抛物线及其标准方程-_图文.ppt
合集下载
4.3.1抛物线的标准方程 课件(共14张PPT)
程为 x 3 .
2
2
活动 3 巩固练习,提升素养
例1 (2)已知抛物线的焦点坐标是 F(0,-2),求它 的标准方程.
解(2)因它的标准方程为为焦点在 y 轴的负半轴上, 并且 p 2,p 4 ,所以所求方程是
2
x2 8 y
课堂小结
y2 2 px p>0或y2 2 px p>0 x2 2 py p>0或x2 2 py p>0
试一试 第一步:在画板上画一条直线 l,使 l 与画板左侧的边
线平行; 第二步:再在直线 l 外画一个定点 F.取一个丁字尺靠
紧画板左侧外沿,丁字尺和直线垂直且相交于点 P,在丁 字尺的另一端取一点 Q, 将一条长度等于 PQ 的细绳,一 端固定在点 Q ,另一端固定在点 F;
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
F p ,0 ,准线为 x p .
2
2
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
设 M(x,y) 是抛物线上一点,则 M 到 F 的距离为
MF
x
p 2
2
y2
,M
到直线
l
的距离为
x
p 2
,所以
x p 2 y2 x p .
2
2
将上式两边平方,并化简得
y2 2 px p>0.
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
抛物线的标准方程还有其他几种形 :y2 2 px, x2 2 py x2 2 py ,它们的焦点、准线方程以及图形如表中所示:
抛物线及其标准方程 课件
(1)y2=-12x;(2)3x2-4y=0;(3)x=32y2;(4)y2=ax(a≠0).
思路分析先将所给方程转化为标准方程的形式,确定其开口方向,
求出p的值,再写出焦点坐标和准线方程.பைடு நூலகம்
解(1)由方程 y2=-12x 知,抛物线开口向左,焦点在 x 轴的负半
轴上,2p=12,所以 p=6,2=3,因此焦点坐标为(-3,0),准线方程为
解(1)因为点M(-8,4)在第二象限,所以抛物线焦点在y轴的正半轴
或x轴的负半轴上.
设抛物线方程为x2=2py(p>0)或y2=-2px(p>0).
将点M(-8,4)代入可得(-8)2=2p·4或42=-2p·(-8),
解得2p=16或2p=2,
故所求抛物线方程为x2=16y或y2=-2x.
(2)因为直线 x+4y+6=0 与坐标轴的交点为(-6,0),
轴还是y轴,是正半轴还是负半轴,从而设出相应的标准方程的形
式;“计算”就是指根据所给的已知条件求出方程中参数p的值,从而
得到抛物线的标准方程.
2.求抛物线的标准方程时需注意以下三个问题:
(1)注意开口方向与方程间的对应关系;
(2)当抛物线的类型没有确定时,可设方程为y2=mx或x2=my,这样
可以减少讨论情况的个数;
2 2 4
1
- ,0
4
,准线方程为
1
x= .
4
综上可知,当 a≠0 时,抛物线 x=-ay2 的焦点坐标为 1
线方程为 x=4.
1
,0
4
,准
纠错心得在解决抛物线问题时,必须注意抛物线方程的形式,若
不是标准方程,应首先转化为标准方程,其次要注意分类讨论思想
思路分析先将所给方程转化为标准方程的形式,确定其开口方向,
求出p的值,再写出焦点坐标和准线方程.பைடு நூலகம்
解(1)由方程 y2=-12x 知,抛物线开口向左,焦点在 x 轴的负半
轴上,2p=12,所以 p=6,2=3,因此焦点坐标为(-3,0),准线方程为
解(1)因为点M(-8,4)在第二象限,所以抛物线焦点在y轴的正半轴
或x轴的负半轴上.
设抛物线方程为x2=2py(p>0)或y2=-2px(p>0).
将点M(-8,4)代入可得(-8)2=2p·4或42=-2p·(-8),
解得2p=16或2p=2,
故所求抛物线方程为x2=16y或y2=-2x.
(2)因为直线 x+4y+6=0 与坐标轴的交点为(-6,0),
轴还是y轴,是正半轴还是负半轴,从而设出相应的标准方程的形
式;“计算”就是指根据所给的已知条件求出方程中参数p的值,从而
得到抛物线的标准方程.
2.求抛物线的标准方程时需注意以下三个问题:
(1)注意开口方向与方程间的对应关系;
(2)当抛物线的类型没有确定时,可设方程为y2=mx或x2=my,这样
可以减少讨论情况的个数;
2 2 4
1
- ,0
4
,准线方程为
1
x= .
4
综上可知,当 a≠0 时,抛物线 x=-ay2 的焦点坐标为 1
线方程为 x=4.
1
,0
4
,准
纠错心得在解决抛物线问题时,必须注意抛物线方程的形式,若
不是标准方程,应首先转化为标准方程,其次要注意分类讨论思想
抛物线及其标准方程
p 2 ,0 )
准线L: x = -
p 2
o
.
x
其中p 为正常数,它的几何意义是:
焦点到准线的距离(焦准距)
但是,一条抛物线,由于它在坐标平 面内的位置不同,方程也不同,所以 抛物线的标准方程还有其它形式。
三 抛物线的标准方程
抛物线的标 准方程还有 哪些形式?
想 一 想 ?
其它形式的抛 物线的焦点与 准线呢?
L
y
o
F
p F( ,0) 2
L: χ=-
y2=2pχ
p 2
x
(p>0)
y
p ,0) F(- 2
F o
L
χ=
p 2
x
y2=-2pχ
(p>0)
y
χ2=2py
p F(0, ) 2
(p>0)
F o x L
p L: y =- 2
p ) F(0,- 2
o F
y
p L: y = 2
L
χ2=-2py (p>0)
2)已知抛物线焦点在X轴上,焦准距 为2,求它的标准方程 3)已知抛物线的焦准距为2,求它的 标准方程
1 4)若抛物线的准线方程是x , 4 求它的标准方程
例3:求以原点为顶点,坐标轴 y 为对称轴且过 A 点A(-3,2) 的抛物线的 O 标准方程。
.
x
例3:求焦点在直线2x+3y-6=0上 的抛物线的标准方程。
抛物线及其标准方程
抛物线的生活实例 探照灯的灯面
一 抛物线的定义
平面内与一个定点F和一条定直 线l的距离相等的点的轨迹叫做 抛物线。
L N
M
注1 定点F叫做抛物线的焦点。
2 定直线L叫做抛物线的准线
准线L: x = -
p 2
o
.
x
其中p 为正常数,它的几何意义是:
焦点到准线的距离(焦准距)
但是,一条抛物线,由于它在坐标平 面内的位置不同,方程也不同,所以 抛物线的标准方程还有其它形式。
三 抛物线的标准方程
抛物线的标 准方程还有 哪些形式?
想 一 想 ?
其它形式的抛 物线的焦点与 准线呢?
L
y
o
F
p F( ,0) 2
L: χ=-
y2=2pχ
p 2
x
(p>0)
y
p ,0) F(- 2
F o
L
χ=
p 2
x
y2=-2pχ
(p>0)
y
χ2=2py
p F(0, ) 2
(p>0)
F o x L
p L: y =- 2
p ) F(0,- 2
o F
y
p L: y = 2
L
χ2=-2py (p>0)
2)已知抛物线焦点在X轴上,焦准距 为2,求它的标准方程 3)已知抛物线的焦准距为2,求它的 标准方程
1 4)若抛物线的准线方程是x , 4 求它的标准方程
例3:求以原点为顶点,坐标轴 y 为对称轴且过 A 点A(-3,2) 的抛物线的 O 标准方程。
.
x
例3:求焦点在直线2x+3y-6=0上 的抛物线的标准方程。
抛物线及其标准方程
抛物线的生活实例 探照灯的灯面
一 抛物线的定义
平面内与一个定点F和一条定直 线l的距离相等的点的轨迹叫做 抛物线。
L N
M
注1 定点F叫做抛物线的焦点。
2 定直线L叫做抛物线的准线
抛物线及其标准方程优秀课件
准线位置:根据抛物线 准线的位置,可以分为 准线平行于x轴、准线 平行于y轴和准线不平 行于坐标轴三种。
抛物线的标准方程
抛物线的标准方程推导
抛物线的定义:一个平面曲线,它的所有点都位于一个固定点(焦点)和一条固定直 线(准线)之间。
抛物线的标准方程:y^2 = 4px,其中p是焦点到准线的距离。
抛物线的一般形式为y=ax^2+bx+c,其中a、b、c为常数,且a≠0。 单击此处添加文本具体内容,简明扼要地阐述您的观点。根据需要可酌情增减文字, 以便观者准确地理解您传达的思想。单击此处添加文本具体内容,简明扼要地阐述您 的观点
抛物线的对称轴为x=-b/2a。 结论:二次函数的对称轴与抛物线的对称轴相同,都为x=-b/2a。
抛物线的准线方程
准线的定义: 抛物线上任意 一点到准线的
距离相等
准线的方程: x=-p(开口方 向为x轴正方向) 或x=p(开口 方向为x轴负方
向)
准线的性质: 准线是与抛物 线对称轴平行 的直线,离抛
物线最近
准线的作用: 利用准线方程 可以求出抛物 线上任意一点
的坐标
抛物线的解析性质
抛物线的导数与切线斜率
抛物线在建筑美学中的应用:古罗 马建筑中的抛物线元素
抛物线在建筑美学中的应用:桥梁、 隧道等交通设施中的抛物线应用
添加标题
添加标题
添加标题
添加标题
抛物线在建筑美学中的应用:现代 建筑中的抛物线设计
抛物线在建筑美学中的应用:室内 设计中的抛物线元素
物理学中的抛物线应用
光学应用:抛物线 镜面可以聚焦光线, 用于制造望远镜、 显微镜等光学仪器。
抛物线的渐近线方程
定义:抛物线与直线y=±x 的交点形成的直线
抛物线及其标准方程(共32张PPT)高中数学人教A版选择性必修第一册
(1)椭圆的离心率范围为0<e<1 ;(2) 双曲线的离心率的范围是e>1 ;(3)当e=1 时,它的轨迹是什么? 抛物线我们已经学习了圆、椭圆、双曲线三种圆锥曲线,今天我们类比椭圆、 双曲线的研究过程与方法,研究另一类圆锥曲线——抛物线.
情景导入
02抛物线及其标准方程 P A R T 0 N E
抛物线及其标准方程
,准线为
为F
抛物线及其标准方程 从上述过程可以看到,抛物线上任意一点的坐标(x,y)都是方程①的解,以方 程①的解为坐标的点(x,y)与抛物线的焦点 的距离和它到准线 的 距离相等,即以方程①的解为坐标的点都在抛物线上,我们把方程①叫做抛物线 的标准方程,它表示焦点在x轴正半轴上,焦点是 ,准线是 的抛物线 .
将点(一2,3)代入抛物线方程y 得
抛物线及其标准方程
∴满足条件的抛物线的标准方程为(2)直线x—y+2=0 与两坐标轴的交点为(一2,0),(0,2). 若抛物线的焦点为(一2,0),设其方程为y²=—2px(p>0).
抛物线及其标准方程
抛物线及其标准方程 在建立椭圆、双曲线的标准方程时,选择不同的坐标系我们得到了不同形 式的标准方程,抛物线的标准方程有哪些不同的形式?请探究之后填写下表. 图像 标准方程 焦点坐标 准线方程 y²=2px(p>0) F(2,0) x=-2 y²=-2px(p>0) F(-2,0) x=2 x²=2py(p>0) F(0,2) y=-2 x²=-2py(p>0) F(0,-2 y=2
抛物线及其标准方程
抛物线及其标准方程 求轨迹方程C P_ 建立直角坐标系?使方程形式足够简洁 !
设M(x,y) 是抛物线上一点,则M 到F的距离为则M到直线l的距离为所以上式两边平方,整理可得y²= 2px ①
情景导入
02抛物线及其标准方程 P A R T 0 N E
抛物线及其标准方程
,准线为
为F
抛物线及其标准方程 从上述过程可以看到,抛物线上任意一点的坐标(x,y)都是方程①的解,以方 程①的解为坐标的点(x,y)与抛物线的焦点 的距离和它到准线 的 距离相等,即以方程①的解为坐标的点都在抛物线上,我们把方程①叫做抛物线 的标准方程,它表示焦点在x轴正半轴上,焦点是 ,准线是 的抛物线 .
将点(一2,3)代入抛物线方程y 得
抛物线及其标准方程
∴满足条件的抛物线的标准方程为(2)直线x—y+2=0 与两坐标轴的交点为(一2,0),(0,2). 若抛物线的焦点为(一2,0),设其方程为y²=—2px(p>0).
抛物线及其标准方程
抛物线及其标准方程 在建立椭圆、双曲线的标准方程时,选择不同的坐标系我们得到了不同形 式的标准方程,抛物线的标准方程有哪些不同的形式?请探究之后填写下表. 图像 标准方程 焦点坐标 准线方程 y²=2px(p>0) F(2,0) x=-2 y²=-2px(p>0) F(-2,0) x=2 x²=2py(p>0) F(0,2) y=-2 x²=-2py(p>0) F(0,-2 y=2
抛物线及其标准方程
抛物线及其标准方程 求轨迹方程C P_ 建立直角坐标系?使方程形式足够简洁 !
设M(x,y) 是抛物线上一点,则M 到F的距离为则M到直线l的距离为所以上式两边平方,整理可得y²= 2px ①
《抛物线及其标准方程一》(课件)
几何意义
抛物线的形状像一条平滑的曲线 ,它是由所有与焦点和准线等距 的点组成的。
焦点与准线
焦点
抛物线上的一个固定点,通常用大写 字母F表示。所有抛物线上的点到焦 点的距离都等于到准线的距离。
准线
抛物线所在平面内的一条定直线,通 常用小写字母l表示。准线与抛物线的 对称轴平行,且到焦点的距离等于焦 距。
抛物线与对称轴的交点,也称为抛物线的最高点或最低点。顶点的坐标可以通过 抛物线的标准方程求出。
对称轴
抛物线的一条直线,它经过顶点且与抛物线交于两点。对称轴与x轴平行或重合 ,且所有关于对称轴对称的点都在抛物线上。对称轴的方程可以通过抛物线的标 准方程求出。
02
标准方程推导与形式
标准方程推导过程
引入抛物线的定义
顶点位置
抛物线的顶点位置可以由 标准方程直接得出。
借助计算机软件进行可视化展示
使用数学软件
结合动态演示
如Mathematica、MATLAB等数学软 件,可以直接输入抛物线的标准方程, 进行可视化展示。
通过计算机软件,还可以实现抛物线 的动态演示,更直观地展示抛物线的 性质。
使用绘图工具
如GeoGebra、Desmos等在线绘图 工具,也可以方便地绘制出抛物线的 图像。
为:$d=|x+p|$。
对于开口向上或向下的抛物线, 焦点到直线上任意点的距离公式
为:$d=|y+p|$。
注意:这里的距离公式是在标准 方程下的特殊情况,对于一般的 抛物线方程,需要根据具体情况
进行推导。
03
抛物线图像绘制方法
利用描点法绘制图像
01
02
03
确定抛物线的顶点
根据抛物线的标准方程, 可以确定抛物线的顶点坐 标。
抛物线的形状像一条平滑的曲线 ,它是由所有与焦点和准线等距 的点组成的。
焦点与准线
焦点
抛物线上的一个固定点,通常用大写 字母F表示。所有抛物线上的点到焦 点的距离都等于到准线的距离。
准线
抛物线所在平面内的一条定直线,通 常用小写字母l表示。准线与抛物线的 对称轴平行,且到焦点的距离等于焦 距。
抛物线与对称轴的交点,也称为抛物线的最高点或最低点。顶点的坐标可以通过 抛物线的标准方程求出。
对称轴
抛物线的一条直线,它经过顶点且与抛物线交于两点。对称轴与x轴平行或重合 ,且所有关于对称轴对称的点都在抛物线上。对称轴的方程可以通过抛物线的标 准方程求出。
02
标准方程推导与形式
标准方程推导过程
引入抛物线的定义
顶点位置
抛物线的顶点位置可以由 标准方程直接得出。
借助计算机软件进行可视化展示
使用数学软件
结合动态演示
如Mathematica、MATLAB等数学软 件,可以直接输入抛物线的标准方程, 进行可视化展示。
通过计算机软件,还可以实现抛物线 的动态演示,更直观地展示抛物线的 性质。
使用绘图工具
如GeoGebra、Desmos等在线绘图 工具,也可以方便地绘制出抛物线的 图像。
为:$d=|x+p|$。
对于开口向上或向下的抛物线, 焦点到直线上任意点的距离公式
为:$d=|y+p|$。
注意:这里的距离公式是在标准 方程下的特殊情况,对于一般的 抛物线方程,需要根据具体情况
进行推导。
03
抛物线图像绘制方法
利用描点法绘制图像
01
02
03
确定抛物线的顶点
根据抛物线的标准方程, 可以确定抛物线的顶点坐 标。
抛物线及其标准方程(优秀课件)
形状和性质
抛物线的准线是 抛物线与x轴的交
点即y=0
抛物线的准线方 程为y=p/2其中 p是抛物线的焦
距
抛物线的准线与 抛物线的顶点和 焦点构成一个直 角三角形顶点在 抛物线的顶点焦 点在抛物线的焦 点准线在抛物线
的准线
焦点和准线的关系
焦点:抛物线的中心点决定了抛物线的形状和位置 准线:与抛物线相切的直线决定了抛物线的开口方向和大小 关系:焦点和准线是抛物线的两个重要参数它们共同决定了抛物线的形状和位置 应用:在解决实际问题时可以通过焦点和准线的关系来求解抛物线的参数从而得到问题的解
抛物线形状:决定抛物线开口方向b决定抛物线对称轴位置c决定抛物线与y轴交点
抛物线顶点:(h,k)=(-b/2,f(h))其中h=-b/2k=f(h)
抛物线标准方程的应用
物理中的抛物线运 动:描述物体在重 力作用下的运动轨 迹
光学中的抛物面镜: 用于聚焦光线如望 远镜、显微镜等
建筑中的抛物线拱 :用于建造桥梁、 隧道等结构提高稳 定性和承载力
数学中的抛物线方 程:用于求解二次 方程、研究函数性 质等
抛物线的焦点和准线
抛物线的焦点
抛物线的焦点坐标为(p/2,0) 其中p是抛物线的参数
抛物线的焦点是抛物线方程 的解
抛物线的焦点是抛物线对称 轴与抛物线相交的点
抛物线的焦点是抛物线几何 性质的重要特征
抛物线的准线
准线是抛物线的 一个重要概念它 决定了抛物线的
开口方向和大小对抛物线的影响
开口方向:决定了抛物线的对称轴位置 开口大小:决定了抛物线的对称轴与顶点的距离 开口方向和大小共同决定了抛物线的形状 开口方向和大小对抛物线的顶点、焦点、准线等参数都有影响
抛物线的作图方法
抛物线的准线是 抛物线与x轴的交
点即y=0
抛物线的准线方 程为y=p/2其中 p是抛物线的焦
距
抛物线的准线与 抛物线的顶点和 焦点构成一个直 角三角形顶点在 抛物线的顶点焦 点在抛物线的焦 点准线在抛物线
的准线
焦点和准线的关系
焦点:抛物线的中心点决定了抛物线的形状和位置 准线:与抛物线相切的直线决定了抛物线的开口方向和大小 关系:焦点和准线是抛物线的两个重要参数它们共同决定了抛物线的形状和位置 应用:在解决实际问题时可以通过焦点和准线的关系来求解抛物线的参数从而得到问题的解
抛物线形状:决定抛物线开口方向b决定抛物线对称轴位置c决定抛物线与y轴交点
抛物线顶点:(h,k)=(-b/2,f(h))其中h=-b/2k=f(h)
抛物线标准方程的应用
物理中的抛物线运 动:描述物体在重 力作用下的运动轨 迹
光学中的抛物面镜: 用于聚焦光线如望 远镜、显微镜等
建筑中的抛物线拱 :用于建造桥梁、 隧道等结构提高稳 定性和承载力
数学中的抛物线方 程:用于求解二次 方程、研究函数性 质等
抛物线的焦点和准线
抛物线的焦点
抛物线的焦点坐标为(p/2,0) 其中p是抛物线的参数
抛物线的焦点是抛物线方程 的解
抛物线的焦点是抛物线对称 轴与抛物线相交的点
抛物线的焦点是抛物线几何 性质的重要特征
抛物线的准线
准线是抛物线的 一个重要概念它 决定了抛物线的
开口方向和大小对抛物线的影响
开口方向:决定了抛物线的对称轴位置 开口大小:决定了抛物线的对称轴与顶点的距离 开口方向和大小共同决定了抛物线的形状 开口方向和大小对抛物线的顶点、焦点、准线等参数都有影响
抛物线的作图方法
抛物线及其标准方程ppt课件
l
平面内与一个定点 F 和一条定直线 l(l 不经
H
过点 F)的距离相等的点的轨迹叫做抛物线.点 F
叫做抛物线的焦点,直线 l 叫做抛物线的准线.
准线
M
F
焦点
根据抛物线的几何特征,如图,取经过点 F 且垂直于直线 l 的直线为 x 轴,垂
足为 K,并使原点与线段 KF 的中点重合,建立平面直角坐标系 Oxy.设| KF | p( p 0) ,
的值是( C)
A. 4
B.2
C.4
D.8
解析:抛物线的准线方程为:
x
p 2
,因为
M
到焦点距离为
5,所以
M
到准线
的距离1 p 5 ,即 p 8 ,则抛物线方程为 y2 16x .将1, m 代入得:m2 16 ,
2
因为 m 0,所以 m 4 .故选:C.
5.抛物线 y2 mx( m 0) 的准线方程为 x 2 , 那么抛物线 y mx2 的焦点坐标为
焦点坐标
p 2
,
0
p 2
,
0
0,
p 2
0,
p 2
准线方程
x p 2
x p 2
y p 2
y p 2
四种标注方程对应抛物线的比较 相同点:
(1)顶点都是原点
(2)焦点都在坐标轴上
·
(3)焦点到准线的距离都是 p
(4)准线与焦点所在的坐标轴垂直,准线与坐标轴的交点与焦点关于原点对称,
它们与原点的距离都等于
p 2
1,得到
p
2
.
A 2.抛物线 y x 2 的焦点到双曲线 x2 y2 1 的渐近线的距离为( ) 24
3.3.1抛物线及其标准方程-课件(共26张PPT)
(2)抛物线实质上就是双曲线的一支.( × )
(3)若抛物线的方程为2 = −4,则其中的焦参数 = −2.( × )
(4)抛物线y=6x2的焦点在x轴的正半轴.( × )
1
上
2.抛物线x2= 2 y的开口向____,焦点坐标为
1
(0, )
8
,准线方程是
=−
1
8
.
典例剖析
例1
(1)已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程;
D. y 2 2ax
4.以坐标轴为对称轴,焦点在直线 3x 4 y 12 0 上的抛物线的标准方程为( C )
A. x 2 16 y 或 y 2 12x
B. y 2 16 x 或 x 2 12 y
C. y 2 16 x 或 x2 12 y
D. x 2 16 y 或 y 2 12 x
y2=8x
.
【解析】由圆(x-2)2+y2=1可得,圆心F(2,0),半径r=1.
设所求动圆圆心为P(x,y),过点P作PM⊥直线l:x+1=0,M为垂足.
则|PF|-r=|PM|,可得|PF|=|PM|+1.
因此可得,点P的轨迹是到定点F(2,0)的距离和到直线l:x=-2的距离相等的点的集合.
由抛物线的定义可知,点P的轨迹是抛物线,定点F(2,0)为焦点,定直线l:x=-2是准线.
【解】如图建立直角坐标系,
设桥拱抛物线方程为 2 = −2( > 0),
由题意可知, 4, −5 在抛物线上,所以 = 1.6,得 2 = −3.2,
当船面两侧和抛物线接触时,船不能通航,
设此时船面宽为AA’,则 2, ,
(3)若抛物线的方程为2 = −4,则其中的焦参数 = −2.( × )
(4)抛物线y=6x2的焦点在x轴的正半轴.( × )
1
上
2.抛物线x2= 2 y的开口向____,焦点坐标为
1
(0, )
8
,准线方程是
=−
1
8
.
典例剖析
例1
(1)已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程;
D. y 2 2ax
4.以坐标轴为对称轴,焦点在直线 3x 4 y 12 0 上的抛物线的标准方程为( C )
A. x 2 16 y 或 y 2 12x
B. y 2 16 x 或 x 2 12 y
C. y 2 16 x 或 x2 12 y
D. x 2 16 y 或 y 2 12 x
y2=8x
.
【解析】由圆(x-2)2+y2=1可得,圆心F(2,0),半径r=1.
设所求动圆圆心为P(x,y),过点P作PM⊥直线l:x+1=0,M为垂足.
则|PF|-r=|PM|,可得|PF|=|PM|+1.
因此可得,点P的轨迹是到定点F(2,0)的距离和到直线l:x=-2的距离相等的点的集合.
由抛物线的定义可知,点P的轨迹是抛物线,定点F(2,0)为焦点,定直线l:x=-2是准线.
【解】如图建立直角坐标系,
设桥拱抛物线方程为 2 = −2( > 0),
由题意可知, 4, −5 在抛物线上,所以 = 1.6,得 2 = −3.2,
当船面两侧和抛物线接触时,船不能通航,
设此时船面宽为AA’,则 2, ,
3.3.1抛物线及其标准方程 课件(可编辑图片版)(共35张PPT)
4.已知抛物线顶点为坐标原点,焦点在y轴上,抛物线上的 点M(m,-2)到焦点的距离为4,则m=________.
解析:由已知,可设抛物线方程为x2=-2py.由抛物线定义有
2+
p 2
=4,∴p=4,∴x2=-8y.将(m,-2)代入上式,得m2=
16.∴m=±4.
答案:±4
题型一 求抛物线的标准方程 探究 1 直接法求抛物线方程 例 1 (1)顶点在原点,对称轴是 y 轴,并且顶点与焦点的距离 等于 3 的抛物线的标准方程是( ) A.x2=±3y B.y2=±6x C.x2=±12y D.x2=±6y
3.3.1抛物线及其标准方程
[知识要点]
要点一 抛物线的定义 平面内与一个定点 F 和一条定直线 l(l 不经过点 F)距离相等的 点的轨迹叫做__抛__物__线__.点 F 叫做抛物线的__焦__点____,直线 l 叫做 抛物线的_准__线___.
【方法技巧】(1)抛物线定义的实质可归结为“一动三定”:一 个动点,设为 M;一个定点 F 叫做抛物线的焦点;一条定直线 l 叫 做抛物线的准线;一个定值,即点 M 到点 F 的距离和它到直线 l 的距离之比等于 1.
[基础自测]
1.判断正误(正确的画“√”,错误的画“×”) (1)标准方程y2=2px(p>0)中的p的几何意义是焦点到准线的距 离.( √ ) (2)平面内到一定点距离与到一定直线距离相等的点的轨迹是 抛物线.( × ) (3)只有抛物线的顶点在坐标原点,焦点在坐标轴上时,抛物 线才具有标准形式.( √ ) (4)焦点在y轴上的抛物线的标准方程x2=±2py(p>0),也可以写 成y=ax2,这与以前学习的二次函数的解析式是一致的.( √ )
受二次函数的影响,误以为 y 根据抛物线方程求准线方程时,应
抛物线及其标准方程 课件
[规律方法] 抛物线定义的两种应用 (1)实现距离转化.根据抛物线的定义,抛物线上任意一点到焦点的距离 等于它到准线的距离,因此,由抛物线定义可以实现点点距与点线距的相互 转化,从而简化某些问题. (2)解决最值问题.在抛物线中求解与焦点有关的两点间距离和的最小值 时,往往用抛物线的定义进行转化,即化折线为直线解决最值问题.
[规律方法] 1.用待定系数法求抛物线标准方程的步骤
2.求抛物线的标准方程时需注意的三个问题 (1)把握开口方向与方程间的对应关系. (2)当抛物线的类型没有确定时,可设方程为 y2=mx 或 x2=ny,这样可以 减少讨论情况的个数. (3)注意 p 与p2的几何意义.
抛物线的定义的应用
例 2、(1)已知抛物线的顶点在原点,焦点在 y 轴上,抛物线上一点 M(m, -3)到焦点的距离为 5,求 m 的值、抛物线方程和准线方程.
(2)已知抛物线的焦点在 y 轴上,可设方程为 x2=2my(m≠0),由焦点到准 线的距离为 5,知|m|=5,m=±5,所以满足条件的抛物线有两条,它们的标 准方程分别为 x2=10y 和 x2=-10y.
(3)∵点(-3,-1)在第三象限,∴设所求抛物线的标准方程为 y2=- 2px(p>0)或 x2=-2py(p>0).
抛物线及其标准方程
1.抛物线的定义 平面内与一个定点 F 和一条定直线 l(l 不经过点 F)距离相等的点的轨迹叫 做抛物线.点 F 叫做抛物线的焦点,直线 l 叫做抛物线的准线. 思考 1:抛物线的定义中,若点 F 在直线 l 上,那么点的轨迹是什么?
[提示] 点的轨迹是过点 F 且垂直于直线 l 的直线.
[思路探究]
(1)(2)
由题意可确 定方程形式