(完整版)相似三角形法分析动态平衡问题)
教科版物理 必修一 第四章 物体的平衡6 应用相似三角形法解决动态平衡问题(讲义)
重点:掌握利用相似三角形法解决动态平衡问题的方法。
难点:图解法和相似三角形法使用条件的区别。
1. 相似三角形法则概述相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例,求出三角形中力的比例关系,从而达到求未知量的目的。
2. 适用条件往往涉及三个力,其中一个力为恒力,另两个力的方向均发生变化,则此时用相似三角形分析。
相似三角形法是解平衡问题时常用到的一种方法,解题的关键是正确地进行受力分析,寻找力的三角形和几何三角形的相似关系。
3. 和图解法的区别图解法:三个力,一力为恒力,一力大小方向变,一力仅大小变。
相似三角形法:三个力,一力为恒力,其余两个力方向都变。
例题1 半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( )A. N 变大,T 变小B. N 变小,T 变大C. N 变小,T 先变小后变大D. N 不变,T 变小思路分析:如图2所示,对小球:由于缓慢地拉绳,所以小球运动缓慢,视为始终处于平衡状态,其中重力mg 不变,支持力N ,绳子的拉力T 一直在改变,但是总形成封闭的动态三角形(图2中小阴影三角形)。
由于在这个三角形中有四个变量:支持力N 的大小和方向、绳子的拉力T 的大小和方向,所以还要利用其他条件。
实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图2中大阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式:可得:mg Rh L T += 运动过程中L 变小,所以T 变小。
mg Rh R N += 运动中各量均为定值,所以支持力N 不变。
正确答案为D 。
相似三角形法分析动态平衡问题
静力学解题方法2——相似三角形法(非常好的方法,仔细分析例题,静力学受力分析三大方法之一)(1)相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。
(2)往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生变化,则此时用相似三角形分析。
相似三角形法是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。
例1、半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( )A 、N 变大,T 变小B 、N 变小,T 变大C 、N 变小,T 先变小后变大D 、N 不变,T 变小解析:如图1-2所示,对小球:受力平衡,由于缓慢地拉绳,所以小球运动缓慢视为始终处于平衡状态,其中重力mg 不变,支持力N ,绳子的拉力T 一直在改变,但是总形成封闭的动态三角形(图1-2中小阴影三角形)。
由于在这个三角形中有四个变量:支持力N 的大小和方向、绳子的拉力T 的大小和方向,所以还要利用其它条件。
实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图1-2中大阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式:RNR h mg L T =+= 可得:mg Rh LT +=运动过程中L 变小,T 变小。
mg Rh RN +=运动中各量均为定值,支持力N 不变。
正确答案D 。
例2、如图2-1所示,竖直绝缘墙壁上的Q 处由一固定的质点A ,在Q 的正上方的P 点用细线悬挂一质点B ,A 、B 两点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的电量逐渐减小,在电荷漏空之前悬线对悬点P 的拉力T 大小( )A 、T 变小B 、T 变大C 、T 不变D 、T 无法确定解析:有漏电现象,AB F 减小,则漏电瞬间质点B 的静止状态被打破,必定向下运动。
动态平衡相似三角形法
动态平衡相似三角形法嘿,大家好,今天咱们来聊聊一个有趣又实用的话题——动态平衡相似三角形法。
听上去好像很高深的样子,但其实一说起来就简单得让人眼前一亮。
想象一下,咱们在生活中遇到的各种情况,像是在超市购物、设计家居,甚至是做饭,都是在讲究一种平衡和比例。
说白了,就是把东西放在一起,看看它们是不是“有意思”。
这就像是在家里搭配衣服,怎么能把这件衬衫和那条裤子搭得恰到好处呢?你总不能穿得像个调色盘一样吧,哈哈。
相似三角形法就是利用三角形的特性,来帮助我们解决实际问题。
想象一下,你在外面拍照,想要确保你的朋友们都能在镜头里看起来“完美”。
这时候,你就可以用到三角形的原理。
三角形的边和角之间有着绝妙的关系,玩得好,照片的构图就能显得别致又美观。
这种动态平衡就像是咱们生活中的和谐,谁都想要点儿“和谐音”,对吧?这动态平衡可不是一成不变的哦,它是随着环境变化而变化的。
就像你在不同的季节穿衣服,春天一件轻薄的外套,夏天一条清凉的短裤,冬天又得加厚棉服。
这就像是调整三角形的边长和角度。
太长了或者太短了都不好,就像你在调音时,调得不好听就只能哭了。
生活也是这样,你得时刻留意变化,才能找到那个完美的平衡点。
回到三角形,咱们可以想象一下,一个小三角形,边长分别是3、4、5。
这个组合简直是经典中的经典,大家一看就知道这就是个直角三角形。
你在计算的时候,完全可以用这个方法去解决问题。
再比如,假设你在画一个长方形,想知道它的对角线长,没事儿,找个合适的三角形,把长和宽的比例套进去,完美解决。
是不是觉得,原来数学也能这么有趣。
我跟你说,这个动态平衡相似三角形法在生活中简直处处可见。
你在安排桌子的位置时,得考虑光线、空间和美观。
每个元素都是一个边,组合起来就得出一个和谐的三角形。
想象一下,一张桌子旁边放着四把椅子,太密集就像是打麻将,一点空间都没有;太松散又觉得冷清,像个单身狗在那边吃泡面。
怎么才能找到那种恰到好处的感觉?这就是动态平衡的奥妙所在。
共点力的平衡(动态平衡—相似三角形法、动态圆法、挂钩模型) 课件
力大小为FT1;乙绳D、E两端按图乙的方式固定,然后将同样的定滑轮且挂有质量
为M的重物挂于乙轻绳上,当滑轮静止后,设乙绳子的张力大小为FT2.现甲绳的B端
缓慢向下移动至C点,乙绳的E端缓慢向右移动至F点,在两绳的移动过程中,下列
通过如图甲所示的自动采棉机采收。自动采棉机在采摘棉花的同时将棉花打包成圆
柱形棉包,通过采棉机后侧可以旋转的支架平稳将其放下,这个过程可以简化为如
图乙所示模型:质量为m的棉包放在“V”型挡板上,两板间夹角为120°固定不变,
“V”型挡板可绕O轴在竖直面内转动。在使OB板由水平位置顺时针缓慢转过60°的过
D.半球形物体对小球支持力大小不变
AD
2.(多选)如图,柔软轻绳ON的一端O固定,其中间某点M拴一重物,用
手拉住绳的另一端N.初始时,OM竖直且MN被拉直,OM与MN之间的
夹角为α( >
).现将重物向右上方缓慢拉起,并保持夹角α不变.
在OM由竖直被拉到水平的过程中(
A.MN上的张力逐渐增大
B.MN上的张力先增大后减小
A.FN先减小后增大
B.FN始终不变
C.F先减小后增大
D.F始终不变
B
一、相似三角形法
特点:
1. 三个力中,有一个力为恒力(大小方向均不变)
2. 其余两个力方向、大小都在变
3. 有明显长度变化关系
方法:
构建实物和力的相似三角形关系
4.(多选)如图所示,一表面光滑的半球形物体固定在水平面上,其截面如
2. 其余两个力方向、大小都在变
3. 有一个角不变
三、挂钩模型
C.OM上的张力逐渐增大
(完整版)相似三角形法分析动态平衡问题)
相似三角形法分析动态平衡问题(1)相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。
(2)往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生变化,则此时用相似三角形分析。
相似三角形法是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。
例1、半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( )A 、N 变大,T 变小B 、N 变小,T 变大C 、N 变小,T 先变小后变大D 、N 不变,T 变小解析:如图1-2所示,对小球:受力平衡,由于缓慢地拉绳,所以小球运动缓慢视为始终处于平衡状态,其中重力mg 不变,支持力N ,绳子的拉力T 一直在改变,但是总形成封闭的动态三角形(图1-2中小阴影三角形)。
由于在这个三角形中有四个变量:支持力N 的大小和方向、绳子的拉力T 的大小和方向,所以还要利用其它条件。
实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图1-2中大阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式:RNR h mg L T =+= 可得:mg Rh LT +=运动过程中L 变小,T 变小。
mg Rh RN +=运动中各量均为定值,支持力N 不变。
正确答案D 。
例2、如图2-1所示,竖直绝缘墙壁上的Q 处由一固定的质点A ,在Q 的正上方的P 点用细线悬挂一质点B ,A 、B 两点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的电量逐渐减小,在电荷漏空之前悬线对悬点P 的拉力T 大小( ) A 、T 变小B 、T 变大C 、T 不变D 、T 无法确定解析:有漏电现象,AB F 减小,则漏电瞬间质点B 的静止状态被打破,必定向下运动。
(完整word版)高中物理力学图解动态平衡问题与相似三角形问题.doc
图解法分析动态平衡问题所谓图解法就是通过平行四边形的邻边和对角线长短的关系或变化情况,做一些较为复杂的定性分析,从图形上一下就可以看出结果,得出结论。
题型特点:( 1)物体受三个力。
( 2)三个力中一个力是恒力,一个力的方向不变,由于第三个力的方向变化,而使该力和方向不变的力的大小发生变化,但二者合力不变。
解题思路:( 1)明确研究对象。
( 2)分析物体的受力。
( 3)用力的合成或力的分解作平行四边形(也可简化为矢量三角形)。
( 4)正确找出力的变化方向。
(5)根据有向线段的长度变化判断各个力的变化情况。
注意几点:( 1)哪个是恒力,哪个是方向不变的力,哪个是方向变化的力。
(2)正确判断力的变化方向及方向变化的范围。
(3)力的方向在变化的过程中,力的大小是否存在极值问题。
【例 1】如图 2- 4- 2 所示,两根等长的绳子 AB 和 BC 吊一重物静止,两根绳子与水平方向夹角均为 60° .现保持绳子 AB 与水平方向的夹角不变,将绳子 BC 逐渐缓慢地变化到沿水平方向,在这一过程中,绳子BC 的拉力变化情况是()A .增大B .先减小,后增大C.减小 D .先增大,后减小解析:方法一:对力的处理 (求合力 )采用合成法,应用合力为零求解时采用图解法(画动态平行四边形法 ).作出力的平行四边形,如图甲所示.由图可看出,FBC 先减小后增大.方法二:对力的处理 (求合力 )采用正交分解法,应用合力为零求解时采用解析法.如图乙所示,将 FAB、 FBC 分别沿水平方向和竖直方向分解,由两方向合力为零分别列出:FABcos 60°= FB Csin θ,FABsin 60°+ FB Ccos θ= FB ,联立解得 FBC sin(30 °+θ )= FB/2,显然,当θ=60°时,FBC最小,故当θ变大时,FBC先变小后变大.答案: B变式 1- 1 如图 2- 4-3 所示,轻杆的一端固定一光滑球体,杆的另一端O 为自由转动轴,而球又搁置在光滑斜面上.若杆与墙面的夹角为β,斜面倾角为θ,开始时轻杆与竖直方向的夹角β<θ.且θ+β <90°,则为使斜面能在光滑水平面上向右做匀速直线运动,在球体离开斜面之前,作用于斜面上的水平外力 F 的大小及轻杆受力T 和地面对斜面的支持力 N 的大小变化情况是()A.F 逐渐增大, T 逐渐减小, FN 逐渐减小B.F 逐渐减小, T 逐渐减小, FN 逐渐增大C.F 逐渐增大, T 先减小后增大, FN 逐渐增大D. F 逐渐减小, T 先减小后增大,FN 逐渐减小解析:利用矢量三角形法对球体进行分析如图甲所示,可知T 是先减小后增大.斜面对球的支持力FN′逐渐增大,对斜面受力分析如图乙所示,可知 F =FN″ sinθ,则 F逐渐增大,水平面对斜面的支持力FN= G+ FN ″ ·cos θ,故 FN 逐渐增大.答案: C利用相似三角形相似求解平衡问题2.相似三角形法:当物体受三个共点力作用处于平衡状态时,若三力中有二力的方向发生变化,而无法直接用图解法得出结论时,可以用表示三力关系的矢量三角形跟题中的其他三角形相似对应边成比例,建立关系求解。
相似三角形法分析动态平衡问题)
相似三角形法分解动背仄稳问题之阳早格格创做(1)相似三角形:精确做着力的三角形后,如能判决力的三角形与图形中已知少度的三角形(几许三角形)相似,则可用相似三角形对于应边成比率供出三角形中力的比率关系,进而达到供已知量的手段.(2)往往波及三个力,其中一个力为恒力,另二个力的大小战目标均爆收变更,则此时用相似三角形分解.相似三角形法是解仄稳问题常常逢到的一种要领,解题的关键是精确的受力分解,觅找力三角形战结构三角形相似.例1、用力推住,使小球停止,如图1-1所示,现缓缓天推绳,正)大变小剖析:如图1-2所示,对于小球:受力仄稳,由于缓缓天推绳,所以小球疏通缓缓视为末究处于仄稳状态,其中而是总产死启关的动背三角形(图1-2中小阳影三角形)..真物(小球、绳、球里的球心)产死的三角形也是一个动背的启关三角形(图1-2中大阳影三角形),而且末究与三力产死的启关三角形相似,则犹如下比率式:可得:mg R h L T += 疏通历程中L 变小,T 变小. mg R h R N += 疏通中各量均为定值,收援力N 没有变.精确问案D.例2、如图2-1所示,横直绝缘墙壁上的Q 处由一牢固的量面A ,正在Q 的正上圆的P 面用细线悬挂一量面B ,A 、B 二面果为戴电而相互排斥,以致悬线与横直目标成θ角,由于泄电使A 、B 二量面的电量渐渐减小,正在电荷漏空之前悬线对于悬面P 的推力T 大小( )A 、T 变小B 、T 变大C 、T 没有变D 、T 无法决定剖析:有泄电局里,AB F 减小,则泄电瞬间量面B 的停止状态被挨破,肯定背下疏通.对于小球泄电前战泄电历程中举止受力分解犹如图2-2所示,由于泄电历程缓缓举止,则任性时刻均可视为仄稳状态.三力效率形成动背下的启关三角形,而对于应的真物量面A 、B 及绳墙战P 面形成动背启关三角形,且犹如图2-3分歧位子时阳影三角形的相似情况,则犹如下相似比率:可得:m g PQ PB T ⋅= 变更历程PB 、PQ 、mg 均为定值,所以T 没有变.精确问案C .以上二例题均通过相似关系供解,相对于仄稳关系供解要直瞅、简净得多,有些问题也不妨间接通过图示关系得出论断.坚韧训练:1、如图所示,二球A 、B 用劲度系数为k 1的沉弹簧贯串,球B用少为L的细绳悬于O面,球A牢固正在O面正下圆,且面O、A之间的距离恰为L,系统仄稳时绳子所受的推力为F1.现把A、B间的弹簧换成劲度系数为k2的沉弹簧,仍使系统仄稳,此时绳子所受的推力为F2,则F1与F2的大小之间的关系为(B)A.F1>F2 B.F1=F2 C.F1<F2 D.无法决定2、如图甲所示,AC是上端戴定滑轮的牢固横直杆,品量没有计的沉杆BC一端通过铰链牢固正在C面,另一端B 悬挂一沉为G的沉物,且B端系有一根沉绳并绕过定滑轮A.现用力F推绳,启初时∠BCA>90°,使∠BCA缓缓减小,直到杆BC靠近横直杆AC.此历程中,杆BC所受的力( A )A.大小没有变B.渐渐删大C.渐渐减小 D.先删大后减小3、如图.所示,有二个戴有等量的共种电荷的小球A战B,品量皆是m,分别悬于少为L的悬线的一端.今使B球牢固没有动,并使OB正在横直坐进与,A不妨正在横直仄里内自由晃动,由于静电斥力的效率,A球偏偏离B球的距离为x.如果其余条件没有变,A球的品量要删大到本去的几倍,才会使AB陷阱题--相似对于比题1、如图所示,硬杆BC 一端牢固正在墙上的B 面,另一端拆有滑轮C ,沉物D 用绳拴住通过滑轮牢固于墙上的A 面.若杆、滑轮及绳的品量战摩揩均没有计,将绳的牢固端从A 面稍背下移,则正在移动历程中( C )A.绳的推力、滑轮对于绳的效率力皆删大B.绳的推力减小,滑轮对于绳的效率力删大C.绳的推力没有变,滑轮对于绳的效率力删大D.绳的推力、滑轮对于绳的效率力皆没有变2、如图所示,横直杆CB 顶端有光润沉量滑轮,沉量杆OA 自沉没有计,可绕O 面自由转化OA =OB .当绳缓缓搁下,使∠AOB 由00渐渐删大到1800的历程中(没有包罗00战180°.下列道法精确的是( C D )A .绳上的推力先渐渐删大后渐渐减小B .杆上的压力先渐渐减小后渐渐删大C .绳上的推力越去越大,然而没有超出2GD .杆上的压力大小末究等于G3、如图所示,品量没有计的定滑轮用沉绳悬挂正在B 面,另一条沉绳一端系沉物C ,绕过滑轮后, A C B另一端牢固正在墙上A 面,若改变B 面位子使滑轮位子爆收移动,然而使A 段绳子末究脆持火仄,则不妨推断悬面B 所受推力F T 的大小变更情况是( B )A .若B 背左移,F T 将删大B .若B 背左移,F T 将删大C .无论B 背左、背左移,F T 皆脆持没有变D .无论B 背左、背左移,F T 皆减小例3 如图1所示,一个沉力G 的匀量球搁正在光润斜里板挡住球,使之处于停止状态.么样变更?1-2所示,球受沉力G 1态,故三个力的合力末究为整,将三个力矢量形成启关的三角形.F 1的目标没有变,然而目标没有变,末究与斜里笔直.F 2的大小、目标均改变,随着挡板顺时针转化时,F 2的目标也顺时针转化,动背矢量三角形图1-3中一绘出的一系列真线表示变更的F 2.由此可知,F 2先减小后删大,F 1删大而末究减小.例4所示,小球被沉量细绳系着,斜吊着搁正在光润图1-1 图1-2 G 图1-3斜里上,小球品量为m ,斜里倾角为θ,背左缓缓推动斜里,直到细线与斜里仄止,正在那个历程中,绳上弛力、斜里对于小球的收援力的变更情况?(问案:绳上弛力减小,斜里对于小球的收援力删大)例杆AO A 处往左推,使杆BO 与杆A O 间的夹角θ渐渐缩小,则正在此历程中,推力F 及杆BO 所受压力F N 的大小变更情况是( )A .F N 先减小,后删大B .F N 末究没有变C .F 先减小,后删大 D.F 末究没有变杆的B ((大F N 与G F 等值反背,(如图中绘斜线部分),力的三角形与几许三角形OBA 相似,利用相似三角形对于应边成比率可得:(如图2-2所示,设AO 下为H ,BO 少为L ,绳少l G 、H 、L 均没有变,l 渐渐变小,所以可知F N 没有变,F 渐渐变小.精确问图2-1 图2-2图1-4案为选项B例6:如图2-3所示,光润的半球形物体牢固正在火仄大天上,球心正上圆有一光润的小滑轮,沉绳的一端系一小球,靠搁正在半球上的A 面,另一端绕过定滑轮,后用力推住,使小球停止.现缓缓天推绳,正在使小球沿球里由A 到半球的顶面B 的历程中,半球对于小球的收援力N 战绳对于小球的推力T 的大小变更情况是( D ).(A)N 变大,T 变小,(B)N 变小,T 变大(C)N 变小,T 先变小后变大(D)N 没有变,T 变小 例7、如图3-1所示,物体G 用二根绳子悬挂,启初时绳OA 火仄,现将二绳共时顺时针转过90°,且脆持二绳之历程中,设绳OA 的推力为F 1,绳OB 的推力为F 2,则( ).(A)F 1先减小后删大(B)F 1先删大后减小(C)F 2渐渐减小(D)F 2最后形成整图3-1图3-2图3-3 图2-3力,如图3-2所示分别为F1、F2、F3,将三力形成矢量三角形(如图3-3所示的真线三角形CDE),需谦脚力F3大小、目标没有变,角∠CDE没有变(果为角α没有变),由于角∠DCE为直角,则三力的几许关系不妨从以DE边为直径的圆中找,则动背矢量三角形如图3-3中一绘出的一系列真线表示的三角形.由此可知,F1先删大后减小,F2随末究减小,且转过90°时,当佳为整.精确问案选项为B、C、D例8如图3-4所示,正在搞“考证力的仄止四边形定则”的真验时,用M、N面,使其到达O面,此时αM的读数的办法是(A).图3-4(A)减小N的读数共时减小β角(B)减小N的读数共时删大β角(C)删大N的读数共时删大β角(D)删大N的读数共时减小β角例9.如图4-1所示,正在火仄天花板与横直墙壁间,通过没有计品量的柔硬绳子战光润的沉小滑轮悬挂沉物G=40N,绳少L=2.5m,OA=1.5m,供绳中弛力的大小,并计划:(1)当B面位子牢固,A端缓缓左移时,绳中弛力怎么样变更?(2)当A 面位子牢固,B 端缓缓下移时,绳中弛力又怎么样变更?F D ,AD 少度等于绳少.设角∠OAD 为θ;根据三个力仄稳可;正在三角形AOD 如果A端左移,AD 形成如图4-3中真线A ′D ′所示,可知A ′D ′没有变,OD F 1变大.如果B 端下移,BC 形成如图4-4真线B ′C ′所示,可知AD 、OD 没F 1没有变.共博题 ①图解法与相似三角形法 ②断绝法与完全法③仄稳物体的临界、极值问题一、图解法与相似三角形法图解法:便是通过仄止四边形的邻边战对于角线少短的关系或者变更情况,搞一些较为搀纯的定性分解,从图形上一下便不妨瞅出截止,得出论断.图解法具备直瞅、便于比较的特性,应用时应注意以下几面:①精确哪个力是合力,哪二个力是分力;②哪个力大小目标均没有变,哪个图4-1 图4-2 ′图4-4力目标没有变;③哪个力目标变更,变更的空间范畴何如.例1、半圆形收架BAD上悬着二细绳OA战OB,结于圆心O,下悬沉为G的物体,使OA绳牢固没有动,将OB绳的B端沿半圆收架从火仄位子渐渐移至横直的位子C的历程中,OA绳战OB绳所受的力大小怎么样变更?训练:如图,一倾角为θ的牢固斜里上有一齐可绕其下端转化的挡板P,今正在挡板与斜里间夹一个沉为G的光润球,试分解挡板P由图示位子顺时针转到火仄位子的历程中,球对于挡板的压力怎么样变更?相似三角形法:便是利用力的三角形与边三角形相似,根据相似三角形对于应边成比率供解已知量.例2、光润的半球形物体牢固正在火仄大天上,球心正上圆有一光润的小滑轮,沉绳的一端系一小球,靠搁正在半球上的A面,另一端绕过定滑轮后用力推住,使小球停止,如图.现缓缓天推绳,正在使小球沿球里由A到B的历程中,半球对于小球的收援力N战绳对于小球的推力T的大小怎么样变更?训练:为了用起沉机缓缓吊起一匀称的钢梁,现用一根绳索拴牢此钢梁的二端,使起沉机的吊钩钩正在绳索的中面处,如图.若钢梁的少为L,沉为G,绳索所能启受的最大推力为F m,则绳索起码为多少?(绳索沉没有计)二、断绝法与完全法-----处理连结问题的要领完全法:以几个物体形成的系统为钻研对于象举止供解的要领.断绝法:把系统分成若搞部分并断绝启去,分别以每一部分为钻研对于象,一部分、一部分天举止受力分解,分别列出圆程,再联坐供解的要领.常常正在分解中力对于系统的效率时用完全法,正在分解系统内各物体或者各部分之间的相互效率时用断绝法.偶尔需要二种要领接叉使用.例3、如图,半径为R的光润球,沉为G,光润木块薄为h,沉为G1,用起码多大的火仄力F推木块才搞使球离启大天?训练:如图,人沉600N,火仄木板沉400N,如果人推住木板处于停止状态,则人对于木板的压力为多大?(滑轮沉没有计)训练:二沉叠正在所有的滑块,置于牢固的倾角为θ的斜里上,如图,滑块A、B的品量分别为m1、m2,A与斜里间的动摩揩果数为μ1,B与A的动摩揩果数为μ2.已知二滑块从斜里由停止以相共的加速度滑下,滑块B受到的摩揩力为:A.等于整B.目标沿斜里进与C.大小等于μ1m2gcosθD.大小等于μ2m2gcosθ三、仄稳物体的临界、极值问题仄稳物体的临界问题:某种物理局里变更为另一种物理局里的转合状态喊搞临界状态.临界状态也可明白为“恰佳出现”或者“恰恰没有出现”某种局里的状态.仄稳物体的临界状态是指物体所处的仄稳状态将要被损害而尚已损害的状态.波及临界状态的问题喊搞临界问题,解问临界问题的基础思维要领是假设推理法.例4:跨过定滑轮的沉绳二端,分别系着物体A战B,物体A搁正在倾角为θ的斜里上,如图.已知物体A的品量为m,物体A与斜里间的动摩揩果数为μ(μ<tanθ),滑轮的摩揩没有计,要使物体A停止正在斜里上,供物体B的品量与值范畴.训练:如图,没有计沉力的细绳AB与横直墙夹角为60º,沉杆BC与横直墙夹角为30º,杆可绕C自由转化,若细绳启受的最大推力为200N,沉杆能启受的最大压力为300N,则正在B面最多能挂多沉的物体?仄稳物体的极值问题:受几个力效率而处于仄稳状态的物体,当其中某个力的大小或者目标按某种形式爆收改变时,为了保护物体的仄稳,必引起其余某些力的变更,正在变更历程中大概会出现极大值或者极小值的问题.钻研仄稳物体的极值问题常常使用剖析法战图解法(如例1).例5:推力F效率于沉为G的物体上使物体沿火仄里匀速前进.如图,若物体与大天间的动摩揩果数为μ,当推力最小时,推力F与大天间的夹角θ为多大?训练:如图,将品量为M的木块,分成品量为m1、m2二部分,并用细线对接,m1置于光润火仄桌里上,m2通过定滑轮横直悬挂,m1战m2有何种关系才搞使系统正在加速疏通历程中绳的推力最大?推力的最大值是几?训练:有三个品量相等,半径为r的圆柱体,共置于一齐圆弧直里上,为了使底下圆柱体没有致分启,则圆弧直里的半径R最大是几?(所有摩揩均没有计)。
相似三角形法 解决动态平衡问题
相似三角形法 解决动态平衡问题首先选定研究对象,先正确分析物体的受力,画出受力分析图,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化转化为三角形边长的大小变化问题进行讨论。
例题1 如图所示,杆BC 的B 端铰接在竖直墙上,另一端C 为一滑轮,重力为G 的重物上系一绳经过滑轮固定于墙上A 点处,杆恰好平衡,若将绳的A 端沿墙向下移,再使之平衡(BC 杆、滑轮、绳的质量及摩擦均不计),则( )A. 绳的拉力增大,BC 杆受压力增大B. 绳的拉力不变,BC 杆受压力增大C. 绳的拉力不变,BC 杆受压力减小D. 绳的拉力不变,BC 杆受压力不变思路分析:选取滑轮为研究对象,对其受力分析,如图所示。
绳中的弹力大小相等,即T 1=T 2=G ,T 1、T 2、F 三力平衡,将三个力的示意图平移可以组成封闭三角形,如图中虚线所示,设AC段绳子与竖直墙壁间的夹角为θ,则根据几何知识可得,杆对绳子的支持力F =2G sin θ2,当绳的A 端沿墙向下移时,θ增大,F 也增大,根据牛顿第三定律,BC 杆受压力增大。
图中,矢量三角形与几何三角形ABC 相似,因此F mg BC AB ,解得F =AB BC ·mg ,当绳的A 端沿墙向下移,再次平衡时,AB 长度变短,而BC 长度不变,F 变大,根据牛顿第三定律,BC 杆受压力增大。
例题2 如图所示,固定在竖直平面内的光滑圆环的最高点处有一个光滑的小孔,质量为m 的小球套在圆环上,一根细线的下端拴着小球,上端穿过小孔用手拉住。
现拉动细线,使小球沿圆环缓慢上移,在移动过程中,手对线的拉力F 和轨道对小球的弹力N 的大小的变化情况是( )A. F 大小将不变B. F 大小将增大C. N 大小将不变D. N 大小将增大对小球受力分析,其受到竖直向下的重力G ,圆环对小球的弹力N 和线的拉力F 作用,小球处于平衡状态,G 大小方向恒定,N 和F 方向不断在变化,如图所示,可知矢量三角形AGF 1与长度三角形BOA 相似,得出:ABF OA N OBG 1==,又因为在移动过程中,OA 与OB 的长度不变,而AB 长度变短,所以N 不变,F 1变小,即F 变小,故C 选项正确。
相似三角形法 解决动态平衡问题
相似三角形法 解决动态平衡问题首先选定研究对象,先正确分析物体的受力,画出受力分析图,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化转化为三角形边长的大小变化问题进行讨论。
例题1 如图所示,杆BC 的B 端铰接在竖直墙上,另一端C 为一滑轮,重力为G 的重物上系一绳经过滑轮固定于墙上A 点处,杆恰好平衡,若将绳的A 端沿墙向下移,再使之平衡(BC 杆、滑轮、绳的质量及摩擦均不计),则( )A. 绳的拉力增大,BC 杆受压力增大B. 绳的拉力不变,BC 杆受压力增大C. 绳的拉力不变,BC 杆受压力减小D. 绳的拉力不变,BC 杆受压力不变思路分析:选取滑轮为研究对象,对其受力分析,如图所示。
绳中的弹力大小相等,即T 1=T 2=G ,T 1、T 2、F 三力平衡,将三个力的示意图平移可以组成封闭三角形,如图中虚线所示,设AC段绳子与竖直墙壁间的夹角为θ,则根据几何知识可得,杆对绳子的支持力F =2G sin θ2,当绳的A 端沿墙向下移时,θ增大,F 也增大,根据牛顿第三定律,BC 杆受压力增大。
图中,矢量三角形与几何三角形ABC 相似,因此F mg BC AB ,解得F =AB BC ·mg ,当绳的A 端沿墙向下移,再次平衡时,AB 长度变短,而BC 长度不变,F 变大,根据牛顿第三定律,BC 杆受压力增大。
例题2 如图所示,固定在竖直平面内的光滑圆环的最高点处有一个光滑的小孔,质量为m 的小球套在圆环上,一根细线的下端拴着小球,上端穿过小孔用手拉住。
现拉动细线,使小球沿圆环缓慢上移,在移动过程中,手对线的拉力F 和轨道对小球的弹力N 的大小的变化情况是( )A. F 大小将不变B. F 大小将增大C. N 大小将不变D. N 大小将增大对小球受力分析,其受到竖直向下的重力G ,圆环对小球的弹力N 和线的拉力F 作用,小球处于平衡状态,G 大小方向恒定,N 和F 方向不断在变化,如图所示,可知矢量三角形AGF 1与长度三角形BOA 相似,得出:ABF OA N OBG 1==,又因为在移动过程中,OA 与OB 的长度不变,而AB 长度变短,所以N 不变,F 1变小,即F 变小,故C 选项正确。
动态平衡的相似三角形法应用条件
动态平衡的相似三角形法应用条件说到“动态平衡的相似三角形法”,嘿,这听起来是不是有点高深?别急,我来给你捋捋,保证你能听懂。
这可不是啥数学怪物,要知道,它的原理和我们平常生活中那些常见的平衡场景有着千丝万缕的联系。
你知道平衡有多重要吧?走路得平衡,吃饭得平衡,连玩游戏也得平衡。
说白了,平衡就像是我们生活中的“隐形英雄”,它默默支撑着我们的一切运转。
所以,动态平衡嘛,就是在一个系统中,各种力、各种因素之间的一种“合拍”状态,哪一方都不能太强势,也不能太弱势,得保持个“和谐”。
而相似三角形法呢,它就像一把“万能钥匙”,能帮我们更好地理解这些平衡关系。
你能想象一下,生活中那些看似很复杂的力学问题,竟然通过这些简单的三角形就能迎刃而解,真是既神奇又酷炫!好了,不扯这些有的没的了,我们来看看这相似三角形法到底是咋回事。
其实它的核心原理非常简单,就像是画图时我们会通过几何图形来帮助自己更好理解事物一样。
在动态平衡问题中,往往有各种各样的力量在作用。
这些力之间不是随便就能随意组合的,必须满足某些条件,才能做到力与力之间的“天衣无缝”。
这种情况,咱们就可以通过画出相似三角形来搞清楚它们之间的关系。
这三角形有啥魔力呢?它的每个角、每条边都代表着某种力的大小或者方向,而这些相似三角形的特点,就是它们的角相等,边成比例。
你听着,虽然是三角形,但它的作用可是“无敌”的,搞定了力学问题,解决问题的效率也大大提高,简直让人觉得爽快!不过,想要用相似三角形法来分析动态平衡问题,得有个前提条件,那就是力系统必须满足一定的要求。
得保证这个系统是稳定的。
你想啊,如果系统不稳定,那相似三角形根本没法派上用场,完全是浪费时间。
再有,力的作用点得分布合理。
咱们常说“上天入地”,就是指力的作用不能不合时宜。
要是力量方向不对劲,想通过相似三角形来解决问题,基本就像拿着不合适的工具敲钉子,根本就解决不了啥问题。
所有的力要能够通过某些方式达到平衡。
五动态平衡与相似三角形典例分析
五、动态平衡分析(一)共点力的平衡1.共点力:物体受到的各力的作用线或作用线的延长线能相交于一点的力.2.平衡状态:在共点力的作用下,物体处于静止或匀速直线运动的状态.3.共点力作用下物体的平衡条件:合力为零,即=合F 0.4.力的平衡:作用在物体上几个力的合力为零,这种情形叫做力的平衡.(1)若处于平衡状态的物体仅受两个力作用,这两个力一定大小相等、方向相反、作用在一条直线上,即二力平衡.(2)若处于平衡状态的物体受三个力作用,则这三个力中的任意两个力的合力一定与另一个力大小相等、方向相反、作用在一条直线上.(3)若处于平衡状态的物体受到三个或三个以上的力的作用,则宜用正交分解法处理,此时的平衡方程可写成:⎩⎨⎧=∑=∑00yx F F (二)物体的动态平衡问题物体在几个力的共同作用下处于平衡状态,如果其中的某个力(或某几个力)的大小或方向,发生变化时,物体受到的其它力也会随之发生变化,如果在变化的过程中物体仍能保持平衡状态,我们就可以依据平衡条件,分析出物体受到的各力的变化情况。
分析方法:(1)矢量三角形法①如果物体在三个力作用下处于平衡状态,其中只有一个力的大小和方向发生变化,而另外两个力中,一个大小、方向均不变化;一个只有大小变化,方向不发生变化的情况。
②如果物体在三个力作用下处于平衡状态,其中一个力的大小和方向发生变化时,物体受到的另外两个力中只有一个大小和方向保持不变,另一个力的大小和方向也会发生变化的情况下,考虑三角形的相似关系。
(三)例题与习题:1.如图所示,小球用细绳系住放在倾角为 的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将:A.逐渐变大B.逐渐变小C.先增大后减小D.先减小后增大O ABCDθ2.光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图所示。
现缓慢的拉绳,在小球沿球面由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化情况是:A.N 变大,T 变小B.N 变小,T 变大C.N 变小,T 先变大后变小D.N 不变,T 变小(四)警示易错试题警示1::注意“死节”和“活节”问题。
(完整版)高中物理解决动态平衡问题的五种方法(带答案)
第03讲 解决动态平衡问题的五种方法通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。
解决此类问题的基本思路是化“动”为“静”,“静”中求“动”,具体有以下三种方法:(一)解析法 对研究对象进行受力分析,先画出受力示意图,再根据物体的平衡条件列式求解,得到因变量与自变量的一般函数表达式,最后根据自变量的变化确定因变量的变化。
(二)结论法 若合力不变,两等大分力夹角变大,则分力变大.若分力大小不变,两等大分力夹角变大,则合力变小.1、粗细均匀的电线架在A 、B 两根电线杆之间。
由于热胀冷缩,电线在夏、冬两季呈现如图所示的两种形状,若电线杆始终处于竖直状态,下列说法中正确的是( )A .冬季,电线对电线杆的拉力较大B .夏季,电线对电线杆的拉力较大C .夏季与冬季,电线对电线杆的拉力一样大D .夏季,电线杆对地面的压力较大2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲),然后身体下移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉力F T (两个拉力大小相等)及它们的合力F 的大小变化情况为( )A .F T 减小,F 不变B .F T 增大,F 不变C .F T 增大,F 减小D .F T 增大,F 增大3、如图所示,硬杆BC 一端固定在墙上的B 点,另一端装有滑轮C ,重物D用绳拴住通过滑轮固定于墙上的A 点。
若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A 点稍向下移,则在移动过程中( ) A.绳的拉力、滑轮对绳的作用力都增大 B.绳的拉力减小,滑轮对绳的作用力增大C.绳的拉力不变,滑轮对绳的作用力增大D.绳的拉力、滑轮对绳的作用力都不变A CB(三)图解法此法常用于求解三力平衡且有一个力是恒力、另有一个力方向不变的问题。
一般按照以下流程解题。
1、如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将()A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大2、半圆柱体P放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN.在半圆柱体P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于平衡状态,如图所示是这个装置的截面图.现使MN保持竖直并且缓慢地向右平移,在Q滑落到地面之前,发现P始终保持静止.则在此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.P对Q的弹力逐渐增大C.地面对P的摩擦力逐渐增大D.Q所受的合力逐渐增大3、如图所示,挡板固定在斜面上,滑块m在斜面上,上表面呈弧形且左端最薄,球M搁在挡板与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑块均静止。
相似三角形法 解决动态平衡问题
相似三角形法 解决动态平衡问题 首先选定研究对象,先正确分析物体的受力,画出受力分析图,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化转化为三角形边长的大小变化问题进行讨论。
例题1 如图所示,杆BC 的B 端铰接在竖直墙上,另一端C 为一滑轮,重力为G 的重物上系一绳经过滑轮固定于墙上A 点处,杆恰好平衡,若将绳的A 端沿墙向下移,再使之平衡(BC 杆、滑轮、绳的质量及摩擦均不计),则( )A. 绳的拉力增大,BC 杆受压力增大B. 绳的拉力不变,BC 杆受压力增大C. 绳的拉力不变,BC 杆受压力减小D. 绳的拉力不变,BC 杆受压力不变思路分析:选取滑轮为研究对象,对其受力分析,如图所示。
绳中的弹力大小相等,即T 1=T 2=G ,T 1、T 2、F 三力平衡,将三个力的示意图平移可以组成封闭三角形,如图中虚线所示,设AC 段绳子与竖直墙壁间的夹角为θ,则根据几何知识可得,杆对绳子的支持力F =2G sin θ2,当绳的A 端沿墙向下移时,θ增大,F 也增大,根据牛顿第三定律,BC 杆受压力增大。
图中,矢量三角形与几何三角形ABC 相似,因此F mg BC AB =,解得F =ABBC ·mg ,当绳的A 端沿墙向下移,再次平衡时,AB 长度变短,而BC 长度不变,F 变大,根据牛顿第三定律,BC 杆受压力增大。
例题2 如图所示,固定在竖直平面内的光滑圆环的最高点处有一个光滑的小孔,质量为m 的小球套在圆环上,一根细线的下端拴着小球,上端穿过小孔用手拉住。
现拉动细线,使小球沿圆环缓慢上移,在移动过程中,手对线的拉力F 和轨道对小球的弹力N 的大小的变化情况是( )A. F 大小将不变B. F 大小将增大C. N 大小将不变D. N 大小将增大对小球受力分析,其受到竖直向下的重力G ,圆环对小球的弹力N 和线的拉力F 作用,小球处于平衡状态,G 大小方向恒定,N 和F 方向不断在变化,如图所示,可知矢量三角形AGF 1与长度三角形BOA 相似,得出:ABF OA N OBG 1==,又因为在移动过程中,OA 与OB 的长度不变,而AB 长度变短,所以N 不变,F 1变小,即F 变小,故C选项正确。
相似三角形法分析动态平衡问题
静力学解题方法2——相似三角形法(非常好的方法,仔细分析例题,静力学受力分析三大方法之一)(1)相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。
(2)往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生变化,则此时用相似三角形分析。
相似三角形法是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。
例1、半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( )A 、N 变大,T 变小B 、N 变小,T 变大C 、N 变小,T 先变小后变大D 、N 不变,T 变小解析:如图1-2所示,对小球:受力平衡,由于缓慢地拉绳,所以小球运动缓慢视为始终处于平衡状态,其中重力mg 不变,支持力N ,绳子的拉力T 一直在改变,但是总形成封闭的动态三角形(图1-2中小阴影三角形)。
由于在这个三角形中有四个变量:支持力N 的大小和方向、绳子的拉力T 的大小和方向,所以还要利用其它条件。
实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图1-2中大阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式:RNR h mg L T =+= 可得:mg Rh LT +=运动过程中L 变小,T 变小。
mg Rh RN +=运动中各量均为定值,支持力N 不变。
正确答案D 。
例2、如图2-1所示,竖直绝缘墙壁上的Q 处由一固定的质点A ,在Q 的正上方的P 点用细线悬挂一质点B ,A 、B 两点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的电量逐渐减小,在电荷漏空之前悬线对悬点P 的拉力T 大小( )A 、T 变小B 、T 变大C 、T 不变D 、T 无法确定解析:有漏电现象,AB F 减小,则漏电瞬间质点B 的静止状态被打破,必定向下运动。
相似三角形解平衡问题
①先把除重力外的另两个力合成,构成平行四边形 ②寻找其中一个三角形,为矢量三角形 ③再构建一个几何三角形,与矢量三角形相似 ④对应边比例相等列方程求解
创新微课
同学,下节再见
创新微课 现在开始
相似三角形解平衡问题
相似三角形解平衡问题
力
的
动
态
平
衡
问
相似三角形法
题
之
相
似
三
角
形
创新微课
三个力,其中一个力为恒力,另两个力 的大小和方向均发生变化,则此时用相 似三角形分析
正确作出力的三角形后,如能判定力的 三角形与图形中已知长度的三角形(几 何三角形)相似,则可用相似三角形对 应边成比例求出三角形中力的比例关系, 从而达到求未知量的目的
相似三角形解平衡问题
创新微课
例题: 如图示半径为r,表面光滑的半球体被固定在水平地面上,跨过无摩擦的定滑
轮,用一根轻绳下挂一个质量为m的小球,将小球置于半球体光滑的表面上,并使定
滑轮位于半球体的正上方,现用力F斜左向下拉绳的自由端,使小球沿光滑半球面缓
慢向上滑动。在此过程中,半球体对小球的支持力FN 和绳子的拉力F的变此情况。
分析与解:
根据平衡的特点,由力的几何结构可知:(L为滑轮到小球的
长度)
即
G FN F hr r l
F l G hr
FN
rG hr
则小球沿光滑半球面缓慢向上滑动过程中,半球体对小球的支持力FN 不变, 绳子的拉力F不断减小。
一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重
物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形法分析动态平衡问题(1)相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。
(2)往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生变化,则此时用相似三角形分析。
相似三角形法是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。
例1、半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( )A 、N 变大,T 变小B 、N 变小,T 变大C 、N 变小,T 先变小后变大D 、N 不变,T 变小解析:如图1-2所示,对小球:受力平衡,由于缓慢地拉绳,所以小球运动缓慢视为始终处于平衡状态,其中重力mg 不变,支持力N ,绳子的拉力T 一直在改变,但是总形成封闭的动态三角形(图1-2中小阴影三角形)。
由于在这个三角形中有四个变量:支持力N 的大小和方向、绳子的拉力T 的大小和方向,所以还要利用其它条件。
实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图1-2中大阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式:RNR h mg L T =+= 可得:mg Rh LT +=运动过程中L 变小,T 变小。
mg Rh RN +=运动中各量均为定值,支持力N 不变。
正确答案D 。
例2、如图2-1所示,竖直绝缘墙壁上的Q 处由一固定的质点A ,在Q 的正上方的P 点用细线悬挂一质点B ,A 、B 两点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的电量逐渐减小,在电荷漏空之前悬线对悬点P 的拉力T 大小( ) A 、T 变小B 、T 变大C 、T 不变D 、T 无法确定解析:有漏电现象,AB F 减小,则漏电瞬间质点B 的静止状态被打破,必定向下运动。
对小球漏电前和漏电过程中进行受力分析有如图2-2所示,由于漏电过程缓慢进行,则任意时刻均可视为平衡状态。
三力作用构成动态下的封闭三角形,而对应的实物质点A 、B 及绳墙和P 点构成动态封闭三角形,且有如图2-3不同位置时阴影三角形的相似情况,则有如下相似比例:ABFPB T PQ mg AB == 可得:mg PQPBT ⋅=变化过程PB 、PQ 、mg 均为定值,所以T 不变。
正确答案C 。
以上两例题均通过相似关系求解,相对平衡关系求解要直观、简洁得多,有些问题也可以直接通过图示关系得出结论。
巩固练习:1、如图所示,两球A 、B 用劲度系数为k 1的轻弹簧相连,球B 用长为L 的细绳悬于O 点,球A 固定在O 点正下方,且点O 、A 之间的距离恰为L ,系统平衡时绳子所受的拉力为F 1.现把A 、B 间的弹簧换成劲度系数为k 2的轻弹簧,仍使系统平衡,此时绳子所受的拉力为F 2,则F 1与F 2的大小之间的关系为( B ) A .F 1>F 2 B .F 1=F 2 C .F 1<F 2 D .无法确定2、如图甲所示,AC 是上端带定滑轮的固定竖直杆,质量不计的轻杆BC 一端通过铰链固定在C 点,另一端B 悬挂一重为G 的重物,且B 端系有一根轻绳并绕过定滑轮A.现用力F 拉绳,开始时∠BCA >90°,使∠BCA 缓慢减小,直到杆BC 接近竖直杆AC.此过程中,杆BC 所受的力( A ) A .大小不变 B .逐渐增大 C .逐渐减小 D .先增大后减小3、如图.所示,有两个带有等量的同种电荷的小球A 和B ,质量都是m ,分别悬于长为L 的悬线的一端。
今使B 球固定不动,并使OB 在竖直立向上,A 可以在竖直平面内自由摆动,由于静电斥力的作用,A 球偏离B 球的距离为x 。
如果其它条件不变,A 球的质量要增大到原来的几倍,才会使AB 两球的距离缩短为2x 。
陷阱题--相似对比题1、如图所示,硬杆BC 一端固定在墙上的B 点,另一端装有滑轮C ,重物D 用绳拴住通过滑轮固定于墙上的A 点。
若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A 点稍向下移,则在移动过程中( C )A.绳的拉力、滑轮对绳的作用力都增大B.绳的拉力减小,滑轮对绳的作用力增大C.绳的拉力不变,滑轮对绳的作用力增大D.绳的拉力、滑轮对绳的作用力都不变2、如图所示,竖直杆CB 顶端有光滑轻质滑轮,轻质杆OA 自重不计,可绕O 点自由转动 OA =OB .当绳缓慢放下,使∠AOB 由00逐渐增大到1800的过程中(不包括00和180°.下 列说法正确的是( C D )A .绳上的拉力先逐渐增大后逐渐减小B .杆上的压力先逐渐减小后逐渐增大C .绳上的拉力越来越大,但不超过2GD .杆上的压力大小始终等于G3、如图所示,质量不计的定滑轮用轻绳悬挂在B 点,另一条轻绳一端系重物C ,绕过滑轮后,另一端固定在墙上A 点,若改变B 点位置使滑轮位置发生移动,但使A 段绳子始终保持水平,则可以判断悬点B 所受拉力F T 的大小变化情况是( B ) A .若B 向左移,F T 将增大 B .若B 向右移,F T 将增大C .无论B 向左、向右移,F T 都保持不变D .无论B 向左、向右移,F T 都减小例3 如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。
今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?OL L AX BACB β α图1-1图1-2βαG F 1 F 2 F 1GF 2图1-3解析:取球为研究对象,如图1-2所示,球受重力G、斜面支持力F1、挡板支持力F2。
因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。
F1的方向不变,但方向不变,始终与斜面垂直。
F2的大小、方向均改变,随着挡板逆时针转动时,F2的方向也逆时针转动,动态矢量三角形图1-3中一画出的一系列虚线表示变化的F2。
由此可知,F2先减小后增大,F1随 增大而始终减小。
例4所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m,斜面倾角为θ,向右缓慢推动斜面,直到细线与斜面平行,在这个过程中,绳上张力、斜面对小球的支持力的变化情况?(答案:绳上张力减小,斜面对小球的支持力增大)例5.一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图2-1所示。
现将细绳缓慢往左拉,使杆BO与杆A O间的夹角θ逐渐减少,则在此过程中,拉力F及杆BO所受压力F N的大小变化情况是( )A.F N先减小,后增大 B.F N始终不变C.F先减小,后增大 D.F始终不变图2-1图2-2图1-4解析:取BO 杆的B 端为研究对象,受到绳子拉力(大小为F )、BO 杆的支持力F N 和悬挂重物的绳子的拉力(大小为G )的作用,将F N 与G 合成,其合力与F 等值反向,如图2-2所示,将三个力矢量构成封闭的三角形(如图中画斜线部分),力的三角形与几何三角形OBA 相似,利用相似三角形对应边成比例可得:(如图2-2所示,设AO 高为H ,BO 长为L ,绳长l ,)lF L F HG N ==,式中G 、H 、L 均不变,l 逐渐变小,所以可知F N 不变,F 逐渐变小。
正确答案为选项B例6:如图2-3所示,光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A 到半球的顶点B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化情况是( D )。
(A)N 变大,T 变小,(B)N 变小,T 变大(C)N 变小,T 先变小后变大 (D)N 不变,T 变小例7、如图3-1所示,物体G 用两根绳子悬挂,开始时绳OA 水平,现将两绳同时顺时针转过90°,且保持两绳之间的夹角α不变)90(0>α,物体保持静止状态,在旋转过程中,设绳OA 的拉力为F 1,绳OB 的拉力为F 2,则( )。
(A)F 1先减小后增大(B)F 1先增大后减小 (C)F 2逐渐减小 (D)F 2最终变为零解析:取绳子结点O 为研究对角,受到三根绳的拉力,如图3-2所示分别为F 1、F 2、F 3,将三力构成矢量三角形(如图3-3所示的实线三角形CDE),需满足力F 3大小、方向不变,角∠ CDE 不变(因为角α不变),由于角∠DCE 为直角,则三力的几何关系可以从以DE 边为直径的圆中找,则动态矢量三角形如图3-3中一画出的一系列虚线表示的三角形。
由此可知,F 1先增大后减小,F 2随始终减小,且转过90°时,当好为零。
图3-1图3-2 图3-3图2-3正确答案选项为B 、C 、D例8如图3-4所示,在做“验证力的平行四边形定则”的实验时,用M 、N 两个测力计通过细线拉橡皮条的结点,使其到达O 点,此时α+β= 90°.然后保持M 的读数不变,而使α角减小,为保持结点位置不变,可采用的办法是( A )。
(A)减小N 的读数同时减小β角 (B)减小N 的读数同时增大β角 (C)增大N 的读数同时增大β角(D)增大N 的读数同时减小β角例9.如图4-1所示,在水平天花板与竖直墙壁间,通过不计质量的柔软绳子和光滑的轻小滑轮悬挂重物G =40N ,绳长L =2.5m ,OA =1.5m ,求绳中张力的大小,并讨论: (1)当B 点位置固定,A 端缓慢左移时,绳中张力如何变化? (2)当A 点位置固定,B 端缓慢下移时,绳中张力又如何变化?解析:取绳子c 点为研究对角,受到三根绳的拉力,如图4-2所示分别为F 1、F 2、F 3,延长绳AO 交竖直墙于D 点,由于是同一根轻绳,可得:21F F =,BC 长度等于CD ,AD 长度等于绳长。
设角∠OAD 为θ;根据三个力平衡可得:θsin 21GF =;在三角形AOD 中可知,ADOD=θsin 。
如果A 端左移,AD 变为如图4-3中虚线A ′D ′所示,可知A ′D ′不变,OD ′减小,θsin 减小,F 1变大。
如果B 端下移,BC 变为如图4-4虚线B ′C ′所示,可知AD 、OD 不变,θsin 不变,F 1不变。