高等数学定积分在几何上的应用ppt

合集下载

《高数》定积分课件

《高数》定积分课件
《高数》定积分ppt 课件
目录
• 定积分的概念 • 定积分的计算 • 微积分的应用 • 定积分的物理应用 • 定积分的进一步理解
01
CATALOGUE
定积分的概念
定积分的定义
01
定积分是积分的一种,是函数在区间上积分和的极 限。
02
定积分常用于计算平面图形的面积、体积等。
03
定积分的定义基于极限思想,通过分割、近似、求 和、取极限等步骤来定义。
物体在重力作用下的功与能
总结词
通过定积分计算重力做功和能量变化
详细描述
在重力作用下,物体运动过程中重力所做的功和能量变化可以用定积分表示。 通过定积分计算,可以得出重力做功和能量变化的具体数值。
05
CATALOGUE
定积分的进一步理解
定积分的极限思想
定积分是通过对曲线下的面积进行极限分割,再求和得到的结果,这个过 程体现了极限的思想。
可加性
对于任意分割的两个区间上的定积分,其和等于两区间上定积分的和 。
区间区间上定积分的值 之和。
比较性质
如果函数在不同区间上单调增加或减少,则其定积分的值也相应增加 或减少。
02
CATALOGUE
定积分的计算
微积分基本定理
总结词
微积分基本定理是定积分计算的基础, 它建立了积分与微分的联系,为解决定 积分问题提供了重要的思路和方法。
另一个函数的定积分进行计算。这些方法在实际应用中具有广泛的应用价值。
积分中值定理
总结词
积分中值定理揭示了定积分与被积函数之间 的关系,它是解决定积分问题的一个重要工 具。
详细描述
积分中值定理指出,对于连续函数f(x)在闭 区间[a,b]上的定积分∫baf(x)dx=f(ξ)(b−a) ,其中ξ∈[a,b]。这个定理说明了定积分的 结果等于被积函数在一个子区间上的取值与 该区间长度的乘积。这个定理在解决定积分 问题时非常有用,特别是当我们需要找到被

高等数学(上册)-第5章第6讲(定积分的几何应用)[22页]

高等数学(上册)-第5章第6讲(定积分的几何应用)[22页]

5
二、 平面图形的面积
1. 直角坐标系中的平面图形的面积
在平面直角坐标系中求由曲线y f (x),y g(x)和直线x a,x b围成图
形的面积A,其中函数f (x),g(x)在区间[a,b]上连续,且f (x) g(x),如图所示.
在区间[a,b] 上任取代表区间[x, x dx],在区间两个端点处做垂直于x 轴的
A 1 r2 ( )d.
2
β
O
α
ρ 10
本讲内容
01 微元法 02 平面图形的面积 03 体积 04 平面曲线的弧长
11
三、 体积
1.旋转体的体积.
由一个平面图形绕这平面内一条直线旋转一 y 周而成的立体称为旋转体,这条直线称为旋转轴.
如圆柱、圆锥、圆台、球体都是旋转体. 设一旋转体由连续曲线 y f (x),直线x a, O a
直线,由于 dx 非常小,这样介于两条直线之间的图形可以近似看成矩形,因
此面积微元可表示为
[ f (x) g(x)]dx,
于是,所求面积A为
b
A a [ f (x) g(x)]dx.
若f (x) g(x),则有
A
b
[ f (x) g(x)]dx.
a
综合以上两种情况,由曲线 y f (x),y g(x)
y x 1(y)
d
c O
x 2(y) x
7
二、 平面图形的面积 例 1 求由两抛物线y x2与x y2 所围成图形的面积A .

解方程组
y x
x2,得到两抛物线的交点为(0,0),(1,1), y 2,
y
两抛物线围成的图形如图所示.
则所求面积 A 为
A

应用高等数学第3章3.2.3 定积分的应用21页PPT

应用高等数学第3章3.2.3 定积分的应用21页PPT
6
取x为积分变量,在 x[0,6]上任 取一子区间[x, xdx],当dx很小时, 在该微区间上阀门所受水的微压力是:
dF2gxydx29.8103x(1x3)dx
6
从而所求的压力为
F069.8103(1 3x26x)dx9.810391x33x260 8.23105N
一、微元法的基本思想
如图所示的曲边梯形的面积A是定积分
A
42(y4)y22
dx
-2
y2 = 2x
(2,-2) A
B (8,4) y = x-4
x
(
y2
4y
y3 4 )
2
6
2
18
a b 例4
求椭圆
x2 a2
by22
1,(a0,b0) 的面积.
解:如图,先求出椭圆在第一象限内的面积 A1 ,
它是由 yb a2 x2, x0,a与x轴、y轴所围
根据微分的定义有 f(x)dxdA,从而得到曲边梯形的
面积
b
b
AAadAaf(x)dx
一、微元法的基本思想
因此求曲边梯形面积A的方法是:
第一步,在[a,b]上任取一形式子区间[x,x+dx]
(其中dx为x的微元,即无限细分),并求出面
积A的微分dA=f(x)dx,即面积微元;
第二步,以微分表达式f(x)dx为被积表达式,在[a,
成的面积.
a
A1
ab 0a
a2 x2dx
令 x asint, x 0, a,
则 t arcsin x ,
a
dxacostdt.
A1
ab 0a
a2x2dx π 2b
0a
a2a2sin2tacostdt

高中数学-定积分在几何中的应用-课件

高中数学-定积分在几何中的应用-课件

求由一条曲线 y=f(x)和直线 x=a,x=b(a<b)及 y=0 所围成平面图形的面积 S.
①如图 1 所示,f(x)>0, bf(x)dx>0. a
∴S= bf(x)dx. a
②如图 2 所示,f(x)<0, bf(x)dx<0, a
∴S=| bf(x)dx|=- bf(x)dx.
a
a
2×23x32
|
2 0
=136,
8
S2=2 [4-x-(- 2x)]dx
=4x-12x2+2
3
2x32|
8 2
=338,
于是 S=136+338=18.
方法二:选y作为积分变量,
将曲线方程写为x=y22及x=4-y.
则S=2-44-y-y22dy
=4y-y22-y63|
2 -4
=18.
变式训练 1:由曲线 y= x,直线 y=x-2 及 y 轴所围成
解.
由方程组
y2=2x y=4-x
解出抛物线和直线的交
点为(2,2)及(8,-4).
方法一:选 x 作为积分变量,由图可看出 S=S1+S2,
由于抛物线在 x 轴上方的方程为 y= 2x,
在 x 轴下方的方程为 y=- 2x,
2
所以 S1=0 [ 2x-(- 2x)]dx
=2
2 1
20x2 dx=2
❖1.7 定积分的简单应用
❖1.7.1 定积分在几何中的应用
自主学习 新知突破
❖ 1.理解定积分的几何意义.
❖ 2.会通过定积分求由两条或多条曲线 围成的平面图形的面积.
复习回顾
[问题 1]定积分的几何意义.
由三条直线 x=a,x=b(a<b),x 轴及 一条曲线 y=f(x)(f(x)≥0)围成的曲边 梯形的面积 S=________.

高等数学ppt课件:定积分的几何应用

高等数学ppt课件:定积分的几何应用

到的旋转体体积为
证 对于任意 x [a, b] , 用过点 x 且与 x 轴 垂直的平面截该旋转体, 则截面是一个半 径为 f ( x) 的圆盘(见图) ,
因此, A( x) πf 2 ( x) ,故旋转体的体积
V π f 2 ( x)dx
a
b
39-13
推论 6.2.3
将由 y 轴,直线 y c, y d (c d ) 及连续曲线 x ( y )
x [a, a] 且垂直于 x 轴的平面截楔形体的
截面为一直角三角形,其面积为 1 2 1 2 2 2 2 A( x) a x a x tan (a x 2 ) tan 2 2
故由定理 6.2.3,所求体积为
a x 3 a 2a 3 1 2 2 2 tan V A( x)dx tan (a x )dx tan (a x ) 0 a a 3 3 2 a
A


1 2 dA r ( )d . 2
39-7
例 6.2.4 求双纽线 r 2 a 2 cos 2 所围平 面图形的面积,其中常数 a 0 .
y o
4
a x
4
解 由对称性,求出第 I 象限内的面积,然后乘以 4 即可.
而双纽线 r 2 a 2 cos 2 在原点处有两条切线,其中位于 π 第 I 象限内部分的切线方程为 (如图).因此,在第 I 4 π [0, ] ,由定理 6.2.2 可得 象限内, 4
1 2 A r ( )d . 成曲边扇形的面积为 2 证 运用微元法来证明 .选取θ为积分变量,则
[ , ] ,在 [ , ] 上任取小区间 [ , d ] ,

高等数学(上) 第3版教学课件5-6 定积分应用举例

高等数学(上) 第3版教学课件5-6 定积分应用举例
通常交流电器上注明的功率就是平均功率
《高等数学》
谢谢观看
于是 A f ( x)dx
b
A lim f ( x)dx a f ( x)dx.
o a x x dxb x
所求量U 符合下列条件时能用定积分
表达:
(1)U 是与一个变量 x的变化区间a, b有关
的量;
( 2 ) U 对 于 区 间 a, b具 有 可 加 性 , 就 是 说,如果把区间a, b分成许多部分区间,则
例8 计算从时刻 0 到 T 秒时间段内
自由落体运动的平均速度.
解:自由落体运动的速度为 v gt
根据定积分的物理意义及平均值公式得:
v 1 T
T 0
gtdt
g T
1 2
t2
T 0
1 2
gT
例9 计算纯电阻电路中正弦交流电 i m sin t
在一个周期上的平均功率.
解: 设电阻为 R ,则这个电路的电压为
积分变量,在 2,1 上任取一个小区间 x, x dx
则相应 于此小区间的窄条面积可用高为 x 1 1 x
xx
,宽为dx 的小矩形面积近似代替,从而得面积微元
根据微元法得
dA 1 x dx x
A 1 1 x dx
2 x
ln x 1 x2 1 3 ln 2
2 2 2
形的曲边是上半个(或下半个)椭圆
y
a b
a2 x2 ,
代入体积公式得:V
a b a a
a2 x2 dx
2b 2
a2
a a 2 x2 dx
0
2b 2
a2
a2 x
1 3
x3
a 0
4 3

高等数学上6.2定积分在几何学上的应用PPT课件

高等数学上6.2定积分在几何学上的应用PPT课件

边长 →0 时, 折线的长度趋向于一个确定的极限 , 则称
此极限为曲线弧 AB 的弧长 , 即
n
s lim 0
M i1M i
i1
并称此曲线弧为可求长的.
y M i1
A M0 o
定理: 任意光滑曲线弧都是可求长的.
(证明略)
Mi
B Mn x
首页
上页
返回
下页
结束
(1) 曲线弧由直角坐标方程给出: y f (x) (a x b)
弧长元素(弧微分) :
ds (dx)2 (dy)2 1 y2 dx (P170)
因此所求弧长
s b 1 y2 dx a b 1 f 2 (x) dx a
y
y f (x)
ds
o a xxdx b x
首页
上页
返回
下页
结束
(2) 曲线弧由参数方程给出:
x y
(t) (t)
( t )
弧长元素(弧微分) :
ds (dx)2 (dy)2
2 (t) 2 (t) dt
因此所求弧长
s
2 (t) 2 (t) d t
首页
上页
返回
下页
结束
(3) 曲线弧由极坐标方程给出:
r r( ) ( ) 令 x r( )cos , y r( )sin , 则得
0
4
a
2
b
12
2
ab
当 a = b 时得圆面积公式
首页
上页
返回
下页
结束
一般地 , 当曲边梯形的曲边由参数方程
x y
(t) (t)
给出时, 按顺时针方向规定起点和终点的参数值 t1 , t2

高等数学(第三版)课件:定积分的应用

高等数学(第三版)课件:定积分的应用

线 y f ( x,) 直线 x a, x b (a b) 与
• x 轴围成的面积是在x 轴上方和下方曲边梯形
面积的差.
• • 同样可由微元法分析
•⒉ 一般地,根据微元法由曲线 y f ( x), y g( x),
• ( f ( x) g( x)) 及直线x a, x b 所围的图形
• 面积.(右图所示)
• 解: 取 为积分变量,

面积微元为
d
A
1 2
(a )2
d
• 于是
A 2 1 (a )2d a 2 2
02
23
2 4 a 2 3
03
• 例5 计算双纽线 r 2 a2 cos2 (a 0)

所围成的平面图形的面积(下图所示)
• 解 因 r 2 0,故 的变化范围是 [ 3 , 5 ,]
• ⑴分割区间[a,b],将所求量(曲边梯形面积 A )
分为部分量(小曲边梯形面积 Ai)之和;
• ⑵确定各部分量的近似值(小矩形面积);
Ai f (i )xi
• ⑶求和得所求量的近似值(各小矩形面积之和);
n
A f (i )xi
i 1
• ⑷对和式取极限得所求量的精确值(曲边梯形面积).
n
A lim 0
• 它表示高为f ( x) 、底为 dx 的一个矩形面积.
• ⑵由定积分几何意义可知,当 f (x) 0 时,由曲
线 y f (x),直线 x a, x b (a b) 与 x 轴所围成
的曲边梯形的面积A为
A
b
f (x)dx
.
a
• ⑶当 f ( x)在区间 [a, b]上的值有正有负时,则曲

高教社2024高等数学第五版教学课件-5.1 定积分的概念与性质

高教社2024高等数学第五版教学课件-5.1 定积分的概念与性质
第五章 定积分
第一节 定积分的概念与性质
一、问题的提出
实例1 (求曲边梯形的面积)
由连续曲线 = ()(() ≥ 0)、
轴、直线 = 、 = 所围成的图形
称为曲边梯形。
用矩形面积近似取代曲边梯形面积
y
o
y
a
b
(四个小矩形)
x
o
a
b
x
(九个小矩形)
显然,小矩形越多,矩形总面积越接近曲边梯形面积.
→0
= max ∆
1≤≤
= σ=1 ± σ=1
=
→0

‫ ׬‬
±

‫ ׬‬
→0

性质1可以推广到有限个可积函数作和或者作差的情况.
性质2 被积函数的常数因子可提到积分号的外面,即

‫)( ׬‬
总有下式成立:



‫ )( ׬ = )( ׬‬+ ‫)( ׬‬.
例如,若 < < ,则

‫ ׬‬

=

‫ ׬‬
+

‫ ׬‬





故 ‫ )( ׬ = )( ׬‬− ‫)( ׬‬
= ‫ )( ׬‬+ ‫)( ׬‬.

因为 ≤ () ≤ ,由性质4得

‫ ׬‬


≤ ‫ ׬ ≤ )( ׬‬,

又‫ = ׬‬− ,

故( − ) ≤ ‫ ( ≤ )( ׬‬− ).
性质6(积分中值定理)


[, ],使‫)( ׬‬
设函数()在[, ]上连续,则至少存在一点

高等数学第六章第二节定积分在几何学上的应用课件.ppt

高等数学第六章第二节定积分在几何学上的应用课件.ppt

解:
cos x 0,
2
x
2
s
2
2
2 2 0
1 y2 dx 1 ( cos x)2 dx
2 2
2 cos x dx
0
2
2
2
2
sin
x 2
2
0
4
的弧长.
例11. 计算摆线
一拱
的弧长 .
y
解: ds
(dd
x t
)2
(
d d
y t
)
2
d
t
o
a2 (1 cos t)2 a2 sin2 t d t
1 y2 dx
因此所求弧长
s b 1 y2 dx a
b
a
1 f 2(x) dx
y
y f (x)
ds
o a xxdxb x
(2) 曲线弧由参数方程给出:
弧长元素(弧微分) :
ds (dx)2 (dy)2
2 (t) 2 (t) dt
因此所求弧长
s
2 (t) 2 (t) d t
(3) 曲线弧由极坐标方程给出:
y b
o x ax
则 V 2 a y2 dx 0
(利用对称性)
2
b2 a2
a
(a
2
x2
)
dx
0
2
b2 a2
a2 x
1 3
x3
a 0
4 ab2
3
方法2 利用椭圆参数方程
则 V 20a y2 dx 2 ab2 sin3t d t
2 ab2 2 1
3
4 ab2
3
特别当b
=
a

《高数定积分》课件

《高数定积分》课件

05
广义积分及其收敛性判别法
广义积分的概念及分类
广义积分的定义
广义积分是相对于正常积分而言的一种特殊积分,其积分区间可能包含无穷大或者无界 函数。
广义积分的分类
根据被积函数和积分区间的不同,广义积分可分为无穷限广分的收敛性判别法
比较判别法
通过比较被积函数与已知收敛或发散的函数,来判断广义积分的收敛性。
换元法求解定积分
01
换元法的基本思想
通过变量代换简化定积分的计算 。
02
常见的换元方法
03
换元法的注意事项
三角函数代换、倒代换、根式代 换等。
代换后需调整积分上下限,并验 证代换的可行性。
分部积分法求解定积分
分部积分法的基本思想
将复杂函数拆分为简单函数 进行积分。
常见的分部积分公式
幂函数与三角函数、幂函数 与指数函数、幂函数与对数 函数等。
06
定积分在经济学等领域的应用
由边际函数求原经济函数
边际函数与定积分的关系
边际函数描述的是经济量变化的瞬时速率,而定积分则可用于求取原经济函数,即总量 函数。
求原经济函数的步骤
首先确定边际函数的表达式,然后根据定积分的定义,对边际函数进行积分,得到原经 济函数的表达式。
示例
已知某产品的边际收益函数为MR(q),通过对其进行定积分,可以得到总收益函数 TR(q)。
曲线的长度、图形的面积等。
THANKS
感谢观看
原函数与不定积分概念
原函数定义
原函数是指一个函数的导数等于给定函数的函数。根据微积分基本定理,不定积分就是求原函数的过 程。
不定积分性质
不定积分具有线性性质、常数倍性质和积分区间可加性。这些性质在求解复杂函数的定积分时非常有 用。

定积分的几何应用课件

定积分的几何应用课件

电场中的电势
总结词
定积分可计算电场中的电势
详细描述
在静电场中,电势差与电场强度成正比。通过定积分可以计算出 某一点处的电势,即对电场强度进行积分。
公式表示
电势 = ∫E·dl
05
定积分的近似计算
方法
矩形法
总结词
矩形法是一种简单直观的定积分近似计算方法,通过将积分 区间划分为若干个小的矩形,然后求和来逼近定积分。
详细描述
辛普森法则是梯形法的一种改进,它考虑了函数在积分区间的整体变化趋势,将 积分区间分成若干个小的子区间,然后在每个子区间上应用梯形法来逼近定积分 。辛普森法则的精度比矩形法和梯形法更高,但计算量也相对较大。
THANKS
感谢您的观看
3
曲边三角形面积的近似计算
在无法直接计算定积分的情况下,可以使用近似 方法计算曲边三角形的面积,如矩形法、梯形法 等。
任意图形的面积
任意图形面积的计算
01
通过定积分计算任意图形的面积,首先需要找到图形的边界曲
线表达式,然后确定上下限,最后计算定积分。
任意图形面积的几何意义
02
任意图形面积表示的是边界曲线围成的平面区域面积。
详细描述
矩形法的基本思想是将积分区间分成若干个小的矩形,每个 矩形的宽度为小区间的宽度,高度为函数在相应小区间的平 均值。然后,将这些矩形的面积加起来,得到的就是定积分 的近似值。
梯形法
总结词
梯形法是一种基于几何直观的定积分近似计算方法,通过将积分区间划分为若干个小的梯形,然后求 和来逼近定积分。
围绕旋转轴旋转的平面图形被称为 旋转面。
旋转体的体积公式
圆柱的体积公式
V = πr²h,其中r是底面半径,h是高。

高等数学-定积分及其应用ppt课件.ppt

高等数学-定积分及其应用ppt课件.ppt
一、引例
在变速直线运动中, 已知位置函数
与速度函数
之间有关系:
物体在时间间隔
内经过的路程为
这种积分与原函数的关系在一定条件下具有普遍性 .
5.3 定积分的计算
则积分上限函数
证:
则有
定理1. 若
5.3.1 牛顿 – 莱布尼兹公式
说明:
1) 定理 1 证明了连续函数的原函数是存在的.
2) 变限积分求导:
5.6.1 广义积分
引例. 曲线
和直线
及 x 轴所围成的开口曲
边梯形的面积
可记作
其含义可理解为
1 连续函数在无限区间上的积分
定义1. 设

存在 ,
则称此极限为 f (x) 在区间 的广义积分,
记作
这时称广义积分
收敛 ;
如果上述极限不存在,
就称广义积分
发散 .
类似地 , 若
公式, 复化求积公式等,
并有现成的数学软件可供调用.
性质1 常数因子可提到积分号外 性质2 函数代数和的积分等于它们积分的代数和。
5.2 定积分的简单性质
性质3 若在区间 [ a , b ]上 f (x)≡K,则 性质4 定积分的区间可加性 若 c 是 [ a , b ] 内的任一点,则
的面积 .
解:
例3. 汽车以每小时 36 km 的速度行驶 ,
速停车,
解: 设开始刹车时刻为
则此时刻汽车速度
刹车后汽车减速行驶 , 其速度为
当汽车停住时,


故在这段时间内汽车所走的距离为
刹车,
问从开始刹
到某处需要减
设汽车以等加速度
车到停车走了多少距离?

高等数学课件:元素法定积分在几何学上的应用(1)

高等数学课件:元素法定积分在几何学上的应用(1)

2.平行截面面积已知的立体的体积
设所给立体垂直于x 轴的截面面积为A(x),
则对应于小区间
的体积元素为
因此所求立体体积为
上连续.
取 x 为积分变量,
切 片 法
计算该平面截圆柱体所得立体的体积.
x
交成 角,
一平面经过半径为R的圆柱体的底圆中心,
并与底面
例10.
作垂直于 x 轴的截面.

(2) 绕 y 轴旋转,
取 y 为积分变量
a = b 时, 得半径为 a的球体的体积
例9. 计算由曲线
及直线
图形绕 y 轴旋转而成的立体的体积.
解:绕 y 轴旋转,
取 y 为积分变量,则
所围成的
图形绕 y 轴旋转而成的立体的体积.
图形绕 y 轴旋转而成的立体体积.
则体积元素为
因此所求体积为
定积分在几何学上的应用(1)
一、元素法
二、平面图形的面积
三、立体的体积
1 曲边梯形面积的求法:
分割 近似 求和 取极限
一 、元素法
分割:
近似:
求和 取极限:
面积元素 记作
(1)
选取积分变量,
如选取 x ,
并确定其变化区间
在[a ,b]上选取任一小区间
(2)
任取小区间
则对应该小区间上曲边扇形面积的近似值为
所求曲边扇形的面积为

曲边扇形的面积.
对应 从 0到2
例5 计算阿基米德螺线
解:
的一段弧与x轴所围成的图形的面积.
例6. 计算心形线
围成图形的面积.
解:
(利用对称性)
由一个平面图形绕这平面内

高等数学课件 第六章(6-1平面图形的面积)

高等数学课件 第六章(6-1平面图形的面积)
则窄曲边形的面积近似为
从而面积元素为
于是得面积
《高等数学》第六章第一节
1. 直角坐标系 例1 求由曲线 及 所围成平面图形的面积.
Байду номын сангаас
解 面积元素 (如图) , 在积分区间 [0, 2] 上作定积分, 即所求的面积是
《高等数学》第六章第一节
思考题: 求由星形线 所围成图形的面积.
《高等数学》第六章第一节
2.极坐标情形
线 所围成的曲边扇形,求其面积公式.
问题:设平面图形 是由曲线 ( )与射
, 且当x由0变到a时, 由
变到0, 则有
可得
一般地,当曲边梯形的曲边 y = f (x) ( f (x) 0 , x[a, b] )
由参数方程 给出时, 若
(1) 在 (或 )上具有连续导数,且
《高等数学》第六章第一节
(2) 连续,
则曲边梯形的面积为
《高等数学》第六章第一节
例4 求摆线第一拱 与
轴围成的面积.
解 上图为摆线形成的过程,所求面积为:
《高等数学》第六章第一节
应用定积分来计算平面图形面积, 对于 在不同坐标系下的情况我们分别加以介绍.
6.1.2 平面图形面积
《高等数学》第六章第一节
1.直角坐标情形
问题: 设曲边形由两条曲线 及直线
《高等数学》第六章第一节
思考题:求由 围成的面积.
如果平面区域是由曲线 , 及 直线 所围成 ,它的面积是定积分
解 由于椭圆关于两个坐标轴都对称 , 故椭圆面积为 A = 4A1, 其中A1为椭圆在第一象限的面积, 因此
利用椭圆的参数方程
, 0 2,
x
y
a

《高等数学》(同济六版)教学课件★第6章.定积分的应用

《高等数学》(同济六版)教学课件★第6章.定积分的应用
2) U 对区间 [a , b] 具有可加性 , 即可通过 “大化小, 常代变, 近似和, 取极限”
表示为
定积分定义
目录 上页 下页 返回 结束
二 、如何应用定积分解决问题 ?
第一步 利用“化整为零 , 以常代变” 求出局部量
近的似值
微分表达式
dU f (x) dx
第二步 利用“ 积零为整 , 无限累加 ” 求出整体量的
精确值
积分表达式
b
U a f (x) dx
这种分析方法称为元素法 (或微元分析法 )
元素的几何形状常取为: 条, 带, 段, 环, 扇, 片, 壳 等
第二节 目录 上页 下页 返回 结束
第二节
第六章
定积分在几何学上的应用
一、 平面图形的面积
二、 平面曲线的弧长 三、已知平行截面面积函数的
立体体积
目录 上页 下页 返回 结束
例8. 求双纽线
所围图形面积 .
解: 利用对称性 , 则所求面积为
y
1 a2 cos2 d
2
π 4
π
a2 4 cos 2 d (2 ) 0
O
ax
a2sin 2 a2
π 4
思考: 用定积分表示该双纽线与圆 r a 2 sin
所围公共部分的面积 .
答案:
π
A 2 6 a2 sin2 d 0
y Mi1
A M0 O
定理: 任意光滑曲线弧都是可求长的.
(证明略)
Mi
B Mn x
目录 上页 下页 返回 结束
(1) 曲线弧由直角坐标方程给出:
弧长元素(弧微分) :
ds (dx)2 (dy)2
1 y2 dx
因此所求弧长

定积分及其应用(高数) PPT课件

定积分及其应用(高数) PPT课件

定理2 设 u( x),v( x)在区间[a,b]上有连续的导数,

aabbuuddvvu[uvvba]ba
bb
vvdduu
aa
定积分的分部积分公式
由不定积分的分部积分法 及N--L公式.
类似于不定积分的分部积分法:“反、对、幂、指、三”
(3)重要公式
奇、偶函数在对称区间上的定积分性质 三角函数的定积分公式 周期函数的定积分公式
方的面积取正号; 在 x 轴下方的面积取负号.
A1 A2
A3 A4
b
a f ( x)dx
A1 A2
A3
A4
2.定积分的性质
性质1
b
a [
f
(
x)
g(
x)]dx
b
a
f
(
x)dx
b
a g(
x)dx
性质2
b
a kf
(
x)dx
k
b
a
f
(
x)dx
( k 为常数)
性质3 (区间可加性)
b
c
b
a f ( x)dx a f ( x)dx c f ( x)dx
区间上的定积分都相等.
例1 设
f
(
x)
2 5
x
0
x
1
,

1 x2
2
0
f
( x)dx.

2
0
f
( x)dx
1 0
f
( x)dx
2
1
f
( x)dx
1
2xdx
2
5dx
6.
0
1
例2 求
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


4 0
2a 2 .
Nanjing College of Information and Technology
2
8
2
2
0
2 xdx ( 2 x x 4)dx
2
3 2 2 2 2 x 0 3 8 2
8
2 3 2 2 x2 3
1 2 x 2
8 2
24
Nanjing College of Information and Technology
第五章 定积分及其应用
第二节 定积分在几何上的应用
1
(c )
x( t )dy( t ) y 1 ( c ) x( t ) y( t ) dt .
y 1 ( d )
Nanjing College of Information and Technology
第五章 定积分及其应用
第二节 定积分在几何上的应用
x a( t sin t ) 例4 求摆线 (a 0, 0 t 2 ) y a(1 cos t )
4

(sin x cos x ) 2 2

4 0
( cos x sin x )

4
Nanjing College of Information and Technology
第五章 定积分及其应用
第二节 定积分在几何上的应用
参数方程情形:
x x( t ) 设曲边梯形的曲边参数方程为 , y y( t )
记作dA
b
y
dA
y f ( x)
o a x x dxb x
b a
(2) 将这些面积元素在[a,b]上“无限累加”得
A lim f ( x )dx f ( x )dx dA
a
Nanjing College of Information and Technology
第五章 定积分及其应用
两曲线的交点 (0,0), (1,1)
选 x 为积分变量 x[0, 1]
面积微元:
x y2
2
2
dA ( x x )dx
A ( x x )dx
0 1
y x2
2 3 x2 3
1
x3 3 0
1 0
1 . 3
Nanjing College of Information and Technology
第二节 定积分在几何上的应用
如果ρ是正的, 则在OP上取一点M使得OM= ρ;如
果ρ是负的, 则在OP的反向延长线上取一点M使得
OM= ρ . 极角θ为正表示逆时针旋转, 为负表示顺时针 旋转.
M
P
ρ
θ O
Nanjing College of Information and Technology
第五章 定积分及其应用
a
b
Nanjing College of Information and Technology
第五章 定积分及其应用
第二节 定积分在几何上的应用
2.求由两条曲线 y=f(x) , y=g(x) ( f(x) g(x) ) 及直线 x=a, x=b 所围成平面 面积微元:
dA [ f ( x ) g( x )]dx
x
4) 取极限
曲边梯形的面积 A f ( x )dx a
Nanjing College of Information and Technology
第五章 定积分及其应用
第二节 定积分在几何上的应用
设函数 y = f(x) 在[a,b]上连续, (1) 在区间[a,b]上任取小区间[x, x+dx], 相应地小区间上面积的近似值为: 面积元素 ΔA≈ f(x)dx
第二节 定积分在几何上的应用
应用微元法解决定积分应用问题的步骤是:
1) 选取积分变量, 确定它的变化区间[a,b];
2) 在区间[a, b]上任取一个小区间[x,x+dx], 并在小区 间上找出所求量F的微元 dF = f(x)dx (局部近似值) ;
3) 求定积分 F

b
a
f ( x )dx
Nanjing College of Information and Technology
dy 18.
Nanjing College of Information and Technology
第五章 定积分及其应用
第二节 定积分在几何上的应用
问题 若选x为积分变量呢?
4
S S1 S2
[ 2 x ( 2 x )]dx
0 2
S2
S1
2
–2 –4
4
[ 2 x ( x 4)]dx
第五章 定积分及其应用
第二节 定积分在几何上的应用
例2 求由 y2=2x, y=x-4 所围成的图形的面积
两曲线的交点
y 2x y x4
2
y2 2 x
y x4
( 2,2), (8,4).
选 y 为积分变量
y A y4 2
4 2 2
y [2, 4]
极坐标系是由一个极点和一个极轴构成, 极轴的 方向为水平向右.
①极点; ②极轴; ③长度单位; ④角度单位和它的正 方向, 构成了极坐标系的四要素, 缺一不可.
Nanjing College of Information and Technology
第五章 定积分及其应用
第二节 定积分在几何上的应用
2
Nanjing College of Information and Technology
第五章 定积分及其应用
第二节 定积分在几何上的应用
练 习 求双纽线 2 2a 2 cos 2 所围面积. y
0
4
2a
x
Nanjing College of Information and Technology
第二节 定积分在几何上的应用
2 3 M4
5 6


3
M1


6
8
7 6
M2 4 3
11 6
M3 5 3
Nanjing College of Information and Technology
第五章 定积分及其应用
第二节 定积分在几何上的应用
dA [ ( y ) ( y )]dy
曲边梯形的面积:
A [ ( y ) ( y )]dy
c d
Nanjing College of Information and Technology
第五章 定积分及其应用
第二节 定积分在几何上的应用
例1 求由 y2=x, y=x2 所围成的图形的面积
2
a
0
4ab sin 2 tdt ab.
0
Nanjing College of Information and Technology
2
第五章 定积分及其应用
第二节 定积分在几何上的应用
极坐标系: 在平面内取一个定点O, 从O引一条射线Ox, 选定 一个单位长度以及计算角度的正方向(通常取逆时针 方向为正方) , 这样就建立了一个极坐标系 , O点叫 做极点, 射线Ox叫做极轴.
其面积的计算公式可由直角坐标下曲边梯形的面积 公式经过定积分的换元法得到:
A ydx x 1 ( a ) y( t )dx( t ) x 1 ( a ) y( t ) x( t ) dt ;
a b
x 1 ( b )
x 1 ( b )
A xdy
c
d

y 1 ( d ) y
极坐标和直角坐标互化公式:
x cos y sin
2 x2 y2 y tan ( x 0) x
极坐标化直角坐标公式
直角坐标化极坐标公式
Nanjing College of Information and Technology
1 2 dA ( ) d 2

x
3. 作定积分 A

1 [ ( )]2d 2
Nanjing College of Information and Technology
第五章 定积分及其应用
第二节 定积分在几何上的应用
例6 计算心形线=a(1+cos) 所围图形的面积
A 2 A1 2
a
2

0
1 [a(1 cos )]2 d 2
2
a (1 2cos cos )d 3 1 a ( 2cos cos 2 )d 2 2
0

(1 cos )2 d
2
A1
o
2
0

0
3 1 3 2 a [ 2sin sin 2 ] 0 a 2 4 2
第五章 定积分及其应用
第二节 定积分在几何上的应用
x2 y2 例5 求椭圆 2 2 1 的面积. a b
x a cos t 椭圆的参数方程 y b sin t
由对称性知总面积等于4倍第一象限部分面积.
A 40 ydx 4 b sin td ( a cos t )
的一拱与 x 轴围成的图形的面积 .
A
2 0
2 a 0
ydx
a(1 cos t )a(1 cos t )dt a
2

2
0
(1 2cos t cos2 t )dt
相关文档
最新文档