2019秋八年级数学下册第二十一章一次函数21.1一次函数第2课时一次函数教案
八年级数学下册第二十一章一次函数21
用待定系数法确定一次函数表达式本节课的教学内容为用待定系数法求一次函数解析式,是冀教版八年级数学下册第十九章的教学内容。
下面我从教材分析、教法、学法、教学过程五个方面,谈谈我对这一节课教学的处理情况。
一、教材分析一次函数这部分内容是在学生学习了变量与函数、一次函数的概念等基础上,继续对某些特殊的变量关系的考察和认识。
从知识衔接的角度看,有着承上启下的作用,符合学生的认知规律。
确定一次函数解析式,关键在于确定出一次函数y=kx+b中的k、b的值,用待定系数法确定一次函数解析式,不仅要求学生能正确地确定出解析式,还重在让学生对一次函数式与函数图象、函数式中的变量与函数图象上点的坐标之间关系的理解,将数与形联系起来,形成数形结合的思想意识。
为后面学习反比例函数、二次函数打下基础。
二、教学策略(教法)回顾已学知识:求一次函数解析式的四个基本步骤:“一设、二列、三解、四还原”,即“设出一般式y=kx+b,由题设中给定条件写出关于k、b的方程(组),由方程(组)解出k、b,写出一次函数式。
数学思想方法小结:从形到数:一次函数图象→选取满足条件的两点(x1,y1),(x2,y2)→解出函数解析式(y=kx+b)数学思想方法:数形结合五、教学过程1、教学目标⑴了解待定系数法的思维方式与特点。
⑵会根据所给信息用待定系数法求一次函数解析式,发展解决问题的能力。
⑶进一步体验并初步形成“数形结合”的思想方法。
2、教学重点、难点⑴教学重点:用待定系数法求一次函数解析式;⑵教学难点:解决抽象的函数问题。
⑶教学关键:熟练应用二元一次方程组解一次函数中的待定系数。
流程1.知识回顾,引入问题情景用待定系数法求一次函数解析式的步骤:基本步骤:设、列、解、写⑴设:设一般式y=kx+b⑵列:根据已知条件,列出关于k、b的方程(组)⑶解:解出k、b;⑷写:写出一次函数式2.探索新知:一.利用点的坐标求函数的解析式例1.如果y+1与x成正比例,且x=1时,y=3写出y与x之间的函数关系式.变式练习:已知一次函数的图象经过点(3,5)与(4,9),求这个一次函数的解析式.将两个点的坐标代入所设函数式,列出k、b的方程组,求出k、b,写出函数解析式。
冀教版初中数学八年级下册21.1 第2课时 一次函数ppt课件
B.正比例函数不是一次函数.
C.不是正比例函数就不是一次函数.
D.正比例函数是一次函数.
1
2.在函数①y=2-x,②y=8+0.03t,③y=1+x+
, ④y=
x 3中,
x
x
是一次函数的有__①__②_____.
3.已知y与x-3成正比例,当x=4时,y=3.
(1)写出y与x之间的函数关系式;
(2)y与x之间是什么函数关系;
写出下列各题的函数关系式: (3)某城市的市内电话的月收费额y(元)包括:月租
费22元,拨打电话x 分的计时费(按 0.1元/分收取). y =0.1x + 22 (x ≥ 0)
(4)把一个长10cm 、宽5cm 的长方形的长减少x cm ,宽不 变 ,长方形的面积y(cm2)随x 的变化而变化. y = -5x + 50
2
22
4
即 S 3 x2 , 所以,S不是x的一次函数. 4
做一做
如果等腰三角形的周长是20cm,底边长是xcm,那 么,腰长y(cm)与底边长x(cm)之间的函数关系式是什 么?这个函数是一次函数吗?
解:y=10- x/2,是一次函数.
当堂练习
1.下列说法正确的是( D )
A.一次函数是正比例函数.
一次函数的简单应用
讲授新课
一 一次函数的概念
合作探究
问题1.写出下列各题的函数关系式:
(1)有人发现,在20~25o C 时,蟋蟀每分钟鸣叫次数c 与 温度t (℃)有关,即c 的值大约是t 的7倍与35的差; c = 7t - 35 (20≤t≤25)
(2)某地电费的单价为0.8元/(kW·h), 请用表达式表 示电费y(元)与所用电量x(kW·h)之间的函数关系. y = 0.8x
冀教版八年级数学下册《二十一章 一次函数 21.2 一次函数的图像和性质 一次函数的性质》教案_21
一次函数的图像与性质(第二课时)教材分析本节内容是冀教版八年级下册第21章第2节内容,是本章中的重点内容。
通过这一节课的学习使学生掌握一次函数的性质。
本节教学内容是学生进一步学习“数形结合”这一数学思想方法的很好素材。
作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。
教学目标知识与技能:掌握一次函数的性质过程与方法:1、通过一次函数图像归纳函数的性质,体现数形结合的思想。
2、从特殊到以欧版的数学思想。
情感态度价值观:1、通过画函数的图像,并借助图像研究函数的性质,体现数与形内在联系,感受函数图像的简洁美。
2、在探究函数图像和性质的过程中,通过一系列探究性的问题,渗透交流合作探究的精神。
教学重点难点重点:一次函数的图象和性质难点:由一次函数的图象归纳出一次函数的性质及对性质的理解和应用。
教学过程一、旧知复习:1、什么是正比例函数?一般地,我们把形如y=kx(k为常数,且k≠0)的函数,叫做正比例函数。
2、什么是一次函数?一般地,形如y=kx+b(k、b为常数,且k≠0)的函数,叫做一次函数。
一次函数图像的画法,分为三步:取值、描点、连线。
∵两点确定一条直线∴画一次函数图像,只需要确定两个点的坐标即可。
与y 轴的交点,x=0时:(0,b )与x 轴的交点,y=0时:(-kb,0)它们的图像的特征,都是一条直线。
一条直线在平面直角坐标系中的位置可以是如下几种情况:那么到底是哪一样图像,由什么决定呢?二、探索新知:1、在同一坐标系中,画出函数y=2x+4和y=2x-4的图像。
根据函数y=2x+4和y=2x-4的区别,探究:两个函数图像的共同点:图像从左到右上升(y 随x 增大而增大); 两个函数图像的不同点:图像与y 轴交点位置不同, y=2x+4与y 轴交点在y 轴正半轴; y=2x-4与y 轴交点在y 轴负半轴。
2、在同一坐标系中,画出函数y=2x+4和y=-2x+4的图像。
根据函数两个函数图像的共同点:图像都经过y 轴上的同一点(0,4); 两个函数图像的不同点:y=2x+4图像从左到右上升(y 随x 增大而增大); y=-2x+4图像从左到右下降(y 随x 增大而减小)。
冀教版数学八年级下册《21.1 一次函数》教学设计
冀教版数学八年级下册《21.1 一次函数》教学设计一. 教材分析冀教版数学八年级下册《21.1 一次函数》是学生在学习了初中阶段函数概念的基础上,进一步深入研究一次函数的性质和图象。
本节内容主要包括一次函数的定义、一次函数的图象和性质,以及一次函数的应用。
教材通过生动的实例和丰富的练习,引导学生探究一次函数的图象和性质,培养学生的抽象思维能力和解决实际问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了函数的基本概念,具备了一定的函数知识基础。
同时,学生通过之前的学习,已经掌握了平面直角坐标系、直线方程等知识,这为学习一次函数的图象和性质奠定了基础。
然而,学生对于一次函数的应用还较为陌生,需要通过实例和练习来提高解决实际问题的能力。
三. 教学目标1.理解一次函数的定义,掌握一次函数的图象和性质。
2.能够运用一次函数解决实际问题,提高解决实际问题的能力。
3.培养学生的抽象思维能力和合作交流能力。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数图象的特点和绘制方法。
3.一次函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过生动的实例和实际问题,引导学生探究一次函数的性质和应用。
2.合作学习法:鼓励学生分组讨论和合作交流,培养学生的团队协作能力。
3.启发式教学法:教师引导学生思考和探究,激发学生的学习兴趣和求知欲。
六. 教学准备1.教学课件:制作生动有趣的教学课件,帮助学生直观地理解一次函数的图象和性质。
2.实例和练习题:准备相关的实例和练习题,供学生实践和巩固所学知识。
3.坐标纸和绘图工具:为学生提供坐标纸和绘图工具,方便学生绘制一次函数的图象。
七. 教学过程1.导入(5分钟)利用实例引入一次函数的概念,引导学生回顾函数的基本知识,为新课的学习做好铺垫。
2.呈现(10分钟)介绍一次函数的定义和性质,通过课件和实例展示一次函数的图象特点,让学生直观地理解一次函数的性质。
3.操练(10分钟)学生分组讨论和合作交流,运用一次函数解决实际问题。
冀教版八年级数学下册第21章一次函数PPT课件全套
(来自教材)
总结
知1-讲
(1)根据题意可先得到变量间的关系式,然后写成函 数表达式的形式.
(2)判断一个函数是否为正比例函数的方法:看两个 变量的比是不是常数,即函数是不是形如y=kx(k 为常数,且k≠0)的函数.
正比例函数的比例系数. (1) y= 4x;(2) y=3x 1;(3) y= 5x ;
6 (4) y= 9 ;(5) y= 0.9x;(6) y=( 5 1)x.
x
解:(1)(3)(5)(6)是正比例函数.(1)的比例系数为-4;
(3)的比例系数为 5 ;(5)的比例系数为-0.9; 6
(6)的比例系数为 5-1.
(来自教材)
知1-练
3 【中考·凉山州】已知函数y=2x2a+b+a+2b是正比例
函数,则a=___2_____,b=___- _1____.
3
3
4 【中考·上海】下列y关于x的函数中,是正比例函数
的为( C )
A.y=x2 B.y= 2 C.y= x D.y= x 1
x
2பைடு நூலகம்
2
(来自《典中点》)
知1-练
(1)已知函数y=kx. 当x=-2时,y=10. k=__-__5__.
(来自教材)
知2-练
2 已知y是x的正比例函数,当x=2时,y=8.
(1)写出y与x之间的函数关系式.
(2)当x=5时,求y的值.
(3)当y=5时,求x的值.
解: (1)y=4x.
(2)当x=5时,y=4×5=20.
(3)当y=5时,4x=5,解得x=
冀教版八年级数学下册《二十一章 一次函数 21.1 一次函数》教案_13
《一次函数》第一课时教学设计☆【概述】1、《一次函数》选自冀教版义务教育教科书八年级下册21.1.2;2、本节主要研究一次函数的概念,并类比于正比例函数,研究一次函数的图像和增减变化规律。
一次函数是一种最基本的初等函数,研究它的概念和图像性质,对它的函数解析式与函数图像的相互联系与转化能发挥重要作用,这是“数形结合”的思想方法的体现,它对今后进一步研究其他类型的函数具有启示作用。
☆【教学目标】依据以上分析,制定了如下三维目标:☆【教学重点、难点】重点:一次函数的概念和一次函数图像的性质;难点:一次函数的图像及其性质。
☆【学生特征分析】认知基础:学生之前对变量与函数、函数的概念、正比例函数及解析式、图像有了初步了解,为本节内容的学习奠定了良好的基础。
学习特点:学生处于八年级第二学期阶段,对于变量与函数、正比例函数的知识已经掌握,对它们的进一步的推广运用表现出思维活跃,有强烈的好奇心,并且具有一定的观察总结推理能力,以及文字转化为数学的符号的能力,具备一定的数形结合思想意识。
☆【教学策略选择与设计】教法:通过设置实际问题让学生探究一次函数的一般形式,得到一次函数的概念,然后用类比的方法降低新知识的难度,促进知识之间的联系,启发引导学生由正比例函数图像探寻一次函数的图像及其规律,使学生体会到数形结合的数学思维。
因此,主要教法是:探究式教学、启发式教学学法:通过对实际问题的探究发现,建立一次函数的概念及其性质,在小组合作中参与探索一次函数图像的规律,通过合作交流的方式学会探索问题和解决问题的基本方法与策略。
因此,主要学习法是:探究学习、合作交流☆【教学资源与工具设计】教具:冀教版新课标八年级下册教材,课件,黑板,粉笔、刻度尺等;学具:教材,铅笔,草稿纸,刻度尺;教学环境:现代多媒体教室。
☆【教学过程】(45分钟)主要流程:合作探究发现规律观察思考知识梳理巩固概念布置作业自主学习典例透析情境引入导入新课具体过程复习提问:(5分钟)1.前面我们学习了正比例函数的性质,哪位同学能叙述一下?并且举个正比例函数的例子呢?2.列出下列正比例函数的方程(1)小华步行的速度为每分钟30米,小华所走的路程S(单位:米)随他所走的时间t(单位:分钟)的变化而变化.(2)每个练习本的厚度为0.5 cm,一些练习本摞在一起的总厚度h(单位:cm),随这些练习本的本数n的变化而变化;教师活动:用多媒体呈现问题,让学生举手回答和板书。
八年级数学下册 21 一次函数教案 (新版)冀教版
第二十一章一次函数1.结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式.2.会利用待定系数法确定一次函数的表达式.3.能画出一次函数的图像,根据一次函数的图像和表达式y=kx+b(k≠0)探索并理解k>0和k<0时,图像的变化情况.4.体会一次函数与二元一次方程的关系.5.能用一次函数解决简单的实际问题.6.进一步发展学生的数学抽象能力,强化数学的应用意识.1.结合具体情境体会和理解一次函数及正比例函数的意义,能根据已知条件运用待定系数法确定一次函数的表达式.2.逐步学会运用函数的观点观察、分析问题,预测实际问题中的变量的变化规律.1.通过讨论一次函数与方程(组)的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程(组)及不等式等内容的认识,构建和发展相互联系的知识体系.2.通过本章的学习,要让学生感受数学的价值,培养和提高学生的应用意识.3.注重对学生情感态度的评价,在学生学习活动中,培养学生自信、自强的性格,记录学生在学习过程中的情感表现以及在解决问题的过程中所表现出来的创新精神.1.本章的内容、地位和作用.本章的知识内容主要包括:一次函数,一次函数的图像和性质,用待定系数法确定一次函数表达式,一次函数的应用,一次函数与二元一次方程的关系.这些内容彼此关联,依次递进.一次函数是在学习了一般的函数概念之后,进一步研究的第一类特殊函数,它不仅是现实生活中极为广泛的一类数量关系的抽象模型,有着广泛的应用,而且在整个函数知识的学习中,起着承上启下的重要作用,这主要表现为:第一,通过一次函数的学习,使学生对“函数”这一抽象的核心概念的理解更加深入,对“函数模型”的理解逐步走向深入与深刻、丰满与充实,对“函数”这一系统知识的认识与掌握进一步强化和提升;第二,一次函数的学习,不仅从变量关系类型上为二次函数、反比例函数的学习提供了对照与类比,更从研究方法(如“利用函数图像研究函数的性质”“借助待定系数法求函数表达式”等)上,展示了普遍的意义和作用.2.本章内容的呈现方式及特点.(1)一次函数的意义同样是比较抽象的,教科书中采用了这样的研究过程:从小学已认识的“成正比例的量”入手,先引入“正比例函数”,再扩展到“一次函数”.这样编排的目的,一是从学生已有的“数学现实”出发,使新知识的引入比较自然;二是采用“由特殊到一般”的归纳方式,符合学生的认知规律,有利于数学活动经验的积累.(2)对于学生来说,无论是“正比例函数”还是“一次函数”,其概念认识的形成,都必须借助于相当数量的、他们所熟悉的现实情境,通过归纳、抽象才能实现.因此,教科书特别关注情境的设置与“抽象”过程的有效展开,以促使学生产生有价值的数学思考,完成理性认识的飞跃.(3)对于一次函数性质的研究,教科书中突出了“数形结合”,即由图像特征引发出函数随自变量变化的增、减性质,因此,图像的绘制与观察,便起着铺垫与引导的重要作用.(4)教科书紧紧抓住“一点在函数的图像上”与“该点的坐标满足函数的表达式”的对应及一致性,导出用待定系数法求一次函数的表达式,意在突出“形与数”的统一与相互转化,并显示“方程”的广泛应用.随后,又专项研究了一次函数与二元一次方程的关系,更为有力地揭示了函数与方程的关联性.(5)所有内容的呈现,一是尊重学生的数学现实,二是尽可能展开学生的观察、思考、交流与研究的活动过程,以充分提供学生自主发展的空间.【重点】1.理解和掌握一次函数的图像和性质,能用待定系数法确定一次函数的表达式.2.一次函数的应用,一次函数与二元一次方程的关系.【难点】1.一次函数的图像和性质.2.一次函数的应用.1.本章之前,刚刚学习了第二十章“函数”,学生对于函数的意义和图像已有了初步的认识,对于相应知识的探究过程及方法,也有了初步的经验积累;另一方面,一次函数源于现实中极为广泛存在的“匀速”变化情境里的数量关系,这样的背景早在此前的许多“算术”应用题和“方程”应用题中以多种“特值”形式反复出现过.这些都是开始本章学习的“数学现实”,教学正是应当从这样的现实出发,用好这样的现实,以优化的过程取得优良效果.2.正比例函数是“成正比例的量”的一般化和发展,一次函数又是正比例函数的一般化和发展,许多数学知识就是沿着这样的途径扩展与增长出来的,教学中就要引导学生遵循这样的线索去探究,去再发现,构筑良好的知识系统,并借此提高学生的学习能力.3.一次函数的图像是直角坐标系里的一条直线(不与坐标轴平行),这正是函数对于自变量“匀速”变化的直观(形)反映,事实上,在确定的直角坐标系里,这样的直线与一次函数表达式是“一一对应”的.恰是基于这种对应,图像(直线)的倾斜情况就反映了一次函数对于自变量变化的增减情况(以及增减速度),一次函数的性质就是借此被“形象”地看出来的;另一方面,用待定系数法确定一次函数的表达式,也是以上述“一一对应”为根据的.因此,在教学中,引导学生通过画图像与研讨,感悟一次函数与其图像的关系便是十分重要的了.4.一次函数的应用的教学,应当特别关注两个方面,一是怎样将实际问题或数学问题转化为一次函数问题;二是通过广泛应用,进一步体会一次函数“匀速”变化的本质特征.5.从两个方面引导学生感悟一次函数与二元一次方程的联系,一是直接从表达式的相互转换进行引导,二是从它们对应于确定的直角坐标系里的同一条直线进行引导.由此使学生体会函数与方程的又一种沟通方式.21.1一次函数1.结合具体情境,了解正比例函数与一次函数的关系和意义.2.掌握一次函数的一般形式,并能写出实际问题中正比例函数关系与一次函数关系的表达式.1.通过对具体实例的分析,发现函数的共同点,抽象出一次函数的概念.2.再一次感悟函数模型,培养学生的抽象能力.经历观察、操作、归纳等学习数学的过程,感受数学思考过程的合理性.【重点】一次函数的概念,会写出实际问题中正比例关系与一次函数关系的表达式.【难点】能正确写出正比例函数和一次函数的表达式.第课时1.初步理解正比例函数的概念.2.能够判断两个变量是否能够构成正比例函数关系.3.能够利用正比例函数解决简单的数学问题.1.通过对问题的研究,体会数学模型的思想.2.在探索过程中,发展抽象思维及概括能力,体验特殊到一般的辩证关系.经历利用正比例函数解决实际问题的过程,逐步形成利用函数观点逐步认识世界的意识和能力.【重点】理解正比例函数的意义及解析式的特点.【难点】能列(或求)函数表达式,并正确地加以判断.【教师准备】课件1~8.【学生准备】复习成正比例的量.导入一:【课件1】一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.1.这只燕鸥大约平均每天飞行多少千米(精确到10千米)?2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?3.这只燕鸥飞行1个半月的行程大约是多少千米?我们来共同分析:一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:25600÷(30×4+7)≈200(千米).若设这只燕鸥每天飞行的路程为200千米,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为y=200x(0≤x≤127).这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值,即y=200×45=9000(千米).以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.类似于y=200x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?我们这节课就来学习.[设计意图]以现实生活中人们对鸟类的研究,抽象出数学问题,从而使学生对本节课的学习内容产生深厚的兴趣.导入二:【课件2】《阿甘正传》是一部励志影片.片中阿甘曾跑步绕美国数圈.假设他从德州到加州行进了21000千米,耗费了他150天的时间.(1)阿甘大约平均每天要跑步多少千米?(2)阿甘的行程y(千米)与跑步时间x(天)之间有什么关系?(3)阿甘一个月(按30天计算)的行程大约是多少千米?变式:(1)如果把150天改成300天,那么阿甘的行程y(千米)与跑步时间x(天)之间有什么关系?(2)如果阿甘再按这个速度跑步两个月(一个月按30天计算),行程大约是多少千米?[设计意图]通过情境导入,激发学生的学习兴趣,体会变量之间的对应关系,为下文的学习做好铺垫.1.出示教材“观察与思考”.【课件3】:提出问题:路程成正比例吗?为什么?教师引导学生得出:通过观察与计算可以发现小刚离开家的路程与时间的比值等于0.2,即这两个量成正比例关系,也就是一个量在增加,另一个量也在增加;一个量在减少,另一个量也相应地减少.如果用s表示路程,用t表示时间,你能写出它们之间的函数关系式吗?学生思考后得到函数关系式为s=0.2t.2.出示教材“做一做”.【课件4】1.小亮每小时读20页书.若读书时间用字母t(h)表示,读过书的页数用字母m(页)表示,则用t表示m的函数表达式为.2.小米去给学校运动会买奖品,每支铅笔0.5元.若购买铅笔的数量用n(支)表示,花钱的总数用w(元)表示,则用n表示w的函数表达式为.3.拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05 mL.设t min后,水龙头滴水V mL,则用t表示V的函数表达式为.教师让学生讨论结果,分别写出它们的函数表达式.1.m=20t2.w=0.5n3.V=5t想一想:上面的函数表达式有什么共同特点?引导学生总结:上面的式子都能写成y=kx(k为常数,且k≠0)的形式.我们把形如y=kx(k为常数,且k≠0)的函数,叫做正比例函数.其中,非0常数k叫做比例系数.那么怎么判断一个函数是否为正比例函数呢?分析:正比例函数满足的条件是:(1)自变量的指数是1;(2)自变量在一次单项式中.[设计意图]从小学已熟悉的“成正比例的量”出发,由“匀速”行驶过程中行驶时间与所行路程的关系,抽象出正比例函数.思路二【课件5】下列问题中的变量对应规律可用怎样的函数表示?(1)圆的周长l随半径r的大小变化而变化;(2)铁的密度为7.8 g/cm3,铁块的质量m(单位:g)随它的体积V(单位:cm3)的大小变化而变化;(3)每个练习本的厚度为0.5 cm,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化;(4)冷冻一个0 ℃物体,使它每分钟下降2 ℃,物体的温度T(单位: ℃)随冷冻时间t(单位:分钟)的变化而变化.认真观察以上出现的四个函数解析式,分别说出哪些是常数、自变量和自变量的函数.【课件6】观察(1)中l与r(1)中l与r的对应值的比值(l/r)总是一个常数(2π).因为2π是不变的,圆的周长l与半径r的比值是一定的,我们说l与r成正比例.学生模仿练习说明(2)(3)(4)中有没有成正比例的.(2)中m与V的比值是7.8,是一个常量,所以m与V成正比例;(3)中h与n的比值是0.5,是一个常量,所以h与n成正比例;(4)中T与t的比值是-2,是一个常量,所以T与t成正比例.这些函数有什么共同点?发现:它们都是常数与自变量的乘积的形式.总结正比例函数的定义:一般地,如果变量x,y有关系y=kx(k是一个不等于0的常数),那么变量x,y成正比例,函数y=kx(k≠0)叫做正比例函数,其中常数k叫做比例系数,自变量x的取值范围是一切实数,比例系数不能为零.学生模仿练习说出(1)(2)(3)(4)中的比例系数.[设计意图]由实际生活入手,列举实际问题,感悟数学与生活的实际联系;另外通过探究函数关系式中的两个变量的正比例关系,让学生体会正比例函数的一般形式.[知识拓展]正比例函数的判别:(1)自变量的指数是1次;(2)自变量的系数不为0;(3)不含有常数项.下列函数中,哪些是正比例函数?请指出其中正比例函数的比例系数.(1)y=3x; (2)y=2x+1;(3)y=-; (4)y=;(5)y=πx; (6)y=-x.让学生独立完成,并说明理由.教师注意指导,强调判断的方法.解:(1),(3),(5),(6)是正比例函数,比例系数分别是3,-,π,-.(2)和(4)不是正比例函数.练一练:下列函数中哪些是正比例函数?请指出其中正比例函数的比例系数.(1)y=-2x; (2)y=;(3)y=-; (4)v=;(5)y=x-1; (6)y=2πr;(7)y=2x2.指名回答,得出(1)(4)(6)是正比例函数,比例系数分别是-2,,2π.【课件8】有一块10公顷的成熟麦田,用一台收割速度为0.5公顷/时的小麦收割机来收割.(1)求收割的面积y(公顷)与收割时间x(h)之间的函数关系式.(2)求收割完这块麦田需用的时间.引导学生思考完成,小组可以互相交流.解:(1)y=0.5x.(2)把y=10代入y=0.5x中,得10=0.5x,解得x=20,即收割完这块麦田需要20 h.想一想:y(公顷)与收割时间x(h)之间的函数关系是正比例函数吗?比例系数是多少?这个比例系数代表的意义是什么?强调:这个比例系数是每小时收割的量,收割机每工作1小时,收割麦田0.5公顷.实际问题中的比例系数是单位量中增加或减少的值.[设计意图]使学生理解和掌握正比例函数的一般形式,能正确地加以判断,培养学生解决问题的能力,巩固所学的知识.一般地,如果变量x,y有关系y=kx(k是一个不等于0的常数),那么变量x,y成正比例,函数y=kx(k≠0)叫做正比例函数,其中常数k叫做比例系数,自变量x的取值范围是一切实数,比例系数不能为零.1.下列问题中,是正比例函数的是()A.矩形面积固定,长和宽的关系B.正方形面积和边长之间的关系C.三角形的面积一定,底边和底边上的高之间的关系D.匀速运动中,速度固定时,路程和时间的关系解析:A.∵S=ab,∴矩形的长和宽的积是定值,不是正比例函数;B.∵S=a2,∴自变量的次数是2,不是正比例函数;C.∵S=ah,∴三角形的面积一定,底边和底边上的高的积是定值,不是正比例函数;D.∵s=vt,∴速度固定时,路程和时间是正比例关系,故本选项正确.故选D.2.下列函数中,y是x的正比例函数的是()A.y=2x-1B.y=xC.y=2x2D.y=kx解析:A.y=2x-1,不是正比例函数,故本选项错误;B.y=x,符合正比例函数定义,故本选项正确;C.y=2x2,自变量次数不为1,故本选项错误;D.y=kx,k有可能为0,故本选项错误.故选B.3.函数y=(a+1)是正比例函数,则a的值是()A.2B.-1C.2或-1D.-2解析:∵函数y=(a+1)是正比例函数,∴a-1=1,且a+1≠0,解得a=2.故选A.4.若函数y=(3-m)是正比例函数,则常数m的值是()A.-B.±C.±3D.-3解析:由正比例函数的定义,可得m2-8=1,且3-m≠0,解得m=-3.故选D.5.关于x的一次函数y=x+5m-3,若要使其成为正比例函数,则m=.解析:根据正比例函数的定义,可得5m-3=0,解得m=.故填.6.写出下列各题中x与y之间的关系式,并判断y是否为x的正比例函数?如果是正比例函数,指出比例系数.(1)小红去商店买笔记本,每个笔记本2.5元,小红所付买本款y(元)与买本的个数x(个)之间的关系;(2)圆的面积y(厘米2)与它的半径x(厘米)之间的关系.解析:(1)根据每个笔记本2.5元,可得出小红所付买本款y(元)与买本的个数x(个)之间的关系;(2)根据圆的面积公式即可得出圆的面积y(厘米2)与它的半径x(厘米)之间的关系.解:(1)由题意得y=2.5x,y是x的正比例函数,比例系数是2.5.(2)由题意得y=πx2,y不是x的正比例函数.第1课时活动1新知探究1.关系式:y=kx(k为常数,且k≠0).2.满足的条件:(1)自变量的指数是1;(2)自变量在一次单项式中.活动2例题讲解例1例2一、教材作业【必做题】1.教材第85页练习第1,2题.2.教材第86页习题A组第1,2,3题.【选做题】教材第86页习题B组.二、课后作业【基础巩固】1.下面函数中,是正比例函数的是()A.y=6xB.y=C.y=x2+6xD.y=3x-12.已知y=(m+1),若y是x的正比例函数,则m的值为()A.1B.-1C.1,-1D.03.若函数y=(k+1)x+k2-1是正比例函数,则k的值为()A.0B.1C.±1D.-14.下列说法正确的是()A.三角形的面积一定时,它的一条边长与这条边上的高满足正比例关系B.长方形的面积一定时,它的长和宽满足正比例关系C.正方形的周长与它的边长满足正比例关系D.圆的面积和它的半径满足正比例关系【能力提升】5.函数y=x中自变量x的取值范围是.6.若x,y是变量,且函数y=(k+1)x|k|是正比例函数,则k=.7.已知自变量为x的函数y=mx+2-m是正比例函数,则m=,该函数的解析式为.8.已知y是x的正比例函数,当x=3时,y=-2,那么y与x之间的比例系数是. 【拓展探究】9.当k为何值时,y=(k2+2k)x是正比例函数?10.已知y是x的正比例函数,且当x=-3时,y=6.(1)写出y与x的函数关系式;(2)当x=-6时,求对应的函数值y;(3)当x取何值时,y=?【答案与解析】1.A(解析:根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,即可得出A 中y=6x是正比例函数.)2.A(解析:由题意得解得m=1.)3.B(解析:∵函数y=(k+1)x+k2-1是正比例函数,∴解得k=1.)4.C(解析:分别利用三角形、长方形、圆的面积和正方形的周长公式得出函数关系,进而判断得出即可.)5.全体实数(解析:自变量在整式中,所以自变量的取值范围为全体实数.)6.1(解析:根据题意得|k|=1,且k+1≠0,解得k=1.)7.2y=2x(解析:由题意得m≠0,2-m=0,∴m=2,该函数的解析式为y=2x.)8.-(解析:设y与x之间的函数关系式是y=kx,把x=3,y=-2代入,得-2=3k,解得k=-.)9.解:根据题意得k2-3=1,①k2+2k≠0.②由①得k=±2.当k=-2时,k2+2k=0,y=0不是正比例函数;当k=2时,k2+2k=8,y=8x是正比例函数.∴当k=2时,函数y=(k2+2k)x是正比例函数.10.解:(1)设正比例函数解析式为y=kx,把x=-3,y=6代入,得-3k=6,解得k=-2,所以此函数的关系式是y=-2x. (2)把x=-6代入解析式,可得y=12. (3)把y=代入解析式,可得x=-.本堂课的重点是对正比例函数的概念的理解.难点是能正确判断正比例函数,并确定比例系数.通过教师的引导,启发调动学生的积极性,让学生自主地去分析发现函数的定义及规律.教师的主导作用与学生的主体地位达到了统一,使本课时的重点得到了突出,难点得到了突破;对学生学习中的情况进行了指导,作出了反馈;培养了学生的归纳概括和解决问题的能力.本课时的教学注重由传授单一的知识技能,转为学生“自主探索发现总结规律”,使学生对新的知识与数学思想方法更容易理解和掌握.(1)在探索正比例函数概念的过程中没有让学生充分地说理.(2)在应用新知这一环节中对学生习题的反馈情况了解得不够全面.(3)课堂内容较简单,教师在教学过程中没有呈现发展学生思维能力的补充例题,以满足不同学生的需要.(1)要充分相信学生总结规律的能力,在学生总结规律过后给予肯定,不必加以过多的语言进行重复,给学生足够的空间思考回答问题.(2)在学生明确正比例函数的概念后,应用新知反馈练习时,可以采取课堂小测验等方法进行,这样教师可以更准确地掌握学生对新知识的掌握情况.(3)在问题探讨及新课导入的过程中出现的问题串让学生自己读题后解决,教师不必帮助读题,这样可以更加集中学生的注意力,激发学习兴趣.(4)适当增加稍微难一点的例题,帮助学生分析,锻炼学生的思维能力.练习(教材第85页)1.解:(1)具有. (2)不具有. (3)不具有. (4)不具有.2.(1)9(2)4(3)-5习题(教材第86页)A组1.解:(1)是正比例函数,比例系数为-4. (2)不是正比例函数. (3)是正比例函数,比例函数为.(4)不是正比例函数. (5)是正比例函数,比例系数为-0.9. (6)是正比例函数,比例系数是-1.2.解:(1)y=4x. (2)当x=5时,y=4×5=20. (3)解方程4x=5,得x=.3.解:(1)V=8S. (2)当S=64时,V=64×8=512.B组1.解:∵x和y成正比例,∴设x=my(m为常数,且m≠0).∵y和z成正比例,∴设y=nz(n为常数,且n≠0).∴x=my=mnz.∵m,n为常数,且m≠0,n≠0,∴mn为常数,且mn≠0.∴x是z的正比例函数.2.解:根据题意得解得m=-3.一次函数是在对一般“函数”概念有了初步认识之后,继续学习的第一类特殊函数.本节内容就是深入地认识一次函数,按照“成正比例的量”——“正比例函数”——“一次函数”这一递升次序安排的,这样做的目的主要有两个:一是更好地体现事物“由简单到复杂”“由特殊到一般”的发展规律;二是成正比例的量在小学已较为熟悉,由此抽象出正比例函数,进而由正比例函数扩展到一次函数,可更好地借用学生已有的数学知识,有效地展现知识的“抽象”生成过程,使一次函数概念的形成更自然、更深刻,更好地体现模型思想.希望教师充分注意上述立意.《义务教育数学课程标准》(2011年版)指出:“模型思想的建立是学生体会和理解数学与外部世界联系的基本途径.”一次函数就是最为重要的数学模型之一,这一要求的实现要靠切实有效的教学活动.1.首先引导学生回忆上一章刚学习过的函数的意义,为本节的学习铺垫好进一步抽象的基础.其次,回忆小学时学习过的成正比例的量.实际上,成正比例的量是函数的最早雏形,也是学生最为熟悉的正比例函数的实例.2.对于“观察与思考”和“做一做”活动中的问题情境,应努力引导学生通过思考与解答,体会出如下两点:第一:每一对成正比例的量之间都是一种函数关系,并且都可以表示成函数是自变量某一确定“倍数”的形式——这正是正比例函数形式定义的基础.第二:每一对成正比例的量构成的函数,函数对于自变量的变化都是“匀速”的.这正是正比例函数及一次函数的本质特征.3.对于正比例函数的定义,应强调k既可以是正数也可以是负数,因此,正比例函数是成正比例的量的拓展与再抽象.第课时1.理解一次函数的概念,以及一次函数与正比例函数之间的关系.2.能根据问题的信息写出一次函数的表达式,能利用一次函数解决简单的问题.在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系.经历利用一次函数、正比例函数解决实际问题的过程,逐步形成利用函数观点增强认识现实世界的意识和能力.【重点】1.一次函数的概念.2.根据已知信息写出一次函数表达式.【难点】理解一次函数的定义及与正比例函数的关系.【教师准备】课件1~9.【学生准备】复习正比例函数的定义.导入一:【课件1】问题:某登山队大本营所在地的气温为15 ℃,海拔每升高1 km气温下降6 ℃.登山队员由大本营向上登高x km时,他们所处位置的气温是y℃.试用解析式表示y 与x的关系.分析:从大本营向上,当海拔每升高1 km时,气温从15 ℃就减少6 ℃,那么海拔增加x km时,气温从15 ℃减少6x℃.因此y与x的函数关系式为y=15-6x(x≥0).当然,这个函数也可表示为y=-6x+15(x≥0).当登山队员由大本营向上登高0.5 km时,他们所在位置的气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃).这个函数与我们上课时所学的正比例函数有何不同?它又是什么函数呢?我们这节课将学习这些问题.[设计意图]为完善认识与深刻理解一次函数做准备,促使学生对一次函数的特征进行思考.导入二:1.知识回顾.(1)什么是正比例函数?(2)函数有哪些表示方法?(3)你能举出几个正比例函数的例子吗?2.思考.【课件2】列出下列函数关系式.(1)已知等腰三角形的周长为30,底边长为y,腰长为x,试写出y与x之间的函数关系式;(2)小红的爸爸把10000元存入银行,如果年利率是1.98%,x年后取出的本息和为y(元)(不计利息税),试写出y与x之间的函数关系式;。
八年级数学下册第二十一章一次函数21-1一次函数教案冀教版【2019-2020学年度】
知识与技能
表述一次函数及其特例——正比例函数,能判断两个变量间的关系是否可以看作 函数;
感受函数、一次函数、正比例函数之间一般与特殊的关系。
过程与方法经历由实际情景抽象出一次函数的过程;
情感态度价 值观初步形成 利用函数的观点认识现实世界的意识和能力。
教学重点和难点
重点是一次函数和正比例函数的概念,以及根据所给条件写出简单的一次函数表达式的方法;
一般地,形如y= kx(k是常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数.
Ⅲ例题练习
例1下列函数哪些是正比例函数?请指出正比例函数的比例系数
1.y=3x 2.y=2x+1 3.y=- 4.y= 5.y=πx 6.y=- x
例题2有一块10公顷的成熟麦田,用一台收割速度为0.5公顷/时的小麦收割机来收割。
1.求收割的面积y(公顷)与收割时间x(h) 之间的函数关系式
2.求收割完这块麦田需用的时间
练习1:判断下列问题中那两个量具有正比例关系
向圆柱形水杯中加水 ,水的体积与高度正方形的面积与它的边长
2.小丽录入一篇文章,她的打字速度与所用时间
3.人的体重和身高
练习2:填空
已知函数y=3x,当x=3时,y=
4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度T(℃)随冷冻时间t(分)的变化而变化.
应答:1.根据圆的周长公式可得:L=2 r.
2.依据密度公式p= 可得:m=7.8V.
3.据题意可知:h=0.5n.
4.据题意可知 :T=-2t.
我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x的形式一样.
这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值.即
冀教版八年级数学下册《二十一章 一次函数 21.1 一次函数》教案_0
一次函数的概念教学目标1.知识与技能:让学生了解一次函数的概念及一般形式.2.过程与方法:通过具体实例归纳,概括出一次函数的结构特征,培养学生数学建模的能力.3.情感态度与价值观:通过对实际问题的解决激发学生学习数学的兴趣.教学重点一次函数的概念及一般形式.教学难点探索实际问题中的一次函数关系.教学方法启发、引导,合作交流教学过程一、创设情境,引入新课问题:某登山队大本营所在地的气温是5℃,海拔每升高 1 km 气温下降6℃,登山队员由大本营向上登高x km时,他们所在位置的气温是y℃,试用解析式表示y与x的关系.教师引导:每升高1 km气温下降6℃,那么升高x km,气温下降6x℃,因此所在位置的气温为5-6x,即y=-6x+5.自变量是x,右边是自变量的一次式,像这样的函数就是我们今天所要学的一次函数.二、新知探究问题:请表示出下列各题中变量间的关系式。
这些函数有哪些共同点?1.在20℃~25℃时蟋蟀每分钟鸣叫的次数C与t(℃)有关,即C 的值约是t的7倍与35的差.这个函数的关系式怎么写?2.一种计算成年人标准体重G(kg)的方法是:以厘米为单位量出身高h,再减去常数105,所得差是G的值.3.某市的市内电话的月收费额y(元)包括月租费22元和拨打电话按0.1元/分收取,写出y与每月电话x(分钟)的函数关系式.4.把一个长10 cm、宽5 cm的长方形的长减少x cm,宽不变,长方形的面积y(cm 2)随x 的变化的关系式是什么?思考交流:上述这些函数关系式有什么共同特点?(比如说右边). (学生活动:学生思考并回答,教师予以引导、纠正、总结.)发现:左边是函数,右边都是自变量的倍数与一个常数的和. 总结板书:即:函数=常数×自变量+常数一般地,形如y =kx +b(k ,b 是常数,k ≠0)的函数叫做一次函数,当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.强调:(1)自变量的次数是1;比例系数k ≠0.(2)当b=0时,函数y=kx+b 为正比例函数。
八年级数学下册第二十一章一次函数21、1一次函数第2课时一次函数习题新版冀教版
3
(4)k=-0.4,b=0;
(5)k=-2,b= 3 .
一次函数
例 如图所示,△ABC是边长为x的等边三角形. (1)求BC边上的高h与x之间的函数关系式.h是x的一次函数吗?如果 是一次函数,请指出相应的k与b的值.
解:(1)因为BC边上的高AD也是BC边上的中线,
所以BD= 1 x. 在Rt△ABD中,由勾股定理,得 2
15 ℃就减少6 ℃,那么海拔增加x km时,气温
从15 ℃减少6x ℃.因此y与x的函数关系式为
y=15-6x(x≥0).
这个函数与我们上课时所 学的正比例函数有何不同? 它又是什么函数呢?
CONTENTS
2
一次函数 问题1 在本节“小刚骑自行车去上学”的问题中,小刚家到学校的路程 为3.5 km,小刚骑车的速度为0.2 km/min.设小刚距学校的路程为s km,离开家的时间为t min. (1)写出s与t之间的函数关系式,并指出其中的常量与变量. 一般地,解决行程类的问题时,常常借助如下图示来分析.
A.-1
B.1
C.-3
D.3
7.写出下列各题中x与y之间的关系式,并判断y是否为x的一次函数,是否为正 比例函数. (1)汽车以60千米/时的速度匀速行驶,行驶路程y(千米)与行驶时间x(时)之间 的关系; (2)圆的面积y(平方厘米)与它的半径x(厘米)之间的关系; (3)一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米).
x
B.y=2x-1 D.y=-2x
4.已知 y=(m-3)x|m|-2+1 是一次函数,则m的值是( A )
A.-3
B.3
C.±3
D.±2
5.设圆的面积为S,半径为R,那么下列说法正确的是( C ) A.S是R的一次函数 B.S是R的正比例函数 C.S与R2成正比例关系 D.以上说法都不正确
冀教版八年级下册数学:21.1 一次函数第二课时课件 (共17张PPT)
(2)当h= 3 时,求x的值. (3)求△ABC的面积S与x之间的函数关系式.S是x
A
的一次函数吗?
Bห้องสมุดไป่ตู้
D
C
新知应用
例2 如图,△ABC是边长为x的等边三角形。
(1)求BC边上的高h与x之间的函数关系式.h是x的
一次函数吗?如果是,请指出相应的k和b的值.
h 3 x 2
A
(2)当h= 3 时,求x的值.
形成概念
一般地,我们把形如y=kx+b(k,b为常数,且k≠0) 的函数,叫做一次函数.
对于一次函数y=kx+b,当b=0时,他就化为y=kx.所以 正比例函数y=kx (k≠0)是一次函数的特殊形式.
概念辨别
例1:下列函数中,哪些是一次函数?请指出一次
函数中的k和b的值.
(1) y 3x 6
x表示y的函数表达式为 y=1.6x+80
2、向一个已装有10dm3容器再注水,再注水速度为2dm3/min.容器
内的水量y(dm3)与时间x(min)的函数关系式为 y=2x+10
3、一种计算成年人标准体重G(kg)的方法是,以厘米为单位量出 身高值h,减常数105,所得差是G的值。用h表示G的函数表达式为
3.5km,小刚骑车的速度为0.2km/min.设小刚距学校的路程为Skm,
离开家的时间为tmin.
(1)写出S与t之间的函数关系式,并指出其中的常量与变量。
S=3.5-0.2t
(2)写出t的取值范围。
0≤t≤17.5
(3)对比正比例函数,它们的表达式在
结构上有什么相同点与不同点。
等号右边多了一个常数项
课堂小结
知道了一次函数的概念,学会通过解析 式判断一次函数,会简单的应用一次函 数解决实际问题
初二数学《一次函数》ppt课件
倾斜度一样(平行)
都经过一、三象限
直线 还经过第二象限
b相同
k不同
都与y轴相交于点(0,2)
都经过一、二、三象限
倾斜度不一样(不平行)
1
-1
2
3
4
5
-4
-3
-2
-5
1
2
3
4
5
-1
-2
-3
-4
-5
0
观察:这些函数的图像 有什么特点?
x
y
在同一个平面直角坐标系中画出下列函数的图象: 1. 2. y=3x y=3x+2
y
x
o
-4
2
7.一个函数图像过点(1,2),且y随x增大而增大,则这个函数的解析式是___
B
如图所示,三峡工程在6月1日至6月10日下阐蓄水期间,水库水位由106米升至135米,高峡平湖初现人间.假设水库水位匀速上升,那么下列图像中,能正确反映这10天水位h(米)随时间t(天)变化的是( )
从图中可以看出: 1.当一次函数的k值相等时,直线互相平行.
2.当一次函数的b值相等时,直线在y轴交于一点.
特殊位置关系—平行
y=3x
y=3x+2
观察函数y=3x和y=3x+2的图象,我 们知道:它们是互相平行的,所以 ,其中 一条直线可以看作是由另一 条直线平移得到的。 你能说出直线y=3x+2是由直线y=3x 向____平移____个单位得到的吗?
3.一次函数y=x+2的图像不经过第____象限
EX
5.一次函数 y 1=kx+b与y 2=x+a的图像如图所示,则下列结论(1)k<0;(2)a>0;(3)当x<3时,y 1<y 2中,正确的有____个
一次函数的性质PPT课件
2
2
请谈谈:
(1)哪些函数的图像与y轴的交点在x轴的上方,哪些函数的图像与y
轴的交点在x轴的下方?
(2)函数的图像与y轴的交点在x轴的上方和函数的图像与y轴的交点
在x轴的下方,这两种函数,它们的区别与常数项有怎样的关系?
(3)正比例函数的图像一定经过哪个点?
新知导入 课程讲授 随堂练习 课堂小结
一次函数的性质
4
新知导入 课程讲授 随堂练习 课堂小结ຫໍສະໝຸດ 一次函数 的性质内容
当k>0时,y的值随x值的增大而增大; 当k<0时,y的值随x值的增大而减小.
当k>0, b>0时,经过一、二、三象限; 当k>0 ,b<0时,经过一、三、四象限; 当k<0 ,b>0时,经过 一、二、四象限; 当k<0 ,b<0时,经过二、三、四象限.
2
(2)当2k+1=0,即k=- 1 时,函数y=(2k-1)x+(2k+1)的图像经过原点.
2
新知导入 课程讲授 随堂练习 课堂小结
一次函数的性质
例 (3)当k满足什么条件时,函数y=(2k-1)x+(2k+1)的图像与y轴的交点在 x轴的下方?
(3)当2k+1<0时,函数y=(2k-1)x+(2k+1)的图像与y轴的交点在x轴的 下方. 解2k+1<0,得k<- 1 .
新知导入 课程讲授 随堂练习 课堂小结
CONTENTS
2
新知导入 课程讲授 随堂练习 课堂小结
一次函数的性质
问题1.1 请在如图所示的直角坐标系中,画出一次函数y=2x+3和y=1 x-2的
冀教版八年级数学下册21.1《一次函数》精品公开课课件
观察上面几个函数表达式,它们 有什么共同热点呢?
它们都是用自变量的一次整式来表示的
如果两个变量x和y之 间的函数关系式可以 表示成y=kx+b(k,b为 常数,k≠0的形式, 那么就称y是x的一次 函数。特别的,当 b=0时,一次函数就 成为y=kx(k为常数, k≠0)。这时y叫做x 的正比例函数。
例
A
如左图所示,△ABC是边长为x的等边三角形,
(1)求BC边上的高h与x 之间的函数关系式,h是x的 一次函数吗? (2)求△ABC的面积S与x之间的函数关系式。S是x 的一次函数吗?
B
D
C
解: (1)因为BC边上的高AD也是BC边上的中线,所 以,BD= 1 x 2 在RT △ABD中,由勾股定理得 h=AD= 即 h=
1.一次函数y=2x-1图像的形状是怎样的? 你和其他同学得到的结果是一样的吗?
2.凡是满足关系式y=2x-1的x,y的值所对 应的点(x,y)如(-1,-3),(1,1),(4,7)……都在一 次函数y=2x-1的图像上吗?
3.请你从一次函数y=2x-1的图像上任意取 一点,检验该点的横坐标x纵坐标y是否满 足关系式y=2x-1. 我们看到,一次函数y=kx+b的图像是一 条直线。这样,在画一次函数的图像时, 只要确定出两个点,再过这两点画直线 就可以了。正式因为一次函数的图像时 一条直线,所以也把一次函数y=kx+b的 图像称为直线y=kx+b。
25.1 一次函数
我们已经知道函数是刻画 变量之间关系的数学模型,这 些模型有多种形态,其中最简 单的一种就是一次函数。你知 道什么样的函数叫做一次函数 吗?一次函数有什么特点呢? 不妨先来做做下面几道题吧!
【最新】冀教版八年级数学下册第二十一章《一次函数(2)》公开课课件.ppt
(2)正方形周长y(cm)与它的边长x(cm)之间的关系;
(3)某种大米单价是2.5元/千克,购此大米花费y元与购买x
千克大米之间的关系.
当b=0时,一次函数 y=kx+b就成为y=kx (k是常数,k≠0),
解:(1)s=200t (t≥0) (2)y=4x (x>0)
这时y 叫x的正比例
函数.
正比例函数 (3)y=2.5x (x ≥0)
3.已知y与x+1成正比例,当x=5时,y=12,则y关于x的函数 关系式为________
课堂小结
通过本堂课的学习,你知道了什么?
一次函数 正比例函数
一般形式
ykxb(k0,k,b为常 ) 数 ykx(k0,k为常)数
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/1/112021/1/11Monday, January 11, 2021
式:___y_=__8_0_+_1__.6_x___.
2.小刚家到学校的路程为3.5km,他每天骑自行车去上学,速度 为0.2km/min。
t(m(1in)在)的上函学数的关路系上式,为小s1刚=离__开s_1_家=_0_的_.2_路t__程__s_1.(km)与离开家的时间 t(m(2in)在)的上函学数的关路系上式,为小s2刚=距__学__校_s_2的=__3路_._5程_-_0s_2._(2_t_k.m)与离开家的时间
• 10、人的志向通常和他们的能力成正比例。2021/1/112021/1/112021/1/111/11/2021 9:50:12 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/1/112021/1/112021/1/11Jan-2111-Jan-21 • 12、越是无能的人,越喜欢挑剔别人的错儿。2021/1/112021/1/112021/1/11Monday, January 11, 2021 • 13、志不立,天下无可成之事。2021/1/112021/1/112021/1/112021/1/111/11/2021
2019八年级数学下册 第二十一章 一次函数 21.4 一次函数的应用教案 (新版)冀教版
21.4一次函数的应用教学设计思想在掌握了一次函数的图像、性质等知识后,这节课我们将学习一次函数的应用,通过两个课时对一次函数的应用进行简单概括、归纳,这一节是本章的重点与归宿。
教学过程中鼓励解法和表述的多样化,充分加强图象识别与应用能力的培养,避免习惯的“代数化”倾向。
突出通过函数获取信息,发展形象思维;突出一次函数的简单应用;突出函数与方程、不等式的关系。
根据不同学生的基础,有针对性地增强问题的探索性与开放性,使不同层次学生的思维能力均得到充分的发展,调动学生自主学习与合作交流的积极性。
教学目标知识与技能经历应用一次函数解决实际问题的过程,熟悉一次函数在生活中的应用。
通过解决实际问题领悟函数与方程、不等式的关系及应用价值。
提高通过文字、表格、图像获取信息的能力。
在解决问题的过程中,提高综合思维的能力。
过程与方法经历探求直线解析式的过程,体验数学学习探究的方法。
情感态度价值观初步学会利用函数性质进行判断及决策的方法,增进应用函数思想的意识。
体验数学学习活动充满着探索,并在探索中感受成功,建立自信;体验数学来源于生活并应用于生活。
教学重难点重点:应有一次函数解决实际问题难点:准确的图像识别与应用,领悟函数与方程、不等式的关系教学方法启发式教学,学生探索为主教学用具多媒体课时安排 2课时教学过程设计第一课时一、导入新课在前几节课里,我们学习了一次函数的图象和性质以及一次函数与方程、不等式的关系,其实一次函数在现实生活中也有着广泛的应用,现在我们就来一起探究一下。
二、试着做做(出示题目)某公司与营销人员签订了这样的工资合同,工资由两部分组成,一部分是基本工资,每人每月300元;另一部分是按月销售量确定的奖励工资,每销售1件产品奖励工资4元.1.设某营销员月销售产品x件,他应得的工资为y元,求y与x之间的函数关系式.学生活动:独立阅读,领悟问题情境给出的数量关系,自己写出函数关系式。
师:让学生说出答案,并说出题中的数量关系。
冀教版八年级数学下册《二十一章 一次函数 21.1 一次函数》教案_27
1.经历由现实情境抽象出正比例函数的过程;
2.进一步感悟函数模型,培养与发展学生的抽象能力;
3.体会数学知识来源于生活,培养学生细心观察的良好品质.
教学重点
理解和掌握正比例函数表达式的特点
教学难点
由实例抽象概括出正比例函数概念
教学流程安排
授课环节
教学内容
学生活动
教师活动
设计意图
课题引入
让学生思考并回答些下问题
(3)京沪高铁列车从北京南站出发2.5 h后,是否已经过了距始发站1 100 km的南京站?
认真倾听
播放幻灯片带领学生尝试解决问题
复习旧知,引入新知,从学生熟悉的正比例的量引入该课,符合学生的认知顺序
创设问题
思考下列问题:
1. y=300t中,变量和常量分别是什么?其对应关系式是函数关系吗?谁是自变量,谁是函数?
1.已知正比例函数y=kx,当x=3时,y=-15,求k的值.
2.若y关于x成正比例函数,当x=4时,y=-2.
(1)求出y与x的关系式;
(2)当x=6时,求出对应的函数值y.
学生自己读题审题
展示创设问题
问题链设计,层层递进,从最简单问题入手,步步加深。
方法总结
待定系数法
已知y与x+2成正比例,当x=4时,y=12,
1.上一章我们学习了函数,现在,
⑴请举出两个函数的实例,并指出其中的变量和常量;2011年开始运营的京沪高速铁路全长1 318km.设列车平均速度为300km/h.考虑以下问题:(1)乘京沪高速列车,从始发站北京南站到终点站海虹桥站,约需要多少小时(结果保留小数点后一位)?(2)京沪高铁列车的行程y(单位:km)与运行时间t(单位:h)之间有何数量关系?
八年级数学下册21一次函数教案新冀教版
第二十一章一次函数1.结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式.2.会利用待定系数法确定一次函数的表达式.3.能画出一次函数的图像,根据一次函数的图像和表达式y=kx+b(k≠0)探索并理解k>0和k<0时,图像的变化情况.4.体会一次函数与二元一次方程的关系.5.能用一次函数解决简单的实际问题.6.进一步发展学生的数学抽象能力,强化数学的应用意识.1.结合具体情境体会和理解一次函数及正比例函数的意义,能根据已知条件运用待定系数法确定一次函数的表达式.2.逐步学会运用函数的观点观察、分析问题,预测实际问题中的变量的变化规律.1.通过讨论一次函数与方程(组)的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程(组)及不等式等内容的认识,构建和发展相互联系的知识体系.2.通过本章的学习,要让学生感受数学的价值,培养和提高学生的应用意识.3.注重对学生情感态度的评价,在学生学习活动中,培养学生自信、自强的性格,记录学生在学习过程中的情感表现以及在解决问题的过程中所表现出来的创新精神.1.本章的内容、地位和作用.本章的知识内容主要包括:一次函数,一次函数的图像和性质,用待定系数法确定一次函数表达式,一次函数的应用,一次函数与二元一次方程的关系.这些内容彼此关联,依次递进.一次函数是在学习了一般的函数概念之后,进一步研究的第一类特殊函数,它不仅是现实生活中极为广泛的一类数量关系的抽象模型,有着广泛的应用,而且在整个函数知识的学习中,起着承上启下的重要作用,这主要表现为:第一,通过一次函数的学习,使学生对“函数”这一抽象的核心概念的理解更加深入,对“函数模型”的理解逐步走向深入与深刻、丰满与充实,对“函数”这一系统知识的认识与掌握进一步强化和提升;第二,一次函数的学习,不仅从变量关系类型上为二次函数、反比例函数的学习提供了对照与类比,更从研究方法(如“利用函数图像研究函数的性质”“借助待定系数法求函数表达式”等)上,展示了普遍的意义和作用.2.本章内容的呈现方式及特点.(1)一次函数的意义同样是比较抽象的,教科书中采用了这样的研究过程:从小学已认识的“成正比例的量”入手,先引入“正比例函数”,再扩展到“一次函数”.这样编排的目的,一是从学生已有的“数学现实”出发,使新知识的引入比较自然;二是采用“由特殊到一般”的归纳方式,符合学生的认知规律,有利于数学活动经验的积累.(2)对于学生来说,无论是“正比例函数”还是“一次函数”,其概念认识的形成,都必须借助于相当数量的、他们所熟悉的现实情境,通过归纳、抽象才能实现.因此,教科书特别关注情境的设置与“抽象”过程的有效展开,以促使学生产生有价值的数学思考,完成理性认识的飞跃.(3)对于一次函数性质的研究,教科书中突出了“数形结合”,即由图像特征引发出函数随自变量变化的增、减性质,因此,图像的绘制与观察,便起着铺垫与引导的重要作用.(4)教科书紧紧抓住“一点在函数的图像上”与“该点的坐标满足函数的表达式”的对应及一致性,导出用待定系数法求一次函数的表达式,意在突出“形与数”的统一与相互转化,并显示“方程”的广泛应用.随后,又专项研究了一次函数与二元一次方程的关系,更为有力地揭示了函数与方程的关联性.(5)所有内容的呈现,一是尊重学生的数学现实,二是尽可能展开学生的观察、思考、交流与研究的活动过程,以充分提供学生自主发展的空间.【重点】1.理解和掌握一次函数的图像和性质,能用待定系数法确定一次函数的表达式.2.一次函数的应用,一次函数与二元一次方程的关系.【难点】1.一次函数的图像和性质.2.一次函数的应用.1.本章之前,刚刚学习了第二十章“函数”,学生对于函数的意义和图像已有了初步的认识,对于相应知识的探究过程及方法,也有了初步的经验积累;另一方面,一次函数源于现实中极为广泛存在的“匀速”变化情境里的数量关系,这样的背景早在此前的许多“算术”应用题和“方程”应用题中以多种“特值”形式反复出现过.这些都是开始本章学习的“数学现实”,教学正是应当从这样的现实出发,用好这样的现实,以优化的过程取得优良效果.2.正比例函数是“成正比例的量”的一般化和发展,一次函数又是正比例函数的一般化和发展,许多数学知识就是沿着这样的途径扩展与增长出来的,教学中就要引导学生遵循这样的线索去探究,去再发现,构筑良好的知识系统,并借此提高学生的学习能力.3.一次函数的图像是直角坐标系里的一条直线(不与坐标轴平行),这正是函数对于自变量“匀速”变化的直观(形)反映,事实上,在确定的直角坐标系里,这样的直线与一次函数表达式是“一一对应”的.恰是基于这种对应,图像(直线)的倾斜情况就反映了一次函数对于自变量变化的增减情况(以及增减速度),一次函数的性质就是借此被“形象”地看出来的;另一方面,用待定系数法确定一次函数的表达式,也是以上述“一一对应”为根据的.因此,在教学中,引导学生通过画图像与研讨,感悟一次函数与其图像的关系便是十分重要的了.4.一次函数的应用的教学,应当特别关注两个方面,一是怎样将实际问题或数学问题转化为一次函数问题;二是通过广泛应用,进一步体会一次函数“匀速”变化的本质特征.5.从两个方面引导学生感悟一次函数与二元一次方程的联系,一是直接从表达式的相互转换进行引导,二是从它们对应于确定的直角坐标系里的同一条直线进行引导.由此使学生体会函数与方程的又一种沟通方式.21.1一次函数1.结合具体情境,了解正比例函数与一次函数的关系和意义.2.掌握一次函数的一般形式,并能写出实际问题中正比例函数关系与一次函数关系的表达式.1.通过对具体实例的分析,发现函数的共同点,抽象出一次函数的概念.2.再一次感悟函数模型,培养学生的抽象能力.经历观察、操作、归纳等学习数学的过程,感受数学思考过程的合理性.【重点】一次函数的概念,会写出实际问题中正比例关系与一次函数关系的表达式.【难点】能正确写出正比例函数和一次函数的表达式.第课时1.初步理解正比例函数的概念.2.能够判断两个变量是否能够构成正比例函数关系.3.能够利用正比例函数解决简单的数学问题.1.通过对问题的研究,体会数学模型的思想.2.在探索过程中,发展抽象思维及概括能力,体验特殊到一般的辩证关系.经历利用正比例函数解决实际问题的过程,逐步形成利用函数观点逐步认识世界的意识和能力.【重点】理解正比例函数的意义及解析式的特点.【难点】能列(或求)函数表达式,并正确地加以判断.【教师准备】课件1~8.【学生准备】复习成正比例的量.导入一:【课件1】一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.1.这只燕鸥大约平均每天飞行多少千米(精确到10千米)?2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?3.这只燕鸥飞行1个半月的行程大约是多少千米?我们来共同分析:一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:25600÷(30×4+7)≈200(千米).若设这只燕鸥每天飞行的路程为200千米,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为y=200x(0≤x≤127).这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值,即y=200×45=9000(千米).以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.类似于y=200x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?我们这节课就来学习.[设计意图]以现实生活中人们对鸟类的研究,抽象出数学问题,从而使学生对本节课的学习内容产生深厚的兴趣.导入二:【课件2】《阿甘正传》是一部励志影片.片中阿甘曾跑步绕美国数圈.假设他从德州到加州行进了21000千米,耗费了他150天的时间.(1)阿甘大约平均每天要跑步多少千米?(2)阿甘的行程y(千米)与跑步时间x(天)之间有什么关系?(3)阿甘一个月(按30天计算)的行程大约是多少千米?变式:(1)如果把150天改成300天,那么阿甘的行程y(千米)与跑步时间x(天)之间有什么关系?(2)如果阿甘再按这个速度跑步两个月(一个月按30天计算),行程大约是多少千米?[设计意图]通过情境导入,激发学生的学习兴趣,体会变量之间的对应关系,为下文的学习做好铺垫.1.出示教材“观察与思考”.【课件3】:提出问题:路程成正比例吗?为什么?教师引导学生得出:通过观察与计算可以发现小刚离开家的路程与时间的比值等于0.2,即这两个量成正比例关系,也就是一个量在增加,另一个量也在增加;一个量在减少,另一个量也相应地减少.如果用s表示路程,用t表示时间,你能写出它们之间的函数关系式吗?学生思考后得到函数关系式为s=0.2t.2.出示教材“做一做”.【课件4】1.小亮每小时读20页书.若读书时间用字母t(h)表示,读过书的页数用字母m(页)表示,则用t表示m的函数表达式为.2.小米去给学校运动会买奖品,每支铅笔0.5元.若购买铅笔的数量用n(支)表示,花钱的总数用w(元)表示,则用n表示w的函数表达式为.3.拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05 mL.设t min后,水龙头滴水V mL,则用t表示V的函数表达式为.教师让学生讨论结果,分别写出它们的函数表达式.1.m=20t2.w=0.5n3.V=5t想一想:上面的函数表达式有什么共同特点?引导学生总结:上面的式子都能写成y=kx(k为常数,且k≠0)的形式.我们把形如y=kx(k为常数,且k≠0)的函数,叫做正比例函数.其中,非0常数k叫做比例系数.那么怎么判断一个函数是否为正比例函数呢?分析:正比例函数满足的条件是:(1)自变量的指数是1;(2)自变量在一次单项式中.[设计意图]从小学已熟悉的“成正比例的量”出发,由“匀速”行驶过程中行驶时间与所行路程的关系,抽象出正比例函数.思路二【课件5】下列问题中的变量对应规律可用怎样的函数表示?(1)圆的周长l随半径r的大小变化而变化;(2)铁的密度为7.8 g/cm3,铁块的质量m(单位:g)随它的体积V(单位:cm3)的大小变化而变化;(3)每个练习本的厚度为0.5 cm,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化;(4)冷冻一个0 ℃物体,使它每分钟下降2 ℃,物体的温度T(单位: ℃)随冷冻时间t(单位:分钟)的变化而变化.认真观察以上出现的四个函数解析式,分别说出哪些是常数、自变量和自变量的函数.【课件6】观察(1)中l与r(1)中l与r的对应值的比值(l/r)总是一个常数(2π).因为2π是不变的,圆的周长l与半径r的比值是一定的,我们说l与r成正比例.学生模仿练习说明(2)(3)(4)中有没有成正比例的.(2)中m与V的比值是7.8,是一个常量,所以m与V成正比例;(3)中h与n的比值是0.5,是一个常量,所以h与n成正比例;(4)中T与t的比值是-2,是一个常量,所以T与t成正比例.这些函数有什么共同点?发现:它们都是常数与自变量的乘积的形式.总结正比例函数的定义:一般地,如果变量x,y有关系y=kx(k是一个不等于0的常数),那么变量x,y成正比例,函数y=kx(k≠0)叫做正比例函数,其中常数k叫做比例系数,自变量x的取值范围是一切实数,比例系数不能为零.学生模仿练习说出(1)(2)(3)(4)中的比例系数.[设计意图]由实际生活入手,列举实际问题,感悟数学与生活的实际联系;另外通过探究函数关系式中的两个变量的正比例关系,让学生体会正比例函数的一般形式.[知识拓展]正比例函数的判别:(1)自变量的指数是1次;(2)自变量的系数不为0;(3)不含有常数项.下列函数中,哪些是正比例函数?请指出其中正比例函数的比例系数.(1)y=3x; (2)y=2x+1;(3)y=-; (4)y=;(5)y=πx; (6)y=-x.让学生独立完成,并说明理由.教师注意指导,强调判断的方法.解:(1),(3),(5),(6)是正比例函数,比例系数分别是3,-,π,-.(2)和(4)不是正比例函数.练一练:下列函数中哪些是正比例函数?请指出其中正比例函数的比例系数.(1)y=-2x; (2)y=;(3)y=-; (4)v=;(5)y=x-1; (6)y=2πr;(7)y=2x2.指名回答,得出(1)(4)(6)是正比例函数,比例系数分别是-2,,2π.【课件8】有一块10公顷的成熟麦田,用一台收割速度为0.5公顷/时的小麦收割机来收割.(1)求收割的面积y(公顷)与收割时间x(h)之间的函数关系式.(2)求收割完这块麦田需用的时间.引导学生思考完成,小组可以互相交流.解:(1)y=0.5x.(2)把y=10代入y=0.5x中,得10=0.5x,解得x=20,即收割完这块麦田需要20 h.想一想:y(公顷)与收割时间x(h)之间的函数关系是正比例函数吗?比例系数是多少?这个比例系数代表的意义是什么?强调:这个比例系数是每小时收割的量,收割机每工作1小时,收割麦田0.5公顷.实际问题中的比例系数是单位量中增加或减少的值.[设计意图]使学生理解和掌握正比例函数的一般形式,能正确地加以判断,培养学生解决问题的能力,巩固所学的知识.一般地,如果变量x,y有关系y=kx(k是一个不等于0的常数),那么变量x,y成正比例,函数y=kx(k≠0)叫做正比例函数,其中常数k叫做比例系数,自变量x的取值范围是一切实数,比例系数不能为零.1.下列问题中,是正比例函数的是()A.矩形面积固定,长和宽的关系B.正方形面积和边长之间的关系C.三角形的面积一定,底边和底边上的高之间的关系D.匀速运动中,速度固定时,路程和时间的关系解析:A.∵S=ab,∴矩形的长和宽的积是定值,不是正比例函数;B.∵S=a2,∴自变量的次数是2,不是正比例函数;C.∵S=ah,∴三角形的面积一定,底边和底边上的高的积是定值,不是正比例函数;D.∵s=vt,∴速度固定时,路程和时间是正比例关系,故本选项正确.故选D.2.下列函数中,y是x的正比例函数的是()A.y=2x-1B.y=xC.y=2x2D.y=kx解析:A.y=2x-1,不是正比例函数,故本选项错误;B.y=x,符合正比例函数定义,故本选项正确;C.y=2x2,自变量次数不为1,故本选项错误;D.y=kx,k有可能为0,故本选项错误.故选B.3.函数y=(a+1)是正比例函数,则a的值是()A.2B.-1C.2或-1D.-2解析:∵函数y=(a+1)是正比例函数,∴a-1=1,且a+1≠0,解得a=2.故选A.4.若函数y=(3-m)是正比例函数,则常数m的值是()A.-B.±C.±3D.-3解析:由正比例函数的定义,可得m2-8=1,且3-m≠0,解得m=-3.故选D.5.关于x的一次函数y=x+5m-3,若要使其成为正比例函数,则m=.解析:根据正比例函数的定义,可得5m-3=0,解得m=.故填.6.写出下列各题中x与y之间的关系式,并判断y是否为x的正比例函数?如果是正比例函数,指出比例系数.(1)小红去商店买笔记本,每个笔记本2.5元,小红所付买本款y(元)与买本的个数x(个)之间的关系;(2)圆的面积y(厘米2)与它的半径x(厘米)之间的关系.解析:(1)根据每个笔记本2.5元,可得出小红所付买本款y(元)与买本的个数x(个)之间的关系;(2)根据圆的面积公式即可得出圆的面积y(厘米2)与它的半径x(厘米)之间的关系.解:(1)由题意得y=2.5x,y是x的正比例函数,比例系数是2.5.(2)由题意得y=πx2,y不是x的正比例函数.第1课时活动1新知探究1.关系式:y=kx(k为常数,且k≠0).2.满足的条件:(1)自变量的指数是1;(2)自变量在一次单项式中.活动2例题讲解例1例2一、教材作业【必做题】1.教材第85页练习第1,2题.2.教材第86页习题A组第1,2,3题.【选做题】教材第86页习题B组.二、课后作业【基础巩固】1.下面函数中,是正比例函数的是()A.y=6xB.y=C.y=x2+6xD.y=3x-12.已知y=(m+1),若y是x的正比例函数,则m的值为()A.1B.-1C.1,-1D.03.若函数y=(k+1)x+k2-1是正比例函数,则k的值为()A.0B.1C.±1D.-14.下列说法正确的是()A.三角形的面积一定时,它的一条边长与这条边上的高满足正比例关系B.长方形的面积一定时,它的长和宽满足正比例关系C.正方形的周长与它的边长满足正比例关系D.圆的面积和它的半径满足正比例关系【能力提升】5.函数y=x中自变量x的取值范围是.6.若x,y是变量,且函数y=(k+1)x|k|是正比例函数,则k=.7.已知自变量为x的函数y=mx+2-m是正比例函数,则m=,该函数的解析式为.8.已知y是x的正比例函数,当x=3时,y=-2,那么y与x之间的比例系数是. 【拓展探究】9.当k为何值时,y=(k2+2k)x是正比例函数?10.已知y是x的正比例函数,且当x=-3时,y=6.(1)写出y与x的函数关系式;(2)当x=-6时,求对应的函数值y;(3)当x取何值时,y=?【答案与解析】1.A(解析:根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,即可得出A 中y=6x是正比例函数.)2.A(解析:由题意得解得m=1.)3.B(解析:∵函数y=(k+1)x+k2-1是正比例函数,∴解得k=1.)4.C(解析:分别利用三角形、长方形、圆的面积和正方形的周长公式得出函数关系,进而判断得出即可.)5.全体实数(解析:自变量在整式中,所以自变量的取值范围为全体实数.)6.1(解析:根据题意得|k|=1,且k+1≠0,解得k=1.)7.2y=2x(解析:由题意得m≠0,2-m=0,∴m=2,该函数的解析式为y=2x.)8.-(解析:设y与x之间的函数关系式是y=kx,把x=3,y=-2代入,得-2=3k,解得k=-.)9.解:根据题意得k2-3=1,①k2+2k≠0.②由①得k=±2.当k=-2时,k2+2k=0,y=0不是正比例函数;当k=2时,k2+2k=8,y=8x是正比例函数.∴当k=2时,函数y=(k2+2k)x是正比例函数.10.解:(1)设正比例函数解析式为y=kx,把x=-3,y=6代入,得-3k=6,解得k=-2,所以此函数的关系式是y=-2x. (2)把x=-6代入解析式,可得y=12. (3)把y=代入解析式,可得x=-.本堂课的重点是对正比例函数的概念的理解.难点是能正确判断正比例函数,并确定比例系数.通过教师的引导,启发调动学生的积极性,让学生自主地去分析发现函数的定义及规律.教师的主导作用与学生的主体地位达到了统一,使本课时的重点得到了突出,难点得到了突破;对学生学习中的情况进行了指导,作出了反馈;培养了学生的归纳概括和解决问题的能力.本课时的教学注重由传授单一的知识技能,转为学生“自主探索发现总结规律”,使学生对新的知识与数学思想方法更容易理解和掌握.(1)在探索正比例函数概念的过程中没有让学生充分地说理.(2)在应用新知这一环节中对学生习题的反馈情况了解得不够全面.(3)课堂内容较简单,教师在教学过程中没有呈现发展学生思维能力的补充例题,以满足不同学生的需要.(1)要充分相信学生总结规律的能力,在学生总结规律过后给予肯定,不必加以过多的语言进行重复,给学生足够的空间思考回答问题.(2)在学生明确正比例函数的概念后,应用新知反馈练习时,可以采取课堂小测验等方法进行,这样教师可以更准确地掌握学生对新知识的掌握情况.(3)在问题探讨及新课导入的过程中出现的问题串让学生自己读题后解决,教师不必帮助读题,这样可以更加集中学生的注意力,激发学习兴趣.(4)适当增加稍微难一点的例题,帮助学生分析,锻炼学生的思维能力.练习(教材第85页)1.解:(1)具有. (2)不具有. (3)不具有. (4)不具有.2.(1)9(2)4(3)-5习题(教材第86页)A组1.解:(1)是正比例函数,比例系数为-4. (2)不是正比例函数. (3)是正比例函数,比例函数为.(4)不是正比例函数. (5)是正比例函数,比例系数为-0.9. (6)是正比例函数,比例系数是-1.2.解:(1)y=4x. (2)当x=5时,y=4×5=20. (3)解方程4x=5,得x=.3.解:(1)V=8S. (2)当S=64时,V=64×8=512.B组1.解:∵x和y成正比例,∴设x=my(m为常数,且m≠0).∵y和z成正比例,∴设y=nz(n为常数,且n≠0).∴x=my=mnz.∵m,n为常数,且m≠0,n≠0,∴mn为常数,且mn≠0.∴x是z的正比例函数.2.解:根据题意得解得m=-3.一次函数是在对一般“函数”概念有了初步认识之后,继续学习的第一类特殊函数.本节内容就是深入地认识一次函数,按照“成正比例的量”——“正比例函数”——“一次函数”这一递升次序安排的,这样做的目的主要有两个:一是更好地体现事物“由简单到复杂”“由特殊到一般”的发展规律;二是成正比例的量在小学已较为熟悉,由此抽象出正比例函数,进而由正比例函数扩展到一次函数,可更好地借用学生已有的数学知识,有效地展现知识的“抽象”生成过程,使一次函数概念的形成更自然、更深刻,更好地体现模型思想.希望教师充分注意上述立意.《义务教育数学课程标准》(2011年版)指出:“模型思想的建立是学生体会和理解数学与外部世界联系的基本途径.”一次函数就是最为重要的数学模型之一,这一要求的实现要靠切实有效的教学活动.1.首先引导学生回忆上一章刚学习过的函数的意义,为本节的学习铺垫好进一步抽象的基础.其次,回忆小学时学习过的成正比例的量.实际上,成正比例的量是函数的最早雏形,也是学生最为熟悉的正比例函数的实例.2.对于“观察与思考”和“做一做”活动中的问题情境,应努力引导学生通过思考与解答,体会出如下两点:第一:每一对成正比例的量之间都是一种函数关系,并且都可以表示成函数是自变量某一确定“倍数”的形式——这正是正比例函数形式定义的基础.第二:每一对成正比例的量构成的函数,函数对于自变量的变化都是“匀速”的.这正是正比例函数及一次函数的本质特征.3.对于正比例函数的定义,应强调k既可以是正数也可以是负数,因此,正比例函数是成正比例的量的拓展与再抽象.第课时1.理解一次函数的概念,以及一次函数与正比例函数之间的关系.2.能根据问题的信息写出一次函数的表达式,能利用一次函数解决简单的问题.在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系.经历利用一次函数、正比例函数解决实际问题的过程,逐步形成利用函数观点增强认识现实世界的意识和能力.【重点】1.一次函数的概念.2.根据已知信息写出一次函数表达式.【难点】理解一次函数的定义及与正比例函数的关系.【教师准备】课件1~9.【学生准备】复习正比例函数的定义.导入一:【课件1】问题:某登山队大本营所在地的气温为15 ℃,海拔每升高1 km气温下降6 ℃.登山队员由大本营向上登高x km时,他们所处位置的气温是y℃.试用解析式表示y 与x的关系.分析:从大本营向上,当海拔每升高1 km时,气温从15 ℃就减少6 ℃,那么海拔增加x km时,气温从15 ℃减少6x℃.因此y与x的函数关系式为y=15-6x(x≥0).当然,这个函数也可表示为y=-6x+15(x≥0).当登山队员由大本营向上登高0.5 km时,他们所在位置的气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃).这个函数与我们上课时所学的正比例函数有何不同?它又是什么函数呢?我们这节课将学习这些问题.[设计意图]为完善认识与深刻理解一次函数做准备,促使学生对一次函数的特征进行思考.导入二:1.知识回顾.(1)什么是正比例函数?(2)函数有哪些表示方法?(3)你能举出几个正比例函数的例子吗?2.思考.【课件2】列出下列函数关系式.(1)已知等腰三角形的周长为30,底边长为y,腰长为x,试写出y与x之间的函数关系式;(2)小红的爸爸把10000元存入银行,如果年利率是1.98%,x年后取出的本息和为y(元)(不计利息税),试写出y与x之间的函数关系式;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 一次函数
1.一次函数的定义及解析式的特点;(重点)
2.一次函数与正比例函数的关系.(难点)
一、情境导入
1.仓库内原有粉笔400盒,如果每个星期领出36盒,求仓库内余下的粉笔盒数Q 与星期数t 之间的函数关系式.
2.今年植树节,同学们种的树苗高约1.80米.据介绍,这种树苗在10年内平均每年长高0.35米,求树高(米)与年数之间的函数关系式,并算一算4年后这些树约有多高.
3.小徐的爸爸为小徐存了一份教育储蓄.首次存入1万元,以后每个月存入500元,存满3万元止.求存款数增长的规律.几个月后可存满全额?
以上3道题中的函数有什么共同特点? 二、合作探究
探究点一:一次函数的定义 【类型一】 辨别一次函数
下列函数是一次函数的是( )
A .y =-8x
B .y =-8
x
C .y =-8x 2
+2 D .y =-8x
+2
解析:A.它是正比例函数,属于特殊的一次函数,正确;B.自变量次数不为1,不是一次函数,错误;C.自变量次数不为1,不是一次函数,错误;D.自变量次数不为1,不是一次函数,错误.故选A.
方法总结:一次函数解析式的结构特征:k ≠0;自变量的次数为1;常数项b 可以为任意实数.
【类型二】 一次函数与正比例函数
已知y =(m -1)x 2-|m |
+n +3. (1)当m 、n 取何值时,y 是x 的一次函
数?
(2)当m 、n 取何值时,y 是x 的正比例函数?
解析:(1)根据一次函数的定义,m -1≠0,2-|m |=1,据此求解即可;(2)根据正比例函数的定义,m -1≠0,2-|m |=1,n +3=0,据此求解即可.
解:(1)根据一次函数的定义得2-|m |=1,解得m =±1.又∵m -1≠0即m ≠1,∴当m =-1,n 为任意实数时,这个函数是一次函数;
(2)根据正比例函数的定义得2-|m |=1,n +3=0,解得m =±1,n =-3.又∵m -1≠0即m ≠1,∴当m =-1,n =-3时,这个函数是正比例函数.
方法总结:一次函数解析式y =kx +b 的结构特征:k ≠0,自变量的次数为1,常数项b 可以为任意实数.正比例函数y =kx 的解析式中,比例系数k 是常数,k ≠0,自变量的次数为1.
探究点二:根据实际问题求一次函数解析式
【类型一】 列一次函数解析式
写出下列各题中y 与x 的函数关
系式,并判断y 是否是x 的一次函数或正比例函数?
(1)某村耕地面积为106
(平方米),该村人均占有耕地面积y (平方米)与人数x (人)之间的函数关系;
(2)地面气温为28℃,如果高度每升高1km ,气温下降5℃,气温x (℃)与高度y (km)之间的函数关系.
解析:(1)根据人均占有耕地面积y 等于总面积除以总人数得出即可;(2)根据高度每升高1km ,气温下降5℃,得出28-5y =x 求出即可.
解:(1)根据题意得y =10
6
x
,不是一次
函数;
(2)根据题意得28-5y =x ,则y =-1
5
x
+28
5
,是一次函数. 方法总结:根据实际问题确定一次函数关系式关键是读懂题意,建立一次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.
【类型二】 确定一次函数解析式中系数的值
已知一次函数y =kx +b 中,当自
变量x =3时,函数值y =5;当x =-4时,y =-9.求k 和b 的值.
解析:把两组对应值分别代入y =kx +b 得到关于k 、b 的方程组,然后解方程组求出k 和b .
解:(1)∵当自变量x =3时,函数值y =5,当x =-4时,y =-9,
∴⎩⎪⎨⎪⎧3k +b =5,-4k +b =-9,解得⎩
⎪⎨⎪⎧k =2,b =-1. 方法总结:解决此类问题就是将自变量x 的值及与它对应的函数值y 的值代入所设
的解析式,得到关于待定系数的方程或方程组解答即可.
三、板书设计
1.一次函数的定义
2.一次函数与正比例函数的区别和联系
3.根据实际问题求一次函数解析式
在本节课的教学设计与教学实践中,不仅关注学生获得的知识,而且注重知识获得的过程和方法,同时关注学生的全面发展.由于教学方法得当,教学过程设计合理,师生互动关系平等、和谐,所以能较好的完成知识传授与促进学生发展的任务,在数学课堂教学改革的实践中取得较好的教学效果.。