5 ;(2)5,23⎡⎤⎢⎥⎣⎦【分析】(1)首先解一元二次不等式得到p 、q ,再根据命题p 、q 均为真命题,取交集即可得解;(2)因为p 是q 的充分不必要条件,则[][]()2,5,30m m m >,即可得到不等式组,解得即可; 【详解】解:因为27100x x -+≤,解得25x ≤≤,22430x mx m -+≤()0m >,解得3m x m ≤≤所以:25p x ≤≤,():30q m x m m ≤≤> (1)当4m =时,:412q x ≤≤ 因为命题p 、q 均为真命题,所以25412x x ≤≤⎧⎨≤≤⎩,解得45x ≤≤,即[]4,5x ∈(2)因为p 是q 的充分不必要条件,所以[][]()2,5,30m m m >所以3520m m m ≥⎧⎪≤⎨⎪>⎩解得523m ≤≤,即5,23m ⎡⎤∈⎢⎥⎣⎦【点睛】考查解一元二次不等式的解得以及充分条件、必要条件、必要不充分条件的概念.属于中档题.22.(1)412m -≤≤;(1)存在,08m ≤≤ 【分析】(1)根据题意转化为集合A 、B 存在公共元素,求出A 、B 无公共元素时,实数m 的取值范围,取补集即可.(2)由题意转化为B A ⊆,再根据集合的包含关系可得22210m m -≥-⎧⎨+≤⎩,解不等式组即可.【详解】{}()(){}{}2|82001020210A x x x x x x x x =--≤=-+≤=-≤≤, {}{}{}|22222B x x m x x m x m x m =-≤=-≤-≤=-≤≤+(1)若“∃x ∈A ,使得x ∈B ”为真命题,即集合A 、B 存在公共元素, 假设A 、B 无公共元素,则210m ->或22m +<-, 解得12m >或4m <-,则集合A 、B 存在公共元素时,实数m 的取值范围412m -≤≤. (2)存在实数m ,使“x ∈A ”是“X ∈B ”必要不充分条件, 若 “x ∈A ”是“X ∈B ”必要不充分条件,则B A ,所以22210m m -≥-⎧⎨+≤⎩,解得08m ≤≤, 所以m 的取值范围为08m ≤≤. 【点睛】本题考查了充分条件、必要条件的集合思想,考查了转化与化归的思想,属于中档题.23.1,0[4,)4⎡⎫-⋃+∞⎪⎢⎣⎭【分析】由条件p q ∨为真命题,p q ∧为假命题,可知,应满足p ,q 一真一假,将命题p ,q 化简求出其参数取值范围,分类讨论分为p 真q 假和p 假q 真求解即可 【详解】若命题p 为真命题,则对任意实数x 都有210ax ax ++>恒成立,所以有0a =或240a a a >⎧⎨∆=-<⎩,解得04a ≤<;若q 为真命题,则关于x 的方程20x x a --=有实数根,所以有140a ∆=+≥,解得14a ≥-;因为p q ∨为真命题,p q ∧为假命题,所以p ,q 一真一假,若p 真q 假,则有0414a a ≤<⎧⎪⎨<-⎪⎩,此不等式组无解;若p 假q 真,则有4014a a a ≥<⎧⎪⎨≥-⎪⎩或,解得104a -≤<或4a ≥. 所以a 的取值范围为1,0[4,)4⎡⎫-+∞⎪⎢⎣⎭【点睛】本题考查由命题的真假求解参数取值范围,分类讨论法的应用,属于中档题 24.(1)[2,0]B =-;(2)充分非必要条件. 【分析】(1)根据绝对值的性质解不等式得集合B ; (2)解不等式得集合,A B ,由A B =∅求出a 的范围,再判断是什么条件.【详解】(1)由110x -+≥得11x +≤,111x -≤+≤,20x -≤≤,所以[2,0]B =-; (2)由题意(31,32)A a a =-+,[1,1]B a a =---+, 若A B =∅,则321a a +≤--或311a a -≥-+,解得34a ≤-或12a ≥.∴12a ≥是A B =∅的充分非必要条件. 【点睛】本题考查解绝对值不等式,考查解一元二次不等式,考查充分必要条件的判断,掌握集合的包含关系与充分必要条件之间的联系是解题关键.25.203a -≤<【分析】p 是q 的充分不必要条件,则集合A 是集合B 的子集,运用区间端点值之间的关系可求a 的取值范围. 【详解】 解:0a <,由22430x ax a -+<得3a x a <<,设{}3A x a x a =<<,由260x x --≤得23x -≤≤,设{}23B x x =-≤≤,p 是q 的充分不必要条件,A ∴ B ,323a a ≥-⎧∴⎨≤⎩0a <203a ∴-≤<. 【点睛】本题是命题真假的判断与应用,考查了必要条件问题,属于中档题.判断充要条件的方法是:①若p ⇒q 为真命题且q ⇒p 为假命题,则命题p 是命题q 的充分不必要条件;②若p ⇒q 为假命题且q ⇒p 为真命题,则命题p 是命题q 的必要不充分条件;③若p ⇒q 为真命题且q ⇒p 为真命题,则命题p 是命题q 的充要条件;④若p ⇒q 为假命题且q ⇒p 为假命题,则命题p 是命题q 的即不充分也不必要条件.⑤判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系. 26.(1)(3,0)-;(2)(]11,3,0,22⎡⎫⎛⎫-∞--+∞⎪ ⎪⎢⎣⎭⎝⎭. 【分析】(1)只需24120m m ∆=+<,然后求解m 的取值范围; (2)分p 真q 假、p 假q 真两种情况讨论求解. 【详解】解:(1)若命题p 为真命题,则24120m m ∆=+<,解得30m -<<, 故实数m 的取值范围(3,0)-(2)若命题q 为真命题,则21640m ∆=->,解得12m <-或12m > ∵命题,p q 中恰有一个为真命题, ∴命题,p q 一真一假①当p 真q 假时,301122m m -<<⎧⎪⎨-≤≤⎪⎩,解得:102m -≤< ②当p 假q 真时,301122m m m m ≤-≥⎧⎪⎨-⎪⎩或或,解得:3m ≤-或12m >.综上,实数m 的取值范围(]11,3,0,22⎡⎫⎛⎫-∞--+∞⎪ ⎪⎢⎣⎭⎝⎭.【点睛】本题考查根据命题的真假求解参数的取值范围,考查二次不等式恒成立与有解问题,难度一般.。
集合与常用逻辑用语测试卷
集合与常用逻辑用语测试卷一、选择题(每题5分,共60分)1. 设集合A = {xx^2-3x + 2 = 0},则A=()A. {1}B. {2}C. {1,2}D. varnothing2. 若集合A={x - 1,B = {xx≥slant1},则A∩ B=()A. {x1≤slant x < 3}B. {x1 < x < 3}C. {xx > - 1}D. {xx≥slant1}3. 已知集合A={xx^2-4x + 3 = 0},B={xx^2-ax + a - 1 = 0},若B⊆ A,则a=()A. 2B. 3C. 2或3D. 1或2或34. 设全集U={1,2,3,4,5},集合A = {1,2,3},B={3,4,5},则∁_U(A∩ B)=()A. {1,2,4,5}B. {1,2,3,4,5}C. {3}D. varnothing5. 命题“∀ x∈ R,x^2+1>0”的否定是()A. ∃ x∈ R,x^2+1≤slant0B. ∀ x∈ R,x^2+1≤slant0C. ∃ x∈ R,x^2+1<0D. ∀ x∈ R,x^2+1<06. “x = 1”是“x^2-3x + 2 = 0”的()A. 充分不必要条件。
B. 必要不充分条件。
C. 充要条件。
D. 既不充分也不必要条件。
7. 若p:x>1,q:x^2>1,则p是q的()A. 充分不必要条件。
B. 必要不充分条件。
C. 充要条件。
D. 既不充分也不必要条件。
8. 设集合A={xx^2-x - 6≤slant0},B = {xx - 1>0},则A∩ B=()A. {x1 < x≤slant3}B. {x2≤slant x≤s lant3}C. {xx > - 2}D. {xx≥slant1}9. 已知集合M={xy=√(x - 1)},N={yy = x^2+1},则M∩ N=()A. [1,+∞)B. (1,+∞)C. [0,+∞)D. (0,+∞)10. 命题“若x^2=1,则x = 1或x=-1”的逆否命题是()A. 若x≠1且x≠ - 1,则x^2≠1B. 若x = 1且x=-1,则x^2=1C. 若x^2≠1,则x≠1且x≠ - 1D. 若x≠1或x≠ - 1,则x^2≠111. 设集合A={xx∈ Z且 - 10≤slant x≤slant - 1},B={xx∈ Z且x≤slant5},则A∪ B 中的元素个数为()A. 11B. 10C. 16D. 1512. 若命题p:∃ x∈ R,ax^2+ax + 1<0是假命题,则实数a的取值范围是()A. [0,4]B. (0,4)C. (-∞,0)∪(4,+∞)D. (-∞,0]∪[4,+∞)二、填空题(每题5分,共20分)13. 已知集合A = { - 1,0,1},B={xx^2<1},则A∩ B=______。
贵阳市十九中高中数学选修2-1第一章《常用逻辑用语》测试(有答案解析)
一、选择题1.已知x ∈R ,条件2:p x x <,条件1:q a x≥,若p 是q 的充分不必要条件,则实数a 的取值不可能是( ) A .12B .1C .2D .2-2.若命题p 是真命题,命题q 是假命题,则下列命题一定是真命题的是( ) A .p ∧q B .¬p ∨q C .¬p ∧qD .¬p ∨q ⌝3.下列说法不正确的是( ) A .命题“若a b >,则ac bc >”是真命题 B .命题“若220a b +=,则,a b 全为0”是真命题C .命题“若0a =,则0ab =”的否命题是“若0a ≠,则0ab ≠”D .命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠” 4.给出如下四个命题:①若“p 且q ”为假命题,则,p q 均为假命题;②命题“若a b >,则221a b >-”的否命题为“若a b <,则221a b ≤-”; ③“x ∀∈R ,211x +≥”的否定是“x ∃∈R ,211x +<”; 其中正确的命题的个数是( ) A .0B .1C .2D .35.若数列{}n a 对任意2()n n *∈N ≥满足11(4)(3)0n n n n a a a a -----=,下面给出关于数列{}n a 的四个命题:①{}n a 可以是等差数列;②{}n a 可以是等比数列;③{}n a 可以既是等差又是等比数列;④{}n a 可以既不是等差又不是等比数列.正确命题的个数为( ). A .1B .2C .3D .46.已知命题p :若x y >且y z >,则()()1122log log x y y z -<-,则命题p 的逆否命题及其真假分别为( )A .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,真B .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,真C .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,假D .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,假7.下列四种说法中,错误的个数是( )①命题“x ∃∈R ,20x x ->”的否定是“x ∀∈R ,20x x -≤”;②命题“p q ∨为真”是命题“p q ∧为真”的必要不充分条件; ③“若22am bm <,则a b <”的逆命题为真; ④若实数x ,[]0,1y ∈,则满足221x y +>的概率为4π. A .0个B .1个C .2个D .3个8.若命题“0x R ∃∈,200230x mx m ++-<”为假命题,则实数m 的取值范围是( ) A .[]2,6 B .()2,6C .(][),26,-∞+∞ D .()(),26,-∞+∞9.下列命题中正确的是( ) A .“12m =”是“直线()2310m x my +++=与直线()()2230m x m y -++-=相互平行”的充分不必条件B .“直线l 垂直平面α内无数条直线”是“直线l 垂直于平面α”的充分条件C .已知a 、b 、c 为非零向量,则“a b a c ⋅=⋅”是“b c =”的充要条件D .p :存在x ∈R ,2220130x x ++≤.则p ⌝:任意x ∈R ,2220130x x ++> 10.已知命题:,sin cos 10p x R x x ∀∈++;命题:q 直线:0l x y m -+=与圆22:(2)(1)8C x y -+-=相切的一个充分不必要条件是5m =-;则下列命题中是真命题的是( ) A .pB .()p q ∨⌝C .()p q ⌝∧D .p q ∧11.下列说法正确的是( )A .“若24x =,则2x =或2x =-”的否命题是“若24x ≠,则2x ≠或2x ≠-”B .如果p 是q 的充分条件,那么p ⌝是q ⌝的充分条件C .若命题p 为真命题,q 为假命题,则p q ∧为假命题D .命题“若αβ=,则sin sin αβ=”的否命题为真命题 12.“12a <<”是“对任意的正数x ,22ax x+≥”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题13.若0, 0a >b >,则“4a b +≤”是 “4ab ≤”的_____条件14.设2:8120x x α-+>,2:x m m β-≤,若β是α的充分非必要条件,则实数m 的取值范围是_______________. 15.下列五个命题:①“2a >”是“()sin f x ax x =-为R 上的增函数”的充分不必要条件; ②函数31()13f x x x =-++有两个零点;③集合{2,3}A =,{1,2,3}B =,从A ,B 中各任意取一个数,则这两数之和等于4的概率是13; ④动圆C 既与定圆22(2)4x y -+=相外切,又与y 轴相切,则圆心C 的轨迹方程是28(0)y x x =≠;⑤若对任意的正数x ,不等式x e x a ≥+恒成立,则实数a 的取值范围是1a ≤. 其中正确的命题序号是________.16.若命题“p :x R ∀∈,2210ax x ++>”是假命题,则实数a 的取值范围是______.17.设命题:p 函数()21lg 16f x ax x a ⎛⎫=-+⎪⎝⎭的值域为R ;命题:q 不等式39x x a -<对一切正实数x 均成立,若命题p 和q 不全为真命题,则实数a 的取值范围是__________. 18.若[]2"2,8,log 4log 2"x x m x ∃∈≤+为真命题,则实数m 的最大值为__________. 19.命题“0x R ∃∈,使()200110m x mx m +-+-≤”是假命题,则实数m 的取值范围为__________.20.下列是有关△ABC 的几个命题:① 若tan tan tan 0A B C ++>,则△ABC 是锐角三角形;② 若cos cos a A b B =,则△ABC 是等腰三角形;③ 若cos cos a B b A b +=,则△ABC 是等腰三角形;④ 若cos sin A B =,则△ABC 是直角三角形,其中所有正确命题的序号是________三、解答题21.设关于x 的不等式254x x ≤-的解集为A ,不等式2(2)20()x a x a a R -++≤∈的解集为B .(1)求集合A ,B ;(2)若x A ∈是x B ∈的必要条件,求实数a 的取值范围.22.已知集合{}220A xx x =-->∣,集合{}22(25)50,B x x k x k k R =+++<∈∣ (1)求集合B ;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求实数k 的取值范围.23.已知命题p :方程22122xy aa +=-表示焦点在x 轴上的双曲线,命题q :复平面内表示复数()()32R z a ai a =-+∈的点位于第二象限. (1)若命题p 为真命题,求实数a 的取值范围;(2)若命题p 是假命题,q 是真命题,求实数a 的取值范围.24.已知集合{}{}222430(0),540A x x ax a a B x x x =-+≤>=-+≥,若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.25.设:p 实数x 满足22430x ax a -+<,其中0a <;:q 实数x 满足260x x --≤,且p 是q 的充分不必要条件,求a 的取值范围.26.命题p :关于x 的方程()21210m x x m +-+-=有实数解;命题q :[)0,x ∀∈+∞,关于x 的不等式11023x xm ⎛⎫⎛⎫++> ⎪ ⎪⎝⎭⎝⎭都成立; 若命题p 和命题q 都是真命题,则实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先解出命题所对应的集合,再将条件之间的关系转化为集合间的关系,即可得解. 【详解】因为x ∈R ,条件2:p x x <,条件1:q a x≥, 所以p 对应的集合()0,1A =,q 对应的集合1B x a x ⎧⎫=≥⎨⎬⎩⎭, 又p 是q 的充分不必要条件,所以A B ,当0a =时,集合{}100B x x x x ⎧⎫=≥=>⎨⎬⎩⎭,满足题意; 当>0a 时,集合110B xa x x x a ⎧⎫⎧⎫=≥=<≤⎨⎬⎨⎬⎩⎭⎩⎭,此时需满足11a≥即01a <≤; 当0a <时,集合()11,0,B xa x a ⎧⎫⎛⎤=≥=-∞⋃+∞⎨⎬ ⎥⎩⎭⎝⎦,满足题意;所以实数a 的取值范围为(],1-∞. 所以实数a 的取值不可能是2. 故选:C. 【点睛】关键点点睛:解决本题的关键是把命题间的关系转化为集合间的关系及分类求解命题q 对应的集合.2.D解析:D 【分析】根据命题q 是假命题,命题p 是真命题,结合复合命题真假判断的真值表,可判断出复合命题的真假,进而得到答案.∵命题q 是假命题,命题p 是真命题, ∴“p ∧q”是假命题,即A 错误; “¬p ∨q”是假命题,即B 误; “¬p ∧q”是假命题,即C 错误; “p q ⌝∨⌝ ”是真命题,故D 正确错; 故选D . 【点睛】本题考查的知识点是复合命题的真假,熟练掌握复合命题真假判断的真值表,是解答的关键.3.A解析:A 【分析】根据不等式性质,真命题,否命题,逆否命题性质逐一判断各个选项即可. 【详解】A 选项,若a b >,当0c ≤时,ac bc >不成立,所以命题为假命题,所以A 不正确B 选项,若220a b +=,则,a b 全为0正确,所以命题为真命题,正确C 选项,否命题否定结论和条件,本选项满足否命题形式,正确D 选项,命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠”满足逆否命题的形式. 所以答案选A 【点睛】本题考查了不等式的性质,真命题的判断,否命题和逆否命题的知识.属于基础题目.4.B解析:B 【分析】结合命题相关知识,对选项逐个分析即可得到答案. 【详解】对于①,,p q 可能为一真一假也可能两个都为假,故①错误;对于②,命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”,故②错误;对于③,“x ∀∈R ,211x +≥”的否定是“x ∃∈R ,211x +<”,正确.故只有③正确,答案为B. 【点睛】本题考查了复合命题的性质,考查了命题的否定、原命题的否命题,属于基础题.5.C解析:C 【分析】根据题意得到14n n a a --=或13n n a a -=,结合等差数列和等比数列的定义,即可判定.由题意知,数列{}n a 对任意2()n n *∈N ≥满足11(4)(3)0n n n n a a a a -----=, 所以14n n a a --=或13n n a a -=,则:对于①中,数列{}n a 可以是公差为4的等差数列; 对于②中,数列{}n a 可以是公比为3的等比数列;对于③中,若数列{}n a 既是等差又是等比数列,则此时数列{}n a 必为非零的常数列, 则公差为0,公比为1,由①②可知,③不正确;对于④{}n a 中,数列{}n a 可以既不是等差又不是等比数列,例如:1,5,15,19,,满足题设条件,此数列既不是等差又不是等比数列,所以④正确. 故选:C. 【点睛】本题主要以命题的真假判定与应用为载体,考查了等差数列、等比数列的定义及判定,其中解答中熟记等差数列、等比数列的定义,合理判定是解答的关键,着重考查推理与运算能力.6.D解析:D 【分析】先根据逆否命题的概念写出命题p 的逆否命题,再举反例说明其真假. 【详解】命题p 的逆否命题为“若()()1122log log x y y z -≥-,则x y ≤或y z ≤”;由于原命题为假(如4x =,3y =,1z =),故其逆否命题也为假, 故选:D. 【点睛】本题主要考查命题的逆否命题及其真假的判断,意在考查学生对这些知识的理解掌握水平,属于基础题.7.C解析:C 【分析】根据题意,①②说法正确,若0m =③错误,根据古典概型④概率应该为14π-.【详解】命题“x ∃∈R ,20x x ->”的否定是“x ∀∈R ,20x x -≤”,所以①正确;命题“p q ∨为真”即p ,q 至少有一个为真,不能推出命题“p q ∧为真”,命题“p q ∧为真”则p ,q 全为真,能够推出命题“p q ∨为真”,所以命题“p q ∨为真”是命题“p q ∧为真”的必要不充分条件,所以②正确;“若22am bm <,则a b <”的逆命题是:若a b <,则22am bm <,当0m =时不成立,所以该逆命题不是真命题,所以③不正确;若实数x ,[]0,1y ∈,有序数对(),x y 对应平面内的点形成的区域面积为1,如图:其中扇形区域不满足221x y +>,面积为4π,深色区域符合题意, 则满足221x y +>的概率为14π-,所以④不正确.故选:C 【点睛】此题考查命题的真假判断,涉及全称命题的否定,含有逻辑连接词的命题真假判断,不等式的性质辨析,求几何概型,涉及知识面比较广.8.A解析:A 【分析】因为原命题是假命题,其否定为真命题,问题可转化为0x R ∀∈,200230x mx m ++-≥恒成立,故由0∆≤即可求出m 的取值范围. 【详解】因为命题“0x R ∃∈,200230x mx m ++-<”为假命题, 故其否定:“0x R ∀∈,200230x mx m ++-≥”为真命题, 故224(23)8120m m m m ∆=--=-+≤,解得26m ≤≤, 故实数m 的取值范围是[2,6]. 故选:A 【点睛】本题原命题是存在性命题且为假命题,它的否定是全称命题且为真命题,进而将问题转化为恒成立处理,采用正难则反的思想进行求解,同时考查命题的等价性和转化的思想.9.D解析:D 【分析】由两直线平行与系数的关系式求得m 判断A;由线面垂直的判定定理判断B ;由平面向量的数量积的运算判断C ;写出特称命题的否定判断D ,综合可得答案. 【详解】解:由直线()2310m x my +++=与直线()()2230m x m y -++-=相互平行⇔223203220m m m m m ⎧+--=⎨-+--≠⎩()()()(),可得m =“12m =”是“直线()2310m x my +++=与直线()()2230m x m y -++-=相互平行”的既不充分也不必条件,故A 错误;直线l 垂直平面α内无数条直线不一定有直线垂直平面,故“直线l 垂直平面α内无数条直线”不是“直线l 垂直于平面α”的充分条件,故B 错误;a 、b 、c 为非零向量,由“a b a c ⋅=⋅”不能得到“b c =”,反之由“b c =”能够得到“a b a c ⋅=⋅”,故“a b a c ⋅=⋅”是“b c =”的必要不充分条件,故C 错误;p :存在x ∈R ,2220130x x ++≤.则p ⌝:任意x ∈R ,2220130x x ++>,故D 正确; 故选:D. 【点睛】本题主要考查命题真假的判断,涉及全称命题与特称命题的否定的书写、充分必要条件的判断等知识点,属于中档题.10.C解析:C 【分析】由辅助角公式化简命题p ,利用特殊值判断命题p 为假命题;根据直线与圆相切的性质,结合点到直线距离公式,可求得m 的值,判断出命题q 为真命题.即可由复合命题真假判断选项. 【详解】命题:,sin cos 10p x R x x ∀∈++≥由辅助角化简可得sin cos 114x x x π⎛⎫++=++ ⎪⎝⎭,可知当34x π=-104x π⎛⎫++< ⎪⎝⎭,故p 为假; 命题:q 直线:0l x y m -+=与圆22:(2)(1)8C x y -+-=相切的一个充分不必要条件是5m =-若直线:0l x y m -+=与圆22:(2)(1)8C x y -+-=相切,则d ==, 即|1|4d m =+=,解得3m =或5m =-,故q 为真, 故()p q ⌝∧为真, 故选:C.【点睛】本题考查了三角函数式的化简,根据直线与圆位置关系求参数的值,充分必要条件的判定,复合命题真假的判断,综合性强,属于中档题.11.C解析:C 【分析】写出“若24x =,则2x =或2x =-”的否命题,即可A 选项; 根据原命题与逆否命题的等价性,判断B 选项; 根据且命题的性质判断C 选项;写出该命题的否命题,举例说明,判断D 选项. 【详解】“若24x =,则2x =或2x =-”的否命题是“若24x ≠,则2x ≠且2x ≠-”,故A 错误; 因为p 是q 的充分条件,所以由p 能推出q ,所以q ⌝能推出p ⌝,即p ⌝是q ⌝的必要条件故B 错误;命题p 为真,q 为假,则p q ∧为假命题,故C 正确;命题“若αβ=,则sin sin αβ=”的否命题为“若αβ≠,则sin sin αβ≠”,所以否命题为假命题,例如当30,150αβ=︒=︒时,sin sin αβ=,故D 错误. 故选:C 【点睛】本题主要考查了写出命题的否命题并且判断真假,原命题与逆否命题的等价性应用,属于中档题.12.A解析:A 【分析】已知“对任意的正数x ,22ax x+≥”利用分离参数,求出a 的范围, 再根据充分必要条件的定义进行判断. 【详解】由对任意的正数x ,22ax x+≥成立时, 可得222a x x ≥-,22111222()222y x x x =-=--+≥,12a ∴≥即对任意的正数x ,22ax x+≥成立推不出12a <<,当12a <<成立时,可推出2222a ax x x x+⨯=>>, 即12a <<能推出对任意的正数x ,22ax x+≥, 所以“12a <<”是“对任意的正数x ,22ax x+≥”的充分不必要条件, 故选:A 【点睛】本题主要考查了充分不必要条件,二次函数的最值,均值不等式,属于中档题.二、填空题13.充分不必要【分析】根据题意利用基本不等式可判定充分性是成立的可举出反例说明必要性不成立即可得到答案【详解】当时由基本不等式可得当时有解得充分性是成立的;例如:当时满足但此时必要性不成立综上所述是的充解析:充分不必要 【分析】根据题意,利用基本不等式,可判定充分性是成立的,可举出反例,说明必要性不成立,即可得到答案. 【详解】当0,0a b >>时,由基本不等式,可得a b +≥当4a b +≤时,有4a b +≤,解得4ab ≤,充分性是成立的; 例如:当1,4a b ==时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故答案为充分不必要条件. 【点睛】本题主要考查了充分不必要条件的判定,其中解答中熟记充分条件、必要条件的判定方法,以及合理利用基本不等式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.14.【分析】根据是的充分非必要条件可知集合是集合的真子集由集合之间的包含关系再求参数范围即可【详解】对集合:解得;对集合:解得;因为是的充分非必要条件可知集合是集合的真子集故可得或解得或故故答案为:【点 解析:21m -<<【分析】根据β是α的充分非必要条件,可知集合β是集合α的真子集,由集合之间的包含关系,再求参数范围即可. 【详解】对集合α:28120x x -+>,解得()(),26,x ∈-∞⋂+∞;对集合β:2x m m -≤,解得22,x m m m m ⎡⎤∈-++⎣⎦;因为β是α的充分非必要条件,可知集合β是集合α的真子集, 故可得22m m +<,或26m m -+>, 解得()2,1m ∈-或m ∈∅, 故()2,1m ∈-. 故答案为:21m -<<. 【点睛】本题考查由充分非必要条件,推出集合之间的关系,以及根据集合关系求参数范围的问题,属综合基础题.15.①③⑤【分析】①用导数法求出在R 上的增函数的充要条件与对比即可判断结果;②求出函数的极值并判断正负即可判断结论;③列出从AB 中各任意取一个数所有情况算出两数之和等于4的基本事件即可求出概率判断结论真解析:①③⑤ 【分析】①用导数法求出()sin f x ax x =-在R 上的增函数的充要条件,与2a >对比即可判断结果;②求出函数31()13f x x x =-++的极值,并判断正负,即可判断结论; ③列出从A ,B 中各任意取一个数所有情况,算出两数之和等于4的基本事件,即可求出概率,判断结论真假;④按求轨迹的方法求出动点轨迹方程,即可判断结论,或举出反例;⑤构造函数(),(0,)x f x e x x =-∈+∞,求出最小值或取值范围,进而得出a 的范围,即可判断命题真假. 【详解】①()sin f x ax x =-在R 上的增函数,()cos 0,cos ,f x a x a x x R '∴=-≥≥∈恒成立,1a ≥.“2a >”是“1a ≥”的充分不必要条件,所以①正确; ②321()1,()1(1)(1)3f x x x f x x x x '=-++=-+=--+, ()0,11,()0,1f x x f x x ''>-<<<<-或1x >,()f x 递增区间是(1,1)-,递减区间是(,1),(1,)-∞-+∞,()f x ∴极大值为5(1),()3f f x =的极小值为1(1)3f -=,()f x 只有一个零点,②不正确;③集合{2,3}A =,{1,2,3}B =,从A ,B 中各任意取一个数, 所以情况有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种取法,两数之和等于4有2种取法,所以概率为13,③正确; ④设圆心(,)C x y ,定圆22(2)4x y -+=圆心为(2,0), 半径为2||2x =+,平方化简得244||y x x -=,当0x >时,28y x =,当0,0x y ==,C 在定圆上不合题意,当0x <时,0y =,④不正确;⑤设(),(0,),()10x x f x e x x f x e '=-∈+∞=->在(0,)x ∈+∞上恒成立,(),(0,)x f x e x x =-∈+∞单调递增,()(0)1f x f >=,不等式x e x a ≥+在(0,)x ∈+∞上恒成立,1a ∴≤,⑤正确.故答案为:①③⑤. 【点睛】本题考查命题真假的判定,涉及到:充分不必要条件判断、函数零点、古典概型概率、轨迹方程、不等式恒成立问题,属于中档题.16.【分析】若命题p :∀x ∈Rax2+2x+1>0是假命题则a =0或a <0或进而得到实数a 的取值范围【详解】若命题p :∀x ∈Rax2+2x+1>0是假命题则∃x ∈Rax2+2x+1≤0当a =0时y =2x 解析:(],1-∞【分析】若命题“p :∀x ∈R ,ax 2+2x +1>0”是假命题,则a =0,或a <0,或0440a a ⎧⎨=-≥⎩>,进而得到实数a 的取值范围. 【详解】若命题“p :∀x ∈R ,ax 2+2x +1>0”是假命题, 则∃x ∈R ,ax 2+2x +1≤0,当a =0时,y =2x +1为一次函数,满足条件;当a <0时,y =ax 2+2x +1是开口朝下的二次函数,满足条件; 当a >0时,y =ax 2+2x +1是开口朝上的二次函数, 则函数图象与x 轴有交点,即△=4﹣4a ≥0, 解得:0<a ≤1综上可得:实数a 的取值范围是:(],1-∞ 故答案为:(],1-∞ 【点睛】本题以命题的真假判断与应用为载体,考查了二次函数的图象和性质,难度中档.17.【分析】根据对数型复合函数值域可知是的值域的子集根据二次函数图象分析可得不等关系求得命题为真时;利用换元法将转化为求解的最值可求得命题为真时;求出当全为真时的范围取补集得到结果【详解】若命题为真即值 解析:(,0)(2,)-∞+∞【分析】根据对数型复合函数值域可知()0,∞+是2116y ax x a =-+的值域的子集,根据二次函数图象分析可得不等关系,求得命题p 为真时,02a ≤≤;利用换元法将39x x a -<转化为()21a t tt >->,求解2t t-的最值可求得命题q 为真时,0a ≥;求出当,p q 全为真时a 的范围,取补集得到结果.【详解】 若命题p 为真,即()21lg 16f x ax x a ⎛⎫=-+ ⎪⎝⎭值域为R当0a =时,0x ->,解得:0x <,满足题意当0a ≠时,21104a a >⎧⎪⎨∆=-≥⎪⎩,解得:02a <≤ 综上所述:若命题p 为真,则02a ≤≤若命题q 为真,即不等式39x x a -<对()0,x ∈+∞恒成立 令31x t =>,则2a t t >-1t > 2110t t ∴-<-= 0a ∴≥即若命题q 为真,则0a ≥∴当命题,p q 全为真命题时,02a ≤≤命题,p q 不全为真命题 a ∴的取值范围为:()(),02,-∞+∞故答案为:()(),02,-∞+∞【点睛】本题考查根据命题的真假性求解参数范围,涉及到根据对数型复合函数的值域求解参数范围、不等式恒成立问题的求解等知识.18.【分析】根据题意转化为利用可将函数进行换元利用对勾函数求函数的最大值【详解】当时又设设当时取得最大值若为真命题即的最大值是5故填:5【点睛】本题考查了根据全称命题的真假求参数取值范围的问题考查了转化 解析:5【分析】根据题意转化为()2max log 4log 2x m x ≤+,利用21log 2log x x=,可将函数进行换元,利用对勾函数求函数的最大值. 【详解】当[]2,8x ∈时,[]2log 1,3x ∈ 又21log 2log x x=,设[]2log 1,3x t =∈ , 设24log 4log 2x y x t t=+=+当1t =时,取得最大值max 5y =.若[]2"2,8,log 4log 2"x x m x ∃∈≤+为真命题,()2max log 4log 2x m x ≤+ ,即5m ≤,m ∴的最大值是5.故填:5. 【点睛】本题考查了根据全称命题的真假,求参数取值范围的问题,考查了转化与化归的思想,若存在0x ,使()0m f x ≤,即()()maxm f x ≤,若0x ∀,使()0m f x ≤恒成立,所以()()min m f x ≤,需注意时任意还是存在问题.19.【分析】使是假命题则使是真命题对是否等于进行讨论当时不符合题意当时由二次函数的图像与性质解答即可【详解】使是假命题则使是真命题当即转化为不是对任意的恒成立;当使即恒成立即第二个式子化简得解得或所以【解析:m >【分析】0x R ∃∈,使()200110m x mx m +-+-≤是假命题,则x R ∀∈,使()2110m x mx m +-+->是真命题,对1m +是否等于0进行讨论,当10m +=时不符合题意,当10m +≠时,由二次函数的图像与性质解答即可. 【详解】0x R ∃∈,使()200110m x mx m +-+-≤是假命题,则x R ∀∈,使()2110m x mx m +-+->是真命题,当10m +=,即1m =-,()2110m x mx m +-+->转化为20x ->,不是对任意的x ∈R 恒成立;当10m +≠,x R ∀∈,使()2110m x mx m +-+->即恒成立,即()()()2104110m m m m +>⎧⎪⎨--+-<⎪⎩ ,第二个式子化简得234m >,解得m >或m <所以m >【点睛】本题考查命题间的关系以及二次函数的图像与性质,解题的关键是得出x R ∀∈,使()2110m x mx m +-+->是真命题这一条件,属于一般题.20.①③【分析】根据正弦定理三角形内角正切关系以及诱导公式进行判断选择【详解】因为△中所以若则因此必有即△是锐角三角形;若则或;若则所以△是等腰三角形;若则所以或即或;综上正确命题的序号是①③【点睛】本解析:①③ 【分析】根据正弦定理、三角形内角正切关系以及诱导公式进行判断选择. 【详解】因为△ABC 中tan tan tan tan tan tan A B C A B C ++=,所以若tan tan tan 0A B C ++>,则tan tan tan 0A B C >,因此必有tan 0,tan 0,tan 0A B C >>>,即△ABC 是锐角三角形; 若cos cos a A b B =,则cos cos sinA A sinB B =, 22,A B sin A sin B ==或A B 2π+=;若cos cos a B b A b +=,则cos cos sinA B sinB A sinB +=, ()sin A B sinB +=,sinC sinB =,C B =,所以△ABC 是等腰三角形;若cos sin A B =,则sin sin 2A B π⎛⎫-= ⎪⎝⎭,所以2A B π-=或2A B ππ-+=,即2A B π+=或2A B π-+=;综上正确命题的序号是①③. 【点睛】本题考查正弦定理、三角形内角正切关系以及诱导公式,考查基本转化与判断化简能力,属中档题.三、解答题21.(1){}14A x x =≤≤,当2a >时,{}2B x x a =≤≤;当2a =时,{2}B =;当2a <时,{}2B x a x =≤≤;(2)14a ≤≤.【分析】(1)利用一元二次不等式的解法,即可求得A ,将不等式2(2)20()x a x a a R -++≤∈因式分解,讨论2a >、2a =、2a <三种情况,即可得答案;(2)根据题意可得B A ⊆,讨论2a >、2a =、2a <三种情况,即可得答案.【详解】(1)不等式254x x ≤-,整理得2540x x -+≤,即(1)(4)0x x --≤, 解得14x ≤≤,所以{}14A x x =≤≤.不等式2(2)20()x a x a a R -++≤∈,整理得()(2)0x a x --≤, 当2a >时,解得2x a ≤≤,所以解集为{}2B x x a =≤≤; 当2a =时,解集为{2}B =;当2a <时,解得2a x ≤≤,所以解集为{}2B x a x =≤≤. (2)因为x A ∈是x B ∈的必要条件,即B A ⊆, 当2a >时,{}2B x x a =≤≤,所以4a ≤,即24a <≤; 当2a =时,{2}B =,满足题意;当2a <时,{}2B x a x =≤≤,所以1a ≥,即12a ≤<, 综上14a ≤≤. 【点睛】本题考查一元二次不等式的解法,充分、必要条件等知识,考查分析理解,分类讨论,计算化简的能力,属中档题. 22.(1)当52k >时,5,2B k ⎛⎫=-- ⎪⎝⎭;当52k =时,B =∅;当52k <时,5,2B k ⎛⎫=-- ⎪⎝⎭;(2)1k.【分析】(1)分类讨论解不等式可得集合B ;(2)求解集合A ,根据充分不必要条件与集合包含之间的关系可求解. 【详解】(1)22(25)50x k x k +++<,则(25)()0x x k ++<, ∴52k >时,52k x -<<-,52k =时,不等式无实解,当52k <时,52x k -<<-. ∴当52k >时,5,2B k ⎛⎫=-- ⎪⎝⎭;当52k =时,B =∅;当52k <时,5,2B k ⎛⎫=-- ⎪⎝⎭; (2)由已知{|1A x x =<-或2}x > 若“x B ∈”是“x A ∈”的充分不必要条件,则BA ,52k ≥时,显然满足B A ,52k <时,1k -≤-,∴512k ≤<. 综上1k.【点睛】本题考查解一元二次不等式,考查由充分不必要条件与集合包含之间的关系求参数范围.属于基础题.解含参数的一元二次不等式时注意分类讨论. 23.(1)(0,1);(2)[1,3). 【分析】(1)根据双曲线的标准方程求解;(2)再求出q 为真命题的a 的范围,由(1)得p 为假时a 的范围,求交集可得结论. 【详解】(1)方程22122x y a a +=-表示焦点在x 轴上的双曲线,则0220a a >⎧⎨-<⎩,解得01a <<, 所以a 的范围是(0,1);(2)由(1)得p 为假时,(,0][1,)a ∈-∞+∞,又()32z a ai =-+对应点坐标为(3,2)a a -,该点在第二象限,则3020a a -<⎧⎨>⎩,解得0<<3a ,所以命题p 是假命题,q 是真命题时,13a ≤<.即a 的取值范围是[1,3).【点睛】本题考查命题的真假以及复合命题的真假,考查双曲线的标准方程和复数的几何意义,属于基础题. 24.[)10,4,3⎛⎤+∞ ⎥⎝⎦.【分析】先化简两个集合,再根据充分必要性得到A 是B 的真子集,再列式计算即可. 【详解】解:{}{}224303(0)A x x ax a x a x a a =-+≤=≤≤>,{}2540{1B x x x x x =-+≥=≤或4}x ≥,因为“x A ∈”是“x B ∈”的充分不必要条件,所以A 是B 的真子集,故310a a ≤⎧⎨>⎩或40a a ≥⎧⎨>⎩,103a ∴<≤或4a ≥,∴实数a 的取值范围是[)10,4,3⎛⎤+∞ ⎥⎝⎦.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.25.203a -≤<【分析】p 是q 的充分不必要条件,则集合A 是集合B 的子集,运用区间端点值之间的关系可求a 的取值范围. 【详解】 解:0a <,由22430x ax a -+<得3a x a <<,设{}3A x a x a =<<,由260x x --≤得23x -≤≤,设{}23B x x =-≤≤,p 是q 的充分不必要条件,A ∴ B ,323a a ≥-⎧∴⎨≤⎩0a <203a ∴-≤<. 【点睛】本题是命题真假的判断与应用,考查了必要条件问题,属于中档题.判断充要条件的方法是:①若p ⇒q 为真命题且q ⇒p 为假命题,则命题p 是命题q 的充分不必要条件;②若p ⇒q 为假命题且q ⇒p 为真命题,则命题p 是命题q 的必要不充分条件;③若p ⇒q 为真命题且q ⇒p 为真命题,则命题p 是命题q 的充要条件;④若p ⇒q 为假命题且q ⇒p 为假命题,则命题p 是命题q 的即不充分也不必要条件.⑤判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系.26.⎢⎣【分析】对于命题p ,讨论1m =-和1m ≠-时,结合判别式求出m 范围;对于命题q ,根据()1123xxg x m ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的单调性求出最值即可得出m 范围,联立两个命题即可得出答案.【详解】命题p :关于x 的方程()21210m x m +-+-=有实数解,讨论如下:①1m =-显然成立;②1m ≠-时,()()()224110m m ∆=--+-≥,整理的220m -≥解得:m ≤≤1m ≠-; ∴命题p为真命题时,m ≤命题q :[)0,x ∀∈+∞,关于x 的不等式11023x xm ⎛⎫⎛⎫++> ⎪ ⎪⎝⎭⎝⎭都成立 令()1123xxg x m ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,[)0,x ∈+∞ 函数()y g x =在[)0,+∞单调递减,()(],2g x m m ∈+不等式1123x xm⎛⎫⎛⎫++>⎪ ⎪⎝⎭⎝⎭恒成立,∴0m≥;因为命题p和命题q都是真命题,所以m的范围⎢⎣.【点睛】方法点睛:解决此类问题一般先求出命题为真时对应的参数范围,再结合命题的真假或复合命题的真假列出对应的不等式求解.。
逻辑推理能力测试题
逻辑推理能力测试题逻辑推理能力测试题:1. 条件推理题:- 问题:如果一个物体是红色的,那么它不是绿色的。
现在有一个物体是红色的,请问它是什么颜色的?- 答案:不是绿色的。
2. 因果推理题:- 问题:张三每次下雨都会带伞,今天张三带了伞,请问今天是否下雨了?- 答案:不能确定,因为带伞可能有其他原因。
3. 类比推理题:- 问题:如果“苹果”对于“水果”相当于“汽车”对于什么? - 答案:交通工具。
4. 序列推理题:- 问题:下列序列遵循什么规律?2, 4, 8, 16, ...- 答案:每个数是前一个数的两倍。
5. 空间推理题:- 问题:如果一个立方体的一面是红色,另一面是蓝色,那么红色面和蓝色面之间有几个面?- 答案:4个面。
6. 假设推理题:- 问题:如果所有的猫都怕水,那么一只怕水的动物一定是猫吗?- 答案:不一定,因为可能还有其他怕水的动物。
7. 逻辑谜题:- 问题:在一个房间里有三个人,每个人都戴着一顶帽子,帽子只有黑色和白色两种。
每个人都能看到其他人的帽子颜色,但看不到自己的。
如果他们知道至少有一个人的帽子是黑色的,他们能通过观察其他人的帽子颜色来确定自己的帽子颜色吗?- 答案:如果三个人的帽子都是白色的,他们将无法确定自己的帽子颜色。
但如果至少有一个人的帽子是黑色的,他们可以通过排除法确定自己的帽子颜色。
8. 逻辑判断题:- 问题:如果所有的A都是B,且所有的B都是C,那么所有的A 都是C吗?- 答案:是的。
9. 逻辑分析题:- 问题:有五个盒子,每个盒子里都有一个苹果。
如果从每个盒子里取出一个苹果,那么剩下多少个苹果?- 答案:0个。
10. 逻辑选择题:- 问题:如果一个命题是真,那么它的逆命题、否命题、和逆否命题中,哪些命题也是真的?- 答案:逆命题和逆否命题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用逻辑用语测试题一 、 选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列语句不是命题的有( )①230x -=;②与一条直线相交的两直线平行吗③315+=;④536x -> A.①③④ B.①②③ C.①②④ D.②③④ 2.(改编题)命题“a 、b 都是奇数,则a +b 是偶数”的逆命题是 ( ) A .a 、b 都不是奇数,则a +b 是偶数 B .a +b 是偶数,则a 、b 都是奇数 C .a +b 不是偶数,则a 、b 都不是奇数 D .a +b 不是偶数,则a 、b 不都是奇数 3.命题“若a >b ,则22ac bc >”(这里a 、b 、c 都是实数)与它的逆命题、否命题、逆否命题中,真命题的个数为 ( ) A .4个 B .3个 C .2个 D .0个 4.命题“若A ∪B =A ,则A ∩B=B ”的否命题是( )A .若A ∪B ≠A ,则A ∩B ≠B B .若A ∩B =B ,则A ∪B=AC .若A ∩B ≠A ,则A ∪B ≠BD .若A ∪B =B ,则A ∩B =A 5.(改编题)下列有关命题的说法中错误的个数是( ) ①若p q ∧为假命题,则p q 、均为假命题②“1x =”是“2320x x -+=”的充分不必要条件③命题“若2320x x -+=,则1x =“的逆否命题为:“若1,x ≠则2320x x -+≠” ④对于命题:,p x R ∃∈使得210x x ++<,则:,p x R ⌝∀∈均有210x x ++≥ A 4 B 3 C 2 D 16.已知命题:p R x ∈∃,022≤++a ax x .若命题p 是假命题,则实数a 的取值范围是( )A.(,0][1,)-∞+∞B.[0,1]C.(,0)(1,)-∞+∞D.(0,1)7.(原创题)“2ab=-”是“直线20ax y +=垂直于直线1x by +=”的( ) A.充分而不必要条件 B.充分必要条件C.必要而不充分条件D.既不充分也不必要条件 8.用反证法证明命题:“a ,b ∈N ,ab 能被5整除,那么a ,b 中至少有一个能被5整除”时,假设的内容是( ) A .a 、b 都能被5整除B .a 、b 都不能被5整除C .a 、b 不都能被5整除D .a 不能被5整除,或b 不能被5整除9.圆221x y +=与直线2y kx =+没有公共点的充要条件是( )A.(k ∈B.(,(2,)k ∈-∞+∞C.(k ∈D.(,(3,)k ∈-∞+∞10.命题:“∀x∈R,022≥+-x x ”的否定是( )∃∈R,022≥+-x x ∀∈R,022≥+-x x ∃∈R,022<+-x x∀∈R,022<+-x x11、在ABC ∆中,设命题p:sin sin sin a b cB C A==,命题q:ABC ∆是等边三角形,那么命题p 是命题q 的( )A.充要条件B.必要不充分条件C.充分不必要条件D.即不充分也不必要条件 12、设命题p :函数21()lg()4f x ax x a =-+的定义域为R ;命题q :不等式39x x a -<对一切正实数...均成立.如果命题“p 或q ”为真命题,且“p 且q ”为假命题,则实数a 的取值范围是 ( )A.(1,)+∞B.[0,1]C.[0,)+∞D.(0,1) 二、填空题(共4小题,每小题3分共12分,把答案填在相应的位置上)13.设p 、r 都是q 的充分条件,s 是q 的充要条件,t 是s 的必要条件,t 是r 的充分条件,那么p 是t 的________条件,r 是t 的________条件.(用充分、必要、充要填空)14.“末位数字是0或5的整数能被5整除”的否定形式是 ; 否命题是 . 15.(原创题)若命题“∃x ∈R ,x 2+ax +1<0”是假命题,则实数a 的取值范围是 . 16.给出下列命题:(1)命题“若b 2-4ac<0,则方程ax 2+bx+c=0(a ≠0)无实根”的否命题 (2)命题“△ABC 中,AB=BC=CA ,那么△ABC 为等边三角形”的逆命题 (3)命题“若a>b>0,则3a >3b >0”的逆否命题(4)“若m >1,则mx 2-2(m +1)x +(m -3)>0的解集为R ”的逆命题其中真命题的序号为__________. 三. 解答题:(本大题四个小题,共52分,解答应写出文字说明,证明过程或演算步骤)17.(本小题10分)写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假. (1)两条平行线不相交(2)两条对角线不相等的平行四边形不是矩形 (3)若x ≥10,则2x +1>20 18.(改编题)(本小题10分) 已知命题),0(012:,64:22>≥-+-≤-a a x x q x p若非p 是q 的充分不必要条件,求a 的取值范围.19.(本小题10分)已知命题p :方程x 2+mx +1=0有两个不等的负根;命题q :方程4x 2+4(m -2)x +1=0无实根.若“p 或q ”为真,“p 且q ”为假,求m 的取值范围. 20.(本小题10分)证明:已知a 与b 均为有理数,且a 和b 都是无理数,证明a +b 也是无理数. 21.(本小题12分)已知下列三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a=0至少有一个方程有实根,求实数a 的取值范围【 挑战能力】★1.(改编题)在ABC ∆中,AB AC BA BC ⋅=⋅“” 是 AC BC =“”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件★2 (原创题)命题:p 若a b ∈R ,,若1a b +>则1a b +>,命题:q 函数y =的定义域是(][)13--+,,∞∞,则下列命题( )A.p q ∨假B.p q ∧真C.p 真,q 假D.p 假,q 真★3.已知0≠ab ,求证1=+b a 的充要条件是02233=--++b a ab b a .常用逻辑用语测试题参考答案一 、 选择题 1.【答案】C【解析】①④无法判断其真假,②为疑问句,所以只有③为命题. 2.【答案】B 【解析】“都是”的否定是“不都是”. 3.【答案】C【解析】原命题为假命题,当c=0时不成立,故逆否命题也为假命题;逆命题与否命题都是真命题;另外四种命题中真命题与假命题的个数只能是0,2,4,不可能是3个.4.【答案】A 【解析】“A ∪B=A ”的否定是“A ∪B ≠A ”而不是“A ∩B ≠A ” 5.【答案】D【解析】由命题p q ∧真假性的可知A 是错的. 6.【答案】D【解析】p 为假,知“不存在x R ∈,使220x ax a ++≤”为真,即“x R ∀∈,220x ax a ++>”为真,∴△=244001a a a -<⇒<<.7.【答案】A 【解析】由“2ab=-”知直线20ax y +=与直线1x by +=的斜率均为1-,两直线垂直;当. 0,0a b ==时两直线垂直。
8.【答案】B【解析】反证法证明命题应假设结论不正确.“ 至少有一个”的否定是“一个也没有”. 9.【答案】C【解析】圆与直线y=kx+2没有公共点,得圆心(0,0)到直线,到直线2y kx =+的距离1122≥+=kd ,所以(k ∈.10.【答案】C【解析】考查含有全称量词的命题的否定. 11.【答案】A【解析】,sin sin sin a b c B C A ==即22sin 2sin ,sin sin sin sin sin R A R BA CB B C== ① c B A ACR C B R 2sin sin sin ,sin sin 2sin sin 2==②,①-②,得(sin sin )(sin sin sin )0,C B A B C -++=则sin sin ,C A =∴.C A =同理得,C B = ∴A B C ==,则ABC ∆是等边三角形.反之成立. 12.【答案】B【解析】若命题p 为真,即2104ax x a -+>恒成立.则00a >⎧⎨<⎩,有2010a a >⎧⎨-<⎩,∴1a >. 令21139(3)24x x xy =-=--+,由0x >得31x>,∴39x x y =-的值域为(,0)-∞. ∴若命题q 为真,则0a ≥.由命题“p 或q”为真,且“p 且q”为假,得命题p 、q 一真一假.当p真q假时,a不存在;当p假q真时,01a≤≤.二、填空题(共4小题,每小题4分共16分,把答案填在相应的位置上)13.【答案】充分充要【解析】由题意可画出图形:由图形可看出p是t的充分条件,r是t的充要条件.14.【答案】否定形式:末位数是0或5的整数,不能被5整除;否命题:末位数不是0或5的整数,不能被5整除 .【解析】否定形式只否定结论;否命题否定条件与结论。
15.【答案】2 2.a-≤≤【解析】2040.2 2.a a∆≤-≤∴-≤≤由得:16.【答案】(1)(2)(3)【解析】三. 解答题:(本大题四个小题,共52分,解答应写出文字说明,证明过程或演算步骤)17.【解析】(1)逆命题:若两条直线不相交,则它们平行,为真命题.否命题:若两条直线不平行,则它们相交为真命题.逆否命题:若两条直线相交,则它们不平行为真命题.(2)逆命题:若平行四边形不是矩形,则它的两条对角线不相等,为真命题.否命题:若平行四边形两条对角线相等,则它是矩形,为真命题.逆否命题:若平行四边形为矩形,则它的两条对角线相等,为真命题.(3)逆命题:若2x+1>20,则x≥10,为假命题.否命题:若x<10,则2x+1≤20,为假命题.逆否命题:若2x+1≤20,则x<10,为假命题.18.【解析】{}:46,10,2,|10,2p x x x A x x x⌝->><-=><-或或{} 22:2101,1,|1,1q x x a x a x a B x x a x a -+-≥≥+≤-=≥+≤-,或记或而,p q A⌝⇒∴B,即12110,03aa aa-≥-⎧⎪+≤∴<≤⎨⎪>⎩19.【解析】若方程x2+mx+1=0有两不等的负根,则⎩⎨⎧>>-=∆42mm解得m>2,即命题p:m>2若方程4x2+4(m-2)x+1=0无实根,则Δ=16(m-2)2-16=16(m2-4m+3)<0解得:1<m<3.即q:1<m<3.因“p 或q ”为真,所以p 、q 至少有一为真, 又“p 且q ”为假,所以命题p 、q 至少有一为假,因此,命题p 、q 应一真一假,即命题p 为真,命题q 为假或命题p 为假,命题q 为真.∴⎩⎨⎧<<≤⎩⎨⎧≥≤>312312m m m m m 或或解得:m ≥3或1<m ≤2.20.【解析】假设a +b 是有理数,则(a +b )(ab )=a b由a >0, b >0 则a +b >0 即a +b 0∴ba b a b a +-=- ∵a ,b Q 且a +b Q∴ba b a +-Q 即(a b )Q 这样(a +b )+(ab )=2aQ从而 aQ (矛盾) ∴a +b 是无理数.21.【解析】假设三个方程都没有实根,则:由Δ--+<Δ--<Δ-××-<得+-<+-<+<1222232222=(4a)4(4a 3)0=(a 1)4a 0=(2a)41(2a)0 4a 4a 303a 2a 10a 2a 0⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪ 解集:-1<a <0,∴所求实数a 的取值范围是:a ≤-1或a ≥0【 挑战能力】1.【答案】C 【解析】AB AC BA BC ⋅=⋅cos cos cos cos AB AC A BA BC BAC A BC B∴=∴=设AD 为ABC ∆的高线,则cos ,cos AC A AD BC B BD ∴==,BCD ACD BC AC ∴∆≅∆∴=2. 【答案】:D【解析】因为,11a b a b a b a b +≤++>∴+>;所以p 假。