2019年湖南省邵阳市中考数学试卷和答案
湖南省邵阳市2019年中考数学真题试题(含解析)
一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数中,属于无理数的是()A.B.1.414 C.D.2.(3分)下列立体图形中,俯视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球3.(3分)据海关统计:2019年前4个月,中国对美国贸易顺差为5700亿元.用科学记数法表示5700亿元正确的是()A.5.7×1011元B.57×1010元C.5.7×10﹣11元D.0.57×1012元4.(3分)如图,已知两直线l1与l2被第三条直线l3所截,下列等式一定成立的是()A.∠l=∠2 B.∠2=∠3 C.∠2+∠4=180°D.∠1+∠4=180°5.(3分)学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一纽数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是26.(3分)以下计算正确的是()A.(﹣2ab2)3=8a3b6B.3ab+2b=5abC.(﹣x2)•(﹣2x)3=﹣8x5D.2m(mn2﹣3m2)=2m2n2﹣6m37.(3分)一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y28.(3分)如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法中错误的是()A.△ABC∽△A′B′C′B.点C、点O、点C′三点在同一直线上C.AO:AA′=1:2D.AB∥A′B′9.(3分)如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°10.(3分)某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x 元,超过2km后每千米收费y元,则下列方程正确的是()A.B.C.D.二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)的相反数是.12.(3分)不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是.13.(3分)如图,在平面直角坐标系中,点A的坐标为(﹣4,2),反比例函数y=(x<0)的图象经过线段OA的中点B,则k=.14.(3分)不等式组的解集是.15.(3分)如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是.(不添加任何字母和辅助线)16.(3分)关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,则m的最小整数值是.17.(3分)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是.18.(3分)如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是.三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.(8分)计第:﹣()﹣1+|﹣2|cos60°20.(8分)先化简,再求值:(1﹣)÷,其中m=﹣2.21.(8分)如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F.(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h.22.(8分)某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.23.(8分)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.24.(8分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且OB=OE;支架BC与水平线AD垂直.AC=40cm,∠ADE=30°,DE=190cm,另一支架AB与水平线夹角∠BAD=65°,求OB的长度(结果精确到1cm;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)25.(8分)如图1,已知⊙O外一点P向⊙O作切线PA,点A为切点,连接PO并延长交⊙O于点B,连接AO并延长交⊙O于点C,过点C作CD⊥PB,分别交PB于点E,交⊙O于点D,连接AD.(1)求证:△APO~△DCA;(2)如图2,当AD=AO时①求∠P的度数;②连接AB,在⊙O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出的值;若不存在,请说明理由.26.(10分)如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分别为点D、点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.2019年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:=2是有理数;是无理数;故选:C.2.【解答】解:A.俯视图与主视图都是正方形,故选项A不合题意;B.俯视图与主视图都是正方形,故选项B不合题意;C.俯视图是圆,左视图是三角形;故选项C符合题意;D.俯视图与主视图都是圆,故选项D不合题意;故选:C.3.【解答】解:5700亿元=570000000000元=5.7×1011元;故选:A.4.【解答】解:∠1与∠2是同为角,∠2与∠3是内错角,∠2与∠4是同旁内角,由平行线的性质可知,选项A,B,C成立的条件为l1∥l2时,而∠1与∠4是邻补角,故D正确.故选:D.5.【解答】解:A、该班级所售图书的总收入为3×14+4×11+5×10+6×15=226,所以A选项正确;B、第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B选项错误;C、这组数据的众数为6,所以C选项错误;D、这组数据的平均数为==4.52,所以这组数据的方差S2=[14(3﹣4.52)2+11(4﹣4.52)2+10(5﹣4.52)2+15(6﹣4.52)2]≈1.4,所以D选项错误.故选:A.6.【解答】解:(﹣2ab2)3=﹣8a3b6,A错误;3ab+2b不能合并同类项,B错误;(﹣x2)(﹣2x)3=8x5,C错误;故选:D.7.【解答】解:∵将直线l1向下平移若干个单位后得直线l2,∴直线l1∥直线l2,∴k1=k2,∵直线l1向下平移若干个单位后得直线l2,∴b1>b2,∴当x=5时,y1>y2,故选:B.8.【解答】解:∵以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,∴△ABC∽△A′B′C′,点C、点O、点C′三点在同一直线上,AB∥A′B′,AO:OA′=1:2,故选项C错误,符合题意.故选:C.9.【解答】解:∵在Rt△ABC中,∠BAC=90°,∠B=36°,∴∠C=90°﹣∠B=54°.∵AD是斜边BC上的中线,∴AD=BD=CD,∴∠BAD=∠B=36°,∠DAC=∠C=54°,∴∠ADC=180°﹣∠DAC﹣∠C=72°.∵将△ACD沿AD对折,使点C落在点F处,∴∠ADF=∠ADC=72°,∴∠BED=∠BAD+∠ADF=36°+72°=108°.故选:B.10.【解答】解:设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选:D.二、填空题(本大题有8个小题,每小题3分,共24分)11.【解答】解:的相反数是﹣;故答案为﹣;12.【解答】解:画树状图如下:由树状图知,共有12种等可能结果,其中取出2个小球的颜色恰好是一红一蓝的有2种结果,所以取出2个小球的颜色恰好是一红一蓝的概率为=,故答案为:.13.【解答】解:如图:∵AC∥BD,B是OA的中点,∴OD=DC同理OF=EF∵A(﹣4,2)∴AC=2,OC=4∴OD=CD=2,BD=OF=EF=1,∴B(﹣2,1)代入y=得:∴k=﹣2×1=﹣2故答案为:﹣214.【解答】解:解不等式x+4<3,得:x<﹣1,解不等式≤1,得:x≥﹣2,则不等式组的解集为﹣2≤x<﹣1,故答案为:﹣2≤x<﹣1.15.【解答】解:∵∠A=∠A,AD=AE,∴可以添加AB=AC,此时满足SAS;添加条件∠ADC=∠AEB,此时满足ASA;添加条件∠ABE=∠ACD,此时满足AAS,故答案为AB=AC或∠ADC=∠AEB或∠ABE=∠ACD;16.【解答】解:一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,∴△=4+4m>0,∴m>﹣1;故答案为0;17.【解答】解:∵勾a=6,弦c=10,∴股==8,∴小正方形的边长=8﹣6=2,∴小正方形的面积=22=4故答案是:418.【解答】解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故答案为(﹣2,﹣2).三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.【解答】解:﹣()﹣1+|﹣2|cos60°=3﹣3+2×=1;20.【解答】解:原式=(﹣)÷=•=,当m=﹣2时,原式==.21.【解答】解:∵在等腰△ABC中,∠BAC=120°,∴∠B=30°,∵AD是∠BAC的角平分线,∴AD⊥BC,BD=CD,∴BD=AD=6,∴BC=2BD=12,∴由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=S△ABC﹣S扇形EAF=×6×12﹣=36﹣12π;(2)设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=2,这个圆锥的高h==4.22.【解答】解:(1)本次抽样调查的样本容量是=50,故答案为:50;(2)参与篮球社的人数=50×20%=10人,参与国学社的人数为50﹣5﹣10﹣12﹣8=15人,补全条形统计图如图所示;(3)参与科技制作社团所在扇形的圆心角度数为360°×=86.4°;(4)3000×20%=600名,答:全校有600学生报名参加篮球社团活动.23.【解答】解:设平均增长率为x,根据题意列方程得30(1+x)2=36.3解得x1=0.1,x2=﹣2.1(舍)答:我国外贸进出口总值得年平均增长率为10%.24.【解答】解:设OE=OB=2x,∴OD=DE+OE=190+2x,∵∠ADE=30°,∴OC=OD=95+x,∴BC=OC﹣OB=95+x﹣2x=95﹣x,∵tan∠BAD=,∴2.14=,解得:x≈9,∴OB=2x=18.25.【解答】解:(1)证明:如图1,∵PA切⊙O于点A,AC是⊙O的直径,∴∠PAO=∠CDA=90°∵CD⊥PB∴∠CEP=90°∴∠CEP=∠CDA∴PB∥AD∴∠POA=∠CAO∴△APO~△DCA(2)如图2,连接OD,①∵AD=AO,OD=AO∴△OAD是等边三角形∴∠OAD=60°∵PB∥AD∴∠POA=∠OAD=60°∵∠PAO=90°∴∠P=90°﹣∠POA=90°﹣60°=30°②存在.如图2,过点B作BQ⊥AC交⊙O于Q,连接PQ,BC,CQ,由①得:∠POA=60°,∠PAO=90°∴∠BOC=∠POA=60°∵OB=OC∴∠ACB=60°∴∠BQC=∠BAC=30°∵BQ⊥AC,∴CQ=BC∵BC=OB=OA∴△CBQ≌△OBA(AAS)∴BQ=AB∵∠OBA=∠OPA=30°∴AB=AP∴BQ=AP∵PA⊥AC∴BQ∥AP∴四边形ABQP是平行四边形∵AB=AP∴四边形ABQP是菱形∴PQ=AB∴==tan∠ACB=tan60°=26.【解答】解:(1)将(0,0),(8,0)代入y=﹣x2+bx+c,得:,解得:,∴该二次函数的解析式为y=﹣x2+x.(2)当y=m时,﹣x2+x=m,解得:x1=4﹣,x2=4+,∴点A的坐标为(4﹣,m),点B的坐标为(4+,m),∴点D的坐标为(4﹣,0),点C的坐标为(4+,0).∵矩形ABCD为正方形,∴4+﹣(4﹣)=m,解得:m1=﹣16(舍去),m2=4.∴当矩形ABCD为正方形时,m的值为4.(3)以A、E、F、Q四点为顶点构成的四边形能为平行四边形.由(2)可知:点A的坐标为(2,4),点B的坐标为(6,4),点C的坐标为(6,0),点D的坐标为(2,0).设直线AC的解析式为y=kx+a(k≠0),将A(2,4),C(6,0)代入y=kx+a,得:,解得:,∴直线AC的解析式为y=﹣x+6.当x=2+t时,y=﹣x2+x=﹣t2+t+4,y=﹣x+6=﹣t+4,∴点E的坐标为(2+t,﹣t2+t+4),点F的坐标为(2+t,﹣t+4).∵以A、E、F、Q四点为顶点构成的四边形为平行四边形,且AQ∥EF,∴AQ=EF,分三种情况考虑:①当0<t≤4时,如图1所示,AQ=t,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t=﹣t2+t,解得:t1=0(舍去),t2=4;②当4<t≤7时,如图2所示,AQ=t﹣4,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t﹣4=﹣t2+t,解得:t3=﹣2(舍去),t4=6;③当7<t≤8时,AQ=t﹣4,EF=﹣t+4﹣(﹣t2+t+4)=t2﹣t,∴t﹣4=t2﹣t,解得:t5=5﹣(舍去),t6=5+(舍去).综上所述:当以A、E、F、Q四点为顶点构成的四边形为平行四边形时,t的值为4或6.。
2019年邵阳市中考数学试卷(解析版)
2019年邵阳市中考数学试卷(解析版)一、选择题(每小题3分,共30分)1.下列各数中,属于无理数的是()A.13B.1.414 C.√2D.√4【解答】解:=2是有理数;是无理数;故选:C.2.下列立体图形中,俯视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球【解答】解:A.俯视图与主视图都是正方形,故选项A不合题意;B.俯视图与主视图都是正方形,故选项B不合题意;C.俯视图是圆,左视图是三角形;故选项C符合题意;D.俯视图与主视图都是圆,故选项D不合题意;故选:C.3.据海关统计:2019年前4个月,中国对美国贸易顺差为5700亿元.用科学记数法表示5700亿元正确的是()A.5.7×1011元 B.57×1010元 C.5.7×10-11元 D.0.57×1012元【解答】解:5700亿元=570000000000元=5.7×1011元;故选:A.4.如图,已知两直线l1与l2被第三条直线l3所截,下列等式一定成立的是()A.∠l=∠2B.∠2=∠3C.∠2+∠4=180°D.∠1+∠4=180°【解答】解:∠1与∠2是同为角,∠2与∠3是内错角,∠2与∠4是同旁内角,由平行线的性质可知,选项A,B,C成立的条件为l1∥l2时,而∠1与∠4是邻补角,故D正确.故选:D.下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一纽数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是2【解答】解:A、该班级所售图书的总收入为3×14+4×11+5×10+6×15=226,所以A选项正确;B、第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B选项错误;C、这组数据的众数为4,所以C选项错误;D、这组数据的平均数为==4.52,所以这组数据的方差S2=[14(3﹣4.52)2+11(4﹣4.52)2+10(5﹣4.52)2+15(6﹣4.52)2]≈1.4,所以D选项错误.故选:A.6.以下计算正确的是()A.(-2ab2)3=8a3b6B.3ab+2b=5abC.(-x2)•(-2x)3=-8x5D.2m(mn2-3m2)=2m2n2-6m3【解答】解:(﹣2ab2)3=﹣8a3b6,A错误;3ab+2b不能合并同类项,B错误;(﹣x2)(﹣2x)3=8x5,C错误;故选:D.7.一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y2【解答】解:∵将直线l1向下平移若干个单位后得直线l2,∴直线l1∥直线l2,∴k1=k2,∵直线l1向下平移若干个单位后得直线l2,∴b1>b2,∴当x=5时,y1>y2,故选:B.8.如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法中错误的是()A.△ABC∽△A′B′C′B.点C、点O、点C′三点在同一直线上C.AO:AA′=1:2D.AB∥A′B′【解答】解:∵以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,∴△ABC∽△A′B′C′,点C、点O、点C′三点在同一直线上,AB∥A′B′,AO:OA′=1:2,故选项C错误,符合题意.故选:C.9.如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°【解答】解:∵在Rt△ABC中,∠BAC=90°,∠B=36°,∴∠C=90°﹣∠B=54°.∵AD是斜边BC上的中线,∴AD=BD=CD,∴∠BAD=∠B=36°,∠DAC=∠C=54°,∴∠ADC=180°﹣∠DAC﹣∠C=72°.∵将△ACD沿AD对折,使点C落在点F处,∴∠ADF=∠ADC=72°,∴∠BED=∠BAD+∠ADF=36°+72°=108°.故选:B.10.某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()【解答】解:设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选:D.二、填空题(每小题3分,共24分)11.的相反数是____.【分析】根据相反数的意义,即可求解;【解答】解:的相反数是﹣;故答案为﹣;【点评】本题考查相反数;熟练掌握相反数的求法是解题的关键.12.不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是______.【分析】画树状图得出所有等可能结果,从中找到取出2个小球的颜色恰好是一红一蓝的结果数,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有12种等可能结果,其中取出2个小球的颜色恰好是一红一蓝的有2种结果,所以取出2个小球的颜色恰好是一红一蓝的概率为=,故答案为:.13.如图,在平面直角坐标系中,点A的坐标为(-4, 2),反比例函数的图象经过线段OA的中点B,则k=_____.【分析】已知A(﹣4,2),B是OA的中点,根据平行线等分线段定理可得点B的坐标,把B的坐标代入关系式可求k的值.【解答】解:如图:∵AC∥BD,B是OA的中点,∴OD=DC同理OF=EF∵A(﹣4,2)∴AC=2,OC=4∴OD=CD=2,BD=OF=EF=1,∴B(﹣2,1)代入y=得:∴k=﹣2×1=﹣2故答案为:﹣2【点评】考查平行线等分线段定理,点的坐标与相应线段的长度的相互转化等知识;求出点B坐标,代入求k的值是本题的基本方法.14.不等式组的解集是______.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+4<3,得:x<﹣1,解不等式≤1,得:x≥﹣2,则不等式组的解集为﹣2≤x<﹣1,故答案为:﹣2≤x<﹣1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是_____.(不添加任何字母和辅助线)【分析】根据图形可知证明△ADC≌△AEB已经具备了一个公共角和一对相等边,因此可以利用ASA、SAS、AAS证明两三角形全等.【解答】解:∵∠A=∠A,AD=AE,∴可以添加AB=AC,此时满足SAS;添加条件∠ADC=∠AEB,此时满足ASA;添加条件∠ABE=∠ACD,此时满足AAS,故答案为AB=AC或∠ADC=∠AEB或∠ABE=∠ACD;【点评】本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.16.关于x的一元二次方程x2-2x-m=0有两个不相等的实数根,则m的最小整数值是____.【分析】根据一元二次方程根的存在性,利用判别式△>0求解即可;【解答】解:一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,∴△=4+4m>0,∴m>﹣1;故答案为0;【点评】本题考查一元二次方程的根的存在性;熟练掌握利用判别式△确定一元二次方程的根的存在性是解题的关键.17.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是____.【分析】应用勾股定理和正方形的面积公式可求解.【解答】解:∵勾a=6,弦c=10,∴股==8,∴小正方形的边长=8﹣6=2,∴小正方形的面积=22=4故答案是:4【点评】本题运用了勾股定理和正方形的面积公式,关键是运用了数形结合的数学思想.18.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O 顺时针旋转180°得到△A′OB′,则点B′的坐标是_______.【分析】作BH⊥y轴于H,如图,利用等边三角形的性质得到OH=AH=2,∠BOA=60°,再计算出BH,从而得到B点坐标为(2,2),然后根据关于原点对称的点的坐标特征求出点B′的坐标.【解答】解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故答案为(﹣2,﹣2).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了等边三角形的性质.三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.计第:【分析】分别化简每一项,再进行运算即可;【解答】解:﹣()﹣1+|﹣2|cos60°=3﹣3+2×=1;【点评】本题考查实数的运算,特殊三角函数值;熟练掌握实数的运算,牢记特殊的三角函数值是解题的关键.20.先化简,再求值:【分析】先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.【解答】解:原式=(﹣)÷=•=,当m=﹣2时,原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.21.如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F.(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h.【分析】(1)利用等腰三角形的性质得到AD⊥BC,BD=CD,则可计算出BD=6,然后利用扇形的面积公式,利用由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=S△ABC﹣S扇形EAF进行计算;(2)设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,解得r=2,然后利用勾股定理计算这个圆锥的高h.【解答】解:∵在等腰△ABC中,∠BAC=120°,∴∠B=30°,∵AD是∠BAC的角平分线,∴AD⊥BC,BD=CD,∴BD=AD=6,∴BC=2BD=12,∴由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=S△ABC﹣S扇形EAF=×6×12﹣=36﹣12π;(2)设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=2,这个圆锥的高h==4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰三角形的性质和扇形的面积公式.22.某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是_____;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.【解答】解:(1)本次抽样调查的样本容量是=50,故答案为:50;(2)参与篮球社的人数=50×20%=10人,参与国学社的人数为50﹣5﹣10﹣12﹣8=15人,补全条形统计图如图所示;(3)参与科技制作社团所在扇形的圆心角度数为360°×=86.4°;(4)3000×20%=600名,答:全校有600学生报名参加篮球社团活动.【点评】此题考查了扇形统计图,条形统计图,读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.23.2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.【分析】根据a(1﹣x)2=b增长率公式建立方程30(1+x)2=36.3,解方程即可.【解答】解:设平均增长率为x,根据题意列方程得30(1+x)2=36.3解得x1=0.1,x2=﹣2.1(舍)答:我国外贸进出口总值得年平均增长率为10%.【点评】本题考查了一元二次方程应用问题关于增长率类型,利用公式建立方程即可,记忆公式并运用公式是本题的关键.24.某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且OB=OE;支架BC与水平线AD垂直.AC=40cm,∠ADE=30°,DE=190cm,另一支架AB与水平线夹角∠BAD=65°,求OB的长度(结果精确到1cm;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【分析】设OE=OB=2x,根据含30度角的直角三角形的性质以及锐角三角函数的定义即可求出答案.【解答】解:设OE=OB=2x,∴OD=DE+OE=190+2x,∵∠ADE=30°,∴OC=OD=95+x,∴BC=OC﹣OB=95+x﹣2x=95﹣x,∵tan∠BAD=,∴2.14=,解得:x≈9,∴OB=2x=18.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.25.如图1,已知⊙O外一点P向⊙O作切线PA,点A为切点,连接PO并延长交⊙O于点B,连接AO并延长交⊙O于点C,过点C作CD⊥PB,分别交PB于点E,交⊙O于点D,连接AD.(1)求证:△APO~△DCA;(2)如图2,当AD=AO时①求∠P的度数;②连接AB,在⊙O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出PQ的值;若不存在,请说明理CQ由.【分析】(1)由切线性质和直径AC可得∠PAO=∠CDA=90°,由PB∥AD可得∠POD=∠CAD,即可得:△APO~△DCA;(2)①连接OD,由AD=OA=OD可得△OAD是等边三角形,由此可得∠POA=60°,∠P=30°;②作BQ⊥AC交⊙O于Q,可证ABQP为菱形,求可转化为求.【解答】解:(1)证明:如图1,∵PA切⊙O于点A,AC是⊙O的直径,∴∠PAO=∠CDA=90°∵CD⊥PB∴∠CEP=90°∴∠CEP=∠CDA∴PB∥AD∴∠POA=∠CAO∴△APO~△DCA(2)如图2,连接OD,①∵AD=AO,OD=AO∴△OAD是等边三角形∴∠OAD=60°∵PB∥AD∴∠POA=∠OAD=60°∵∠PAO=90°∴∠P=90°﹣∠POA=90°﹣60°=30°②存在.如图2,过点B作BQ⊥AC交⊙O于Q,连接PQ,BC,CQ,由①得:∠POA=60°,∠PAO=90°∴∠BOC=∠POA=60°∵OB=OC∴∠ACB=60°∴∠BQC=∠BAC=30°∵BQ⊥AC,∴CQ=BC∵BC=OB=OA∴△CBQ≌△OBA(AAS)∴BQ=AB∵∠OBA=∠OPA=30°∴AB=AP∴BQ=AP∵PA⊥AC∴BQ∥AP∴四边形ABQP是平行四边形∵AB=AP∴四边形ABQP是菱形∴PQ=AB∴==tan∠ACB=tan60°=【点评】本题是有关圆的综合题,难度不大;主要考查了切线性质,圆周角与圆心角,等边三角形性质,特殊角三角函数值,菱形性质等. 26.如图,二次函数y=- 13x 2+bx+c 的图象过原点,与x 轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x 轴上方作x 轴的平行线y 1=m ,交二次函数图象于A 、B 两点,过A 、B 两点分别作x 轴的垂线,垂足分别为点D 、点C .当矩形ABCD 为正方形时,求m 的值;(3)在(2)的条件下,动点P 从点A 出发沿射线AB 以每秒1个单位长度匀速运动,同时动点Q 以相同的速度从点A 出发沿线段AD 匀速运动,到达点D 时立即原速返回,当动点Q 返回到点A 时,P 、Q 两点同时停止运动,设运动时间为t 秒(t >0).过点P 向x 轴作垂线,交抛物线于点E ,交直线AC 于点F ,问:以A 、E 、F 、Q 四点为顶点构成的四边形能否是平行四边形.若能,请求出t 的值;若不能,请说明理由.【分析】(1)根据点的坐标,利用待定系数法即可求出二次函数的解析式;(2)利用二次函数图象上点的坐标特征求出点A ,B 的坐标,进而可得出点C ,D 的坐标,再利用正方形的性质可得出关于m 的方程,解之即可得出结论;(3)由(2)可得出点A ,B ,C ,D 的坐标,根据点A ,C 的坐标,利用待定系数法可求出直线AC 的解析式,利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征可求出点E ,F 的坐标,由AQ ∥EF 且以A 、E 、F 、Q 四点为顶点的四边形为平行四边形可得出AQ =EF ,分0<t ≤4,4<t ≤7,7<t ≤8三种情况找出AQ ,EF 的长,由AQ =EF 可得出关于t 的一元二次方程,解之取其合适的值即可得出结论. 解:(1)将(0,0),(8,0)代入y=- 1 3 x2+bx+c ,得:128将a(2,4),c(6,0)代入y=kx+a,得∴直线ac的解析式为y=-x+6.33②当4<t≤7时,如图2所示,AQ=t-4,EF=- 1 t2+ 4 t+4-(-t+4)=- 1 t2+ 7t,331 2 4 1 27法求一次函数解析式、一次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用正方形的性质,找出关于m的方程;(3)分0<t≤4,4<t≤7,7<t≤8三种情况,利用平行四边形的性质找出关于t的一元二次方程.。
人教版2019年湖南邵阳中考数学试题(解析版)
{来源}2019年邵阳中考数学试卷{适用范围:3.九年级}{标题}2019年湖南省邵阳市中考数学试卷考试时间:120分钟满分:120分{题型:1-选择题}一、选择题:本大题共10 小题,每小题3分,合计30分.{题目}1.(2019年邵阳)下列各数中,属于无理数的是()A.13B.1.414 C. 2 D.4{答案}C{解析}本题考查了无理数;能够化简二次根式,理解无理数的定义是解题的关键.4=2是有理数;2是无理数;因此本题选C.{分值}3{章节:[1-6-3]实数}{考点:无理数}{类别:常考题}{题目}2.(2019年邵阳)下列立体图形中,俯视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球{答案}C{解析}本题考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.A.俯视图与主视图都是正方形,故选项A不合题意;B.俯视图与主视图都是正方形,故选项B不合题意;C.俯视图是圆,左视图是三角形;故选项C符合题意;D.俯视图与主视图都是圆,故选项D不合题意;因此本题选C.{分值}3{章节:[1-29-2]三视图}{考点:几何体的三视图}{类别:常考题}{题目}3.(2019年邵阳)据海关统计:2019年前4个月,中国对美国贸易顺差为5700亿元.用科学记数法表示5700亿元正确的是()A.5.7×1011元 B.57×1010元C.5.7×10﹣11元D.0.57×1012元{答案}A{解析}本题考查了科学记数法;熟练掌握科学记数法的表示方法是解题的关键.5700亿元=570000000000元=5.7×1011元;因此本题选A.{分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}4.(2019年邵阳)如图,已知两直线l1与l2被第三条直线l3所截,下列等式一定成立的是()A.∠1=∠2 B.∠2=∠3 C.∠2+∠4=180°D.∠1+∠4=180°{答案}D{解析}本题考查了三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大.∠1与∠2是同为角,∠2与∠3是内错角,∠2与∠4是同旁内角,由平行线的性质可知,选项A,B,C成立的条件为l1∥l2时,而∠1与∠4是邻补角,故D正确.因此本题选D.{分值}3{章节:[1-5-2-2] 平行线的判定}{考点:两直线平行同旁内角互补}{ {类别:常考题}{难度:2-简单}{题目}5.(2019年邵阳)学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:售价3元4元5元6元数目14本11本10本15本下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一纽数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是2{答案}A{解析}本题考查了方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为⎺x ,则方差S 2=1n[(x 1﹣⎺x )2+(x 2﹣⎺x )2+…+(x n ﹣⎺x )2].也考查了中位数和众数.A 、该班级所售图书的总收入为3×14+4×11+5×10+6×15=226,所以A 选项正确;B 、第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B 选项错误;C 、这组数据的众数为4,所以C 选项错误;D 、这组数据的平均数为⎺x =22650=4.52,所以这组数据的方差S 2=150[14(3﹣4.52)2+11(4﹣4.52)2+10(5﹣4.52)2+15(6﹣4.52)2]≈1.4,所以D 选项错误. 因此本题选A . {分值}3{章节:[1-20-2-1]方差} {考点:方差} {类别:常考题} {难度:2-简单}{题目}6.(2019年邵阳)以下计算正确的是( ) A .(﹣2ab 2)3=8a 3b 6 B .3ab+2b =5abC .(﹣x 2)•(﹣2x )3=﹣8x 5D .2m (mn 2﹣3m 2)=2m 2n 2﹣6m 3 {答案}D{解析}本题考查了整式的运算;熟练掌握幂的乘方与积的乘方,单项式乘以多项式法则,合并同类项法则是解题的关键.(﹣2ab2)3=﹣8a3b6,A错误;3ab+2b不能合并同类项,B错误;(﹣x2)(﹣2x)3=8x5,C错误;因此本题选D.{分值}3{章节:[1-14-1]整式的乘法}{考点:单项式乘以多项式}{类别:常考题}{难度:2-简单}{题目}7.(2019年邵阳)一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2 B.b1<b2 C.b1>b2D.当x=5时,y1>y2{答案}B{解析}本题考查了图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.∵将直线l1向下平移若干个单位后得直线l2,∴直线l1∥直线l2,∴k1=k2,∵直线l1向下平移若干个单位后得直线l2,∴b1>b2,∴当x=5时,y1>y2,因此本题选B.{分值}3{章节:[1-19-2-2]一次函数}{考点:一次函数图象与几何变换}{类别:常考题}{难度:3-中等难度}{题目}8.(2019年邵阳)如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法中错误的是()A.△ABC∽△A′B′C′B.点C、点O、点C′三点在同一直线上C.AO:AA′=1:2D.AB∥A′B′{答案}C{解析}本题考查了位似变换,正确把握位似图形的性质是解题关键.∵以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,∴△ABC∽△A′B′C′,点C、点O、点C′三点在同一直线上,AB∥A′B′,AO:OA′=1:2,故选项C错误,符合题意.因此本题选C.{分值}3{章节:[1-27-2-1]位似}{考点:位似变换}{类别:常考题}{难度:3-中等难度}{题目}9.(2019年邵阳)如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°{答案}B{解析}本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.∵在Rt△ABC中,∠BAC=90°,∠B =36°,∴∠C =90°﹣∠B =54°. ∵AD 是斜边BC 上的中线, ∴AD =BD =CD ,∴∠BAD =∠B =36°,∠DAC =∠C =54°, ∴∠ADC =180°﹣∠DAC ﹣∠C =72°. ∵将△ACD 沿AD 对折,使点C 落在点F 处, ∴∠ADF =∠ADC =72°,∴∠BED =∠BAD+∠ADF =36°+72°=108°. 因此本题选B . {分值}3{章节:[1-13-1-1]轴对称} {考点:轴对称的性质} {类别:常考题}{难度:4-较高难度}{题目}10.(2019年邵阳)某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( )A .⎩⎨⎧x +7y =16x +13y =28B .⎩⎨⎧x +(7-2)y =16x +13y =28C .⎩⎨⎧x +7y =16x +(13-2)y =28D .⎩⎨⎧x +(7-2)y =16x +(13-2)y =28{答案}D{解析}本题考查了由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则所列方程组为⎩⎨⎧x +(7-2)y =16x +(13-2)y =28,因此本题选D .{分值}3{章节:[1-8-3]实际问题与一元一次方程组} {考点:二元一次方程组的应用} {类别:常考题} {难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共 8小题,每小题 3分,合计24分.{题目}11.(2019年邵阳)20192020的相反数是 .{答案}-20192020{解析}本题考查了相反数;熟练掌握相反数的求法是解题的关键.因此本题填-20192020.{分值}3{章节:[1-1-2-3]相反数} {考点:相反数的定义} {类别:常考题}{难度:1-最简单}{题目}12.(2019年邵阳)不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是 .{答案}16{解析}本题考查了列表法与树状图法求随机事件的概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.画树状图如下:由树状图知,共有12种等可能结果,其中取出2个小球的颜色恰好是一红一蓝的有2种结果,所以取出2个小球的颜色恰好是一红一蓝的概率为212=16,因此本题填16.{分值}3{章节:[1-25-2]用列举法求概率} {考点:两步事件放回} {类别:常考题}{难度:2-简单}{题目}13.(2019年邵阳)如图,在平面直角坐标系中,点A 的坐标为(﹣4,2),反比例函数y =k x(x <0)的图象经过线段OA 的中点B ,则k = .{答案}﹣2{解析}本题考查了平行线等分线段定理,点的坐标与相应线段的长度的相互转化等知识;求出点B 坐标,代入求k 的值是本题的基本方法.如图:∵AC ∥BD ,B 是OA 的中点,∴OD =DC同理OF =EF∵A (﹣4,2)∴AC =2,OC =4∴OD =CD =2,BD =OF =EF =1,∴B (﹣2,1)代入y =k x得: ∴k =﹣2×1=﹣2因此本题填﹣2.{分值}3{章节:[1-27-1-1]相似三角形的判定}{考点:平行线分线段成比例}{类别:常考题}{难度:2-简单}{题目}14.(2019年邵阳)不等式组⎩⎨⎧x +4<31-x 3≤1的解集是 .{答案}﹣2≤x <﹣1 {解析}本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.解不等式x+4<3,得:x <﹣1,解不等式1-x 3≤1,得:x ≥﹣2, 则不等式组的解集为﹣2≤x <﹣1,因此本题填﹣2≤x <﹣1.{分值}3{章节:[1-9-3]一元一次不等式组}{考点:解一元一次不等式组}{类别:常考题}{难度:2-简单}{题目}15.(2019年邵阳)如图,已知AD =AE ,请你添加一个条件,使得△ADC ≌△AEB ,你添加的条件是 .(不添加任何字母和辅助线){答案}AB=AC或∠ADC=∠AEB或∠ABE=∠ACD{解析}本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.∵∠A=∠A,AD=AE,∴可以添加AB=AC,此时满足SAS;添加条件∠ADC=∠AEB,此时满足ASA;添加条件∠ABE=∠ACD,此时满足AAS,因此本题填AB=AC或∠ADC=∠AEB或∠ABE=∠ACD.{分值}3{章节:[1-12-2]三角形全等的判定}{考点:全等三角形的判定ASA,AAS}{类别:常考题}{难度:2-简单}{题目}16.(2019年邵阳)关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,则m的最小整数值是.{答案}0{解析}本题考查了一元二次方程的根的存在性;熟练掌握利用判别式△确定一元二次方程的根的存在性是解题的关键.一元二次方程x2﹣2x﹣m =0有两个不相等的实数根,∴△=4+4m>0,∴m>﹣1;故答案为0;因此本题填0.{分值}3{章节:[1-21-3] 一元二次方程根与系数的关系}{考点:根的判别式}{ {类别:常考题}{难度:2-简单}{题目}17.(2019年邵阳)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是.{答案}4{解析}本题考查了勾股定理和正方形的面积公式,关键是运用了数形结合的数学思想.∵勾a=6,弦c=10,∴股=8,∴小正方形的边长=8﹣6=2,∴小正方形的面积=22=4因此本题填4.{分值}3{章节:[1-17-1]勾股定理}{考点:勾股定理的应用}{类别:数学文化}{难度:2-简单}{题目}18.(2019年邵阳)如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是.{答案}{解析}本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了等边三角形的性质.作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=3OH=23,∴B点坐标为(2,23),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣23).因此本题填(﹣2,﹣23).{分值}3{章节:[1-13-2-2]等边三角形}{考点:旋转的性质}{类别:常考题}{难度:3-中等难度}{题型:4-解答题}三、解答题:本大题共 8小题,合计66分.{题目}19.(2019年邵阳)计算:327﹣(13)-1+|﹣2|cos60°{解析}本题考查了实数的运算,特殊三角函数值;熟练掌握实数的运算,牢记特殊的三角函数值是解题的关键.分别化简每一项,再进行运算即可.{答案}解:327﹣(13)﹣1+|﹣2|cos60°=3﹣3+2×12=1{分值}8{章节:[1-28-3]锐角三角函数} {难度:2-简单}{类别:常考题}{考点:特殊角的三角函数值}{题目}20.(2019年邵阳)先化简,再求值:(1﹣1m+2)÷m2+2m+12m+2,其中m=2﹣2.{解析}本题考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.{答案}解:原式=(m+2m+2﹣1m+2)÷(m+1)22(m+1)=m+1m+2•2m+1=2m+2,当m=2﹣2时,原式=22-2+2=2.{分值}8{章节:[1-16-3]二次根式的加减}{难度:2-简单}{类别:常考题}{考点:二次根式的混合运算}{题目}21.(2019年邵阳)如图,在等腰△ABC中,∠BAC=120°,AD 是∠BAC的角平分线,且AD=6,以点A为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F.(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF ,将扇形AEF 围成一个圆锥的侧面,AE 与AF 正好重合,圆锥侧面无重叠,求这个圆锥的高h .{解析}本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰三角形的性质和扇形的面积公式.(1)利用等腰三角形的性质得到AD ⊥BC ,BD =CD ,则可计算出BD =63,然后利用扇形的面积公式,利用由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积=S △ABC ﹣S 扇形EAF 进行计算;(2)设圆锥的底面圆的半径为r ,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr =120 ⋅π⋅6180,解得r =2,然后利用勾股定理计算这个圆锥的高h .{答案}解: ∵在等腰△ABC 中,∠BAC =120°,∴∠B =30°,∵AD 是∠BAC 的角平分线,∴AD ⊥BC ,BD =CD ,∴BD =3AD =63,∴BC =2BD =123,∴由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积=S △ABC ﹣S扇形EAF =12×6×123﹣120 ⋅π⋅62360=363﹣12π; (2)设圆锥的底面圆的半径为r ,根据题意得2πr =120 ⋅π⋅6180,解得r =2, 这个圆锥的高h =42.{分值}8{章节:[1-24-4]弧长和扇形面积}{难度:3-中等难度}{类别:常考题}{考点:扇形的面积}{题目}22.(2019年邵阳 )某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是 ;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.{解析}本题考查了扇形统计图,条形统计图,读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.(1)利用摄影社团的人数除以摄影社团所占的百分比即可得到结论;(2)求出参与篮球社的人数和国学社的人数,补全条形统计图即可;(3)利用科技制作社团所占的百分比乘以360°即可得到结论;(4)利用全校学生数乘以参加篮球社团所占的百分比即可得到结论.{答案}解:(1)本次抽样调查的样本容量是510%=50,故答案为:50;(2)参与篮球社的人数=50×20%=10人,参与国学社的人数为50﹣5﹣10﹣12﹣8=15人,补全条形统计图如图所示;(3)参与科技制作社团所在扇形的圆心角度数为360°×1250=86.4°;(4)3000×20%=600名,答:全校有600学生报名参加篮球社团活动.{分值}8{章节:[1-10-2]直方图}{难度:2-简单}{类别:常考题}{考点:统计的应用问题}{题目}23.(2019年邵阳)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.{解析}本题考查了一元二次方程应用问题关于增长率类型,利用公式建立方程即可,记忆公式并运用公式是本题的关键.根据a(1﹣x)2=b增长率公式建立方程30(1+x)2=36.3,解方程即可.{答案}解:设平均增长率为x,根据题意列方程得30(1+x)2=36.3解得x1=0.1,x2=﹣2.1(舍)答:我国外贸进出口总值得年平均增长率为10%.{分值}8{章节:[1-21-4]实际问题与一元二次方程}{难度:3-中等难度}{类别:常考题}{考点:一元二次方程的应用—增长率问题}{题目}24.(2019年邵阳 )某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE 与支架CB 所在直线相交于点O ,且OB =OE ;支架BC 与水平线AD 垂直.AC =40cm ,∠ADE =30°,DE =190cm ,另一支架AB 与水平线夹角∠BAD =65°,求OB 的长度(结果精确到1cm ;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14){解析}本题考查了解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.设OE =OB =2x ,根据含30度角的直角三角形的性质以及锐角三角函数的定义即可求出答案.{答案}解:设OE =OB =2x , ∴OD =DE+OE =190+2x , ∵∠ADE =30°, ∴OC =12OD =95+x ,∴BC =OC ﹣OB =95+x ﹣2x =95﹣x , ∵tan ∠BAD =BCAC ,∴2.14=95-x40,解得:x ≈9, ∴OB =2x =18. {分值}8{章节:[1-28-1-2]解直角三角形} {难度:3-中等难度} {类别:常考题} {考点:解直角三角形}{题目}25.(2019年邵阳 )如图1,已知⊙O 外一点P 向⊙O 作切线PA ,点A 为切点,连接PO 并延长交⊙O 于点B ,连接AO 并延长交⊙O 于点C ,过点C 作CD ⊥PB ,分别交PB 于点E ,交⊙O 于点D ,连接AD . (1)求证:△APO ~△DCA ; (2)如图2,当AD =AO 时 ①求∠P 的度数;②连接AB ,在⊙O 上是否存在点Q 使得四边形APQB 是菱形.若存在,请直接写出PQCQ的值;若不存在,请说明理由.{解析}本题考查了有关圆的综合题,难度不大;主要考查了切线性质,圆周角与圆心角,等边三角形性质,特殊角三角函数值,菱形性质等.(1)由切线性质和直径AC 可得∠PAO =∠CDA =90°,由PB ∥AD 可得∠POD =∠CAD ,即可得:△APO ~△DCA ;(2)①连接OD ,由AD =OA =OD 可得△OAD 是等边三角形,由此可得∠POA =60°,∠P =30°;②作BQ ⊥AC 交⊙O 于Q ,可证ABQP 为菱形,求PQ CQ 可转化为求ABBC .{答案}解:(1)证明:如图1,∵PA 切⊙O 于点A ,AC 是⊙O 的直径, ∴∠PAO =∠CDA =90° ∵CD ⊥PB ∴∠CEP =90° ∴∠CEP =∠CDA ∴PB ∥AD ∴∠POA =∠CAO ∴△APO ~△DCA (2)如图2,连接OD , ①∵AD =AO ,OD =AO ∴△OAD 是等边三角形 ∴∠OAD =60° ∵PB ∥AD∴∠POA =∠OAD =60° ∵∠PAO =90°∴∠P =90°﹣∠POA =90°﹣60°=30°②存在.如图2,过点B 作BQ ⊥AC 交⊙O 于Q ,连接PQ ,BC ,CQ ,由①得:∠POA=60°,∠PAO=90°∴∠BOC=∠POA=60°∵OB=OC∴∠ACB=60°∴∠BQC=∠BAC=30°∵BQ⊥AC,∴CQ=BC∵BC=OB=OA∴△CBQ≌△OBA(AAS)∴BQ=AB∵∠OBA=∠OPA=30°∴AB=AP∴BQ=AP∵PA⊥AC∴BQ∥AP∴四边形ABQP是平行四边形∵AB=AP∴四边形ABQP是菱形∴PQ=AB∴PQCQ=ABBC=tan∠ACB=tan60°= 3{分值}8{章节:[1-24-2-1]点和圆的位置关系} {难度:5-高难度} {类别:常考题} {考点:几何综合}{题目}26.(2019年邵阳 )如图,二次函数y =﹣13x 2+bx+c 的图象过原点,与x 轴的另一个交点为(8,0) (1)求该二次函数的解析式;(2)在x 轴上方作x 轴的平行线y 1=m ,交二次函数图象于A 、B 两点,过A 、B 两点分别作x 轴的垂线,垂足分别为点D 、点C .当矩形ABCD 为正方形时,求m 的值;(3)在(2)的条件下,动点P 从点A 出发沿射线AB 以每秒1个单位长度匀速运动,同时动点Q 以相同的速度从点A 出发沿线段AD 匀速运动,到达点D 时立即原速返回,当动点Q 返回到点A 时,P 、Q 两点同时停止运动,设运动时间为t 秒(t >0).过点P 向x 轴作垂线,交抛物线于点E ,交直线AC 于点F ,问:以A 、E 、F 、Q 四点为顶点构成的四边形能否是平行四边形.若能,请求出t 的值;若不能,请说明理由.{解析}本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、正方形的性质、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用正方形的性质,找出关于m的方程;(3)分0<t≤4,4<t≤7,7<t≤8三种情况,利用平行四边形的性质找出关于t的一元二次方程.(1)根据点的坐标,利用待定系数法即可求出二次函数的解析式;(2)利用二次函数图象上点的坐标特征求出点A,B的坐标,进而可得出点C,D的坐标,再利用正方形的性质可得出关于m的方程,解之即可得出结论;(3)由(2)可得出点A,B,C,D的坐标,根据点A,C的坐标,利用待定系数法可求出直线AC的解析式,利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征可求出点E,F的坐标,由AQ∥EF且以A、E、F、Q四点为顶点的四边形为平行四边形可得出AQ=EF,分0<t≤4,4<t≤7,7<t≤8三种情况找出AQ,EF的长,由AQ=EF可得出关于t的一元二次方程,解之取其合适的值即可得出结论.{答案}解: (1)将(0,0),(8,0)代入y =﹣13x 2+bx+c ,得:⎩⎨⎧c =0-643+8b +c =0 ,解得:⎩⎨⎧b =83c =0,∴该二次函数的解析式为y =﹣13x 2+83x .(2)当y =m 时,﹣13x 2+83x =m ,解得:x 1=4﹣16-3m ,x 2=4+16-3m ,∴点A 的坐标为(4﹣16-3m ,m ),点B 的坐标为(4+16-3m ,m ), ∴点D 的坐标为(4﹣16-3m ,0),点C 的坐标为(4+16-3m ,0). ∵矩形ABCD 为正方形,∴4+16-3m ﹣(4﹣16-3m )=m , 解得:m 1=﹣16(舍去),m 2=4. ∴当矩形ABCD 为正方形时,m 的值为4.(3)以A 、E 、F 、Q 四点为顶点构成的四边形能为平行四边形. 由(2)可知:点A 的坐标为(2,4),点B 的坐标为(6,4),点C 的坐标为(6,0),点D 的坐标为(2,0). 设直线AC 的解析式为y =kx+a (k ≠0), 将A (2,4),C (6,0)代入y =kx+a ,得:⎩⎨⎧2k +a =46k +a =0,解得:⎩⎨⎧k =-1a =6, ∴直线AC 的解析式为y =﹣x+6.当x =2+t 时,y =﹣13x 2+83x =﹣13t 2+43t+4,y =﹣x+6=﹣t+4,∴点E 的坐标为(2+t ,﹣13t 2+43t+4),点F 的坐标为(2+t ,﹣t+4).∵以A 、E 、F 、Q 四点为顶点构成的四边形为平行四边形,且AQ ∥EF , ∴AQ =EF ,分三种情况考虑:①当0<t ≤4时,如图1所示,AQ =t ,EF =﹣13t 2+43t+4﹣(﹣t+4)=﹣13t 2+73t , ∴t =﹣13t 2+73t ,解得:t 1=0(舍去),t 2=4;②当4<t ≤7时,如图2所示,AQ =t ﹣4,EF =﹣13t 2+43t+4﹣(﹣t+4)=﹣13t 2+73t , ∴t ﹣4=﹣13t 2+73t ,解得:t 3=﹣2(舍去),t 4=6;③当7<t ≤8时,AQ =t ﹣4,EF =﹣t+4﹣(﹣13t 2+43t+4)=13t 2-73t ,∴t ﹣4=13t 2-73t ,解得:t 5=5﹣13(舍去),t 6=5+13(舍去).综上所述:当以A 、E 、F 、Q 四点为顶点构成的四边形为平行四边形时,t 的值为4或6.{分值}10{章节:[1-22-3]实际问题与二次函数} {难度:5-高难度}{类别:高度原创}{考点:代数综合}。
(真题)湖南省邵阳市2019年中考数学试题有答案(Word版)
邵阳市2019年初中毕业学业考试试题卷数学温馨提示:(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为120分;(2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上;(3)请你在答题卡上作答,答在本试题卷上无效.一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.用计算器依次按键,得到的结果最接近的是A.1.5 B.1.6 C.1.7 D.1.82.如图(一)所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为A.20°B.60°C.70°D.160°3.将多项式x-x3因式分解正确的是A.x(x2-1)B.x(1-x2)C.x(x+1)(x-1) D.x(1+x)(1-x)4.下列图形中,是轴对称图形的是5.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm =10-9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为A.28×10-9 m B.2.8×10-8 mC.28×109 m D.2.8×108 m6.如图(二)所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是A.80°B.120°C.100°D.90°7.小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:一百馒头一百僧,大僧三个更无争, 小僧三人分一个,大小和尚得几丁.月份 1 2 3 4 成绩(s )15.615.415.215体育老师夸奖小明是“田径天才”.请你预测小明年(个月)后短跑的成绩为 (温馨提示:目前100m 短跑世界记录为9秒58) A .14.8s B .3.8sC .3sD .预测结果不可靠8.如图(三)所示,在平面直角坐标系中,已知点A (2,4),过 点A 作AB ⊥x 轴于点B .将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD ,则CD 的长度是A .2B .1C .4D .2 59.根据李飞与刘亮射击训练的成绩绘制了如图(四)所示的折线统计图.根据图(四)所提供的信息,若要推荐一位成绩较稳定...的选手去参赛,应推荐 A .李飞或刘亮 B .李飞 C .刘亮 D .无法确定10.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人.下列求解结果正确的是A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.点A 在数轴上的位置如图(五)所示,则点A 表示的数的相反数是 .12.如图(六)所示,点E 是平行四边形ABCD 的边BC 延长线上一点,连接AE ,交CD 于点F ,连接BF .写出图中任意一对相似三角形: .13.已知关于x 的方程x 2 +3x -m =0的一个解为-3,则它的另一个解是 .14.如图(七)所示,在四边形ABCD 中,AD ⊥AB ,∠C =110°,它的一个外角∠ADE =60°, 则∠B 的大小是 .15.某市对九年级学生进行“综合素质”评价,评价结果分为A ,B ,C ,D ,E 五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图(八)所示的统计图.已知图中从左到右的五个长方形的高之比为2∶3∶3∶1∶1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A ”的学生约为 人. 16.如图(九)所示,一次函数y =ax +b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4). 结合图象可知,关于x 的方程ax +b =0的解是 .17.如图(十)所示,在等腰△ABC 中,AB =AC ,∠A =36°.将△ABC 中的∠A 沿DE 向下翻折,使点A 落在点C 处.若A E =3,则BC 的长是_________.18.如图(十一)所示,点A 是反比例函数y =kx图象上一点,作AB ⊥x 轴,垂足为点B .若△AOB 的面积为2,则k 的值是 .三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程) 19.计算:(-1)2+( π -3.14)0-|2-2|.20.先化简,再求值:( a -2b )( a +2b )-(a -2b )2+8b 2,其中a =-2,b =12.21.如图(十二)所示,AB 是⊙O 的直径,点C 为⊙O 上一点,过点B 作BD ⊥CD ,垂足为点D ,连结BC .BC 平分∠ABD . 求证:CD 为⊙O 的切线.22.某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图(十三)所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:结合以上信息,回答下列问题:(1)求服装项目的权数及普通话项目对应扇形的圆心角大小; (2)求李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.项目 选手服装 普通话 主题 演讲 技巧 李明 85 70 80 85 张华9075758023.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000 kg材料所用的时间与B型机器人搬运800 kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800 kg,则至少购进A型机器人多少台?24.某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图(十四)所示,已知原阶梯式自动扶梯AB长为10m,坡角∠ABD为30°;改造后的斜坡式自动扶梯的坡角∠ACB为15°,请你计算改造后的斜坡式自动扶梯AC的长度.(结果精确到0.1m.温馨提示:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)25.如图(十五)所示,在四边形ABCD中,点O,E,F,G分别是AB,BC,CD,AD的中点,连接OE,EF,FG,GO,GE.(1)证明:四边形OEFG是平行四边形;(2)将△OGE绕点O顺时针旋转得到△OMN,如图(十六)所示,连接GM,EN.①若OE=3,OG=1,求ENGM的值;②试在四边形ABCD中添加一个条件,使GM,EN的长在旋转过程中始终相等.(不要求证明)26.如图(十七)所示,将二次函数y =x 2+2x +1的图象沿x 轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y =ax 2+bx +c 的图象.函数y =x 2+2x +1的图象的顶点为点A .函数y =ax 2+bx +c 的图象的顶点为点B ,和x 轴的交点为点C ,D (点D 位于点C 的左侧).(1)求函数y =ax 2+bx +c 的解析式;(2)从点A ,C ,D 三个点中任取两个点和点B 构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M 是线段BC 上的动点,点N 是△ABC 三边上的动点,是否存在以AM 为斜边的Rt △AMN ,使△AMN 的面积为△ABC 面积的13,若存在,求tan ∠MAN 的值;若不存在,请说明理由.邵阳市2019年初中毕业学业考试参考答案及评分标准数 学一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的) 1 2 3 4 5 6 7 8 9 10 二、填空题(本大题有8个小题,每小题3分,共24分)11.-212.答案不唯一.例如△EFC ∽△AFD ,△EAB ∽△AFD ,△EFC ∽△EAB . 13.x =0 14.40° 15.16000 16.x =2 17. 3 18.4三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程) 19.(8分)解:(-1 )2+(π-3.14 )0-|2-2|=1+1-(2-2)………………………………………………………………………5分 =2-2+2 ……………………………………………………………………7分 =2. …………………………………………………………………………8分 20.(8分)解:( a -2b )( a +2b )-(a -2b )2+8b 2=a 2-(2b )2-(a 2-4ab +4b 2)+8b 2 =a 2-4b 2-a 2+4ab -4b 2+8b 2=4ab . ……………………………………………………………………………6分将a =-2,b =12 代入得:原式=4×(-2)×12=-4. ……………………………………………………………………………8分 21.(8分)证明:∵BC 平分∠ABD ,∴∠OBC =∠DBC .……………………………………………2分∵OB =OC ,∴∠OBC =∠OCB .……………………………………………………4分 ∴∠DBC =∠OCB .∴OC ∥BD .……………………………………………………6分∵BD ⊥CD ,∴OC ⊥CD . 又∵点C 为⊙O 上一点,∴CD 为⊙O 的切线.…………………………………………………………………8分 22.(8分)解:(1)服装项目的权数为10%,普通话项目对应扇形的圆心角为72°;……………2分 (2)众数为85,中位数为82.5;………………………………………………………4分 (3)李明的得分为80.5,张华的得分为78.5,应推荐李明参加比赛.……………8分 23.(8分)解:(1)设A 型机器人每小时搬运x kg 材料,则B 型机器人每小时搬运(x -30)kg 材料,依题意得:1000x =800x -30.………………………………………………………2分 解得x =150,经检验,x =150是原方程的解.所以A 型机器人每小时搬运150kg 材料,B 型机器人每小时搬运120kg 材料.答:略.…………………………………………………………………………………4分 (2)设公司购进A 型机器人y 台,则购进B 型机器人(20-y )台,依题意得:150y +120(20-y )≥2800.………………………………………6分 解得y ≥1313.因为y 为整数,所以公司至少购进A 型机器人14台.答:略.…………………………………………………………………………………8分 24.(8分)解:在Rt △ABD 中,∠ABD =30°,所以AD =12AB =5.………………………………………………………………………2分在Rt △ACD 中,sin ∠ACD =AD AC, 所以AC =AD sin ∠ACD =5sin15°≈19.2(m).答:略.……………………………………………………………………………………8分25.(8分) 解:(1)连接AC ,∵点O ,E ,F ,G 分别是AB ,BC ,CD ,AD 的中点,∴OE ∥AC ,OE =12AC ,GF ∥AC ,GF =12AC .∴OE ∥GF ,OE =GF .∴四边形OEFG 是平行四边形.……………………………………………………3分 (2)①∵△OGE 绕点O 顺时针旋转得到△OMN , ∴OG =OM ,OE =ON ,∠GOM =∠EON .∴OG OE =OMON .∴△OGM ∽△OEN .∴EN GM =OE OG =31=3.………………………………………………………6分 ②答案不唯一,满足AC =BD 即可.……………………………………………8分26.(10分)解:(1)将抛物线y =x 2+2x +1沿x 轴翻折得到:y =-x 2-2x -1,将抛物线y =-x 2-2x -1,向右平移1个单位得到:y =-x 2, 将抛物线y =-x 2向上平移4个单位得到:y =-x 2+4.所求函数y =ax 2+bx +c 的解析式为y =-x 2+4.………………………………2分 (2)从A ,C ,D 三个点中任选两个点和点B 构造的三角形有:△BAC ,△BAD ,△BCD .A ,B ,C ,D 的坐标分别为(-1,0),(0,4),(2,0),(-2,0), 可求得AB =17,AC =3,BC =25,AD =1,BD =25,CD =4,只有△BCD 为等腰三角形,所以构造的三角形是等腰三角形的概率P =13.…4分(3)S △ABC =12 AC ·BO =12×3×4=6.①当点N 在边AC 上时,点M 在边BC 上,在Rt △AMN 中,MN ⊥AC .设点N 的坐标为(m ,0),则AN =m +1,点M 的横坐标为m .由B (0,4),C (2,0)易得线段BC 的解析式为y =-2x +4,其中0≤x ≤2, 所以点M 的纵坐标为-2m +4,则MN =-2m +4.S △AMN =12AN ·MN =12(m +1)(-2m +4)=13S △ABC =2. 解得m 1=1,m 2=0.当m =1时,N 点的坐标为(1,0),M 点的坐标为(1,2),AN =2,MN =2.tan ∠MAN =MN AN =22=1.……………5分当m =0时,N 点的坐标为(0,0),M 点与点B 重合,坐标为(0,4),AN =1,MN =4.tan ∠MAN =MN AN =41=4.………………………………………………………6分②当点N 在BC 上时,点M 在BC 上,Rt △AMN 中,MN ⊥AN ,因为S △AMN =13S △ABC ,所以12AN ·MN =13×12BC ·AN ,所以MN =13BC =253.因为S △ABC =12BC ·AN =12×25·AN =6,所以AN =65. 所以tan ∠MAN =MN AN =25365=59.…………8分③当点N 在AB 上时,点M 在BC 上,Rt △AMN 中,MN ⊥AN . 设AN =t ,则BN =17–t ,过点A 作AG ⊥BC 于点G ,由②得AG =65. 在Rt △ABG 中,BG =AB 2-AG 2=75. 易证△BNM ∽△BGA , 所以BN BG =MNAG ,即17-t 75=MN 65, 求得MN =617-6t7,所以S △AMN =12AN ·MN =12t ·617-6t7=2,化简得3t 2-317t +14=0,△=(317)2-4×3×14=-15<0,此方程无解, 所以此情况不存在.综上所述,当点N 在AC 上,点M 与点B 重合时,tan ∠MAN =4;当点N 在AC 上,点M 不与点B 重合时,tan ∠MAN =1;当点N 在BC 上时,tan ∠MAN =59.…………………………10分注:解答题用其它方法解答参照给分.第11页共11页。
邵阳市中考数学真题试题(含解析)
2019年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数中,属于无理数的是()A.B.1.414 C.D.2.(3分)下列立体图形中,俯视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球3.(3分)据海关统计:2019年前4个月,中国对美国贸易顺差为5700亿元.用科学记数法表示5700亿元正确的是()A.5.7×1011元B.57×1010元C.5.7×10﹣11元D.0.57×1012元4.(3分)如图,已知两直线l1与l2被第三条直线l3所截,下列等式一定成立的是()A.∠l=∠2 B.∠2=∠3 C.∠2+∠4=180°D.∠1+∠4=180°5.(3分)学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一纽数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是26.(3分)以下计算正确的是()A.(﹣2ab2)3=8a3b6B.3ab+2b=5abC.(﹣x2)•(﹣2x)3=﹣8x5D.2m(mn2﹣3m2)=2m2n2﹣6m37.(3分)一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y28.(3分)如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法中错误的是()A.△ABC∽△A′B′C′B.点C、点O、点C′三点在同一直线上C.AO:AA′=1:2D.AB∥A′B′9.(3分)如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°10.(3分)某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A.B.C.D.二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)的相反数是.12.(3分)不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是.13.(3分)如图,在平面直角坐标系中,点A的坐标为(﹣4,2),反比例函数y=(x <0)的图象经过线段OA的中点B,则k=.14.(3分)不等式组的解集是.15.(3分)如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是.(不添加任何字母和辅助线)16.(3分)关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,则m的最小整数值是.17.(3分)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是.18.(3分)如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是.三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.(8分)计第:﹣()﹣1+|﹣2|cos60°20.(8分)先化简,再求值:(1﹣)÷,其中m=﹣2.21.(8分)如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F.(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h.22.(8分)某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.23.(8分)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.24.(8分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且OB=OE;支架BC与水平线AD垂直.AC=40cm,∠ADE =30°,DE=190cm,另一支架AB与水平线夹角∠BAD=65°,求OB的长度(结果精确到1cm;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)25.(8分)如图1,已知⊙O外一点P向⊙O作切线PA,点A为切点,连接PO并延长交⊙O 于点B,连接AO并延长交⊙O于点C,过点C作CD⊥PB,分别交PB于点E,交⊙O于点D,连接AD.(1)求证:△APO~△DCA;(2)如图2,当AD=AO时①求∠P的度数;②连接AB,在⊙O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出的值;若不存在,请说明理由.26.(10分)如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分别为点D、点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P向x 轴作垂线,交抛物线于点E,交直线AC于点F,问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.2019年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:=2是有理数;是无理数;故选:C.2.【解答】解:A.俯视图与主视图都是正方形,故选项A不合题意;B.俯视图与主视图都是正方形,故选项B不合题意;C.俯视图是圆,左视图是三角形;故选项C符合题意;D.俯视图与主视图都是圆,故选项D不合题意;故选:C.3.【解答】解:5700亿元=570000000000元=5.7×1011元;故选:A.4.【解答】解:∠1与∠2是同为角,∠2与∠3是内错角,∠2与∠4是同旁内角,由平行线的性质可知,选项A,B,C成立的条件为l1∥l2时,而∠1与∠4是邻补角,故D正确.故选:D.5.【解答】解:A、该班级所售图书的总收入为3×14+4×11+5×10+6×15=226,所以A选项正确;B、第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B选项错误;C、这组数据的众数为6,所以C选项错误;D、这组数据的平均数为==4.52,所以这组数据的方差S2=[14(3﹣4.52)2+11(4﹣4.52)2+10(5﹣4.52)2+15(6﹣4.52)2]≈1.4,所以D选项错误.故选:A.6.【解答】解:(﹣2ab2)3=﹣8a3b6,A错误;3ab+2b不能合并同类项,B错误;(﹣x2)(﹣2x)3=8x5,C错误;故选:D.7.【解答】解:∵将直线l1向下平移若干个单位后得直线l2,∴直线l1∥直线l2,∴k1=k2,∵直线l1向下平移若干个单位后得直线l2,∴b1>b2,∴当x=5时,y1>y2,故选:B.8.【解答】解:∵以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,∴△ABC∽△A′B′C′,点C、点O、点C′三点在同一直线上,AB∥A′B′,AO:OA′=1:2,故选项C错误,符合题意.故选:C.9.【解答】解:∵在Rt△ABC中,∠BAC=90°,∠B=36°,∴∠C=90°﹣∠B=54°.∵AD是斜边BC上的中线,∴AD=BD=CD,∴∠BAD=∠B=36°,∠DAC=∠C=54°,∴∠ADC=180°﹣∠DAC﹣∠C=72°.∵将△ACD沿AD对折,使点C落在点F处,∴∠ADF=∠ADC=72°,∴∠BED=∠BAD+∠ADF=36°+72°=108°.故选:B.10.【解答】解:设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选:D.二、填空题(本大题有8个小题,每小题3分,共24分)11.【解答】解:的相反数是﹣;故答案为﹣;12.【解答】解:画树状图如下:由树状图知,共有12种等可能结果,其中取出2个小球的颜色恰好是一红一蓝的有2种结果,所以取出2个小球的颜色恰好是一红一蓝的概率为=,故答案为:.13.【解答】解:如图:∵AC∥BD,B是OA的中点,∴OD=DC同理OF=EF∵A(﹣4,2)∴AC=2,OC=4∴OD=CD=2,BD=OF=EF=1,∴B(﹣2,1)代入y=得:∴k=﹣2×1=﹣2故答案为:﹣214.【解答】解:解不等式x+4<3,得:x<﹣1,解不等式≤1,得:x≥﹣2,则不等式组的解集为﹣2≤x<﹣1,故答案为:﹣2≤x<﹣1.15.【解答】解:∵∠A=∠A,AD=AE,∴可以添加AB=AC,此时满足SAS;添加条件∠ADC=∠AEB,此时满足ASA;添加条件∠ABE=∠ACD,此时满足AAS,故答案为AB=AC或∠ADC=∠AEB或∠ABE=∠ACD;16.【解答】解:一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,∴△=4+4m>0,∴m>﹣1;故答案为0;17.【解答】解:∵勾a=6,弦c=10,∴股==8,∴小正方形的边长=8﹣6=2,∴小正方形的面积=22=4故答案是:418.【解答】解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故答案为(﹣2,﹣2).三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.【解答】解:﹣()﹣1+|﹣2|cos60°=3﹣3+2×=1;20.【解答】解:原式=(﹣)÷=•=,当m=﹣2时,原式==.21.【解答】解:∵在等腰△ABC中,∠BAC=120°,∴∠B=30°,∵AD是∠BAC的角平分线,∴AD⊥BC,BD=CD,∴BD=AD=6,∴BC=2BD=12,∴由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=S△ABC﹣S扇形EAF=×6×12﹣=36﹣12π;(2)设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=2,这个圆锥的高h==4.22.【解答】解:(1)本次抽样调查的样本容量是=50,故答案为:50;(2)参与篮球社的人数=50×20%=10人,参与国学社的人数为50﹣5﹣10﹣12﹣8=15人,补全条形统计图如图所示;(3)参与科技制作社团所在扇形的圆心角度数为360°×=86.4°;(4)3000×20%=600名,答:全校有600学生报名参加篮球社团活动.23.【解答】解:设平均增长率为x,根据题意列方程得30(1+x)2=36.3解得x1=0.1,x2=﹣2.1(舍)答:我国外贸进出口总值得年平均增长率为10%.24.【解答】解:设OE=OB=2x,∴OD=DE+OE=190+2x,∵∠ADE=30°,∴OC=OD=95+x,∴BC=OC﹣OB=95+x﹣2x=95﹣x,∵tan∠BAD=,∴2.14=,解得:x≈9,∴OB=2x=18.25.【解答】解:(1)证明:如图1,∵PA切⊙O于点A,AC是⊙O的直径,∴∠PAO=∠CDA=90°∵CD⊥PB∴∠CEP=90°∴∠CEP=∠CDA∴PB∥AD∴∠POA=∠CAO∴△APO~△DCA(2)如图2,连接OD,①∵AD=AO,OD=AO∴△OAD是等边三角形∴∠OAD=60°∵PB∥AD∴∠POA=∠OAD=60°∵∠PAO=90°∴∠P=90°﹣∠POA=90°﹣60°=30°②存在.如图2,过点B作BQ⊥AC交⊙O于Q,连接PQ,BC,CQ,由①得:∠POA=60°,∠PAO=90°∴∠BOC=∠POA=60°∵OB=OC∴∠ACB=60°∴∠BQC=∠BAC=30°∵BQ⊥AC,∴CQ=BC∵BC=OB=OA∴△CBQ≌△OBA(AAS)∴BQ=AB∵∠OBA=∠OPA=30°∴AB=AP∴BQ=AP∵PA⊥AC∴BQ∥AP∴四边形ABQP是平行四边形∵AB=AP∴四边形ABQP是菱形∴PQ=AB∴==tan∠ACB=tan60°=26.【解答】解:(1)将(0,0),(8,0)代入y=﹣x2+bx+c,得:,解得:,∴该二次函数的解析式为y=﹣x2+x.(2)当y=m时,﹣x2+x=m,解得:x1=4﹣,x2=4+,∴点A的坐标为(4﹣,m),点B的坐标为(4+,m),∴点D的坐标为(4﹣,0),点C的坐标为(4+,0).∵矩形ABCD为正方形,∴4+﹣(4﹣)=m,解得:m1=﹣16(舍去),m2=4.∴当矩形ABCD为正方形时,m的值为4.(3)以A、E、F、Q四点为顶点构成的四边形能为平行四边形.由(2)可知:点A的坐标为(2,4),点B的坐标为(6,4),点C的坐标为(6,0),点D的坐标为(2,0).设直线AC的解析式为y=kx+a(k≠0),将A(2,4),C(6,0)代入y=kx+a,得:,解得:,∴直线AC的解析式为y=﹣x+6.当x=2+t时,y=﹣x2+x=﹣t2+t+4,y=﹣x+6=﹣t+4,∴点E的坐标为(2+t,﹣t2+t+4),点F的坐标为(2+t,﹣t+4).∵以A、E、F、Q四点为顶点构成的四边形为平行四边形,且AQ∥EF,∴AQ=EF,分三种情况考虑:①当0<t≤4时,如图1所示,AQ=t,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t=﹣t2+t,解得:t1=0(舍去),t2=4;②当4<t≤7时,如图2所示,AQ=t﹣4,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t﹣4=﹣t2+t,解得:t3=﹣2(舍去),t4=6;③当7<t≤8时,AQ=t﹣4,EF=﹣t+4﹣(﹣t2+t+4)=t2﹣t,∴t﹣4=t2﹣t,解得:t5=5﹣(舍去),t6=5+(舍去).综上所述:当以A、E、F、Q四点为顶点构成的四边形为平行四边形时,t的值为4或6.。
_湖南省邵阳市2019年中考数学试卷_
第1页,总22页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………湖南省邵阳市2019年中考数学试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 五 总分 核分人得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)1. 如图,已知两直线 与 被第三条直线 所截,下列等式一定成立的是( )A .B .C .=180° D .=180°2. 一次函数 的图象 如图所示,将直线 向下平移若干个单位后得直线 , 的函数表达式为.下列说法中错误的是( )A .B .C .D . 当时,答案第2页,总22页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………某班级售书情况如表:售价 3元 4元 5元 6元 数目 14本 11本 10本 15本下列说法正确的是( )A . 该班级所售图书的总收入是226元B . 在该班级所售图书价格组成的一组数据中,中位数是4C . 在该班级所售图书价格组成的一纽数据中,众数是15D . 在该班级所售图书价格组成的一组数据中,方差是24. 下列各数中,属于无理数的是( ) A . B . 1.414 C .D .5. 某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( )A .B .C .D .6. 下列立体图形中,俯视图与主视图不同的是( )A .B .C .D .7. 据海关统计:2019年前4个月,中国对美国贸易顺差为5700亿元.用科学记数法表示5700亿元正确的是( ) A . 元 B . 元 C .元 D .元8. 以下计算正确的是( ) A .B .C .D .第3页,总22页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………9. 如图,以点O 为位似中心,把放大为原图形的2倍得到,以下说法中错误的是( )A .B . 点C ,点O 、点C′三点在同一直线上 C .D .10. 如图,在 中, , ,AD 是斜边BC 上的中线,将△ACD 沿AD 对折,使点C 落在点F 处,线段DF 与AB 相交于点E ,则△BED 等于( )A . 120°B . 108°C . 72°D . 36°第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共8题)1. 不等式组 的解集是 .2. 关于x 的一元二次方程 有两个不相等的实数根,则m 的最小整数值是 .3. 如图,将等边放在平面直角坐标系中,点A 的坐标为,点B 在第一象限,将等边绕点O 顺时针旋转180°得到 ,则点 的坐标是 .答案第4页,总22页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………4. 不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是 .5. 如图,已知 ,请你添加一个条件,使得 ,你添加的条件是 .(不添加任何字母和辅助线)6. 的相反数是 .7. 如图,在平面直角坐标系中,点A 的坐标为 ,反比例函数的图象经过线段OA的中点B ,则k= .8. 公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾,弦,则小正方形ABCD 的面积是 .第5页,总22页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人 得分二、计算题(共2题)9. 先化简,再求值: ,其中10. 计算:评卷人 得分三、解答题(共2题)11. 2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.12. 某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE 与支架CB 所在直线相交于点O ,且 ;支架BC 与水平线AD 垂直. , , ,另一支架AB 与水平线夹角 ,求OB 的长度(结果精确到1cm ;温馨提示: ,, )评卷人 得分四、综合题(共4题)13. 如图1,已知△O 外一点P 向△O 作切线PA ,点A 为切点,连接PO 并延长交△O 于点B ,连接AO 并延长交△O 于点C ,过点C 作 ,分别交PB 于点E ,交△O 于点D ,连接AD .答案第6页,总22页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)求证:△APO ~△DCA ;(2)如图2,当 时 ①求的度数;②连接AB ,在△O 上是否存在点Q 使得四边形APQB 是菱形.若存在,请直接写出 的值;若不存在,请说明理由.14. 如图,在等腰 中, ,AD 是 的角平分线,且,以点A 为圆心,AD 长为半径画弧EF ,交AB 于点E ,交AC 于点F .(1)求由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF ,将扇形AEF 围成一个圆锥的侧面,AE 与AF 正好重合,圆锥侧面无重叠,求这个圆锥的高h . 15. 如图,二次函数的图象过原点,与x 轴的另一个交点为(1)求该二次函数的解析式;第7页,总22页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)在x 轴上方作x 轴的平行线 ,交二次函数图象于A 、B 两点,过A 、B 两点分别作x 轴的垂线,垂足分别为点D 、点C .当矩形ABCD 为正方形时,求m 的值;(3)在(2)的条件下,动点P 从点A 出发沿射线AB 以每秒1个单位长度匀速运动,同时动点Q 以相同的速度从点A 出发沿线段AD 匀速运动,到达点D 时立即原速返回,当动点Q 返回到点A 时,P 、Q 两点同时停止运动,设运动时间为t 秒( ).过点P 向x 轴作垂线,交抛物线于点E ,交直线AC 于点F ,问:以A 、E 、F 、Q 四点为顶点构成的四边形能否是平行四边形.若能,请求出t 的值;若不能,请说明理由.16. 某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是 ;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.答案第8页,总22页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………参数答案1.【答案】:【解释】:2.【答案】:【解释】:3.【答案】:【解释】:第9页,总22页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………4.【答案】:【解释】: 5.【答案】: 【解释】:答案第10页,总22页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………6.【答案】:【解释】:7.【答案】:【解释】:8.【答案】:【解释】:9.【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】: 10.【答案】:【解释】: 【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:【解释】:【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】: 【答案】: 【解释】: 【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:【解释】:【答案】:【解释】:【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】: (1)【答案】:(2)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○……………………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】: (1)【答案】:(2)【答案】: 【解释】: (1)【答案】:(2)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………(3)【答案】:第21页,总22页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………答案第22页,总22页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:(1)【答案】:(2)【答案】:(3)【答案】:(4)【答案】:【解释】:。
2019年湖南省邵阳市中考数学试卷以及解析版
2019年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数中,属于无理数的是( )A .13B .1.414C D2.(3分)下列立体图形中,俯视图与主视图不同的是( )A .正方体B .圆柱C .圆锥D .球3.(3分)据海关统计:2019年前4个月,中国对美国贸易顺差为5700亿元.用科学记数法表示5700亿元正确的是( ) A .115.710⨯元B .105710⨯元C .115.710-⨯元D .120.5710⨯元4.(3分)如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .2l ∠=∠B .23∠=∠C .24180∠+∠=︒D .14180∠+∠=︒5.(3分)学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:下列说法正确的是( )A .该班级所售图书的总收入是226元B .在该班级所售图书价格组成的一组数据中,中位数是4C .在该班级所售图书价格组成的一纽数据中,众数是15D .在该班级所售图书价格组成的一组数据中,方差是2 6.(3分)以下计算正确的是( ) A .2336(2)8ab a b -= B .325ab b ab +=C .235()(2)8x x x --=-D .222232(3)26m mn m m n m -=-7.(3分)一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >8.(3分)如图,以点O 为位似中心,把ABC ∆放大为原图形的2倍得到△A B C ''',以下说法中错误的是( )A .ABC ∆∽△ABC '''B .点C 、点O 、点C '三点在同一直线上 C .:1:2AO AA '=D .//AB A B ''9.(3分)如图,在Rt ABC ∆中,90BAC ∠=︒,36B ∠=︒,AD 是斜边BC 上的中线,将ACD ∆沿AD 对折,使点C 落在点F 处,线段DF 与AB 相交于点E ,则BED ∠等于( )A .120︒B .108︒C .72︒D .36︒10.(3分)某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( ) A .7161328x y x y +=⎧⎨+=⎩B .(72)161328x y x y +-=⎧⎨+=⎩C .716(132)28x y x y +=⎧⎨+-=⎩D .(72)16(132)28x y x y +-=⎧⎨+-=⎩二、填空题(本大题有8个小题,每小题3分,共24分) 11.(3分)20192020的相反数是 . 12.(3分)不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是 .13.(3分)如图,在平面直角坐标系中,点A 的坐标为(4,2)-,反比例函数(0)k y x x=<的图象经过线段OA 的中点B ,则k = .14.(3分)不等式组43113x x +<⎧⎪-⎨⎪⎩…的解集是 .15.(3分)如图,已知AD AE =,请你添加一个条件,使得ADC AEB ∆≅∆,你添加的条件是 .(不添加任何字母和辅助线)16.(3分)关于x 的一元二次方程220x x m --=有两个不相等的实数根,则m 的最小整数值是 .17.(3分)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾6a =,弦10c =,则小正方形ABCD 的面积是 .18.(3分)如图,将等边AOB ∆放在平面直角坐标系中,点A 的坐标为(4,0),点B 在第一象限,将等边AOB ∆绕点O 顺时针旋转180︒得到△A OB '',则点B '的坐标是 .三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.(811()|2|cos603-+-︒20.(8分)先化简,再求值:2121(1)222m m m m ++-÷++,其中2m . 21.(8分)如图,在等腰ABC ∆中,120BAC ∠=︒,AD 是BAC ∠的角平分线,且6AD =,以点A 为圆心,AD 长为半径画弧EF ,交AB 于点E ,交AC 于点F . (1)求由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF ,将扇形AEF 围成一个圆锥的侧面,AE 与AF 正好重合,圆锥侧面无重叠,求这个圆锥的高h .22.(8分)某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.23.(8分)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.24.(8分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且OB OE=,=;支架BC与水平线AD垂直.40AC cm =,另一支架AB与水平线夹角65∠=︒,求OB的长度(结果BAD∠=︒,190DE cm30ADE精确到1cm;温馨提示:sin650.91︒≈︒≈,cos650.42︒≈,tan65 2.14)25.(8分)如图1,已知O外一点P向O作切线PA,点A为切点,连接PO并延长交O 于点B,连接AO并延长交O于点C,过点C作CD PB⊥,分别交PB于点E,交O于点D,连接AD.(1)求证:~∆∆;APO DCA(2)如图2,当AD AO=时①求P∠的度数;②连接AB ,在O 上是否存在点Q 使得四边形APQB 是菱形.若存在,请直接写出PQCQ的值;若不存在,请说明理由.26.(10分)如图,二次函数213y x bx c =-++的图象过原点,与x 轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x 轴上方作x 轴的平行线1y m =,交二次函数图象于A 、B 两点,过A 、B 两点分别作x 轴的垂线,垂足分别为点D 、点C .当矩形ABCD 为正方形时,求m 的值; (3)在(2)的条件下,动点P 从点A 出发沿射线AB 以每秒1个单位长度匀速运动,同时动点Q 以相同的速度从点A 出发沿线段AD 匀速运动,到达点D 时立即原速返回,当动点Q 返回到点A 时,P 、Q 两点同时停止运动,设运动时间为t 秒(0)t >.过点P 向x 轴作垂线,交抛物线于点E ,交直线AC 于点F ,问:以A 、E 、F 、Q 四点为顶点构成的四边形能否是平行四边形.若能,请求出t 的值;若不能,请说明理由.2019年湖南省邵阳市中考数学试卷答案与解析一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(3分)【分析】根据无理数的定义:无限不循环小数是无理数即可求解;【解答】2是无理数; 故选:C .【点评】本题考查无理数;能够化简二次根式,理解无理数的定义是解题的关键. 2.(3分)【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.【解答】解:A .俯视图与主视图都是正方形,故选项A 不合题意;B .俯视图与主视图都是正方形,故选项B 不合题意;C .俯视图是圆,左视图是三角形;故选项C 符合题意;D .俯视图与主视图都是圆,故选项D 不合题意;故选:C .【点评】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型. 3.(3分)【分析】根据科学记数法的表示方法10(110)n a a ⨯<…即可求解; 【解答】解:5700亿元570000000000=元115.710=⨯元; 故选:A .【点评】本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键. 4.(3分)【分析】由三线八角以及平行线的性质可知,A ,B ,C 成立的条件题目并没有提供,而D 选项中邻补角的和为180︒一定正确.【解答】解:1∠与2∠是同为角,2∠与3∠是内错角,2∠与4∠是同旁内角,由平行线的性质可知,选项A ,B ,C 成立的条件为12//l l 时,而1∠与4∠是邻补角,故D 正确.故选:D .【点评】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大. 5.(3分)【分析】把所有数据相加可对A 进行判断;利用中位数和众数的定义对B 、C 进行判断;利用方差的计算公式计算出这组数据的方差,从而可对D 进行判断(当然前面三个判断了可直接对D 进行判断).【解答】解:A 、该班级所售图书的总收入为314411*********⨯+⨯+⨯+⨯=,所以A 选项正确;B 、第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B 选项错误;C 、这组数据的众数为4,所以C 选项错误;D 、这组数据的平均数为2264.5250x ==,所以这组数据的方差222221[14(3 4.52)11(4 4.52)10(5 4.52)15(6 4.52)] 1.450S =-+-+-+-≈,所以D 选项错误. 故选:A .【点评】本题考查方差的定义:一般地设n 个数据,1x ,2x ,n x ⋯的平均数为x ,则方差2222121[()()()]n S x x x x x x n=-+-+⋯+-.也考查了中位数和众数.6.(3分)【分析】利用幂的乘方与积的乘方,单项式乘以多项式法则,合并同类项法则即可求解; 【解答】解:2336(2)8ab a b -=-,A 错误; 32ab b +不能合并同类项,B 错误;235()(2)8x x x --=,C 错误; 故选:D .【点评】本题考查整式的运算;熟练掌握幂的乘方与积的乘方,单项式乘以多项式法则,合并同类项法则是解题的关键. 7.(3分)【分析】根据两函数图象平行k 相同,以及向下平移减即可判断. 【解答】解:将直线1l 向下平移若干个单位后得直线2l ,∴直线1//l 直线2l ,12k k ∴=,直线1l 向下平移若干个单位后得直线2l , 12b b ∴>,∴当5x =时,12y y >,故选:B .【点评】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系. 8.(3分)【分析】直接利用位似图形的性质进而分别分析得出答案.【解答】解:以点O 为位似中心,把ABC ∆放大为原图形的2倍得到△A B C ''', ABC ∴∆∽△A B C ''',点C 、点O 、点C '三点在同一直线上,//AB A B '', :1:2AO OA '=,故选项C 错误,符合题意.故选:C .【点评】此题主要考查了位似变换,正确把握位似图形的性质是解题关键. 9.(3分)【分析】根据三角形内角和定理求出9054C B ∠=︒-∠=︒.由直角三角形斜边上的中线的性质得出AD BD CD ==,利用等腰三角形的性质求出36BAD B ∠=∠=︒,54DAC C ∠=∠=︒,利用三角形内角和定理求出18072ADC DAC C ∠=︒-∠-∠=︒.再根据折叠的性质得出72ADF ADC ∠=∠=︒,然后根据三角形外角的性质得出108BED BAD ADF ∠=∠+∠=︒.【解答】解:在Rt ABC ∆中,90BAC ∠=︒,36B ∠=︒, 9054C B ∴∠=︒-∠=︒.AD 是斜边BC 上的中线,AD BD CD ∴==,36BAD B ∴∠=∠=︒,54DAC C ∠=∠=︒, 18072ADC DAC C ∴∠=︒-∠-∠=︒.将ACD∆沿AD对折,使点C落在点F处,72ADF ADC∴∠=∠=︒,3672108BED BAD ADF∴∠=∠+∠=︒+︒=︒.故选:B.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.10.(3分)【分析】根据津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元可列方程组.【解答】解:设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为(72)16(132)28x yx y+-=⎧⎨+-=⎩,故选:D.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)20192020的相反数是20192020-.【分析】根据相反数的意义,即可求解;【解答】解:20192020的相反数是20192020-;故答案为2019 2020 -;【点评】本题考查相反数;熟练掌握相反数的求法是解题的关键.12.(3分)不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是16.【分析】画树状图得出所有等可能结果,从中找到取出2个小球的颜色恰好是一红一蓝的结果数,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有12种等可能结果,其中取出2个小球的颜色恰好是一红一蓝的有2种结果,所以取出2个小球的颜色恰好是一红一蓝的概率为21126=, 故答案为:16. 【点评】本题考查了列表法与树状图法求随机事件的概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.13.(3分)如图,在平面直角坐标系中,点A 的坐标为(4,2)-,反比例函数(0)k y x x=<的图象经过线段OA 的中点B ,则k = 2- .【分析】已知(4,2)A -,B 是OA 的中点,根据平行线等分线段定理可得点B 的坐标,把B 的坐标代入关系式可求k 的值. 【解答】解:如图://AC BD ,B 是OA 的中点,OD DC ∴=同理OF EF = (4,2)A - 2AC ∴=,4OC =2OD CD ∴==,1BD OF EF ===,(2,1)B ∴-代入ky x=得: 212k ∴=-⨯=-故答案为:2-【点评】考查平行线等分线段定理,点的坐标与相应线段的长度的相互转化等知识;求出点B 坐标,代入求k 的值是本题的基本方法.14.(3分)不等式组43113x x +<⎧⎪-⎨⎪⎩…的解集是 21x -<-… .【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【解答】解:解不等式43x +<,得:1x <-, 解不等式113x-…,得:2x -…, 则不等式组的解集为21x -<-…, 故答案为:21x -<-….【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 15.(3分)如图,已知AD AE =,请你添加一个条件,使得ADC AEB ∆≅∆,你添加的条件是 AB AC =或ADC AEB ∠=∠或ABE ACD ∠=∠ .(不添加任何字母和辅助线)【分析】根据图形可知证明ADC AEB ∆≅∆已经具备了一个公共角和一对相等边,因此可以利用ASA 、SAS 、AAS 证明两三角形全等. 【解答】解:A A ∠=∠,AD AE =,∴可以添加AB AC =,此时满足SAS ;添加条件ADC AEB ∠=∠,此时满足ASA ; 添加条件ABE ACD ∠=∠,此时满足AAS ,故答案为AB AC =或ADC AEB ∠=∠或ABE ACD ∠=∠;【点评】本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.16.(3分)关于x 的一元二次方程220x x m --=有两个不相等的实数根,则m 的最小整数值是 0 .【分析】根据一元二次方程根的存在性,利用判别式△0>求解即可; 【解答】解:一元二次方程220x x m --=有两个不相等的实数根,∴△440m =+>,1m ∴>-;故答案为0;【点评】本题考查一元二次方程的根的存在性;熟练掌握利用判别式△确定一元二次方程的根的存在性是解题的关键.17.(3分)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾6a =,弦10c =,则小正方形ABCD 的面积是 4 .【分析】应用勾股定理和正方形的面积公式可求解. 【解答】解:勾6a =,弦10c =,∴股8=, ∴小正方形的边长862=-=, ∴小正方形的面积224==故答案是:4【点评】本题运用了勾股定理和正方形的面积公式,关键是运用了数形结合的数学思想. 18.(3分)如图,将等边AOB ∆放在平面直角坐标系中,点A 的坐标为(4,0),点B 在第一象限,将等边AOB ∆绕点O 顺时针旋转180︒得到△A OB '',则点B '的坐标是 (2,-- .【分析】作BH y ⊥轴于H ,如图,利用等边三角形的性质得到2OH AH ==,60BOA ∠=︒,再计算出BH ,从而得到B 点坐标为(2,,然后根据关于原点对称的点的坐标特征求出点B '的坐标.【解答】解:作BH y ⊥轴于H ,如图, OAB ∆为等边三角形, 2OH AH ∴==,60BOA ∠=︒,BH ∴==B ∴点坐标为(2,,等边AOB ∆绕点O 顺时针旋转180︒得到△A OB '',∴点B '的坐标是(2,--.故答案为(2,--.【点评】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30︒,45︒,60︒,90︒,180︒.也考查了等边三角形的性质.三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.(811()|2|cos603-+-︒【分析】分别化简每一项,再进行运算即可;【解答】111()|2|cos60332132-+-︒=-+⨯=;【点评】本题考查实数的运算,特殊三角函数值;熟练掌握实数的运算,牢记特殊的三角函数值是解题的关键.20.(8分)先化简,再求值:2121(1)222m m m m ++-÷++,其中2m . 【分析】先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得. 【解答】解:原式221(1)()222(1)m m m m m ++=-÷+++ 1221m m m +=++22m =+,当2m =时,原式=.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 21.(8分)如图,在等腰ABC ∆中,120BAC ∠=︒,AD 是BAC ∠的角平分线,且6AD =,以点A 为圆心,AD 长为半径画弧EF ,交AB 于点E ,交AC 于点F . (1)求由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF ,将扇形AEF 围成一个圆锥的侧面,AE 与AF 正好重合,圆锥侧面无重叠,求这个圆锥的高h .【分析】(1)利用等腰三角形的性质得到AD BC ⊥,BD CD =,则可计算出BD =,然后利用扇形的面积公式,利用由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积ABC EAF S S ∆=-扇形进行计算;(2)设圆锥的底面圆的半径为r ,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到12062180r ππ=,解得2r =,然后利用勾股定理计算这个圆锥的高h .【解答】解:在等腰ABC ∆中,120BAC ∠=︒, 30B ∴∠=︒,AD 是BAC ∠的角平分线,AD BC ∴⊥,BD CD =,BD ∴==2BC BD ∴==∴由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积2112066122360ABC EAFS S ππ∆⋅⋅=-=⨯⨯=扇形; (2)设圆锥的底面圆的半径为r , 根据题意得12062180r ππ=,解得2r =,这个圆锥的高h =【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰三角形的性质和扇形的面积公式. 22.(8分)某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是 50 ;(2)请你补全条形统计图,并在图上标明具体数据; (3)求参与科技制作社团所在扇形的圆心角度数; (4)请你估计全校有多少学生报名参加篮球社团活动.【分析】(1)利用摄影社团的人数除以摄影社团所占的百分比即可得到结论; (2)求出参与篮球社的人数和国学社的人数,补全条形统计图即可; (3)利用科技制作社团所占的百分比乘以360︒即可得到结论;(4)利用全校学生数乘以参加篮球社团所占的百分比即可得到结论. 【解答】解:(1)本次抽样调查的样本容量是55010%=, 故答案为:50;(2)参与篮球社的人数5020%10=⨯=人, 参与国学社的人数为5051012815----=人, 补全条形统计图如图所示;(3)参与科技制作社团所在扇形的圆心角度数为1236086.450︒⨯=︒; (4)300020%600⨯=名,答:全校有600学生报名参加篮球社团活动.【点评】此题考查了扇形统计图,条形统计图,读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小. 23.(8分)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.【分析】根据2(1)a x b -=增长率公式建立方程230(1)36.3x +=,解方程即可. 【解答】解:设平均增长率为x ,根据题意列方程得230(1)36.3x +=解得10.1x =,2 2.1x =-(舍)答:我国外贸进出口总值得年平均增长率为10%.【点评】本题考查了一元二次方程应用问题关于增长率类型,利用公式建立方程即可,记忆公式并运用公式是本题的关键.24.(8分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE 与支架CB 所在直线相交于点O ,且OB OE =;支架BC 与水平线AD 垂直.40AC cm =,30ADE ∠=︒,190DE cm =,另一支架AB 与水平线夹角65BAD ∠=︒,求OB 的长度(结果精确到1cm ;温馨提示:sin650.91︒≈,cos650.42︒≈,tan65 2.14)︒≈【分析】设2OE OB x ==,根据含30度角的直角三角形的性质以及锐角三角函数的定义即可求出答案.【解答】解:设2OE OB x ==, 1902OD DE OE x ∴=+=+, 30ADE ∠=︒, 1952OC OD x ∴==+,95295BC OC OB x x x ∴=-=+-=-, tan BCBAD AC∠=, 952.1440x-∴=, 解得:9x ≈, 218OB x ∴==.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.25.(8分)如图1,已知O 外一点P 向O 作切线PA ,点A 为切点,连接PO 并延长交O 于点B ,连接AO 并延长交O 于点C ,过点C 作CD PB ⊥,分别交PB 于点E ,交O 于点D ,连接AD .(1)求证:~APO DCA ∆∆; (2)如图2,当AD AO =时 ①求P ∠的度数;②连接AB ,在O 上是否存在点Q 使得四边形APQB 是菱形.若存在,请直接写出PQCQ的值;若不存在,请说明理由.【分析】(1)由切线性质和直径AC 可得90PAO CDA ∠=∠=︒,由//PB AD 可得P OD CA D ∠=∠,即可得:~APO DCA ∆∆;(2)①连接OD ,由AD OA OD ==可得OAD ∆是等边三角形,由此可得60POA ∠=︒,30P ∠=︒;②作BQ AC ⊥交O 于Q ,可证ABQP 为菱形,求PQ CQ 可转化为求ABBC. 【解答】解:(1)证明:如图1,PA 切O 于点A ,AC 是O 的直径, 90PAO CDA ∴∠=∠=︒ CD PB ⊥ 90CEP ∴∠=︒ CEP CDA ∴∠=∠ //PB AD ∴ POA CAO ∴∠=∠ ~APO DCA ∴∆∆(2)如图2,连接OD , ①AD AO =,OD AO =OAD ∴∆是等边三角形 60OAD ∴∠=︒ //PB AD60POA OAD ∴∠=∠=︒ 90PAO ∠=︒90906030P POA ∴∠=︒-∠=︒-︒=︒②存在.如图2,过点B 作BQ AC ⊥交O 于Q ,连接PQ ,BC ,CQ , 由①得:60POA ∠=︒,90PAO ∠=︒ 60BOC POA ∴∠=∠=︒OB OC = 60ACB ∴∠=︒30BQC BAC ∴∠=∠=︒ BQ AC ⊥, CQ BC ∴= BC OB OA ==()CBQ OBA AAS ∴∆≅∆ BQ AB ∴=30OBA OPA ∠=∠=︒AB AP ∴=BQ AP ∴= PA AC ⊥//BQ AP ∴∴四边形ABQP 是平行四边形AB AP =∴四边形ABQP 是菱形PQ AB ∴=∴tan tan 60PQ ABACB CQ BC==∠=︒【点评】本题是有关圆的综合题,难度不大;主要考查了切线性质,圆周角与圆心角,等边三角形性质,特殊角三角函数值,菱形性质等.26.(10分)如图,二次函数213y x bx c =-++的图象过原点,与x 轴的另一个交点为(8,0) (1)求该二次函数的解析式;(2)在x 轴上方作x 轴的平行线1y m =,交二次函数图象于A 、B 两点,过A 、B 两点分别作x 轴的垂线,垂足分别为点D 、点C .当矩形ABCD 为正方形时,求m 的值;(3)在(2)的条件下,动点P 从点A 出发沿射线AB 以每秒1个单位长度匀速运动,同时动点Q 以相同的速度从点A 出发沿线段AD 匀速运动,到达点D 时立即原速返回,当动点Q 返回到点A 时,P 、Q 两点同时停止运动,设运动时间为t 秒(0)t >.过点P 向x 轴作垂线,交抛物线于点E ,交直线AC 于点F ,问:以A 、E 、F 、Q 四点为顶点构成的四边形能否是平行四边形.若能,请求出t 的值;若不能,请说明理由.【分析】(1)根据点的坐标,利用待定系数法即可求出二次函数的解析式;(2)利用二次函数图象上点的坐标特征求出点A ,B 的坐标,进而可得出点C ,D 的坐标,再利用正方形的性质可得出关于m 的方程,解之即可得出结论;(3)由(2)可得出点A ,B ,C ,D 的坐标,根据点A ,C 的坐标,利用待定系数法可求出直线AC 的解析式,利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征可求出点E ,F 的坐标,由//AQ EF 且以A 、E 、F 、Q 四点为顶点的四边形为平行四边形可得出AQ EF =,分04t <…,47t <…,78t <…三种情况找出AQ ,EF 的长,由AQ EF =可得出关于t 的一元二次方程,解之取其合适的值即可得出结论.【解答】解:(1)将(0,0),(8,0)代入213y x bx c =-++,得: 064803c b c =⎧⎪⎨-++=⎪⎩,解得:830b c ⎧=⎪⎨⎪=⎩,∴该二次函数的解析式为21833y x x =-+. (2)当y m =时,21833x x m -+=,解得:14x =24x =,∴点A 的坐标为(4)m ,点B 的坐标为(4+)m ,∴点D 的坐标为(40),点C 的坐标为(40).矩形ABCD 为正方形,4(4m ∴+=,解得:116m =-(舍去),24m =.∴当矩形ABCD 为正方形时,m 的值为4.(3)以A 、E 、F 、Q 四点为顶点构成的四边形能为平行四边形.由(2)可知:点A 的坐标为(2,4),点B 的坐标为(6,4),点C 的坐标为(6,0),点D 的坐标为(2,0).设直线AC 的解析式为(0)y kx a k =+≠,将(2,4)A ,(6,0)C 代入y kx a =+,得:2460k a k a +=⎧⎨+=⎩,解得:16k a =-⎧⎨=⎩, ∴直线AC 的解析式为6y x =-+.当2x t =+时,22181443333y x x t t =-+=-++,64y x t =-+=-+, ∴点E 的坐标为214(2,4)33t t t +-++,点F 的坐标为(2,4)t t +-+. 以A 、E 、F 、Q 四点为顶点构成的四边形为平行四边形,且//AQ EF ,AQ EF ∴=,分三种情况考虑:①当04t <…时,如图1所示,AQ t =,2214174(4)3333EF t t t t t =-++--+=-+, 21733t t t ∴=-+, 解得:10t =(舍去),24t =;②当47t <…时,如图2所示,4AQ t =-,2214174(4)3333EF t t t t t =-++--+=-+,217433t t t ∴-=-+, 解得:32t =-(舍去),46t =;③当78t <…时,4AQ t =-,2214174(4)3333EF t t t t t =-+--++=-, 217433t t t ∴-=-,解得:55t =,65t =+.综上所述:当以A 、E 、F 、Q 四点为顶点构成的四边形为平行四边形时,t 的值为4或6.【点评】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、正方形的性质、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用正方形的性质,找出关于m 的方程;(3)分04t <…,47t <…,78t <…三种情况,利用平行四边形的性质找出关于t 的一元二次方程.。
2019年湖南省邵阳市中考数学试卷(word版,含答案)
2019年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中,属于无理数的是()A.B.1.414 C.D.2.下列立体图形中,俯视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球3.据海关统计:2019年前4个月,中国对美国贸易顺差为5700亿元.用科学记数法表示5700亿元正确的是()A.5.7×1011元B.57×1010元C.5.7×10-11元D.0.57×1012元4.如图,已知两直线l1与l2被第三条直线l3所截,下列等式一定成立的是()A.∠l=∠2B.∠2=∠3C.∠2+∠4=180°D.∠1+∠4=180°A.该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一纽数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是26.以下计算正确的是()A.(-2ab2)3=8a3b6B.3ab+2b=5abC.(-x2)•(-2x)3=-8x5D.2m(mn2-3m2)=2m2n2-6m37.一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y 2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y28.如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法中错误的是()A.△ABC∽△A′B′C′B.点C、点O、点C′三点在同一直线上C.AO:AA′=1:2D.AB∥A′B′9.如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C 落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°10.某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()CCADA DBCBD二、填空题(本大题有8个小题,每小题3分,共24分)11.的相反数是____.-12.不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是______.13.如图,在平面直角坐标系中,点A的坐标为(-4,2),反比例函数的图象经过线段OA的中点B,则k=_____.-214.不等式组的解集是______.-2≤x<-115.如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是_____.(不添加任何字母和辅助线)AB=AC或∠ADC=∠AEB或∠ABE=∠ACD16.关于x的一元二次方程x2-2x-m=0有两个不相等的实数根,则m的最小整数值是____.17.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是____.418.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O 顺时针旋转180°得到△A′OB′,则点B′的坐标是_______.(-2,-2)三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.计第:3-()-1+|-2|cos60°=3-3+2×=120.先化简,再求值:21.如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F.(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h.∴由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=22.某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是_____;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.解:(1)本次抽样调查的样本容量是=50,故答案为:50;(2)参与篮球社的人数=50×20%=10人,参与国学社的人数为50-5-10-12-8=15人,补全条形统计图如图所示;(3)参与科技制作社团所在扇形的圆心角度数为360°× =86.4°;(4)3000×20%=600名, 答:全校有600学生报名参加篮球社团活动.23.2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率. 解:设平均增长率为x ,根据题意列方程得 30(1+x )2=36.3 解得x 1=0.1,x 2=-2.1(舍) 答:我国外贸进出口总值得年平均增长率为10%.24.某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE 与支架CB 所在直线相交于点O ,且OB=OE ;支架BC 与水平线AD 垂直.AC=40cm ,∠ADE=30°,DE=190cm ,另一支架AB 与水平线夹角∠BAD=65°,求OB 的长度(结果精确到1cm ;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)解:设OE=OB=2x ,∴OD=DE+OE=190+2x , ∵∠ADE=30°, ∴OC=OD=95+x ,∴BC=OC -OB=95+x-2x=95-x , ∵TAN∠BAD=,∴2.14=,解得:x ≈9, ∴OB=2x=18.25.如图1,已知⊙O 外一点P 向⊙O 作切线PA ,点A 为切点,连接PO 并延长交⊙O 于点B ,连接AO 并延长交⊙O 于点C ,过点C 作CD ⊥PB ,分别交PB 于点E ,交⊙O 于点D ,连接AD . (1)求证:△APO ~△DCA ; (2)如图2,当AD=AO 时 ①求∠P 的度数;②连接AB ,在⊙O 上是否存在点Q 使得四边形APQB 是菱形.若存在,请直接写出的值;若不存在,请说明理由.解:(1)证明:如图1,∵PA切⊙O于点A,AC是⊙O的直径,∴∠PAO=∠CDA=90°∵CD⊥PB∴∠CEP=90°∴∠CEP=∠CDA∴PB∥AD∴∠POA=∠CAO∴△APO~△DCA(2)如图2,连接OD,①∵AD=AO,OD=AO∴△OAD是等边三角形∴∠OAD=60°∵PB∥AD∴∠POA=∠OAD=60°∵∠PAO=90°∴∠P=90°-∠POA=90°-60°=30°②存在.如图2,过点B作BQ⊥AC交⊙O于Q,连接PQ,BC,CQ,由①得:∠POA=60°,∠PAO=90°∴∠BOC=∠POA=60°∵OB=OC∴∠ACB=60°∴∠BQC=∠BAC=30°∵BQ⊥AC,∴CQ=BC∵BC=OB=OA∴△CBQ≌△OBA(AAS)∴BQ=AB∵∠OBA=∠OPA=30°∴AB=AP∴BQ=AP∵PA⊥AC∴BQ∥AP∴四边形ABQP是平行四边形∵AB=AP∴四边形ABQP是菱形∴PQ=AB∴ PQ CQ = AB BC =TAN∠ACB=TAN60°=26.如图,二次函数y=- x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y=m,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分1别为点D、点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.解:(1)将(0,0),(8,0)代入y=- 1 3 x2+bx+c,得:将a(2,4),c(6,0)代入y=kx+a,得∴直线ac的解析式为y=-x+6.。
2019年湖南省邵阳市中考数学试卷附分析答案
5.(3 分)学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,
某班级售书情况如表:
售价
3元
4元
5元
6元
数目
14 本
11 本
10 本
15 本
下列说法正确的是( )
A.该班级所售图书的总收入是 226 元 B.在该班级所售图书价格组成的一组数据中,中位数是 4 C.在该班级所售图书价格组成的一纽数据中,众数是 15 D.在该班级所售图书价格组成的一组数据中,方差是 2 【解答】解:A、该班级所售图书的总收入为 3×14+4×11+5×10+6×15=226,所以 A 选项正确;
第一象限,将等边△AOB 绕点 O 顺时针旋转 180°得到△A′OB′,则点 B′的坐标
是
.
三、解答题(本大题有 8 个小题,第 19-25 题毎题 8 分,第 26 题 10 分,共 66 分,解答应 写出必要的文字说明,演算步骤或证明过程)
19.(8 分)计第: 䁚 ( )﹣1+|﹣2|cos60°
B.在该班级所售图书价格组成的一组数据中,中位数是 4
第 1页(共 22页)
C.在该班级所售图书价格组成的一纽数据中,众数是 15 D.在该班级所售图书价格组成的一组数据中,方差是 2 6.(3 分)以下计算正确的是( ) A.(﹣2ab2)3=8a3b6 B.3ab+2b=5ab C.(﹣x2)•(﹣2x)3=﹣8x5 D.2m(mn2﹣3m2)=2m2n2﹣6m3 7.(3 分)一次函数 y1=k1x+b1 的图象 l1 如图所示,将直线 l1 向下平移若干个单位后得直线 l2,l2 的函数表达式为 y2=k2x+b2.下列说法中错误的是( )
真题邵阳市中考数学试卷有Word版
2019年湖南省邵阳市中考数学试卷参照答案与试题分析一、选择题(本大题共10小题,每题3分,共30分)1.25的算术平方根是()A.5B.±5C.﹣5D.25【剖析】依照算术平方根的定义求解即可.【解答】解:∵52=25,∴25的算术平方根是5.应选:A.【评论】本题主要考察的是算术平方根的定义,娴熟掌握算术平方根的定义是解题的重点.2.以下图,已知AB∥CD,以下结论正确的选项是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4【剖析】依据平行线的性质即可获得结论.【解答】解:∵AB∥CD,∴∠1=∠4,应选C.【评论】本题考察了平行线的性质,娴熟掌握平行线的性质是解题的重点.3.3﹣π的绝对值是()A.3﹣πB.π﹣3C.3 D.π【剖析】直接利用绝对值的定义剖析得出答案.【解答】解:∵3﹣π<0,|3﹣π|=π﹣3.应选B.【评论】本题主要考察了绝对值,正确掌握定义是解题重点.4.以下立体图形中,主视图是圆的是()第1页共18页A.B.C.D.【剖析】依据从正面看获得的图形是主视图,可得答案.【解答】解:A、的主视图是圆,故A切合题意;B、的主视图是矩形,故B不切合题意;C、的主视图是三角形,故C不切合题意;D、的主视图是正方形,故D不切合题意;应选:A.【评论】本题考察了简单几何体的三视图,熟记常有几何体的三视图是解题重点.5.函数y=中,自变量x的取值范围在数轴上表示正确的选项是()A.B.C.D.【剖析】依据被开方数大于等于0列式计算即可得解,而后在数轴上表示即可.【解答】解:由题意得,x﹣5≥0,解得x≥5.在数轴上表示以下:应选B.【评论】本题考察了函数自变量的范围及在数轴上表示不等式的解集,解题的重点是从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不可以为0;(3)当函数表达式是二次根式时,被开方数非负.6.以下图,要在一条公路的双侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为()A.120°B.100°C.80°D.60°【剖析】依据两直线平行,同旁内角互补解答.【解答】解:∵铺设的是平行管道,第2页共18页∴另一侧的角度为180°﹣120°=60°(两直线平行,同旁内角互补).应选D .【评论】本题考察了两直线平行,同旁内角互补的性质,熟记性质是解题的重点.7.以下图,边长为 a 的正方形中暗影部分的面积为(). 2 ﹣π() 2 2 2 2 2 A a B .a ﹣πa ﹣πa D .a ﹣2πaC .a【剖析】依据图形可知暗影部分的面积是正方形的面积减去直径为a 的圆的面积,本题得以解决.【解答】解:由图可得,暗影部分的面积为:a 2﹣,应选A .【评论】本题考察列代数式,解答本题的重点是明确题意,列出相应的代数式.8.“治病救人”是我国的传统美德,某媒体就“老人跌倒该不应扶”进行了检查,将获得的数据经统计剖析后绘制成以下图的扇形统计图,依据统计图判断以下说法,此中错误的一项为哪一项()A .以为依状况而定的占27%B .以为该扶的在统计图中所对应的圆心角是234°C .以为不应扶的占8%D .以为该扶的占92%【剖析】依据百分比和圆心角的计算方法计算即可.【解答】解:以为依状况而定的占27%,故A 正确;第3页共18页千米,以为该扶的在统计图中所对应的圆心角是65%×360°=234°,故B正确;以为不应扶的占1﹣27%﹣65%=8%,故C正确;以为该扶的占65%,故D错误;应选D.【评论】本题考察了扇形统计图,掌握百分比和圆心角的计算方法是解题的重点.9.以下图的函数图象反应的过程是:小徐从家去菜地浇水,又去玉米地除草,而后回家,此中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A.千米B.2千米C.15千米D.37千米【剖析】小徐第一个抵达的地方应是菜地,也应是第一次行程不再增添的开始,所对应的时间为15分,行程为千米.【解答】解:由图象能够看出菜地离小徐家应选:A.【评论】本题考察利用函数的图象解决实质问题,正确理解函数图象横纵坐标表示的意义是解题重点.10.以下图,三架飞机P,Q,R保持编队飞翔,某时辰在座标系中的坐标分别为(﹣1,1),(﹣3,1),(﹣1,﹣1),30秒后,飞机P飞到P′(4,3)地点,则飞机Q,R的地点Q′,R′分别为()A.Q′(2,3),R′(4,1)B.Q′(2,3),R′(2,1)C.Q′(2,2),R′(4,1)D.Q′(3,3),R′(3,1)第4页共18页【剖析】由点P(﹣1,1)到P′(4,3)知,编队需向右平移5个单位、向上平移2个单位,据此可得.【解答】解:由点P(﹣1,1)到P′(4,3)知,编队需向右平移5个单位、向上平移2个单位,∴点Q(﹣3,1)的对应点Q′坐标为(2,3),点R(﹣1,﹣1)的对应点R′(4,1),应选:A.【评论】本题考察了坐标确立地点,娴熟掌握在平面直角坐标系确立点的坐标是解题的重点.二、填空题(本大题共8小题,每题3分,共24分)22mnm因式分解的结果是m(n1)2.11.将多项式mn+++【剖析】依据提公因式法、公式法,可得答案.【解答】解:原式=m(n2+2n+1)=m(n+1)2,故答案为:m(n+1)2.【评论】本题考察了因式分解,利用提公因式、完整平方公式是解题重点.12.2016年,我国又有1240万人辞别贫穷,为世界脱贫工作作出了优秀贡献,将1240万用科学记数法表示为a×10n的形式,则a的值为.【剖析】科学记数法的表示形式为a×10n的形式,此中1≤a<10,n为整数.确立n的值||是易错点,因为1240万有8位,所以能够确立n=8﹣1=7.【解答】解:1240万×107,故.故答案为:.【评论】本题考察科学记数法表示较大的数的方法,正确确立a与n值是重点.13.若抛物线y=ax2+bx+c的张口向下,则a的值可能是﹣1.(写一个即可)【剖析】依据二次项系数小于0,二次函数图象张口向下解答.【解答】解:∵抛物线y=ax2+bx+c的张口向下,第5页共18页∴a的值可能是﹣1,故答案为:﹣1.【评论】本题考察了二次函数的性质,是基础题,需熟记.14.我国南宋有名数学家秦九韶在他的著作《数书九章》一书中,给出了有名的秦九韶公式,也叫三斜求积公式,即假如一个三角形的三边长分别为a,b,c,则该三角形的面积为S=,现已知△ABC的三边长分别为1,2,,则△ABC的面积为.【剖析】依据题目中的面积公式能够求得△ABC的三边长分别为1,2,的面积,从而能够解答本题.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.【评论】本题考察二次根式的应用,解答本题的重点是明确题意,利用题目中的面积公式解答.15.以下图的正六边形ABCDEF,连结FD,则∠FDC的大小为90°.【剖析】第一求得正六边形的内角的度数,依据等腰三角形的性质即可获得结论.【解答】解:∵在正六边形ABCDEF中,∠E=∠EDC=120°,∵EF=DE,∴∠EDF=∠EFD=30°,第6页共18页∴∠FDC=90°,故答案为:90°【评论】本题考察了正多边形和圆.等腰三角形的性质,本题难度不大,注意数形联合思想的应用.16.以下图,已知∠AOB=40°,现依照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为20°.【剖析】直接依据角均分线的作法即可得出结论.【解答】解:∵由作法可知,OC是∠AOB的均分线,∴∠AOC=∠AOB=20°.故答案为:20°.【评论】本题考察的是作图﹣基本作图,熟知角均分线的作法是解答本题的重点.17.掷一枚硬币两次,可能出现的结果有四种,我们能够利用以下图的树状图来剖析有可能出现的结果,那么掷一枚硬币两次,起码有一次出现正面的概率是.【剖析】画树状图展现所有4种等可能的结果数,再找出掷一枚硬币两次,起码有一次出现正面的结果数,而后依据概率公式求解.【解答】解:画树状图为:第7页共18页共有4种等可能的结果数,此中掷一枚硬币两次,起码有一次出现正面的结果数为3,所以掷一枚硬币两次,起码有一次出现正面的概率=.故答案为.【评论】本题考察了列表法与树状图法:利用列表法或树状图法展现所有等可能的结果n,再从中选出切合事件A或B的结果数目m,而后利用概率公式计算事件A或事件B的概率.18.以下图,运载火箭从地面L处垂直向上发射,当火箭抵达 A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°,n秒后,火箭抵达B点,此时仰角是45°,则火箭在这n秒中上涨的高度是(20﹣20)km.【剖析】分别在Rt△ALR,Rt△BLR中,求出AL、BL即可解决问题.【解答】解:在Rt△ARL中,LR=ARcos30°=40×=20(km),AL=ARsin30°=20(km),Rt△BLR中,∵∠BRL=45°,∴RL=LB=20,∴AB=LB﹣AL=(20﹣20)km,故答案为(20﹣20)km.【评论】本题考察的是解直角三角形的应用﹣仰角俯角问题,锐角三角函数等知识,解题的重点是娴熟掌握锐角三角函数的观点解决问题.第8页共18页三、解答题(本大题共8小题,共66分)19.计算:4sin60﹣°()﹣1﹣.【剖析】依照特别锐角三角函数值、负整数指数幂的性质、二次根式的性质进行解答即可.【解答】解:原式=4×﹣2﹣2=2 ﹣2﹣2=﹣2.【评论】本题主要考察的是实数的运算,娴熟掌握特别锐角三角函数值、负整数指数幂的性质、二次根式的性质是解题的重点.20.以下图,已知平行四边形ABCD,对角线AC,BD订交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请增添一个条件使矩形ABCD为正方形.【剖析】(1)依据平行四边形对角线相互均分可得OA=OC,OB=OD,依据等角平等边可得OB=OC,而后求出AC=BD,再依据对角线相等的平行四边形是矩形证明;(2)依据正方形的判断方法增添即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四边形ABCD是矩形;(2)解:AB=AD(或AC⊥BD答案不独一).原因:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.第9页共18页或:∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形.【评论】本题考察了正方形的判断,平行四边形的性质,矩形的判断,娴熟掌握特别四边形的判断方法与性质是解题的重点.21.先化简,再在﹣3,﹣1,0,,2中选择一个适合的x值代入求值..【剖析】依据分式的乘法和加法能够化简题目中的式子,而后在﹣3,﹣1,0,,2中选择一个使得原分式存心义的x的值代入即可解答本题.【解答】解:=====x,当x=﹣1时,原式=﹣1.【评论】本题考察分式的化简求值,解答本题的重点是明确分式的化简求值的方法.22.为提升节水意识,小申随机统计了自己家7天的用水量,并剖析了第3天的用水状况,将获得的数据进行整理后,绘制成以下图的统计图.(单位:升)第10页共18页(1)求这7天内小申家每日用水量的均匀数和中位数;(2)求第3天小申家洗衣服的水占这天总用水量的百分比;(3)请你依据统计图中的信息,给小申家提出一条合理的节俭用水建议,并估量采纳你的建议后小申家一个月(按30天计算)的节俭用水量.【剖析】(1)依据均匀数和中位数的定义求解可得;(2)用洗衣服的水量除以第3天的用水总量即可得;(3)依据条形图给出合理建议均可,如:将洗衣服的水留到冲卫生间.【解答】解:(1)这7天内小申家每日用水量的均匀数为=800(升),将这7天的用水量从小到大从头摆列为:780、785、790、800、805、815、825,∴用水量的中位数为800升;(2)×100%=12.5%,答:第3天小申家洗衣服的水占这天总用水量的百分比为12.5%;(3)小申家冲卫生间的用水量较大,能够将洗衣服的水留到冲卫生间,采纳以上建议,每日可节俭用水100升,一个月预计能够节俭用水100×30=3000升.【评论】本题主要考察了统计图、均匀数、中位数,重点是看懂统计表,从统计表中获得必需的信息,娴熟掌握均匀数,中位数与众数的计算方法.23.某校计划组织师生共300人参加一次大型公益活动,假如租用6辆大客车和5辆小客车恰好所有坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)因为最后参加活动的人数增添了30人,学校决定调整租车方案,在保持租用车辆总数不变的状况下,为将所有参加活动的师生装载达成,求租用小客车数目的最大值.第11页共18页【剖析】(1)依据题意联合每辆大客车的乘客座位数比小客车多17个以及师生共300人参加一次大型公益活动,分别得出等式求出答案;(2)依据(1)中所求,从而利用总人数为30030,从而得出不等式求出答案.+【解答】解:(1)设每辆小客车的乘客座位数是x个,大客车的乘客座位数是y个,依据题意可得:,解得:,答:每辆小客车的乘客座位数是18个,大客车的乘客座位数是35个;(2)设租用a辆小客车才能将所有参加活动的师生装载达成,则18a+35(11﹣a)≥300+30,解得:a≤3,切合条件的a最大整数为3,答:租用小客车数目的最大值为3.【评论】本题主要考察了一元一次不等式的应用以及二元一次方程组的应用,正确得出不等关系是解题重点.24.以下图,直线DP和圆O相切于点C,交直线AE的延伸线于点P,过点C作AE的垂线,交AE于点F,交圆O于点B,作平行四边形ABCD,连结BE,DO,CO.(1)求证:DA=DC;(2)求∠P及∠AEB的大小.【剖析】(1)欲证明DA=DC,只需证明Rt△DAO≌△Rt△DCO即可;第12页共18页(2)想方法证明∠P=30°即可解决问题;【解答】(1)证明:在平行四边形ABCD中,AD∥BC,∵CB⊥AE,∴AD⊥AE,∴∠DAO=90°,∵DP与⊙O相切于点C,∴DC⊥OC,∴∠DCO=90°,Rt△DAO和Rt△DCO中,,Rt△DAO≌△Rt△DCO,DA=DC.(2)∵CB⊥AE,AE是直径,∴CF=FB= BC,∵四边形ABCD是平行四边形,∴AD=BC,∴CF=AD,∵CF∥DA,∴△PCF∽△PDA,==,∴PC= PD,DC=PD,∵DA=DC,∴DA=PD,Rt△DAP中,∠P=30°,∵DP∥AB,∴∠FAB=∠P=30°,∵AE是⊙O的直径,第13页共18页∴∠ABE=90°,∴∠AEB=60°.【评论】本题考察切线的性质、平行四边形的性质、相像三角形的判断和性质、直角三角形中度角的判断、全等三角形的判断和性质等知识,解题的重点是正确找寻全等三角形或相像三角形解决问题,属于中考常考题型.25.如图1所示,在△ABC中,点O是AC上一点,过点O的直线与AB,BC的延伸线分别订交于点M,N.【问题引入】(1)若点O是AC的中点,=,求的值;温馨提示:过点A作MN的平行线交BN的延伸线于点G.【探究研究】(2)若点O是AC上随意一点(不与A,C重合),求证:=1;【拓展应用】(3)如图2所示,点P是△ABC内随意一点,射线AP,BP,CP分别交BC,AC,AB于点D,E,F,若=,=,求的值.【剖析】(1)作AG∥MN交BN延伸线于点G,证△ABG∽△MBN 得=,即=,同原因△ACG∽△OCN得=,联合AO=CO得NG=CN,从而由= =可得答案;第14页共18页(2)由=、=知==1;(3)由(2)知,在△ABD中有=1、在△ACD中有=1,从而=,据此知===.【解答】解:(1)过点A作AG∥MN交BN延伸线于点G,∴∠G=∠BNM,又∠B=∠B,∴△ABG∽△MBN,∴=,∴﹣1=﹣1,∴=,即=,同理,在△ACG和△OCN中,=,∴=,∵O为AC中点,∴AO=CO,∴NG=CN,∴= ==;(2)由(1)知,=、=,∴==1;(3)在△ABD中,点P是AD上的一点,过点P的直线与AC、BD的延伸线订交于点C,由(2)得=1,在△ACD中,点P是AD上一点,过点P是AD上一点,过点P的直线与AC、AD的延伸线分别订交于点E、B,由(2)得=1,第15页共18页∴=,∴===×=.【评论】本题主要考察相像三角形的综合问题,娴熟掌握相像三角形的判断与性质及比率式的基天性质是解题的重点..以下图,极点为(,﹣)的抛物线y=ax2+bx+c过点M(2,0).26(1)求抛物线的分析式;(2)点A是抛物线与x轴的交点(不与点直线y=x+1上一点(处于x轴下方),点A,B,C,D为极点的四边形是菱形,求重合),点是反比率函数k的值.B是抛物线与y轴的交点,点C是y=(k>0)图象上一点,若以点【剖析】(1)设抛物线方程为极点式y=a(x﹣)2﹣,将点M的坐标代入求a的值即可;(2)设直线y=x+1与y轴交于点G,易求G(0,1).则直角△AOG是等腰直角三角形∠AGO=45°.点C 是直线y=x+1上一点(处于x轴下方),而k>0,所以反比率函数y=(k>0)图象位于点一、三象限.故点D只好在第一、三象限,所以切合条件的菱形只好有以下2种状况:①此菱形以AB为边且AC也为边,②此菱形以AB为对角线,利用点的坐标与图形的性质,勾股定理,菱形的性质和反比率函数图象上点的坐标特点求得k的值即可.【解答】解:(1)依题意可设抛物线方程为极点式y=a(x﹣)2﹣(a≠0),将点M(2,0)代入可得:a(2﹣)2﹣=0,解得a=1.故抛物线的分析式为:y=(x﹣)2﹣;第16页共18页(2)由(1)知,抛物线的分析式为:y=(x﹣)2﹣.则对称轴为x=,∴点A与点M(2,0)对于直线x=对称,∴A(1,0).令x=0,则y=﹣2,∴B(0,﹣2).在直角△OAB中,OA=1,OB=2,则AB=.设直线y=x+1与y轴交于点G,易求G(0,1).∴直角△AOG是等腰直角三角形,∴∠AGO=45°.∵点C是直线y=x+1上一点(处于x轴下方),而k>0,所以反比率函数y=(k>0)图象位于点一、三象限.故点D只好在第一、三象限,所以切合条件的菱形只好有以下2种状况:①此菱形以AB为边且AC也为边,如图1所示,过点D作DN⊥y轴于点N,在直角△BDN中,∵∠DBN=∠AGO=45°,∴DN=BN==,∴D(﹣,﹣﹣2),∵点D在反比率函数y=(k>0)图象上,k=﹣×(﹣﹣2)=+;②此菱形以AB为对角线,如图2,作AB的垂直均分线CD交直线y=x+1于点C,交反比率函数y=(k>0)的图象于点D.再分别过点D、B作DE⊥x轴于点F,BE⊥y轴,DE与BE相较于点E.在直角△BDE中,同①可证∠AGO=∠DBO=∠BDE=45°,∴BE=DE.可设点D的坐标为(x,x﹣2).第17页共18页∵BE2+DE2=BD2,∴BD=BE=x.∵四边形ABCD是菱形,∴AD=BD=x.∴在直角△ADF中,AD2=AF2+DF2,即(x)=(x+1)2+(x﹣2)2,解得x=,∴点D的坐标是(,).∵点D在反比率函数y=(k>0)图象上,∴k=×=,综上所述,k的值是+或.【评论】本题考察了二次函数综合题,需要掌握待定系数法求二次函数分析式,勾股定理,菱形的性质,反比率函数图象上点的坐标特点等知识点.解答(2)题时要分类议论,以防漏解.第18页共18页。
2019年湖南省邵阳市中考数学试卷以及解析版
2019年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数中,属于无理数的是()A .13B .1.414C .2D .42.(3分)下列立体图形中,俯视图与主视图不同的是()A .正方体B .圆柱C .圆锥D .球3.(3分)据海关统计:2019年前4个月,中国对美国贸易顺差为5700亿元.用科学记数法表示5700亿元正确的是()A .115.710元B .105710元C .115.710元D .120.5710元4.(3分)如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是()A .2l B .23C .24180D .141805.(3分)学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:售价3元4元5元6元数目14本11本10本15本下列说法正确的是()A .该班级所售图书的总收入是226元B .在该班级所售图书价格组成的一组数据中,中位数是4C .在该班级所售图书价格组成的一纽数据中,众数是15D .在该班级所售图书价格组成的一组数据中,方差是26.(3分)以下计算正确的是()A .2336(2)8ab a bB .325abbab C .235()(2)8x x xD .222232(3)26m mn m m nm7.(3分)一次函数111y k x b 的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k xb .下列说法中错误的是()A .12k kB .12b b C .12b b D .当5x时,12y y 8.(3分)如图,以点O 为位似中心,把ABC 放大为原图形的2倍得到△A B C ,以下说法中错误的是()A .ABC ∽△AB CB .点C 、点O 、点C 三点在同一直线上C .:1:2AO AA D .//AB A B9.(3分)如图,在Rt ABC 中,90BAC,36B,AD 是斜边BC 上的中线,将ACD沿AD 对折,使点C 落在点F 处,线段DF 与AB 相交于点E ,则BED 等于()A .120B .108C .72D .3610.(3分)某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是()A .7161328xy x y B .(72)161328xy x y C .716(132)28x y xyD .(72)16(132)28x yxy二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)20192020的相反数是.12.(3分)不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是.13.(3分)如图,在平面直角坐标系中,点A 的坐标为(4,2),反比例函数(0)k yx x的图象经过线段OA 的中点B ,则k.14.(3分)不等式组43113xx,的解集是.15.(3分)如图,已知AD AE ,请你添加一个条件,使得ADC AEB ,你添加的条件是.(不添加任何字母和辅助线)16.(3分)关于x 的一元二次方程220xx m 有两个不相等的实数根,则m 的最小整数值是.17.(3分)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾6a,弦10c,则小正方形ABCD 的面积是.18.(3分)如图,将等边AOB 放在平面直角坐标系中,点A 的坐标为(4,0),点B 在第一象限,将等边AOB 绕点O 顺时针旋转180得到△A OB ,则点B 的坐标是.三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.(8分)计第:13127()|2|cos60320.(8分)先化简,再求值:2121(1)222mm m m ,其中22m .21.(8分)如图,在等腰ABC 中,120BAC,AD 是BAC 的角平分线,且6AD,以点A 为圆心,AD 长为半径画弧EF ,交AB 于点E ,交AC 于点F .(1)求由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF ,将扇形AEF 围成一个圆锥的侧面,AE 与AF 正好重合,圆锥侧面无重叠,求这个圆锥的高h .22.(8分)某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.23.(8分)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.24.(8分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与AC cm,支架CB所在直线相交于点O,且OB OE;支架BC与水平线AD垂直.40BAD,求OB的长度(结果30DE cm,另一支架AB与水平线夹角65ADE,190精确到1cm;温馨提示:sin650.91,cos650.42,tan65 2.14)25.(8分)如图1,已知O外一点P向O作切线PA,点A为切点,连接PO并延长交O 于点B,连接AO并延长交O于点C,过点C作CD PB,分别交PB于点E,交O于点D,连接AD.(1)求证:~APO DCA;(2)如图2,当AD AO时①求P的度数;②连接AB ,在O 上是否存在点Q 使得四边形APQB 是菱形.若存在,请直接写出PQ CQ的值;若不存在,请说明理由.26.(10分)如图,二次函数213yxbxc 的图象过原点,与x 轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x 轴上方作x 轴的平行线1y m ,交二次函数图象于A 、B 两点,过A 、B 两点分别作x 轴的垂线,垂足分别为点D 、点C .当矩形ABCD 为正方形时,求m 的值;(3)在(2)的条件下,动点P 从点A 出发沿射线AB 以每秒1个单位长度匀速运动,同时动点Q 以相同的速度从点A 出发沿线段AD 匀速运动,到达点D 时立即原速返回,当动点Q返回到点A 时,P 、Q 两点同时停止运动,设运动时间为t 秒(0)t .过点P 向x 轴作垂线,交抛物线于点E ,交直线AC 于点F ,问:以A 、E 、F 、Q 四点为顶点构成的四边形能否是平行四边形.若能,请求出t 的值;若不能,请说明理由.2019年湖南省邵阳市中考数学试卷答案与解析一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)【分析】根据无理数的定义:无限不循环小数是无理数即可求解;【解答】解:42是有理数;2是无理数;故选:C .【点评】本题考查无理数;能够化简二次根式,理解无理数的定义是解题的关键.2.(3分)【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.【解答】解:A .俯视图与主视图都是正方形,故选项A 不合题意;B .俯视图与主视图都是正方形,故选项B 不合题意;C .俯视图是圆,左视图是三角形;故选项C 符合题意;D .俯视图与主视图都是圆,故选项D 不合题意;故选:C .【点评】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.3.(3分)【分析】根据科学记数法的表示方法10(110)na a ,即可求解;【解答】解:5700亿元570000000000元115.710元;故选:A .【点评】本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.4.(3分)【分析】由三线八角以及平行线的性质可知,A ,B ,C 成立的条件题目并没有提供,而D选项中邻补角的和为180一定正确.【解答】解:1与2是同为角,2与3是内错角,2与4是同旁内角,由平行线的性质可知,选项A ,B ,C 成立的条件为12//l l 时,而1与4是邻补角,故D 正确.故选:D .【点评】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大.5.(3分)【分析】把所有数据相加可对A 进行判断;利用中位数和众数的定义对B 、C 进行判断;利用方差的计算公式计算出这组数据的方差,从而可对D 进行判断(当然前面三个判断了可直接对D 进行判断).【解答】解:A 、该班级所售图书的总收入为314411510615226,所以A 选项正确;B 、第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B 选项错误;C 、这组数据的众数为4,所以C 选项错误;D 、这组数据的平均数为226 4.5250x,所以这组数据的方差222221[14(3 4.52)11(4 4.52)10(54.52)15(64.52)]1.450S,所以D 选项错误.故选:A .【点评】本题考查方差的定义:一般地设n 个数据,1x ,2x ,n x 的平均数为x ,则方差2222121[()()()]n Sx x x x x x n.也考查了中位数和众数.6.(3分)【分析】利用幂的乘方与积的乘方,单项式乘以多项式法则,合并同类项法则即可求解;【解答】解:2336(2)8ab a b ,A 错误;32abb 不能合并同类项,B 错误;235()(2)8x x x ,C 错误;故选:D .【点评】本题考查整式的运算;熟练掌握幂的乘方与积的乘方,单项式乘以多项式法则,合并同类项法则是解题的关键.7.(3分)【分析】根据两函数图象平行k 相同,以及向下平移减即可判断.【解答】解:将直线1l 向下平移若干个单位后得直线2l ,直线1//l 直线2l ,12k k ,直线1l 向下平移若干个单位后得直线2l ,12b b ,当5x时,12y y ,故选:B .【点评】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.8.(3分)【分析】直接利用位似图形的性质进而分别分析得出答案.【解答】解:以点O 为位似中心,把ABC 放大为原图形的2倍得到△A B C ,ABC ∽△A B C ,点C 、点O 、点C 三点在同一直线上,//AB A B ,:1:2AO OA,故选项C 错误,符合题意.故选:C .【点评】此题主要考查了位似变换,正确把握位似图形的性质是解题关键.9.(3分)【分析】根据三角形内角和定理求出9054CB.由直角三角形斜边上的中线的性质得出ADBDCD ,利用等腰三角形的性质求出36BAD B,54DACC,利用三角形内角和定理求出18072ADCDACC.再根据折叠的性质得出72ADFADC,然后根据三角形外角的性质得出108BEDBADADF.【解答】解:在Rt ABC 中,90BAC,36B,9054CB .AD 是斜边BC 上的中线,ADBDCD ,36BAD B ,54DACC,18072ADCDACC.将ACD沿AD对折,使点C落在点F处,72ADF ADC,3672108BED BAD ADF.故选:B.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.10.(3分)【分析】根据津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元可列方程组.【解答】解:设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为(72)16(132)28x yx y,故选:D.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)20192020的相反数是20192020.【分析】根据相反数的意义,即可求解;【解答】解:20192020的相反数是20192020;故答案为20192020;【点评】本题考查相反数;熟练掌握相反数的求法是解题的关键.12.(3分)不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是16.【分析】画树状图得出所有等可能结果,从中找到取出2个小球的颜色恰好是一红一蓝的结果数,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有12种等可能结果,其中取出2个小球的颜色恰好是一红一蓝的有2种结果,所以取出2个小球的颜色恰好是一红一蓝的概率为21126,故答案为:16.【点评】本题考查了列表法与树状图法求随机事件的概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率所求情况数与总情况数之比.13.(3分)如图,在平面直角坐标系中,点A 的坐标为(4,2),反比例函数(0)k yx x的图象经过线段OA 的中点B ,则k2.【分析】已知(4,2)A ,B 是OA 的中点,根据平行线等分线段定理可得点B 的坐标,把B 的坐标代入关系式可求k 的值.【解答】解:如图://AC BD ,B 是OA 的中点,OD DC 同理OF EF(4,2)A 2AC ,4OC 2ODCD,1BDOF EF,(2,1)B 代入k y x得:212k故答案为:2【点评】考查平行线等分线段定理,点的坐标与相应线段的长度的相互转化等知识;求出点B坐标,代入求k的值是本题的基本方法.14.(3分)不等式组43113xx,的解集是21x,.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式43x,得:1x,解不等式113x,,得:2x…,则不等式组的解集为21x,,故答案为:21x,.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(3分)如图,已知AD AE,请你添加一个条件,使得ADC AEB,你添加的条件是AB AC或ADC AEB或ABE ACD.(不添加任何字母和辅助线)【分析】根据图形可知证明ADC AEB已经具备了一个公共角和一对相等边,因此可以利用ASA、SAS、AAS证明两三角形全等.【解答】解:A A,AD AE,可以添加AB AC,此时满足SAS;添加条件ADC AEB,此时满足ASA;添加条件ABE ACD,此时满足AAS,故答案为AB AC或ADC AEB或ABE ACD;【点评】本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.16.(3分)关于x的一元二次方程220x x m有两个不相等的实数根,则m的最小整数值是0.【分析】根据一元二次方程根的存在性,利用判别式△0求解即可;【解答】解:一元二次方程220x x m有两个不相等的实数根,m,△440m;1故答案为0;【点评】本题考查一元二次方程的根的存在性;熟练掌握利用判别式△确定一元二次方程的根的存在性是解题的关键.17.(3分)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾6c,则小正方形ABCD的面积是4.a,弦10【分析】应用勾股定理和正方形的面积公式可求解.【解答】解:勾6c,a,弦101068,股22小正方形的边长862,小正方形的面积224故答案是:4【点评】本题运用了勾股定理和正方形的面积公式,关键是运用了数形结合的数学思想.18.(3分)如图,将等边AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边AOB绕点O顺时针旋转180得到△A OB,则点B的坐标是(2,23).【分析】作BHy 轴于H ,如图,利用等边三角形的性质得到2OH AH ,60BOA ,再计算出BH ,从而得到B 点坐标为(2,23),然后根据关于原点对称的点的坐标特征求出点B 的坐标.【解答】解:作BHy 轴于H ,如图,OAB 为等边三角形,2OH AH ,60BOA,323BHOH,B 点坐标为(2,23),等边AOB 绕点O 顺时针旋转180得到△A OB ,点B 的坐标是(2,23).故答案为(2,23).【点评】本题考查了坐标与图形变化旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30,45,60,90,180.也考查了等边三角形的性质.三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.(8分)计第:13127()|2|cos603【分析】分别化简每一项,再进行运算即可;【解答】解:131127()|2|cos60332132;【点评】本题考查实数的运算,特殊三角函数值;熟练掌握实数的运算,牢记特殊的三角函数值是解题的关键.20.(8分)先化简,再求值:2121(1)222mm m m ,其中22m.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.【解答】解:原式221(1)()222(1)m m mm m 1221m m m 22m ,当22m 时,原式22222.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.21.(8分)如图,在等腰ABC 中,120BAC,AD 是BAC 的角平分线,且6AD,以点A 为圆心,AD 长为半径画弧EF ,交AB 于点E ,交AC 于点F .(1)求由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF ,将扇形AEF 围成一个圆锥的侧面,AE 与AF 正好重合,圆锥侧面无重叠,求这个圆锥的高h .【分析】(1)利用等腰三角形的性质得到ADBC ,BD CD ,则可计算出63BD ,然后利用扇形的面积公式,利用由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积ABCEAF SS 扇形进行计算;(2)设圆锥的底面圆的半径为r ,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到12062180r,解得2r,然后利用勾股定理计算这个圆锥的高h .【解答】解:在等腰ABC 中,120BAC,30B,AD 是BAC 的角平分线,AD BC ,BD CD ,363BD AD,2123BCBD,由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积2112066123363122360ABC EAFS S 扇形;(2)设圆锥的底面圆的半径为r ,根据题意得12062180r,解得2r ,这个圆锥的高226242h.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰三角形的性质和扇形的面积公式.22.(8分)某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是50;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.【分析】(1)利用摄影社团的人数除以摄影社团所占的百分比即可得到结论;(2)求出参与篮球社的人数和国学社的人数,补全条形统计图即可;(3)利用科技制作社团所占的百分比乘以360即可得到结论;(4)利用全校学生数乘以参加篮球社团所占的百分比即可得到结论.【解答】解:(1)本次抽样调查的样本容量是550 10%,故答案为:50;(2)参与篮球社的人数5020%10人,参与国学社的人数为5051012815人,补全条形统计图如图所示;(3)参与科技制作社团所在扇形的圆心角度数为1236086.450;(4)300020%600名,答:全校有600学生报名参加篮球社团活动.【点评】此题考查了扇形统计图,条形统计图,读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.23.(8分)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.【分析】根据2(1)a x b增长率公式建立方程230(1)36.3x,解方程即可.【解答】解:设平均增长率为x,根据题意列方程得230(1)36.3x解得10.1x,22.1x(舍)答:我国外贸进出口总值得年平均增长率为10%.【点评】本题考查了一元二次方程应用问题关于增长率类型,利用公式建立方程即可,记忆公式并运用公式是本题的关键.24.(8分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且OB OE;支架BC与水平线AD垂直.40AC cm,30ADE,190DE cm,另一支架AB与水平线夹角65BAD,求OB的长度(结果精确到1cm;温馨提示:sin650.91,cos650.42,tan65 2.14)【分析】设2OE OB x,根据含30度角的直角三角形的性质以及锐角三角函数的定义即可求出答案.【解答】解:设2OE OB x,1902OD DE OE x,30ADE,1952OC OD x,95295BC OC OB x x x,tanBC BADAC,952.1440x,解得:9x,218OB x.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.25.(8分)如图1,已知O外一点P向O作切线PA,点A为切点,连接PO并延长交O 于点B,连接AO并延长交O于点C,过点C作CD PB,分别交PB于点E,交O于点D,连接AD.(1)求证:~APO DCA;(2)如图2,当AD AO时①求P的度数;②连接AB,在O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出PQCQ的值;若不存在,请说明理由.【分析】(1)由切线性质和直径AC可得90PAO CDA,由//PB AD可得P OD CA D,即可得:~APO DCA;(2)①连接OD,由AD OA OD可得OAD是等边三角形,由此可得60POA,30P;②作BQ AC交O于Q,可证ABQP为菱形,求PQCQ可转化为求ABBC.【解答】解:(1)证明:如图1,PA切O于点A,AC是O的直径,90PAO CDACD PB90CEPCEP CDA//PB ADPOA CAO~APO DCA(2)如图2,连接OD,①AD AO,OD AOOAD是等边三角形60OAD//PB AD60POA OAD90PAO90906030P POA②存在.如图2,过点B作BQ AC交O于Q,连接PQ,BC,CQ,由①得:60POA,90PAO60BOC POAOB OC60ACB 30BQC BACBQ AC ,CQ BC BCOBOA ()CBQ OBA AAS BQAB30OBA OPA ABAPBQ AP PAAC//BQ AP四边形ABQP 是平行四边形AB AP四边形ABQP 是菱形PQ AB tantan 603PQ AB ACBCQBC【点评】本题是有关圆的综合题,难度不大;主要考查了切线性质,圆周角与圆心角,等边三角形性质,特殊角三角函数值,菱形性质等.26.(10分)如图,二次函数213yxbxc 的图象过原点,与x 轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x 轴上方作x 轴的平行线1y m ,交二次函数图象于A 、B 两点,过A 、B 两点分别作x 轴的垂线,垂足分别为点D 、点C .当矩形ABCD 为正方形时,求m 的值;(3)在(2)的条件下,动点P 从点A 出发沿射线AB 以每秒1个单位长度匀速运动,同时动点Q 以相同的速度从点A 出发沿线段AD 匀速运动,到达点D 时立即原速返回,当动点Q返回到点A 时,P 、Q 两点同时停止运动,设运动时间为t 秒(0)t .过点P 向x 轴作垂线,交抛物线于点E ,交直线AC 于点F ,问:以A 、E 、F 、Q 四点为顶点构成的四边形能否是平行四边形.若能,请求出t 的值;若不能,请说明理由.【分析】(1)根据点的坐标,利用待定系数法即可求出二次函数的解析式;(2)利用二次函数图象上点的坐标特征求出点A ,B 的坐标,进而可得出点C ,D 的坐标,再利用正方形的性质可得出关于m 的方程,解之即可得出结论;(3)由(2)可得出点A ,B ,C ,D 的坐标,根据点A ,C 的坐标,利用待定系数法可求出直线AC 的解析式,利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征可求出点E ,F 的坐标,由//AQ EF 且以A 、E 、F 、Q 四点为顶点的四边形为平行四边形可得出AQEF ,分04t,,47t,,78t,三种情况找出AQ ,EF 的长,由AQEF可得出关于t 的一元二次方程,解之取其合适的值即可得出结论.【解答】解:(1)将(0,0),(8,0)代入213y xbx c ,得:064803cb c,解得:830b c,该二次函数的解析式为21833yxx .(2)当y m 时,21833x xm ,解得:14163x m ,24163x m ,点A 的坐标为(4163m ,)m ,点B 的坐标为(4163m ,)m ,点D 的坐标为(4163m ,0),点C 的坐标为(4163m ,0).矩形ABCD 为正方形,4163(4163)mm m ,解得:116m (舍去),24m .当矩形ABCD 为正方形时,m 的值为4.(3)以A 、E 、F 、Q 四点为顶点构成的四边形能为平行四边形.由(2)可知:点A 的坐标为(2,4),点B 的坐标为(6,4),点C 的坐标为(6,0),点D 的坐标为(2,0).设直线AC 的解析式为(0)y kx a k,将(2,4)A ,(6,0)C 代入y kx a ,得:2460k a ka,解得:16k a,直线AC 的解析式为6y x .当2xt 时,22181443333yxx tt ,64y x t ,点E 的坐标为214(2,4)33t tt,点F 的坐标为(2,4)t t.以A 、E 、F 、Q 四点为顶点构成的四边形为平行四边形,且//AQ EF ,AQ EF ,分三种情况考虑:①当04t,时,如图1所示,AQt ,2214174(4)3333EFtt t tt ,21733ttt ,解得:10t (舍去),24t ;②当47t,时,如图2所示,4AQt,2214174(4)3333EFtt t tt ,217433t tt ,解得:32t (舍去),46t ;③当78t,时,4AQt,2214174(4)3333EFt tt tt ,217433t tt ,解得:5513t (舍去),6513t (舍去).综上所述:当以A 、E 、F 、Q 四点为顶点构成的四边形为平行四边形时,t 的值为4或6.【点评】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、正方形的性质、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用正方形的性质,找出关于m 的方程;(3)分04t,,47t,,78t,三种情况,利用平行四边形的性质找出关于t 的一元二次方程.。
2019年湖南省邵阳市中考数学试卷
• 2019 年湖南省邵阳市中考数学试卷一、选择题(本大题有 10 个小题,每小题 3 分,共 30 分,在每小题给出的四个选项中, 只有一项是符合题目要求的)1.下列各数中,属于无理数的是( )A .B .1.414C .D . 2.下列立体图形中,俯视图与主视图不同的是()A . 正方体B . 圆柱C . 圆锥D . 球3.据海关统计:2019 年前 4 个月,中国对美国贸易顺差为 5700 亿元.用科学记数法表示5700 亿元正确的是( )A .5.7×1011 元B .57×1010 元C .5.7×10﹣11 元D .0.57×1012 元4.如图,已知两直线 l 1 与 l 2 被第三条直线 l 3 所截,下列等式一定成立的是()A .∠l =∠2B .∠2=∠3C .∠2+∠4=180°D .∠1+∠4=180°5.学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:售价 3 元 4 元 5 元 6 元数目 14 本 11 本 10 本 15 本下列说法正确的是( )A .该班级所售图书的总收入是 226 元B .在该班级所售图书价格组成的一组数据中,中位数是 4C .在该班级所售图书价格组成的一纽数据中,众数是 15D .在该班级所售图书价格组成的一组数据中,方差是 26.以下计算正确的是( ) A .(﹣2ab 2)3=8a 3b 6 B .3ab +2b =5abC .(﹣x 2)(﹣2x )3=﹣8x 5 D .2m (mn 2﹣3m 2)=2m 2n 2﹣6m 3 7.一次函数 y 1=k 1x +b 1 的图象 l 1 如图所示,将直线 l 1 向下平移若干个单位后得直线 l 2,l 2的函数表达式为 y 2=k 2x +b 2.下列说法中错误的是( )A .k 1=k 2B .b 1<b 2C .b 1>b 2D .当 x =5 时,y >y 28.如图,以点 O 为位似中心,把△ABC 放大为原图形的 2 倍得到△1 A ′B ′C ′,以下说法.1 中错误的是( )A .△ABC ∽ △A ′B ′C ′ B .点 C 、点 O 、点 C ′三点在同一直线上C .AO :AA ′=1:2D .AB ∥A ′B ′9.如图,在 △Rt ABC 中,∠BAC =90°,∠B =36°,AD 是斜边 BC 上的中线,将△ACD沿 AD 对折,使点 C 落在点 F 处,线段 DF 与 AB 相交于点 E ,则∠BED 等于( )A .120°B .108°C .72°D .36°10.某出租车起步价所包含的路程为 0~2km ,超过 2km 的部分按每千米另收费.津津乘坐这种出租车走了 7km ,付了 16 元;盼盼乘坐这种出租车走了 13km ,付了 28 元.设这种 出租车的起步价为 x 元,超过 2km 后每千米收费 y 元,则下列方程正确的是( )A .B .C .D . 二、填空题(本大题有 8 个小题,每小题 3 分,共 24 分)11. 的相反数是 . 12.不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出 2 个小球,取出 2 个小球的颜色恰好是一红一蓝的概 率是 .13.如图,在平面直角坐标系中,点 A 的坐标为(﹣4,2),反比例函数 y = (x <0)的 图象经过线段 OA 的中点 B ,则 k =.14.不等式组的解集是 .15 .如图,已知 AD = A E ,请你添加一个条件,使得△ ADC ≌△ AEB ,你添加的条件是 .(不添加任何字母和辅助线)16.关于 x 的一元二次方程 x 2﹣2x ﹣m =0 有两个不相等的实数根,则 m 的最小整数值是 .17.公元 3 世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图” 如图, 设勾 a =6,弦 c =10,则小正方形 ABCD 的面积是 .△18.如图,将等边 AOB 放在平面直角坐标系中,点 A 的坐标为(4,0),点 B 在第一象限,将等边△AOB 绕点 O 顺时针旋转 180°得到 △A ′OB ′,则点 B ′的坐标是 .三、解答题(本大题有 8 个小题,第 19-25 题毎题 8 分,第 26 题 10 分,共 66 分,解答应 写出必要的文字说明,演算步骤或证明过程)19.(8 分)计第: ﹣( )﹣+|﹣2|cos60°20.(8 分)先化简,再求值:(1﹣ )÷ ,其中 m = ﹣2. 21.(8 分)如图,在等腰△ABC 中,∠BAC =120°,AD 是∠BAC 的角平分线,且 AD =6,以点 A 为圆心,AD 长为半径画弧 EF ,交 AB 于点 E ,交 AC 于点 F .(1)求由弧 EF 及线段 FC 、CB 、BE 围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形 AEF ,将扇形 AEF 围成一个圆锥的侧面,AE 与 AF 正 好重合,圆锥侧面无重叠,求这个圆锥的高 h .( 预22.(8 分)某校有学生 3000 人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社 团人数,现在学校随机抽取了 50 名学生做问卷调查,得到了如图所示的两个不完全统计 图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是 ;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.23. 8 分)2019 年 1 月 14 日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在 2018 年,我国进出口规模创历史新高,全年外贸进出口总值为 30 万亿元人民 币.有望继续保持全球货物贸易第一大国地位. 计 2020 年我国外贸进出口总值将达 36.3 万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.24.(8 分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管 DE与支架 CB 所在直线相交于点 O ,且 OB =OE ;支架 BC 与水平线 AD 垂直.AC =40cm , ∠ADE =30°,DE =190cm ,另一支架 AB 与水平线夹角∠BAD =65°,求 OB 的长度(结 果精确到 1cm ;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)25.(8 分)如图 1,已知⊙O 外一点 P 向⊙O 作切线 P A ,点 A 为切点,连接 PO 并延长交 ⊙O 于点 B ,连接 AO 并延长交⊙O 于点 C ,过点 C 作 CD ⊥PB ,分别交 PB 于点 E ,交 ⊙O 于点 D ,连接 AD .(△1)求证: APO ~△DCA ;(2)如图 2,当 AD =AO 时①求∠P 的度数;②连接 AB ,在⊙O 上是否存在点 Q 使得四边形 APQB 是菱形.若存在,请直接写出的值;若不存在,请说明理由.26.10分)如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)((1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分别为点D、点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P 向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.2019年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中,属于无理数的是()A.B.1.414C.D.【分析】根据无理数的定义:无限不循环小数是无理数即可求解;【解答】解:=2是有理数;是无理数;故选:C.【点评】本题考查无理数;能够化简二次根式,理解无理数的定义是解题的关键.2.下列立体图形中,俯视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.【解答】解:A.俯视图与主视图都是正方形,故选项A不合题意;B.俯视图与主视图都是正方形,故选项B不合题意;C.俯视图是圆,左视图是三角形;故选项C符合题意;D.俯视图与主视图都是圆,故选项D不合题意;故选:C.【点评】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.3.据海关统计:2019年前4个月,中国对美国贸易顺差为5700亿元.用科学记数法表示5700亿元正确的是()A.5.7×1011元B.57×1010元C.5.7×10﹣11元D.0.57×1012元【分析】根据科学记数法的表示方法a×10n(1≤a<10)即可求解;【解答】解:5700亿元=570000000000元=5.7×1011元;故选:A.【点评】本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.4.如图,已知两直线l1与l2被第三条直线l3所截,下列等式一定成立的是()A.∠l=∠2B.∠2=∠3C.∠2+∠4=180°D.∠1+∠4=180°【分析】由三线八角以及平行线的性质可知,A,B,C成立的条件题目并没有提供,而D选项中邻补角的和为180°一定正确.2 • 【解答】解:∠1 与∠2 是同为角,∠2 与∠3 是内错角,∠2 与∠4 是同旁内角,由平行线的性质可知,选项 A ,B ,C 成立的条件为 l 1∥l 2 时,而∠1 与∠4 是邻补角,故 D 正 确.故选:D .【点评】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题, 难度不大.5.学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:售价 3 元 4 元 5 元 6 元数目 14 本 11 本 10 本 15 本下列说法正确的是( )A .该班级所售图书的总收入是 226 元B .在该班级所售图书价格组成的一组数据中,中位数是 4C .在该班级所售图书价格组成的一纽数据中,众数是 15D .在该班级所售图书价格组成的一组数据中,方差是 2【分析】把所有数据相加可对 A 进行判断;利用中位数和众数的定义对 B 、C 进行判断; 利用方差的计算公式计算出这组数据的方差,从而可对 D 进行判断(当然前面三个判断 了可直接对 D 进行判断).【解答】解:A 、该班级所售图书的总收入为 3×14+4×11+5×10+6×15=226,所以 A 选项正确;B 、第 25 个数为 4,第 26 个数为 5,所以这组数据的中位数为 4.5,所以 B 选项错误;C 、这组数据的众数为 4,所以 C 选项错误;D 、这组数据的平均数为 ==4.52,所以这组数据的方差 S 2= [14(3﹣4.52)+11 (4﹣4.52)2+10(5﹣4.52)2+15(6﹣4.52)2]≈1.4,所以 D 选项错误.故选:A .【点评】本题考查方差的定义:一般地设 n 个数据,x 1,x 2,…x n 的平均数为 ,则方差 S 2= [(x 1﹣ )2+(x 2﹣ )2+…+(x n ﹣ )2].也考查了中位数和众数.6.以下计算正确的是( )A .(﹣2ab 2)3=8a 3b 6B .3ab +2b =5abC .(﹣x 2)(﹣2x )3=﹣8x 5D .2m (mn 2﹣3m 2)=2m 2n 2﹣6m 3【分析】利用幂的乘方与积的乘方,单项式乘以多项式法则,合并同类项法则即可求解;【解答】解:(﹣2ab 2)3=﹣8a 3b 6,A 错误;3ab +2b 不能合并同类项,B 错误;(﹣x 2)(﹣2x )3=8x 5,C 错误;故选:D .【点评】本题考查整式的运算;熟练掌握幂的乘方与积的乘方,单项式乘以多项式法则, 合并同类项法则是解题的关键.7.一次函数 y 1=k 1x +b 1 的图象 l 1 如图所示,将直线 l 1 向下平移若干个单位后得直线 l 2,l 2的函数表达式为 y 2=k 2x +b 2.下列说法中错误的是( )A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y2【分析】根据两函数图象平行k相同,以及向下平移减即可判断.【解答】解:∵将直线l1向下平移若干个单位后得直线l2,∴直线l1∥直线l2,∴k1=k2,∵直线l1向下平移若干个单位后得直线l2,∴b1>b2,∴当x=5时,y1>y2,故选:B.【点评】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”关键是要搞清楚平移前后的解析式有什么关系.8.如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法中错误的是()A.△ABC∽△A′B′C′B.点C、点O、点C′三点在同一直线上C.AO:AA′=1:2D.AB∥A′B′【分析】直接利用位似图形的性质进而分别分析得出答案.【解答】解:∵以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,∴△ABC∽△A′B′C′,点C、点O、点C′三点在同一直线上,AB∥A′B′,AO:OA′=1:2,故选项C错误,符合题意.故选:C.【点评】此题主要考查了位似变换,正确把握位似图形的性质是解题关键.9.如图,在△Rt ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD 沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°【分析】根据三角形内角和定理求出∠C=90°﹣∠B=54°.由直角三角形斜边上的中线的性质得出AD=BD=CD,利用等腰三角形的性质求出∠BAD=∠B=36°,∠DAC =∠C=54°,利用三角形内角和定理求出∠A DC=180°﹣∠DAC﹣∠C=72°.再根据折叠的性质得出∠ADF=∠ADC=72°,然后根据三角形外角的性质得出∠B ED=∠BAD+∠ADF=108°.【解答】解:∵在△Rt ABC中,∠BAC=90°,∠B=36°,∴∠C=90°﹣∠B=54°.∵AD是斜边BC上的中线,∴AD=BD=CD,∴∠BAD=∠B=36°,∠DAC=∠C=54°,∴∠ADC=180°﹣∠DAC﹣∠C=72°.∵将△ACD沿AD对折,使点C落在点F处,∴∠ADF=∠ADC=72°,∴∠BED=∠BAD+∠ADF=36°+72°=108°.故选:B.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.10.某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A.B.C.D.【分析】根据津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元可列方程组.【解答】解:设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选:D.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.二、填空题(本大题有8个小题,每小题3分,共24分)11.的相反数是﹣.【分析】根据相反数的意义,即可求解;【解答】解:故答案为﹣的相反数是﹣;;【点评】本题考查相反数;熟练掌握相反数的求法是解题的关键.12.不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是.【分析】画树状图得出所有等可能结果,从中找到取出2个小球的颜色恰好是一红一蓝的结果数,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有12种等可能结果,其中取出2个小球的颜色恰好是一红一蓝的有2种结果,所以取出2个小球的颜色恰好是一红一蓝的概率为=,故答案为:.【点评】本题考查了列表法与树状图法求随机事件的概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.13.如图,在平面直角坐标系中,点A的坐标为(﹣4,2),反比例函数y=(x<0)的图象经过线段OA的中点B,则k=﹣2.【分析】已知A(﹣4,2),B是OA的中点,根据平行线等分线段定理可得点B的坐标,把B的坐标代入关系式可求k的值.【解答】解:如图:∵AC∥BD,B是OA的中点,∴OD=DC同理OF=EF∵A(﹣4,2)∴AC=2,OC=4∴OD=CD=2,BD=OF=EF=1,∴B(﹣2,1)代入y=得:∴k=﹣2×1=﹣2故答案为:﹣2【点评】考查平行线等分线段定理,点的坐标与相应线段的长度的相互转化等知识;求出点B坐标,代入求k的值是本题的基本方法.14.不等式组的解集是﹣2≤x<﹣1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+4<3,得:x<﹣1,解不等式≤1,得:x≥﹣2,则不等式组的解集为﹣2≤x<﹣1,故答案为:﹣2≤x<﹣1..【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.如图,已知A D=△AE,请你添加一个条件,使得ADC≌△AEB,你添加的条件是AB =AC或∠ADC=∠AEB或∠ABE=∠ACD.(不添加任何字母和辅助线)【分析】根据图形可知证明△ADC≌△AEB已经具备了一个公共角和一对相等边,因此可以利用ASA、SAS、AAS证明两三角形全等.【解答】解:∵∠A=∠A,AD=AE,∴可以添加AB=AC,此时满足SAS;添加条件∠ADC=∠AEB,此时满足ASA;添加条件∠ABE=∠ACD,此时满足AAS,故答案为AB=AC或∠ADC=∠AEB或∠ABE=∠ACD;【点评】本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.16.关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,则m的最小整数值是0.【分析】根据一元二次方程根的存在性,利用判别式>△0求解即可;【解答】解:一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,∴△=4+4m>0,∴m>﹣1;故答案为0;【点评】本题考查一元二次方程的根的存在性;熟练掌握利用判别式△确定一元二次方程的根的存在性是解题的关键.17.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”如图,设勾a=6,弦c=10,则小正方形ABCD的面积是4.【分析】应用勾股定理和正方形的面积公式可求解.【解答】解:∵勾a=6,弦c=10,∴股==8,∴小正方形的边长=8﹣6=2,∴小正方形的面积=22=4故答案是:4【点评】本题运用了勾股定理和正方形的面积公式,关键是运用了数形结合的数学思想.△18.如图,将等边AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是(﹣2,﹣2).作【分析】BH⊥y轴于H,如图,利用等边三角形的性质得到OH=AH=2,∠BOA=60°,再计算出BH,从而得到B点坐标为(2,2),然后根据关于原点对称的点的坐标特征求出点B′的坐标.【解答】解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故答案为(﹣2,﹣2).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了等边三角形的性质.三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.(8分)计第:﹣()﹣1+|﹣2|cos60°【分析】分别化简每一项,再进行运算即可;【解答】解:﹣()﹣1+|﹣2|cos60°=3﹣3+2×=1;【点评】本题考查实数的运算,特殊三角函数值;熟练掌握实数的运算,牢记特殊的三角函数值是解题的关键.20.(8分)先化简,再求值:(1﹣)÷,其中m=﹣2.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.【解答】解:原式=(﹣)÷==•,当m=原式=﹣2时,=.( 【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.21.(8 分)如图,在等腰△ABC 中,∠BAC =120°,AD 是∠BAC 的角平分线,且 AD =6,以点 A 为圆心,AD 长为半径画弧 EF ,交 AB 于点 E ,交 AC 于点 F .(1)求由弧 EF 及线段 FC 、CB 、BE 围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形 AEF ,将扇形 AEF 围成一个圆锥的侧面,AE 与 AF 正 好重合,圆锥侧面无重叠,求这个圆锥的高 h .【分析】 1)利用等腰三角形的性质得到 AD ⊥BC ,BD =CD ,则可计算出 BD =6 , 然后利用扇形的面积公式,利用由弧 E F 及线段 FC 、CB 、BE 围成图形(图中阴影部分) 的面积=△S ABC ﹣S 扇形 EAF 进行计算;(2)设圆锥的底面圆的半径为 r ,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到 2πr = ,解得 r =2,然后利用勾股定理计算这个圆锥的高 h .【解答】解:∵在等腰△ABC 中,∠BAC =120°,∴∠B =30°,∵AD 是∠BAC 的角平分线,∴AD ⊥BC ,BD =CD ,∴BD = AD =6 ,∴BC =2BD =12 , ∴由弧 EF 及线段 FC 、CB 、BE 围成图形(图中阴影部分)的面积=△S ABC ﹣S 扇形 EAF =×6×12﹣ =36 ﹣12π;(2)设圆锥的底面圆的半径为 r ,根据题意得 2πr =这个圆锥的高 h =,解得 r =2, =4 . 【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰三角形的性质和扇形的面 积公式.22.(8 分)某校有学生 3000 人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社 团人数,现在学校随机抽取了 50 名学生做问卷调查,得到了如图所示的两个不完全统计 图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是 50 ;(2)请你补全条形统计图,并在图上标明具体数据;( ( 预 (3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.【分析】 1)利用摄影社团的人数除以摄影社团所占的百分比即可得到结论;(2)求出参与篮球社的人数和国学社的人数,补全条形统计图即可;(3)利用科技制作社团所占的百分比乘以 360°即可得到结论;(4)利用全校学生数乘以参加篮球社团所占的百分比即可得到结论.【解答】解:(1)本次抽样调查的样本容量是故答案为:50;(2)参与篮球社的人数=50×20%=10 人,参与国学社的人数为 50﹣5﹣10﹣12﹣8=15 人,补全条形统计图如图所示;=50, (3)参与科技制作社团所在扇形的圆心角度数为 360°×(4)3000×20%=600 名,答:全校有 600 学生报名参加篮球社团活动.=86.4°;【点评】此题考查了扇形统计图,条形统计图,读懂统计图,从不同的统计表和统计图 中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.23. 8 分)2019 年 1 月 14 日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在 2018 年,我国进出口规模创历史新高,全年外贸进出口总值为 30 万亿元人民 币.有望继续保持全球货物贸易第一大国地位. 计 2020 年我国外贸进出口总值将达 36.3 万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.【分析】根据 a (1﹣x )2=b 增长率公式建立方程 30(1+x )2=36.3,解方程即可.【解答】解:设平均增长率为 x ,根据题意列方程得30(1+x )2=36.3解得 x 1=0.1,x 2=﹣2.1(舍)答:我国外贸进出口总值得年平均增长率为 10%.【点评】本题考查了一元二次方程应用问题关于增长率类型,利用公式建立方程即可, 记忆公式并运用公式是本题的关键.24.(8 分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管 DE与支架 CB 所在直线相交于点 O ,且 OB =OE ;支架 BC 与水平线 AD 垂直.AC =40cm , ∠ADE =30°,DE =190cm ,另一支架 AB 与水平线夹角∠BAD =65°,求 OB 的长度(结 果精确到 1cm ;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【分析】设 OE =OB =2x ,根据含 30 度角的直角三角形的性质以及锐角三角函数的定义 即可求出答案.【解答】解:设 OE =OB =2x ,∴OD =DE +OE =190+2x ,( ∵∠ADE =30°,∴OC = OD =95+x ,∴BC =OC ﹣OB =95+x ﹣2x =95﹣x ,∵tan ∠BAD =, ∴2.14=,解得:x ≈9,∴OB =2x =18.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属 于中等题型.25.(8 分)如图 1,已知⊙O 外一点 P 向⊙O 作切线 P A ,点 A 为切点,连接 PO 并延长交 ⊙O 于点 B ,连接 AO 并延长交⊙O 于点 C ,过点 C 作 CD ⊥PB ,分别交 PB 于点 E ,交 ⊙O 于点 D ,连接 AD .(△1)求证: APO ~△DCA ;(2)如图 2,当 AD =AO 时①求∠P 的度数;②连接 AB ,在⊙O 上是否存在点 Q 使得四边形 APQB 是菱形.若存在,请直接写出的值;若不存在,请说明理由.【分析】 1)由切线性质和直径 AC 可得∠P A O =∠CDA =90°,由 PB ∥AD 可得∠POD =∠CAD ,即可得:△APO ~△DCA ;(2)①连接 OD ,由 AD =OA =OD 可得△OAD 是等边三角形,由此可得∠POA =60°, ∠P =30°;②作 BQ ⊥AC 交⊙O 于 Q ,可证 ABQP 为菱形,求 可转化为求 .【解答】解:(1)证明:如图 1,∵PA 切⊙O 于点 A ,AC 是⊙O 的直径,∴∠P AO =∠CDA =90°∵CD ⊥PB∴∠CEP =90°∴∠CEP =∠CDA∴PB ∥AD∴∠POA =∠CAO∴△APO ~△DCA(2)如图 2,连接 OD ,①∵AD =AO ,OD =AO∴△OAD 是等边三角形∴∠OAD =60°∵PB ∥AD∴∠POA =∠OAD =60°∵∠P AO =90°( ∴∠P =90°﹣∠POA =90°﹣60°=30°②存在.如图 2,过点 B 作 BQ ⊥AC 交⊙O 于 Q ,连接 PQ ,BC ,CQ ,由①得:∠POA =60°,∠P A O =90°∴∠BOC =∠POA =60°∵OB =OC∴∠ACB =60°∴∠BQC =∠BAC =30°∵BQ ⊥AC ,∴CQ =BC∵BC =OB =OA∴△CBQ ≌△OBA (AAS )∴BQ =AB∵∠OBA =∠OP A =30°∴AB =AP∴BQ =AP∵PA ⊥AC∴BQ ∥AP∴四边形 ABQP 是平行四边形∵AB =AP∴四边形 ABQP 是菱形∴PQ =AB∴ = =tan ∠ACB =tan60°=【点评】本题是有关圆的综合题,难度不大;主要考查了切线性质,圆周角与圆心角, 等边三角形性质,特殊角三角函数值,菱形性质等.26. 10分)如图,二次函数 y =﹣ x 2+bx +c 的图象过原点,与 x 轴的另一个交点为(8,0) (1)求该二次函数的解析式;(2)在 x 轴上方作 x 轴的平行线 y 1=m ,交二次函数图象于 A 、B 两点,过 A 、B 两点分 别作 x 轴的垂线,垂足分别为点 D 、点 C .当矩形 ABCD 为正方形时,求 m 的值;(3)在(2)的条件下,动点 P 从点 A 出发沿射线 AB 以每秒 1 个单位长度匀速运动, 同时动点 Q 以相同的速度从点 A 出发沿线段 AD 匀速运动,到达点 D 时立即原速返回, 当动点 Q 返回到点 A 时,P 、Q 两点同时停止运动,设运动时间为 t 秒(t >0).过点 P 向 x 轴作垂线,交抛物线于点 E ,交直线 AC 于点 F ,问:以 A 、E 、F 、Q 四点为顶点构( 成的四边形能否是平行四边形.若能,请求出 t 的值;若不能,请说明理由.【分析】 1)根据点的坐标,利用待定系数法即可求出二次函数的解析式; (2)利用二次函数图象上点的坐标特征求出点 A ,B 的坐标,进而可得出点 C ,D 的坐 标,再利用正方形的性质可得出关于 m 的方程,解之即可得出结论;(3)由(2)可得出点 A ,B ,C ,D 的坐标,根据点 A ,C 的坐标,利用待定系数法可 求出直线 AC 的解析式,利用二次函数图象上点的坐标特征及一次函数图象上点的坐标 特征可求出点 E ,F 的坐标,由 AQ ∥EF 且以 A 、E 、F 、Q 四点为顶点的四边形为平行 四边形可得出 AQ =EF ,分 0<t ≤4,4<t ≤7,7<t ≤8 三种情况找出 AQ ,EF 的长,由 AQ =EF 可得出关于 t 的一元二次方程,解之取其合适的值即可得出结论.【解答】解:(1)将(0,0),(8,0)代入 y =﹣ x 2+b x +c ,得:,解得:,∴该二次函数的解析式为 y =﹣ x 2+ x .(2)当 y =m 时,﹣ x 2+ x =m ,解得:x 1=4﹣ ,x 2=4+ ,∴点 A 的坐标为(4﹣ ,m ),点 B 的坐标为(4+ ,m ),∴点 D 的坐标为(4﹣ ,0),点 C 的坐标为(4+ ,0).∵矩形 ABCD 为正方形,∴4+ ﹣(4﹣ )=m ,解得:m 1=﹣16(舍去),m 2=4.∴当矩形 ABCD 为正方形时,m 的值为 4.(3)以 A 、E 、F 、Q 四点为顶点构成的四边形能为平行四边形.由(2)可知:点 A 的坐标为(2,4),点 B 的坐标为(6,4),点 C 的坐标为(6,0), 点 D 的坐标为(2,0).设直线 AC 的解析式为 y =kx +a (k ≠0),将 A (2,4),C (6,0)代入 y =kx +a ,得:,解得:,∴直线 AC 的解析式为 y =﹣x +6.当 x =2+t 时,y =﹣ x 2+ x =﹣ t 2+ t +4,y =﹣x +6=﹣t +4,∴点 E 的坐标为(2+t ,﹣ t 2+ t +4),点 F 的坐标为(2+t ,﹣t +4).∵以 A 、E 、F 、Q 四点为顶点构成的四边形为平行四边形,且 AQ ∥EF ,∴AQ =EF ,分三种情况考虑:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数中,属于无理数的是()A.B.1.414C.D.2.(3分)下列立体图形中,俯视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球3.(3分)据海关统计:2019年前4个月,中国对美国贸易顺差为5700亿元.用科学记数法表示5700亿元正确的是()A.5.7×1011元B.57×1010元C.5.7×10﹣11元D.0.57×1012元4.(3分)如图,已知两直线l1与l2被第三条直线l3所截,下列等式一定成立的是()A.∠1=∠2B.∠2=∠3C.∠2+∠4=180°D.∠1+∠4=180°5.(3分)学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:售价3元4元5元6元数目14本11本10本15本下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一组数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是26.(3分)以下计算正确的是()A.(﹣2ab2)3=8a3b6B.3ab+2b=5abC.(﹣x2)•(﹣2x)3=﹣8x5D.2m(mn2﹣3m2)=2m2n2﹣6m37.(3分)一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y28.(3分)如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法中错误的是()A.△ABC∽△A′B′C′B.点C、点O、点C′三点在同一直线上C.AO:AA′=1:2D.AB∥A′B′9.(3分)如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD 是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°10.(3分)某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A.B.C.D.二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)的相反数是.12.(3分)不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是.13.(3分)如图,在平面直角坐标系中,点A的坐标为(﹣4,2),反比例函数y=(x<0)的图象经过线段OA的中点B,则k =.14.(3分)不等式组的解集是.15.(3分)如图,已知AD=AE,请你添加一个条件,使得△ADC ≌△AEB,你添加的条件是.(不添加任何字母和辅助线)16.(3分)关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,则m的最小整数值是.17.(3分)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是.18.(3分)如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(0,4),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是.三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.(8分)计算:﹣()﹣1+|﹣2|cos60°20.(8分)先化简,再求值:(1﹣)÷,其中m=﹣2.21.(8分)如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC 的角平分线,且AD=6,以点A为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F.(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h.22.(8分)某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.23.(8分)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.24.(8分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且OB =OE;支架BC与水平线AD垂直.AC=40cm,∠ADE=30°,DE=190cm,另一支架AB与水平线夹角∠BAD=65°,求OB 的长度(结果精确到1cm;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)25.(8分)如图1,已知⊙O外一点P向⊙O作切线PA,点A为切点,连接PO并延长交⊙O于点B,连接AO并延长交⊙O于点C,过点C作CD⊥PB,分别交PB于点E,交⊙O于点D,连接AD.(1)求证:△APO~△DCA;(2)如图2,当AD=AO时①求∠P的度数;②连接AB,在⊙O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出的值;若不存在,请说明理由.26.(10分)如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A、B 两点,过A、B两点分别作x轴的垂线,垂足分别为点D、点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.2019年湖南省邵阳市中考数学试卷答案与解析一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】根据无理数的定义:无限不循环小数是无理数即可求解;【解答】解:=2是有理数;是无理数;故选:C.2.【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.【解答】解:A.俯视图与主视图都是正方形,故选项A不合题意;B.俯视图与主视图都是正方形,故选项B不合题意;C.俯视图是圆,主视图是三角形;故选项C符合题意;D.俯视图与主视图都是圆,故选项D不合题意;故选:C.3.【分析】根据科学记数法的表示方法a×10n(1≤a<10)即可求解;【解答】解:5700亿元=570000000000元=5.7×1011元;故选:A.4.【分析】由三线八角以及平行线的性质可知,A,B,C成立的条件题目并没有提供,而D选项中邻补角的和为180°一定正确.【解答】解:∠1与∠2是同位角,∠2与∠3是内错角,∠2与∠4是同旁内角,由平行线的性质可知,选项A,B,C成立的条件为l1∥l2时,而∠1与∠4是邻补角,故D正确.故选:D.5.【分析】把所有数据相加可对A进行判断;利用中位数和众数的定义对B、C进行判断;利用方差的计算公式计算出这组数据的方差,从而可对D进行判断(当然前面三个判断了可直接对D进行判断).【解答】解:A、该班级所售图书的总收入为3×14+4×11+5×10+6×15=226,所以A选项正确;B、第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B选项错误;C、这组数据的众数为6,所以C选项错误;D、这组数据的平均数为==4.52,所以这组数据的方差S2=[14(3﹣4.52)2+11(4﹣4.52)2+10(5﹣4.52)2+15(6﹣4.52)2]≈1.4,所以D选项错误.故选:A.6.【分析】利用幂的乘方与积的乘方,单项式乘以多项式法则,合并同类项法则即可求解;【解答】解:(﹣2ab2)3=﹣8a3b6,A错误;3ab+2b不能合并同类项,B错误;(﹣x2)(﹣2x)3=8x5,C错误;故选:D.7.【分析】根据两函数图象平行k相同,以及向下平移减即可判断.【解答】解:∵将直线l1向下平移若干个单位后得直线l2,∴直线l1∥直线l2,∴k1=k2,∵直线l1向下平移若干个单位后得直线l2,∴b1>b2,∴当x=5时,y1>y2,故选:B.8.【分析】直接利用位似图形的性质进而分别分析得出答案.【解答】解:∵以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,∴△ABC∽△A′B′C′,点C、点O、点C′三点在同一直线上,AB∥A′B′,AO:OA′=1:2,故选项C错误,符合题意.故选:C.9.【分析】根据三角形内角和定理求出∠C=90°﹣∠B=54°.由直角三角形斜边上的中线的性质得出AD=BD=CD,利用等腰三角形的性质求出∠BAD=∠B=36°,∠DAC=∠C=54°,利用三角形内角和定理求出∠ADC=180°﹣∠DAC﹣∠C=72°.再根据折叠的性质得出∠ADF=∠ADC=72°,然后根据三角形外角的性质得出∠BED=∠BAD+∠ADF=108°.【解答】解:∵在Rt△ABC中,∠BAC=90°,∠B=36°,∴∠C=90°﹣∠B=54°.∵AD是斜边BC上的中线,∴AD=BD=CD,∴∠BAD=∠B=36°,∠DAC=∠C=54°,∴∠ADC=180°﹣∠DAC﹣∠C=72°.∵将△ACD沿AD对折,使点C落在点F处,∴∠ADF=∠ADC=72°,∴∠BED=∠BAD+∠ADF=36°+72°=108°.故选:B.10.【分析】根据津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元可列方程组.【解答】解:设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选:D.二、填空题(本大题有8个小题,每小题3分,共24分)11.【分析】根据相反数的定义,即可求解;【解答】解:的相反数是﹣;故答案为﹣;12.【分析】画树状图得出所有等可能结果,从中找到取出2个小球的颜色恰好是一红一蓝的结果数,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有12种等可能结果,其中取出2个小球的颜色恰好是一红一蓝的有2种结果,所以取出2个小球的颜色恰好是一红一蓝的概率为=,故答案为:.13.【分析】已知A(﹣4,2),B是OA的中点,根据平行线等分线段定理可得点B的坐标,把B的坐标代入关系式可求k的值.【解答】解:如图:∵AC∥BD,B是OA的中点,∴OD=DC同理OF=EF∵A(﹣4,2)∴AC=2,OC=4∴OD=CD=2,BD=OF=EF=1,∴B(﹣2,1)代入y=得:∴k=﹣2×1=﹣2故答案为:﹣214.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+4<3,得:x<﹣1,解不等式≤1,得:x≥﹣2,则不等式组的解集为﹣2≤x<﹣1,故答案为:﹣2≤x<﹣1.15.【分析】根据图形可知证明△ADC≌△AEB已经具备了一个公共角和一对相等边,因此可以利用ASA、SAS、AAS证明两三角形全等.【解答】解:∵∠A=∠A,AD=AE,∴可以添加AB=AC,此时满足SAS;添加条件∠ADC=∠AEB,此时满足ASA;添加条件∠ABE=∠ACD,此时满足AAS,故答案为AB=AC或∠ADC=∠AEB或∠ABE=∠ACD;16.【分析】根据一元二次方程根的存在性,利用判别式△>0求解即可;【解答】解:一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,∴△=4+4m>0,∴m>﹣1;故答案为0;17.【分析】应用勾股定理和正方形的面积公式可求解.【解答】解:∵勾a=6,弦c=10,∴股==8,∴小正方形的边长=8﹣6=2,∴小正方形的面积=22=4故答案是:418.【分析】作BH⊥y轴于H,如图,利用等边三角形的性质得到OH=AH=2,∠BOA=60°,再计算出BH,从而得到B点坐标为(2,2),然后根据关于原点对称的点的坐标特征求出点B′的坐标.【解答】解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故答案为(﹣2,﹣2).三、解答题(本大题有8个小题,第19-25题毎题8分,第26题10分,共66分,解答应写出必要的文字说明,演算步骤或证明过程)19.【分析】分别化简每一项,再进行运算即可;【解答】解:﹣()﹣1+|﹣2|cos60°=3﹣3+2×=1;20.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.【解答】解:原式=(﹣)÷=•=,当m=﹣2时,原式==.21.【分析】(1)利用等腰三角形的性质得到AD⊥BC,BD=CD,则可计算出BD=6,然后利用扇形的面积公式,利用由弧EF 及线段FC、CB、BE围成图形(图中阴影部分)的面积=S△ABC ﹣S扇形EAF进行计算;(2)设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,解得r=2,然后利用勾股定理计算这个圆锥的高h.【解答】解:∵在等腰△ABC中,∠BAC=120°,∴∠B=30°,∵AD是∠BAC的角平分线,∴AD⊥BC,BD=CD,∴BD=AD=6,∴BC=2BD=12,∴由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=S△ABC﹣S扇形EAF=×6×12﹣=36﹣12π;(2)设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=2,这个圆锥的高h==4.22.【分析】(1)利用摄影社团的人数除以摄影社团所占的百分比即可得到结论;(2)求出参与篮球社的人数和国学社的人数,补全条形统计图即可;(3)利用科技制作社团所占的百分比乘以360°即可得到结论;(4)利用全校学生数乘以参加篮球社团所占的百分比即可得到结论.【解答】解:(1)本次抽样调查的样本容量是=50,故答案为:50;(2)参与篮球社的人数=50×20%=10人,参与国学社的人数为50﹣5﹣10﹣12﹣8=15人,补全条形统计图如图所示;(3)参与科技制作社团所在扇形的圆心角度数为360°×=86.4°;(4)3000×20%=600名,答:全校有600学生报名参加篮球社团活动.23.【分析】根据a(1﹣x)2=b增长率公式建立方程30(1+x)2=36.3,解方程即可.【解答】解:设平均增长率为x,根据题意列方程得30(1+x)2=36.3解得x1=0.1,x2=﹣2.1(舍)答:我国外贸进出口总值得年平均增长率为10%.24.【分析】设OE=OB=2x,根据含30度角的直角三角形的性质以及锐角三角函数的定义即可求出答案.【解答】解:设OE=OB=2x,∴OD=DE+OE=190+2x,∵∠ADE=30°,∴OC=OD=95+x,∴BC=OC﹣OB=95+x﹣2x=95﹣x,∵tan∠BAD=,∴2.14=,解得:x≈9.4,∴OB=2x≈19.25.【分析】(1)由切线性质和直径AC可得∠PAO=∠CDA=90°,由PB∥AD可得∠POD=∠CAD,即可得:△APO~△DCA;(2)①连接OD,由AD=OA=OD可得△OAD是等边三角形,由此可得∠POA=60°,∠P=30°;②作BQ⊥AC交⊙O于Q,可证ABQP为菱形,求可转化为求.【解答】解:(1)证明:如图1,∵PA切⊙O于点A,AC是⊙O 的直径,∴∠PAO=∠CDA=90°∵CD⊥PB∴∠CEP=90°∴∠CEP=∠CDA∴PB∥AD∴∠POA=∠CAO∴△APO~△DCA(2)如图2,连接OD,①∵AD=AO,OD=AO∴△OAD是等边三角形∴∠OAD=60°∵PB∥AD∴∠POA=∠OAD=60°∵∠PAO=90°∴∠P=90°﹣∠POA=90°﹣60°=30°②存在.如图2,过点B作BQ⊥AC交⊙O于Q,连接PQ,BC,CQ,由①得:∠POA=60°,∠PAO=90°∴∠BOC=∠POA=60°∵OB=OC∴∠ACB=60°∴∠BQC=∠BAC=30°∵BQ⊥AC,∴CQ=BC∵BC=OB=OA∴△CBQ≌△OBA(AAS)∴BQ=AB∵∠OBA=∠OPA=30°∴AB=AP∴BQ=AP∵PA⊥AC∴BQ∥AP∴四边形ABQP是平行四边形∵AB=AP∴四边形ABQP是菱形∴PQ=AB∴==tan∠ACB=tan60°=26.【分析】(1)根据点的坐标,利用待定系数法即可求出二次函数的解析式;(2)利用二次函数图象上点的坐标特征求出点A,B的坐标,进而可得出点C,D的坐标,再利用正方形的性质可得出关于m的方程,解之即可得出结论;(3)由(2)可得出点A,B,C,D的坐标,根据点A,C的坐标,利用待定系数法可求出直线AC的解析式,利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征可求出点E,F的坐标,由AQ∥EF且以A、E、F、Q四点为顶点的四边形为平行四边形可得出AQ=EF,分0<t≤4,4<t≤7,7<t≤8三种情况找出AQ,EF的长,由AQ=EF可得出关于t的一元二次方程,解之取其合适的值即可得出结论.【解答】解:(1)将(0,0),(8,0)代入y=﹣x2+bx+c,得:,解得:,∴该二次函数的解析式为y=﹣x2+x.(2)当y=m时,﹣x2+x=m,解得:x1=4﹣,x2=4+,∴点A的坐标为(4﹣,m),点B的坐标为(4+,m),∴点D的坐标为(4﹣,0),点C的坐标为(4+,0).∵矩形ABCD为正方形,∴4+﹣(4﹣)=m,解得:m1=﹣16(舍去),m2=4.∴当矩形ABCD为正方形时,m的值为4.(3)以A、E、F、Q四点为顶点构成的四边形能为平行四边形.由(2)可知:点A的坐标为(2,4),点B的坐标为(6,4),点C的坐标为(6,0),点D的坐标为(2,0).设直线AC的解析式为y=kx+a(k≠0),将A(2,4),C(6,0)代入y=kx+a,得:,解得:,∴直线AC的解析式为y=﹣x+6.当x=2+t时,y=﹣x2+x=﹣t2+t+4,y=﹣x+6=﹣t+4,∴点E的坐标为(2+t,﹣t2+t+4),点F的坐标为(2+t,﹣t+4).∵以A、E、F、Q四点为顶点构成的四边形为平行四边形,且AQ ∥EF,∴AQ=EF,分三种情况考虑:①当0<t≤4时,如图1所示,AQ=t,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t=﹣t2+t,解得:t1=0(舍去),t2=4;②当4<t≤7时,如图2所示,AQ=8﹣t,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴8﹣t=﹣t2+t,解得:t3=4(舍去),t4=6;③当7<t≤8时,如图3所示,AQ=8﹣t,EF=﹣t+4﹣(﹣t2+t+4)=t2﹣t,∴8﹣t=t2﹣t,解得:t 5=2﹣2(舍去),t6=2+2.综上所述:当以A、E、F、Q四点为顶点构成的四边形为平行四边形时,t的值为4,6或2+2.。