小学数学解决问题解题策略
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学解决问题解题
策略
文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-
小学数学解决问题解题步骤
防城区峒中镇小学韦达良
【内容摘要】:在小学数学教育教学中,解决问题(也说应用题)顾名思义就是利用数学方法去解决一些实际问题,最简单的建模就是我们做的应用题。在整个小学数学教学中,解决问题占有相当大的比例(约为25%~32%),所以如何解答好应用题是学习好数学的一个关键的环节。本文主要是由笔者平时教学中如何解决应用题的一些心得体会,从中总结了读(弄清题意)、分(应用题分类)、解(做出解答)三个步骤。通过以下所述,希望可以帮助学生更容易的解答应用题,使解题能够起到事半功倍。
【关键词】:解决问题读分解
在小学数学的学习生活中,解决问题所占的比例很大,约为25%~32%,同时在现实生活中,我们也可以用所学到的应用题来解决实际的问题,例如:几个家庭聚会用餐,习惯AA制,按人数分摊费用,因此也可以这么说解决问题是生活的需要,数学来源于生活,而服务于生活。其实解决问题的学习是对小学生进行思维训练,小学生通过学习,起到培养数学逻辑思维能力,提高其数学素质。
笔者认为应用题的教学,一定要加强学生思维能力的训练,语言的训练,强化学生归类应用题的能力,并通过对题目的阅读理解基础上,迅速对所做的题目进行有效的分类,根据应用题各种类型题,对准问题做出相应的解答。这样才能提高学生灵活解决实际问题的能力。为此,总结我多年的数学应用题的教学心得,在常见的数学几种应用题中,得出解决应用题的以下步骤:读――分――解。现分述如下,希望可以帮助学生更好地学习小学数学应用题。
一、读
小学数学应用题上所谓的读,我是指读懂题目,弄清题意。应用题是用语言
表述的一类题型,对数学语言的理解能力要求非常高。因此,读题便成为解答应用题的一个重要环节,它是学生自己感知信息数据的过程,弄清题意是把不相关的语言精简掉,整理出有用的信息数据进行下一步的分析理解。现在很多应用题不但考的是数学常识,还考查了语文的阅读能力,还有转化问题的能力。可能有些人会说数学的读看起来很简单,平时不太注意的去强调和有意识的去训练,造成学生在解答应用题时,没有充分理解题目的基本含义,解题就没有方法可论,甚至是无从下手。所以我们在教学应用题时,有必要的加强读。但数学应用题的读并非泛泛而读,它要求讲究一定的方式,数学中的读不讲究抑扬顿挫、优美动听,但需要用心、用脑、集中注意的读,一般来讲要读三遍:第一遍初读,对题目有初步印象;第二遍应逐字逐句的读,重点理解每个词、数学术语的实际含义;第三遍连贯起来读,重点掌握题目的已知条件和所求问题。
例:人教版六年级数学十一册第38页上的例5,小明的体重是35kg,他的体重比爸爸的体重轻8/15,小明爸爸的体重是多少千克?
在读这个题目的时候需要通过大脑反映弄清四个问题:
1、这道题叙述的是什么事?
2、题目第一条件是什么?
3、第二条件是什么?关键词是什么:谁和谁比?比什么?比的结果怎样?
4、问题是什么?按题目的题型格式,属于哪种应用题?
通过四问,读懂了题目,弄清了题意,掌握了已知条件和所求问题,更加重要的是把应用题进行了归类,为下面的解答扫清了障碍。
二、分
分,笔者认为,在我们整个小学阶段的数学应用题学习中,出现了很多种类型的应用题,有些是平时应用得比较广泛的,在日常学习中就应该注意归纳总结出典型题的特征,题目中所包含的主要特点,分类训练,强化记忆。如:
1、总数应用题
我这里所说的总数应用题泛指是应用题中出现的总数、路程的全长、单位“1”
所对应的数,“占”字、“是”字、“相当于”后面的数、分数(指的是分率,分数后面没有数量单位)的前面的数等,它们也叫做单位“1”。如男同学占全班人数的2/3,全班人数就是总数;甲数是乙数的4/5,乙数是总数;平时按照这些特征归类成总数应用题,它的一般解答方法是:单位“1”知道的用乘法,单位“1”不知道的用除法,前提是单位“1”×对应的分率,所得的结果是分率所对应的数,除的时候要对应的数量÷对应的分率,所得的结果是单位“1”所对应的数。例,甲数是乙数的2/3,甲数是20,乙数是多少?乙数是单位“1”,它不知道,所以用除法,甲数是20,它所对应的分率是2/3,计算可为20÷
2/3。
2、“比”字应用题
“比”字应用题是指:一个数(简称甲数)比另一个数(简称乙数)多(或少)几分之几的类型题。如甲数比乙数多1/5,乙数是20,求甲数。同样先找单位“1”,它的单位“1”都是在“比”字的后面,如上题乙数是单位“1”。“比”应用题的解题方法是:一个数(已知)×或÷(1+或-几/几),意思就是说,单位“1”知道的用乘法,单位“1”不知道的用除法,括号里面列式可为,比多的是1+几/几,比少的是1-几/几。
例:人教版十一册38页上的例5,小明的体重是35kg,他的体重比爸爸的体重轻
8/15,小明爸爸的体重是多少千克?这题中爸爸的体重就是单位“1”,现在不知道,所以用除法,列式是35÷(1-8/15),又如上面提到的甲数和乙数,计算为20×
(1+1/5)。
3、比较量÷标准量
此题的特征是:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。如:甲数是5,乙数是4,求甲数是乙数的几分之几?这里的字眼是“是”字,“是”
字的前面是比较量(作被除数),后面是标准量(作除数),列式为比较量÷标准量,这题正确列式就是5÷4;还有一种题型是甲数是5,乙数是4,求甲数比乙数多几分之几?这里的字眼是“比”字,比较量为甲数比乙数多的部分,“比”字后面乙数是标准量,解题方法为:(甲数-乙数)÷乙数,上题可列式为(5-4)÷4。
4、两个未知数
人教版十一册41页例6:我们班全场得了42分,下半场得分只有上半场的一半,上半场和下半场各得多少分?
这题的特征是只懂得总数,上半场和下半场都是未知数。做这种题型的关键是先找出全题的数量关系式,作为总列式的依据,上题就可以列为上半场+下半场=42分,然后找出上、下半场中谁作为单位“1”设为X,同样的道理分率的前面(上面的红字),绿色部分上半场为单位“1”,所以此题上半场得分设为X,则下半场为1/2X,全题列
式:X+1/2X=42
5、按比例分配
有这样的一条题目:一个长方形的周长是40厘米,长和宽的比为3:2,长
和宽各是多少厘米?很多学生往往都会做成这样40×3/(3+2)=24(厘米),40×
2/(3+2)=16(厘米),很显然这是错误的解题。原因就是把总数看成了周长。我平时的教学是先根据比求出总份数,第二步找出这个比相对应的总数,因此要让学生牢记这句话——谁和谁的比,相对应的总数就是谁和谁的和,这题的比是长和宽的比,相对应的总数只能是长和宽的和,而不是周长,第三步再用总数×相对应的份比=相对应的部分数。那么这题可列式为:1、3+2=5,2、40÷2=20(厘米),3、20×3/5=12(厘米),20×2/5=8(厘米)。
小学阶段数学的学习,应用题的种类很多,细分的话可分40来种,如工程问题、归一问题、行程问题、鸡兔同笼、和差问题、几何形体等等(在以后的论文里再叙)。我这