核医学成像
影像医学与核医学
影像医学与核医学影像医学和核医学是现代医学领域中重要的子学科,它们通过不同的技术手段,帮助医生进行疾病诊断、治疗方案的选择以及治疗效果的评估。
本文将分别介绍影像医学和核医学的基本概念、常用技术以及在临床实践中的应用。
一、影像医学影像医学是利用不同的成像技术来获取内部结构和功能信息的医学分支。
通过获取人体内部的影像图像,医生们可以更加清晰地观察和识别疾病的存在,从而制定相应的诊断和治疗方案。
1. X射线成像X射线成像是最常用的影像学技术之一。
通过将X射线穿过患者的身体部位,通过不同组织对X射线的吸收程度不同来生成一幅黑白图像。
X射线可以用于检测骨骼和某些软组织的异常,如肺部肿瘤、骨折等。
2. CT扫描CT扫描是以X射线成像为基础的一种影像学技术。
它通过多个方向的X射线成像来获得横断面图像,并利用计算机重建出一个三维的图像。
CT扫描可以用于检测和诊断内脏、血管、肿瘤等病变。
3. MRI成像MRI(磁共振成像)是一种利用磁场和无损探测的成像技术。
它通过对人体内的水分子进行强磁场的作用,生成信号,并通过计算机转化为图像。
MRI可以提供更加详细的解剖信息,尤其适用于观察软组织的异常和病变,如脑、脊柱等。
4. 超声成像超声成像是利用声波传播的原理生成图像,无需使用放射性物质或磁场。
通过超声的回波来构建人体内部的图像。
超声成像广泛应用于妇产科、心脏病学等领域,对血管和腹腔内脏有着良好的分辨率。
二、核医学核医学是利用放射性同位素标记的药物来诊断和治疗疾病的一门学科。
核医学通过标记药物中的放射性同位素,使其在人体内发出放射线,进而利用相应的探测器来记录并生成图像,从而获取人体内部的功能信息。
1. 放射性同位素核医学所使用的放射性同位素通常有碘、锶、锝等元素,它们可以以不同的化合物形式注入到人体内部。
这些放射性药物的活性会在体内特定的器官或组织中积累,通过探测器记录下放射线的分布情况,即可生成图像。
2. 单光子发射计算机断层摄影(SPECT)SPECT是核医学中常用的成像技术之一。
核医学成像原理及设备课件
多模态成像技术
总结词
多模态成像技术是核医学成像的另一个重要 发展趋势,通过结合多种成像模式,能够提 供更全面的医学信息,有助于医生更全面地 了解患者的病情。
详细描述
多模态成像技术是利用多种成像模式进行医 学影像获取的方法。这种技术能够结合不同 模式的成像特点,提供更全面的医学信息, 有助于医生更全面地了解患者的病情,提高
和医学影像技术的不断发展,分子成像技术在核医学成像中的应用将越来越广泛。
06 核医学成像设备安全与防 护
辐射防护原则
辐射防护三原则
防护、隔离、减量。
辐射防护最优化
在满足诊断和治疗效果的前提下,尽量减少患者 和医务人员的辐射剂量。
剂量限值
根据不同人群和不同照射情况,设定合理的剂量 限值,确保辐射安全。
肿瘤治疗
核医学成像设备还可以用于肿瘤 的治疗,如放射性碘治疗甲状腺 癌、骨转移瘤的放射性核素治疗 等。
心血管疾病诊断
冠心病诊断
核医学成像技术可以检测心肌缺血和 心肌梗死,通过心肌灌注显像和代谢 显像等方法,评估心脏功能和诊断冠 心病。
心功能评估
核医学成像设备可以评估心脏功能, 通过放射性核素心室造影等技术,测 定心脏射血分数等指标,了解心脏的 收缩和舒张功能。
规定。
个人剂量监测
为医务人员配备个人剂量计,实时 监测和记录个人辐射剂量,保障医 务人员健康。
环境辐射监测
对核医学成像设备周围的环境进行 辐射监测,确保环境安全。
THANKS FOR WATCHING
感谢您的观看
核医学成像的优点
无创、无痛、无辐射,能 够提供人体生理和病理过 程的详细信息。
核医学成像的应用
在肿瘤、心血管、神经系 统等领域具有广泛的应用 价值。
核医学成像课件
核磁共振成像(MRI)
总结词
一种无辐射的成像技术
详细描述
利用磁场和射频脉冲使人体内的氢原子发生共振,从而产生信号并形成图像,主要用于脑部、关节和软组织疾病 的诊断。
X射线计算机断层成像(CT)
总结词
一种结构成像技术
详细描述
通过X射线扫描人体并利用计算机重建断层图像,能够清晰显示人体内部结构,广泛应用于肿瘤、骨 折和肺部疾病的诊断。
成本高
核医学成像技术通常需要昂贵 的设备和专业的技术人员,导
致其成本相对较高。
时间延迟
由于放射性物质的半衰期较长 ,核医学成像可能需要等待一
段时间才能获取图像。
空间分辨率有限
相对于其他医学成像技术,如 MRI和CT,核医学成像的空间
分辨率可能较低。
05 核医学成像的未来发展
技术创新与进步
新型探测器技术
核医学成像的分类
单光子发射计算机断层成像(SPECT)
利用单光子发射的射线进行成像,常用于心血管和脑部显像。
正电子发射断层成像(PET)
利用正电子发射的射线进行成像,具有高灵敏度和特异性的优点,常用于肿瘤、神经系统 和心血管疾病的诊断。
核磁共振成像(MRI)
利用磁场和射频脉冲对组织进行检测,能够提供高分辨率和高对比度的图像,常用于脑部 、关节和肌肉等软组织的显像。
核医学成像技术利用放射性核素发出的射线与人体组织相互 作用,产生信号并被显像仪器接收,经过处理后形成图像。
核医学成像的原理
01
放射性核素发出的射线与人体组 织中的原子相互作用,产生散射 和吸收,这些相互作用导致能量 损失和方向改变。
02
显像仪器通过测量这些散射和吸 收的射线,并利用计算机技术重 建图像,显示出人体内部结构和 功能。
第十三章 核医学成像理论
(一)名词解释1.放射性核素2.同质异能素3.γ照相机4.静态采集5.电子准直6.衰减校正7.随机符合计数8.图像融合(二)填空题1.放射性核衰变方式有、、、、和。
2.放射性活度是描述的一个物理量,表示单位时间内放射性核素发生核衰变的。
国际单位: ,用符号表示,表示每秒内发生一次核衰变。
3.脏器和组织显像的基本原理是利用放射性核素的 ;不同的放射性核素显像剂在体内有其特殊的靶向分布和代谢规律,能够聚集在特定的脏器、靶组织,使其与邻近组织之间的放射性分布形成一定程度的浓度差,从而在体外显示出脏器、组织的形态、位置、大小和脏器功能及某些分子变化。
4.γ照相机是一种核医学最基本的成像设备,主要由、、及一些辅助设备组成。
是γ相机的核心,主要由准直器、晶体、光电倍增管构成,具有的功能。
5.Y照相机可以完成各种脏器的显像、显像和显像。
6.SPECT的图像采集模式包括、,完成计数率较高的静态采集或高剂量动态采集多采用。
7.SPECT扫描时,探头的旋转轨迹有、、、,个体差异的探头运动轨迹保证了SPECT系统具有良好的和。
8.PET心脏显像信息采集多使用,消除心脏运动对采集的影响。
9.图像融合由、和三个过程,其中关键是。
10.PET/CT是采用对PET图像进行衰减校正;PET/MRI采用的衰减校正包括和。
(三)单项选择题【A1型题】1.原子核是由以下哪些粒子组成的A.质子和核外负电子B.质子和正电子C.质子和中子D.中子和电子E.光子和电子2.在射线能量数值相同的情况下内照射危害最大的是A.α射线照射B.γ射线照射C.β射线照射D.γ和β射线混合照射E.γ和α射线混合照射3.原子核发生电子俘获后A.质子数减少2,质量数减少4,放出α射线B.质子数增加1,质量数不变,放出β-射线和反中微子C.质子数减少1,质量数不变,放出β+射线和中微子D.质子数减少1,质量数不变,放出中微子,同时释放出特征X射线和俄歇电子E.质子数和质量数不变,放出γ射线4.某放射性物质初始的放射性活度为A0,放置18小时后测得的放射性活度为A18,则该放射性物质的半衰期为A.1/2A0B.1/2A18C.181n2・ln(A0/A18)D.181n2/ln(A0/A18)E.181n2・ln(A18/A0)5.不是放射性核素示踪技术主要特点的是A.灵敏度高B.方法相对简便、准确性较好C.合乎生理条件D.定性、定量与定位研究相结合E.具有较大辐射效应6.放射性核素示踪技术所采用的示踪剂是A.糖B.蛋白质C.化合物D.多肽E.放射性核素或由其标记的化合物7.99m Tc-MDP骨显像中显像剂被脏器或组织选择性聚集的机制是A.薄晶体可提高γ照相机的探测效率B.薄晶体也可提高γ照相机的分辨率C.高能射线适合用薄晶体D.低能射线适合用厚晶体E.晶体的功能是光电转换8.关于γ照相机晶体,描述正确的是A.离子交换和化学吸附B.细胞吞噬C.合成代谢D.特异性结合E.通透弥散9.针孔准直器的特点是A.缩小准直器与器官的距离,图像可放大B.缩小准直器与器官的距离,图像可缩小C.增加准直器与器官的距离,图像可放大D.增加准直器与器官的距离,图像大小不变E.图像大小与准直器距离无关10.平行孔准直器与图像质量的关系A.孔径越大,灵敏度越差,而分辨率越好B.孔径越大,灵敏度越好,而分辨率越差C.孔径越小,灵敏度越好,而分辨率越差D.孔径越大,灵敏度越差,而分辨率越差E.孔径大小与灵敏度、分辨率无密切关系11.γ照相机最适宜的γ射线能量为A.40~80keVB.100~250keVC.300~400keVD.364keVE.511keV12.在动态采集时,选用较小矩阵的目的是A.提高采集速度B.提高图像分辨率C.使脏器放大D.增加放射性活度E.提高检测的敏感性13.固有能量分辨率A.半高宽与峰值处能量的和表示B.半高宽与峰值处能量的积表示C.半高宽与峰值处能量的平方和表示D.半高宽与峰值处能量的平方根表示E.半高宽与峰值处能量的百分比表示14.有关计数率特征的描述,不正确的是A.当视野中活度较低时,γ相机计数率随活度的增加而增加B.当活度增加到一定值时,计数率开始随活度的增加保持不变C.计数率特征是描述计数率随活度的变化特征D.由最大观察计数率、20%丢失时观察计数率及观察计数率随活度的变化曲线表示E.计数率特征分固有(无准直器,源在空气中)计数率特征和有散射系统(有准直器,源在水中)计数率特征两种情况15.有关系统平面灵敏度的描述,不正确的是A.描述探头对源的响应能力B.指某一探头对特定点源的灵敏度C.用单位活度在单位时间内的计数表示D.系统平面灵敏度也称灵敏度E.与准直器的类型、窗宽、源的种类及形状有关16.心肌灌注显像经计算机处理得到短轴、垂直长轴和水平长轴图像,称为哪种显像方式A.平面显像B.阳性显像C.全身显像D.断层显像E.动态显像17.有关探头屏蔽性能的描述,不正确的是A.描述探头对视野之外的蔽能力B.对患者本身FOV之外放射性的屏蔽:用于探头平面垂直距离为20cm 点源,在距探头FOV边缘前后10cm、20cm、30cm的最大屏蔽计数与在FOV中心处计数率的百分比表示C.对周围环境放射性的屏蔽:将点源置于距探头中心lm,距探头两侧及前后2m处。
临床医学核医学成像医学影像技术
临床医学核医学成像医学影像技术xx年xx月xx日CATALOGUE 目录•临床医学核医学成像技术总览•核医学成像技术基础•临床核医学成像技术细分领域•核医学成像技术在临床实践中的案例分析•展望未来:核医学成像技术的临床应用前景与挑战01临床医学核医学成像技术总览核医学成像技术是一种利用核素示踪技术和现代医学影像设备,对机体组织结构和功能进行显像的技术。
核医学成像技术定义具有灵敏度高、特异性好、可进行功能显像等优势,为临床医学诊断提供了重要手段。
核医学成像技术特点核医学成像技术的定义与特点1核医学成像技术在临床医学中的应用23利用核医学成像技术检测肿瘤标志物、肿瘤细胞代谢等,有助于早期发现肿瘤并判断其恶性程度。
肿瘤诊断通过核医学成像技术评估心脏功能、检测冠心病、心肌梗死等疾病,具有较高的诊断价值。
心血管疾病如骨龄测定、甲状腺疾病、肾功能评估等,为临床医生提供可靠的诊断依据。
其他领域发展趋势随着科技的不断进步,核医学成像技术将朝着更高效、更安全、更便捷的方向发展。
挑战核医学成像技术仍面临一些挑战,如设备成本高、操作复杂、对工作人员要求高等。
此外,放射性污染和辐射防护问题也需要得到更好的关注和处理。
核医学成像技术的发展趋势与挑战02核医学成像技术基础同位素衰变同位素发射出粒子和射线,这些粒子和射线被探测器捕获并形成图像。
核磁共振利用强磁场和射频脉冲使原子核自旋能级跃迁,检测产生的信号并形成图像。
核医学成像的基本原理通过探测放射性同位素发出的γ射线,形成平面图像。
γ相机利用γ相机进行三维成像,可观察放射性示踪剂在体内的分布情况。
SPECT利用正电子发射示踪剂,通过探测器进行三维成像,可观察生物分子代谢和功能情况。
PET 核医学成像的常用设备与仪器核医学成像的常用示踪剂与药物18F-FDG葡萄糖类似物,用于PET成像,观察肿瘤、神经系统病变等。
11C-choline用于观察前列腺癌、肺癌等恶性肿瘤的病变情况。
MRI 磁共振成像
MRI也就是磁共振成像,英文全称是:Magnetic Resonance Imaging。
经常为人们所利用的原子核有:1H、11B、13C、17O、19F、31P。
在这项技术诞生之初曾被称为核磁共振成像,到了20世纪80年代初,作为医学新技术的NMR成像(NMR Imaging)一词越来越为公众所熟悉。
随着大磁体的安装,有人开始担心字母“N”可能会对磁共振成像的发展产生负面影响。
另外,“nuclear”一词还容易使医院工作人员对磁共振室产生另一个核医学科的联想。
因此,为了突出这一检查技术不产生电离辐射的优点,同时与使用放射性元素的核医学相区别,放射学家和设备制造商均同意把“核磁共振成像术”简称为“磁共振成像(MRI)”。
MRI用于影像诊断已经有20多年,作为一种无辐射、低(非)侵袭的检查设备在国内已经相当普及。
由于其需要使用很强的磁场和射频脉冲(RF),因此相应方面的影响也必须考虑,特别是近年随着3T-MR设备使用数量增加,更显示出对其安全性进行重新验证的必要性。
Ⅰ、有关静磁场和RF的安全管理MR检查时,从安全角度必须考虑静磁场、RF、梯度磁场、以及噪音的影响。
特别是近年高场强、高性能MR设备出现,要求比以往更加重视静磁场和RF对人体影响的安全管理。
1、关于静磁场的安全管理3T-MR对磁性体吸引力的增大成为安全管理上的大问题。
屏蔽技术的进步使3T-MR磁场漏泄范围与1.5TMR相比几乎没有差别,但这也使得机架开口部磁场强度急剧衰减,也就是说与1.5T时相比,机架开口部磁场梯度更陡。
对磁性体的吸引力与该磁性体质量和磁场强度、磁场梯度有很大关系,质量越大或磁场梯度变化越陡急,则对磁性体的吸引力越大,这点必须引起足够注意。
1-1、体外金属的安全管理与放射线相比,MRI中使用的强磁场相对安全,但绝不是说不会发生来自MRI 方面的事故。
据此观点,MRI属于低侵袭检查,但不能说是安全检查。
MRI安全管理中最基本的是绝对禁止持剪刀、手术刀、镊子、听诊器等磁性医疗器械进入检查室,以及将医用氧气瓶、监测装置(如心电图机、血压计、呼吸机)、输液泵等可移动医疗器械送入检查室,接送患者的担架、轮椅车如果不是MRI室专用的非磁性材料制成,也绝对不要进入。
核医学影像诊断技术和其他影像学相比,优势在哪里?
核医学影像诊断技术和其他影像学相比,优势在哪里?核医学的成像取决于脏器或组织的血流、细胞功能、细胞数量、代谢活跃程度和排泄引流等因素,是一种功能代谢显像,引入的放射性示踪剂具有与人体内天然的新陈代谢物质相同的生理生化特征,借此可了解人体器官的功能、生理生化、代谢与基因表达等方面的变化。
而CT、MRI、B超等检查主要是通过显示脏器或组织的解剖形态学的变化,尽管分辨率很高,但核医学影像诊断技术在疾病诊断、治疗过程监测等方面具有独特的优势。
这些优势让核医学影像技术成为临床医学中必不可少的一种诊断方式。
下面我们就一起来了解下吧!1.什么是核医学影像诊断技术核医学影像诊断技术是将放射性核素标记的示踪剂引入体内,利用核医学仪器在体外对放射性核素发射的γ射线进行采集和处理后获得图像。
不同的放射性核素标记的药物针对不同的疾病、不同的组织器官和不同的病变,具有很强的特异性。
通常采用的核医学影像诊断技术包括:单光子发射计算机断层成像(SPECT)、正电子发射计算机断层成像(PET)等。
这些技术可用于检测和评估许多疾病,如癌症、心血管疾病、神经系统疾病和骨骼系统疾病等,可以为临床治疗提供有用的信息,目前已经得到广泛应用,并不断优化,使其更加安全、可靠、精确和高效。
1.核医学影像诊断技术的常用检查方法(1)单光子发射计算机体层摄影(SPECT)及SPECT/CT单光子发射计算机体层摄影,简称SPECT(single photon emissioncomputed tomography),它是γ相机和计算机技术相结合,增加了断层显像的能力,通过将放射性同位素标记的药物注入患者体内,然后γ探测器记录该同位素的放射性粒子在体内的分布情况并转换为相应图像。
与传统的X线和CT等成像技术相比,SPECT可以提供更全面的组织信息和生物代谢活动信息,同时还具有较高的灵敏度和特异性,对诊断许多疾病和评估治疗效果具有重要意义。
(2)正电子发射断层扫描(PET)及PET/CTPET是正电子发射计算机断层显像(positron emission computed tomography)的缩写,是一种核医学影像诊断技术。
核医学成像技术的最新进展
核医学成像技术的最新进展核医学成像技术作为现代医学领域的重要组成部分,为疾病的诊断和治疗提供了关键的信息。
近年来,随着科技的不断进步,核医学成像技术取得了一系列令人瞩目的新进展,为医疗实践带来了更强大的工具和更精准的诊断能力。
一、正电子发射断层扫描(PET)技术的改进PET 是核医学成像中最常用的技术之一。
近年来,PET 技术在探测器材料、图像重建算法和临床应用方面都有了显著的改进。
在探测器材料方面,新型的闪烁晶体材料如硅酸镥(LSO)和硅酸钇镥(LYSO)的应用,大大提高了探测器的灵敏度和时间分辨率。
这使得 PET 能够更快速地采集图像,减少患者的扫描时间,并提高图像质量。
图像重建算法的不断优化也是 PET 技术发展的重要方向。
先进的迭代重建算法能够更好地处理噪声和散射,提高图像的对比度和分辨率,从而更清晰地显示病变组织的细节。
在临床应用方面,PET 与计算机断层扫描(CT)或磁共振成像(MRI)的融合技术(PET/CT 和 PET/MRI)已经成为常规。
这些融合技术将功能代谢信息与解剖结构信息完美结合,为肿瘤、心血管疾病和神经系统疾病的诊断和分期提供了更全面、更准确的依据。
二、单光子发射计算机断层扫描(SPECT)技术的创新SPECT 技术虽然不如 PET 那么热门,但也在不断创新和发展。
探测器技术的改进使得 SPECT 的空间分辨率得到了提高。
新型的半导体探测器和多针孔准直器的应用,能够更精确地定位放射性核素的分布,从而提高图像的质量。
同时,SPECT 与 CT 的融合技术(SPECT/CT)也在逐渐普及。
CT提供的解剖结构信息有助于更准确地解释SPECT 图像,特别是在骨骼、心脏和肾脏等部位的成像中具有重要意义。
此外,新的放射性药物的研发也为 SPECT 技术的应用拓展了新的领域。
例如,针对特定肿瘤标志物的放射性药物能够提高 SPECT 对肿瘤的诊断特异性。
三、新型放射性药物的研发放射性药物是核医学成像的关键组成部分。
医学影像设备学第8章 核医学成像设备
不足:
空间分辨率、灵敏度、图像对比度和进行动态显像的能力显然不 如专用PET;
进行18F-FDG显像的检查时间较长,无法使用超短半衰期正电子 核素(11C和15O等)。
第一节 概述
(四)PET
结构: 探测器和电子学线路 、扫描机架和同步检 查床、计算机及其辅 助设备。
第一节 概述
(四)PET
第一节 概述
(二)SPECT
不足: 灵敏度低。 衰减及散射影响较大:体内发射的光子碰到高密度物 质(例如骨、准直孔边缘等)发生的散射同样也会使正 常图像叠加上一幅完全不均匀的伪像。这一直是发射 显像明显存在的固有缺陷。 重建图像的空间分辨率低:固有空间分辨率为 3~ 4mm半高宽度(full width at half maximum, FWHM),重建图像固有空间分辨率为 6~8mm。
主要由孔长及孔间壁厚度决定。
高能准直器孔更长,孔间壁也更厚。
• 厚度0.3mm左右者适用于低能(<150keV)射线探测 • 1.5mm左右者适用于中能(150keV~350keV)射线探测 • 2.0mm左右者适用于高能(>350keV)射线探测
第二节核医学成像设备的基本部件
(二)准直器的类型
SPECT/CT
PET/CT
PET/MR
k
H LV V H 1 C
C
第一节 概述
(一)γ照相机
结构: 闪烁探头、电子线路、显示记录装置以及一些附加设备。 优势:
通过连续显像可进行脏器动态研究; 检查时间相对较短,方便简单,特别适合儿童和危重病人检查; 显像迅速,便于多体位、多部位观察; 通过图像处理,可获得有助于诊断的数据或参数。
核医学显像技术的应用现状及发展趋势
核医学显像技术的应用现状及发展趋势核医学显像技术是一种以放射性同位素为探针,探测人体器官和组织代谢、血流动力学、分布等方面的特征的技术。
近年来,随着医学领域的不断发展,核医学显像技术的应用范围越来越广泛,对于疾病的诊断和治疗都发挥着重要作用。
本文将分析核医学显像技术的应用现状及未来的发展趋势。
一、核医学显像技术的现状核医学显像技术主要包括正电子发射断层扫描(PET)、单光子发射计算机断层扫描(SPECT)以及放射性同位素疗法等。
目前PET是最先进、最准确的一种显像技术。
通过注射放射性同位素,PET扫描可以揭示人体各组织器官的代谢情况,可以及时发现细胞功能异常,诊断疾病和评价疗效,特别是在肿瘤治疗方面有着独特的优势。
SPECT是另一种应用广泛的显像技术,主要用于疾病的诊断和治疗。
这种技术使用放射性同位素的放射线所探测到的样本立体影像来描绘体内器官和组织的代谢和功能情况,如心脏、肝脏、肾脏、脑等。
在其他领域也有广泛应用。
例如在生科学领域,核医学显像技术可以揭示不同性质和不同结构的物质在组织中的分布和代谢规律,有助于了解生命活动在细胞水平上的机理、发现生物化学反应的病理变化等等。
在临床医学中,核医学显像技术是一种非侵入性的诊断手段,它相对比较安全,无创伤,成像效果较好,对于疑难杂症的诊断较为有利,如肺癌、乳腺癌、淋巴瘤等的早期诊断和精准治疗方面都有广泛的应用。
二、核医学显像技术的未来发展趋势核医学显像技术的未来发展趋势主要涉及三方面,一是技术的进一步发展,二是实现与其他医学技术的有机结合,三是应用领域的扩大和深化。
技术方面,新技术的出现和代表性技术的改进是核医学显像技术未来发展的重要方向。
其中最具有前景的是通过以人工智能和大数据为代表的新技术进行辅助诊断。
通过基于人工智能的图像分析,可以加快核医学显像技术的处理和分析速度,从而解决现有技术的一些不足之处。
在实现与其它医学技术的有机结合方面,核医学显像技术的应用与电脑辅助诊断技术相结合,原则上可以发挥这些技术更大的作用。
8. 核医学成像设备
利用γ射线作为探测手段,通过脏器内外或脏器内 的正常与病变组织之间的放射性浓度差别揭示人体 的代谢和功能信息。
1. 先让人体接受某种放射性药物,这些药物聚集在人 体某个脏器中或参与体内某种代谢过程。
2. 对脏器组织中的放射性核素的浓度分布和代谢进行 成像。
4
2019/11/18
飞利浦TruFlight: 实现卓越PET成像的解决方案 新型探测器晶体-硅酸镥晶体技术(LSO)
36 8.5 双模式分子影像技术和设备
8.5.1 SPECT/CT设备 8.5.2 PET/CT设备 8.4.3 PET/MRI设备
2019/11/18
8.5.1 SPECT/CT设备
37
7 8.1.2 分类及应用特点 核医学成像设备的分类 γ照相机亦称闪烁照相机,是对体内脏器中的放射性核素分 布进行一次成像,并可进行动态观察的核医学仪器。 发射型计算机断层(emission computed tomography, ECT) 是在体外从不同角度来采集体内某脏器放射性分布的二维 影像,而后经计算机数据处理重建,并显示出三维图像。 可以分为SPECT和PET PET是目前成像最为精确的核医学设备。
1. γ相机(闪烁照相机)
γ照相机是记录和显示被拍照的物体中γ射线活度分布的一次成像照像系统。
2. SPECT γ照相机+探头旋转装置。
高性能、大视野、多功能的γ照相机和支架旋转装置、图像重建软件等组 成,可进行多角度、多方位的采集数据。每采集一幅图像后,探头旋转 一个角度继续采集下一幅图像,采集总角度为360度或180度。
2019/11/18
8.3.1 基本结构与工作原理
SPECT
γ照相机型,高性能、大视野、多功能的γ照相机和支架旋转装置、图像重 建软件等组成,可进行多角度、多方位的采集数据,实现体层显像。
MRI也就是核磁共振成像
MRI也就是核磁共振成像,英文全称是:nuclear magnetic resonance imaging,之所以后来不称为核磁共振而改称磁共振,是因为日本科学家提出其国家备受核武器伤害,为表示尊重,就把核字去掉了。
核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。
为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。
MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。
MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。
它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。
MR对检测脑血肿、脑外血肿、脑肿瘤、颅动脉瘤、动静脉血管畸形、脑缺血、椎管肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。
MR也存在不足之处。
它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR的检查,另外价格比较昂贵。
磁共振成像是断层成像的一种,它利用磁共振现象从人体中获得电磁信号,并重建出人体信息。
1946年斯坦福大学的Flelix Bloch和哈佛大学的Edward Purcell各自独立的发现了核磁共振现象。
磁共振成像技术正是基于这一物理现象。
1972年Paul Lauterbur 发展了一套对核磁共振信号进行空间编码的方法,这种方法可以重建出人体图像。
磁共振成像技术与其它断层成像技术(如CT)有一些共同点,比如它们都可以显示某种物理量(如密度)在空间中的分布;同时也有它自身的特色,磁共振成像可以得到任何方向的断层图像,三维体图像,甚至可以得到空间-波谱分布的四维图像。
核磁共振成像技术_MRI
主磁体〔Magnet
• 主磁体是MRI的核心部分,它提供一个具有一定场强的均匀稳定的静磁 场.磁体性能的优势取决于其磁场的均匀度、稳定度和磁场强度.
• 永磁体使用磁性材料产生磁场.不用液氨液氮冷却,也无逸散磁场,系统 构造简单,运行成本低,不产生热,维护费用低.安装场地小、寿命长.场 强一般只能达到0.3T,且磁场均匀度受一定限制,稳定度受环境影响较 大.
• 超导型磁体是利用超导现象产生一个稳定的均匀的静磁场.在相应低的 温度下呈现超导现象,可允许通过非常大的电流而耗电极小,一般2T稳 定均匀的磁场强度在超导条件下很易实现.超导型磁体是目前最先进的 设备.
• 特性:高磁场、稳定性好、均匀性好
利用超导构成的磁共振可进行单核 成像〔氢核密度像,也可进行人体组 织多核成像.还能对人体组织进行功 能性诊断和生理生化分析.
核磁共振成像技术——MRI
XX
核磁共振成像技术
• 核磁共振成像技术,简称MRI〔Magnetic Resonance Imaging • 其利用核磁共振对人体采集信号并给出二维或三维的重建图像,在临床医学诊
断上有独特优点.是继CT后医学影像学又一重大进步. • MRI对比度高于XCT,而空间分辨率一般来说低于新型XCT,但对于中枢神经系
低.高强度的磁场MRI设备空间分辨率高,但图像对比度分辨率较低.对 于中强度磁场的MRI设备各项性能介于两者之间.
核磁共振成像设备组成
• 主磁体
——Magnet
• 梯度系统
——Gradient system
• RF系统
——RF system
• 计算机系统
——Computer system
MR工作流程图
统诊断,MRI无论在空间分辨率和对比度都超过XCT. • 基本原理:生物体组织能被电磁波谱中的短波成分穿透,而中波成分紫外线、
核医学成像课件
核医学成像的优势
1 非侵入性
核医学成像是一种非侵入性的影像技术,不需要进行手术或组织取样。
2 灵敏度高
核医学成像可以检测细微的生理和代谢变化,对疾病的早期诊断和疗效评估非常有帮助。
3 多种示踪物质
核医学成像使用多种放射性示踪物质,可以观察不同的生物过程和器官功能。
不同类型的核医学成像技术
正电子发射断层成像(PET)
核医学成像的原理
核医学成像利用放射性示踪物质或放射线技术,如正电子发射断层成像和单 光子发射计算机断层成像,通过测量放射性示踪物质在人体内的分布和代谢 来生成图像。不同的核医学成像技术有不同的原理和工作用于诊断和治疗多种疾病,如癌症、心血管疾病、神经系统疾病和骨骼疾病等。它可以提 供关键的生理和功能信息,帮助医生做出准确的诊断和治疗方案。
PET技术利用正电子放射性示踪剂测量脑活动、心血管功能和肿瘤代谢。
单光子发射计算机断层成像(SPECT)
SPECT技术通过使用放射性示踪剂观察器官功能、血液循环和骨骼活动。
核医学成像的风险和安全性
核医学成像使用放射性示踪物质或放射线技术,存在一定的风险。然而,现代核医学成像技术已经经过严格的 安全性评估和监测,确保最小化患者和医护人员的辐射暴露,并采取措施防止任何潜在的风险。
核医学成像的未来发展趋势
随着科学技术的不断进步,核医学成像将继续发展和改进。未来,我们可以 期待更高的分辨率、更准确的诊断和治疗方案,以及更安全、更便捷的成像 技术。
核医学成像课件
核医学成像是一种非侵入性的医学影像技术,通过使用放射性示踪剂或放射 线技术来观察人体内部的结构和功能。
什么是核医学成像?
核医学成像是一种通过使用放射性示踪剂或放射线来观察人体内部结构和功能的医学影像技术。它可以提供有 关器官、脏器和细胞的信息,用于帮助诊断疾病、评估治疗效果和研究病理生理过程。
核医学成像原理
闪烁探测器是利用晶体使射线能量 转换成荧光光子,记录荧光光子的 产生数量,便可反映射线的活度和 能量,这类仪器主要用于核医学显 像、功能测定和体外分析。
核医学显像始于20世纪50年代。 1950年建立了晶体井型计数仪,用于体外 的放射性测量。 1951年cassen用晶体加准直器研制成功闪 烁扫描仪,获得了人体第一张甲状腺扫描 图。 1957年Hal Anger研制了γ照相机。 1964年世界上便有了商品γ照相机供应, 开创了核医学显像的新纪元。 1979年Kuhl等人在长期研究基础上制成了 世界上第一台发射型计算机断层(ECT)。
二、发射型计算机体层显像(ECT)
X-CT与ECT的主要区别:
1、X-CT是利用常规X线从外部穿透机体 后,根据组织密度的差异成像,ECT显 像是反映放射性药物在体内的分布图。
2、X-CT是反映解剖结构,ECT是既反映 解剖结构又反映器官的生理和功能。
探头1
X-ray
探头2
CT
SPECT
PET
ECT的主要特点
前列腺治疗仪等。
(三)防护用核医学仪器
个人剂量监测仪: 袖珍剂量仪、胶片 剂量计、热释光剂量仪。
表面污染监测仪: 探测a、β、γ射线 污染,以每计数/s读出。
场所剂量监测仪: 直接获得辐射场强 度 ,rad/h,Gy/h.
辐射剂量监测仪
表面污染监测仪
显像仪器
核医学显像仪器起源于扫描机年代。
图21 扫描机
第三节 核医学仪器
一、放射线探测的原理和显像发展的历史 二、核医学仪器的类型 三、显像仪器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国内核医学还存在以下问题:
1.地区发展不平衡
2.人才素质尚不高,基础与临床研究以 仿造跟踪为主,缺乏创新性
3.核医学仪器国产化不足(如SPECT 国内350台全部进口)。
推荐资源
➢中国核医学专业网: /
➢书籍: 临床核医学,谭天秩 Physics in Nuclear Medicine, Sarenson JA Nuclear Medicine, Thrall JH
➢ 依靠放射性核素发射的射线杀死病变细胞
核医学治疗的优点
➢短射程的α 、β射线 ➢放射性核素局限在靶器官,对正常组织
损伤小
核医学治疗的一些项目
➢ 甲状腺疾病:131I ➢ 骨转移瘤:89Sr、153Sm、32P ➢ 肿瘤放射免疫治疗(RIT):标记抗体
– α核素、β核素、俄歇电子及内转换电子核素
SPECT-- single photo emission computed
tomography
➢γ相机---发射,平面图像(透射X平片) ➢SPECT---发射,断层图像(透射CT)
– γ相机探头绕人体旋转
• 获得各个方向的投影(平面)像
– 图像重建---滤波反投影、迭代
• 获得断层图像
– 图像重建算法---使图像更接近真实
性质 解剖结构 解剖结构 解剖、功能
代谢功能 代谢功能 代谢功能 和解剖
SPECT、PET——ECT(emission computed tomography)
核医学内容
核医学发展的两大支柱
➢放射性药物---诊断、治疗
– 关键点是特异性 – 其次是稳定性
如: 11C-胸腺嘧啶 - DNA合成金标准,不稳定; 18F-FLT 氟标胸腺嘧啶。稳定,但由于3‘端
图 像 有 放 射 性 浓 聚 , 头
PET-CT
隐匿
颈
性上 腭癌
部
CT
PET、PET/CT 的临床应用
➢肿瘤学
75%-90%
➢心脏病学
10%-20%
➢神经系统
10%-30%
➢其他(器官移植、感染、创伤、发育…)
➢生理及药理实验
PET、PET/CT
--在肿瘤学中的应用
➢早期发现肿瘤 ➢鉴别肿瘤良恶性 ➢治疗前分期 ➢治疗中疗效观察 ➢改进放疗计划 ➢治疗后随诊、复发、转移 ➢评估病人生存期
的置换,其磷酸化后不能进一步参与DNA合成, 又不能通过细胞膜返回,被局限在细胞内。
➢核探测技术---影像定位、定量
核医学诊断
➢核医学的右手
诊断核医学可划分为两类:
➢1体外诊断,将放射性核素放在试管中 (in vitro)进行放射性免疫测量或活化 分析;
➢2体内诊断,把放射性核素引入活体内 (in vivo),进行脏器功能测量或显像。 后者为当代核医学最主要的工作领域。
核医学治疗
核医学的左手
核医学治疗原理
➢ 将放射性核素引入体内
– 使用特异性的载体(如RIT)
• 放射性核素标记载体 • 载体参与体内生物活动,带着核素定位到靶器官
– 直接利用核素与靶器官的亲和定位作用
• 131I、153Sm、89Sr
– 定位施放放射性核素(如 125I 种子源)
• 将放射性核素直接放到靶器官
➢经放大的电脉冲幅度∝入射γ射线能量 ➢只选择一定能量范围,剔除散射、噪声
——甄别 ➢单道脉冲分析器---单能窗 ➢多道脉冲分析器---多能窗
信号记录
核医学影像 记录的是坐 标和光子数 和X 照像有 何不同?
➢ SPECT。SPECT(Single
Photon Emission
Computerized Tomography)是单光子发 射计算机断层照相的简称, 它以γ发射体为成像对象, 其探测光子的原理和γ照相 机相同。它是在γ照相机的 基础上发展起来的。目前 大多采用横向断层扫描, 即断层面与人体轴垂直, 将一个或两个γ照相机探头 绕人体轴连续或分度旋转 一周,将探头从多角度上 得到的连续的二维投影数 据重建后即可得到横断面 的图像。
γ相机构成
探测原理
➢射线入射到晶体上,使晶体原子激发。 ➢退激回到基态,发射荧光。 ➢ 一个光子产生多个荧光光子。 ➢光电倍增管接受这些荧光,并将之转换为
电信号。 ➢经过定位电路确定出入射光子的位置 ➢放大、甄别后,记录一个计数。
探测原理
准直器、闪烁晶体、光 电倍增管的作用
脉冲幅度分析器 pulse height analyzer(PHA)
– PET ( positron emission tomography) 20世纪90年代,正电子发射断层扫描仪
– PET/CT 21世纪,功能图像和解剖图像有机融合
γ相机
➢ γ照相机(Anger照相 机)。一次成像的γ照 相机擅长快速的动 态显像,它可以输 出动态的二维平片
(planar),它是核 医学最常用的成像 设备。它主要由探 测器(包括准直器, 闪烁晶体,光电倍 增管等),电子学 读出系统和图像显 示记录装置等几部 分组成 。
探测:在示踪剂注入体内后的 整个过程中,都可使用
扫描仪在体外探测示踪剂发出的辐射信号,从而确定 示踪剂在体内的位置,由此得到示踪剂在体内的代谢 过程与分布图像。
核医学显像原理
➢ 利用放射性药物
用放射性核素标记的示踪剂引入体内
➢ 参加特定生物活动
被特定的组织摄取→定位,定性,定量反映体内代谢情况
➢ 探测显像
PET---positron emission tomography
➢ 正电子核素18F、 15O 、13N、11C,人体基本元 素,更能反映体内代谢
➢ 发射出正电子,与一个负电子发生湮灭辐射 e++e-→2γ(511keV,E=mc2)
➢ 探测正电子湮灭辐射发出的双光子 ➢ 不加准直器 ➢ 符合探测,探测环 ➢ 灵敏度、分辨率↑
核医学诊断
--示踪原理
示踪剂:参与体内某一生理代谢过程的物质 + 发射可
探测射线的核素 = 形成示踪剂。
例如:脱氧葡萄糖DG + 发射正电子的18F = 18F-FDG
代谢过程:静脉注入后,通过毛细血管壁进入组织。
对不同的示踪剂,有些直接参与体内代谢,有些则被 限制在某些特定的组织区域。由于示踪剂在体内的分 布与代谢过程是动态的,所以体内各组织部位的示踪 剂浓度是不断地变化的。
推荐资源
➢视频: mms:///tansuof axian/2006/04/tansuofaxian_300_200 60412_7.wmv
➢ 灵敏度: PET >SPECT
➢ 扫描时间: PET<SPECT
PET/CT
PET/CT的发明是医学影像 学的又一次革命
PET/CT中的PET、CT
➢PET——PET/CT的主体 ➢CT的作用:
–为PET提供衰减校正 –为PET提供解剖位置信息 –提供诊断信息
兼容型 PET/CT
PET/CT的特点
Disease is not a THING, but a PROCESS
症状体征 结构改变
现代医学认 为:疾病的 发生起源于
功能失调☺ 代谢异常☻ 表达失控☻
基因改变→ 表达物改变 →代谢改变 →形态改变
基因突变☻
现代医学影像技术
名称 X线CT B超 MRI
SPECT PET PET/CT
成像参数 衰减系数、CT值 超声波反射 质子密度、T1、T2、 化学位移 放射性浓度 放射性浓度 放射性浓度 衰减系数、CT值
➢ 肿瘤间质核素治疗: 32P ➢ 肿瘤介入治疗 ➢ 皮肤病敷贴治疗 ➢ 粒子植入治疗: 125I
我国核医学当前的现状
➢我国核医学从50年代末起步,现在全国 有800多家医院设有核医学科或室,拥有 350多台单光子发射计算机体层显像仪 (SPECT),100多台γ相机,12台正电 子发射断层显像仪(PET),已经初具 规模。
PET设备
电 子 对 湮 灭
PET
PE T 探 测 原 理
PET
PHale Waihona Puke T探测器晶体环SPECT与PET的区别
➢ 放射性核素
– SPECT 99mTc、131I .
– PET 素
15O、11C、13N、18F 人体基本元
➢ 探测信号
– SPECT: 单光子
PET: 双光子
➢ 空间分辨率
– SPECT: 8~12 mm PET: 3~5 mm
核医学技术
什么是核医学?
➢核医学的定义:
–核医学是核技术与医学相结合的学科 –核医学的任务是用放射性核素及核技
术来诊断、治疗及研究疾病。
➢核医学涉及的学科:
–核物理、核电子、核探测、计算机控 制及图像处理、数学、放射化学、医 学的各科等
➢核医学技术的作用:
它可以定量无损地研究人体组织器官 (心、脑、肺、肾、胃、甲状腺等)的 功能情况,以及代谢物质或药物在人体 内的分布和变化。
PET显像特点
➢功能显像 ➢敏感性、特异性较高 ➢缺乏精确的解剖定位
PET-CT融合示意图
CT 图像
何处 有病 灶?
PET-CT融合示意图
PET 图像
病灶 在何 处?
PET-CT融合示意图
PETCT 图像 融合
病灶 原来 在这 里
PET
MR
定
位 于 右 上 腭 。
及 鼻 咽 镜 检 未 见 异 常 。
➢ CT与PET硬件、软件同机融合 ➢ 解剖图像与功能图像同机融合 ➢ 同一幅图象既有精细的解剖结构又有丰富生理、
生化分子功能信息 ➢ 可用于肿瘤诊断、治疗及预后随诊全过程 ➢ 高灵敏度、高特异性、高准确性 ➢ CT图像兼做衰减校正 ➢ PET、CT单独能实现的,PET/CT一定能实现;