滁州数学整式的乘法与因式分解单元测试卷 (word版,含解析)
整式的乘法与因式分解单元测试题(Word版 含解析)
整式的乘法与因式分解单元测试题(Word版含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是( )A.2 B.4 C.6 D.8【答案】C【解析】【分析】【详解】试题分析:根据题意可得A=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=(24-1)(24+1)(28+1)+1=(28-1)(28+1)+1=216根据21=2;22=4;23=8;24=16;25=32;···因此可由16÷4=4,所以216的末位为6故选C点睛:此题是应用平方差公式进行计算的规律探索题,解题的关键是通过添加式子,使原式变化为平方差公式的形式;再根据2的n次幂的计算总结规律,从而可得到结果.2.因式分解x2+mx﹣12=(x+p)(x+q),其中m、p、q都为整数,则这样的m的最大值是()A.1 B.4 C.11 D.12【答案】C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p、q的关系判断即可.详解:∵(x+p)(x+q)= x2+(p+q)x+pq= x2+mx-12∴p+q=m,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.3.若代数式x2+ax+64是一个完全平方式,则a的值是()A.-16 B.16 C.8 D.±16【答案】D【解析】试题分析:根据完全平方式的意义,首平方,尾平方,中间加减积的2倍,可知a=±2×8=16.点睛:此题主要考查了完全平方式的意义,解题关键是明确公式的特点,即:完全平方式分两种,一种是完全平方和公式,就是两个整式的和括号外的平方。
《第十四章 整式的乘除与因式分解》单元测试卷含答案(共六套)
《第十四章 整式的乘除与因式分解》单元测试卷(一)(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1. 计算a 10÷a 2(a≠0)的结果是( )A.a 5B.a -5C.a 8D.a -82. 下列计算中,正确的是( )A .(a 3)4= a 12B .a 3· a 5= a 15C .a 2+a 2= a 4D .a 6÷ a 2= a 33. 运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +94. 将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .2a a +C .22a a +-D .2(2)2(2)1a a +-++5. 下列运算正确的是( )A .(12)﹣1=﹣12 B .6×107=6000000C .(2a )2=2a 2D .a 3•a 2=a 56. 把x n+3+x n+1分解因式得( )A .x n+1(x 2+1)B .n 3x x +x ()C .x (n+2x +n x )D .x n+1(x 2+x ) 7. 若4x 2+axy+25y 2是一个完全平方式,则a=( )A .20B .﹣20C .±20D .±108. 将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是( )9. 20042-2003×2005的计算结果是( )A .1B .-1C .0D .2×20042-110. 将代数式2x +4x-1化成()2x+p +q 的形式为( )A .(x-2)2+3B .(x+2)2-4C .(x+2)2 -5D .(x+2)2+4二、填空题(共6小题,每小题3分,共18分)11. 因式分解:a 3-a=12. 计算:(-5a 4)•(-8ab 2)= . 13. 已知a m =3,a n =4,则a 3m-2n =__________14. 若3x =,则代数式269x x -+的值为__________.15. 若x +y =10,xy =1 ,则x 3y +xy 3= .16. 若整式22x ky +(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是 _______________(写出一个即可).三、解答题(共8题,共72分)17. (本题8分)计算:(a+b )2﹣b (2a+b )18. (本题8分)分解因式:2m (m ﹣n )2﹣8m 2(n ﹣m )19. (本题8分)如图(1),是一个长为2a 宽为2b (a >b )的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,求中间空白部分的面积(用含a 、b 的式子表示 )20. (本题8分)计算(2126)3×(1314)4×(43)321. (本题8分)简便计算:1.992+1.99×0.0122. (本题10分)当a=3,b=-1时,求()()a b a b +-的值。
【精选】整式的乘法与因式分解单元测试与练习(word解析版)
一、八年级数学整式的乘法与因式分解解答题压轴题(难)1.阅读以下材料,并按要求完成相应的任务.在初中数学课本中重点介绍了提公因式法和运用公式法两种因式分解的方法,其中运用公式法即运用平方差公式:22()()a b a b a b -=+-和完全平方公式:222)2(a ab b a b ±+=±进行分解因式,能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.当一个二次三项式不能直接能运用完全平方公式分解因式时,可应用下面方法分解因式,先将多项式2ax bx c ++(0)a ≠变形为2()a x m n ++的形式,我们把这样的变形方法叫做多项式2ax bx c ++的配方法.再运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:21124x x ++2221111112422x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭ 2112524x ⎛⎫=+- ⎪⎝⎭ 1151152222x x ⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭ (8)(3)x x =++.根据以上材料,完成相应的任务:(1)利用“多项式的配方法”将268x x -+化成2()a x m n ++的形式为_______;(2)请你利用上述方法因式分解:①223x x +-; ②24127x x +-.【答案】(1)2(3)1x --;(2)①(3)(1)x x +-;②(27)(21)x x +-【解析】【分析】(1)将多项式2233+-即可完成配方;(2)①将多项式+1-1后即可用配方法再根据平方差公式分解因式进行解答;②将多项式2233+-即可完成配方,再根据平方差公式分解因式,整理后即可得到结果.【详解】解:(1)268x x -+=2226338x x -+-+=2(3)1x --,故答案为:2(3)1x --;(2)①223x x +-22113x x =++--2(1)4x =+-(12)(12)x x =+++-(3)(1)x x =+-.②24127x x +-222(2)12337x x =++--2(23)16x =+-(234)(234)x x =+++-(27)(21)x x =+-.【点睛】此题考查多项式的配方法,多项式的分解因式,正确理解题中的配方法的解题方法是关键.2.(1)你能求出(a ﹣1)(a 99+a 98+a 97+…+a 2+a +1)的值吗?遇到这样的问题,我们可以先从简单的情况入手,分别计算下列各式的值.(a ﹣1)(a +1)= ;(a ﹣1)(a 2+a +1)= ;(a ﹣1)(a 3+a 2+a +1)= ;…由此我们可以得到:(a ﹣1)(a 99+a 98+…+a +1)= .(2)利用(1)的结论,完成下面的计算:2199+2198+2197+…+22+2+1.【答案】(1)21a -,31a -,41a -,1001a -(2)20021-【解析】【分析】根据简单的多项式运算推出同类复杂多项式运算结果的一般规律,然后根据找出的规律进行解决较难的运算问题.【详解】解:(1)21a - 31a - 41a - 1001a -(2)1991981972222221+++⋅⋅⋅++=()21- ⨯(1991981972222221+++⋅⋅⋅++)=20021-.【点睛】考查了学生的基础运算能力和对同一类运算问题计算结果的一般规律性洞察力.3.观察下列各式:()()2111,x x x -+=-()()23 111,x x x x -++=-()()324 111,x x x x x -+++=-()()4325 1 11,x x x x x x -++++=-······()1根据规律()()122 1 ...1n n x x x x x ---+++++=(其中n 为正整数) ;()()3029282(51)5555251-+++++()3计算:201920182017321(2)(2)(2)(2)(2)(2)1-+-+-++-+--++ 【答案】(1)1n x -;(2)311-5;(3)2020213-- 【解析】【分析】(1)归纳总结得到一般性规律,即可得到结果;(2)根据一般性结果,将n=31,x=5代入(1)中即可;(3)将代数式适当变形为(1)的形式,根据前面总结的规律即可计算出结果.【详解】(1)根据上述规律可得()()122 1 ...1n n x x x x x ---+++++=1n x -,故填:1n x -;(2)由(1)可知()3029282(51)555551-+++++=311-5()3 201920182017321(2)(2)(2)(2)(2)(2)1-+-+-+⋅+-+-+-+ =201920182011732[(2)1](2)(2)(2)(2)(2)(2)13⎡⎤---+-+-+⋯+-+--+⎣⎦-+ =2020(2)13--- =2020213-- 【点睛】本题考查整式的乘法,能根据题例归纳总结出一般性规律是解题关键,(3)中能对整式适当变形是解题关键,但需注意变形时要为等量变形.4.阅读下列解题过程,再解答后面的题目.例题:已知224250x y y x ++-+=,求x y +的值. 解:由已知得22(21)(44)0x x y y -++++=即22(1)(2)0x y -++=∵2(1)0x -≥,2(2)0y +≥∴有1020x y -=⎧⎨+=⎩,解得12x y =⎧⎨=-⎩∴1x y +=-.题目:已知22464100x y x y +-++=,求xy 的值. 【答案】-32【解析】【分析】 先将左边的式子写成两个完全平方的和的形式,根据非负数的性质求出x 、y 的值,再代入求出xy 的值.【详解】解:将22464100x y x y +-++=,化简得22694410x x y y -++++=,即()()223210x y -++=.∵()230x -≥,()2210y +≥,且它们的和为0,∴3x = ,12y, ∴12233xy ⎛⎫=⨯-=- ⎪⎝⎭. 【点睛】本题考查的是完全平方公式的应用,解题的关键是将左边的式子写成两个完全平方的和的形式.5.(1)阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法例如:()()()()()()am an bm bn am bm an bn m a b n a b a b m n +++=+++=+++=++.22222221(21)(1)(1)(1)x y y x y y x y x y x y ---=-++=-+=++--.试用上述方法分解因式222a ab ac bc b ++++=(2)利用分解因式说明:22(5)(1)n n +--能被12整除.【答案】(1)()()a b a b c +++;(2)证明见解析.【解析】【分析】(1)a 2+2ab+ac+bc+b 2可以进行分组变成(a 2+2ab+b 2)+(ac+bc ),则前边括号内的三项可以利用完全平方公式分解,后边的三项可以提公因式,然后再利用提公因式法即可分解.(2)先利用平方差公式将22(5)(1)n n +--进行因式分解,之后即可得出答案.【详解】(1)原式=()()222a ab bac bc ++++=()()2a b c a b +++=()()a b a b c +++(2)22(5)(1)n n +-- =[][](5)+(1)(5)(1)n n n n +-+--=()624n +=()122n +∴ 22(5)(1)n n +--能被12整除.【点睛】本题考查分组分解的因式分解方法,做题时先分析题中给的例子是解题关键.6.阅读下列因式分解的过程,解答下列问题:1+x +x (x +1)+x (x +1)2=(1+x )[1+x +x (x +1)]=(1+x )2(1+x )=(1+x )3.(1)上述分解因式的方法是____________,共应用了________次;(2)若分解因式1+x +x (x +1)+x (x +1)2+…+x (x +1)2019,则需要应用上述方法________次,结果是________;(3)分解因式:1+x +x (x +1)+x (x +1)2+…+x (x +1)n (n 为正整数).【答案】(1)提取公因式法,2;(2)2019,(1+x)2020;(3) (1+x)n +1.【解析】【分析】(1)根据已知计算过程直接得出因式分解的方法即可;(2)根据已知分解因式的方法可以得出答案;(3)由(1)中计算发现规律进而得出答案.【详解】(1)提取公因式法,2(因式分解的方法是提公因式法,共应用了2次)(2)2019,(1+x)2020(分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2019,则需应用上述方法2019次,结果是(1+x)2020)(3)原式=(1+x)[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -1]=(1+x)2[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -2]=(1+x)3[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -3]=(1+x)n (1+x)=(1+x)n +1.【点睛】本题考查的知识点是因式分解-提公因式法,解题的关键是熟练的掌握因式分解-提公因式法.7.一个四位正整数m 各个数位上的数字互不相同且都不为0,四位数m 的前两位数字之和为5,后两位数字之和为11,称这样的四位数m为“半期数”;把四位数m的各位上的数字依次轮换后得到新的四位数m′,设m′=abcd,在m′的所有可能的情况中,当|b+2c﹣a ﹣d|最小时,称此时的m′是m的“伴随数”,并规定F(m′)=a2+c2﹣2bd;例如:m=2365,则m′为:3652,6523,5236,因为|6+10﹣3﹣2|=11,|5+4﹣6﹣3|=0,|2+6﹣5﹣6|=3,0最小,所以6523叫做2365的“伴随数”,F(5236)=52+32﹣2×2×6=10.(1)最大的四位“半期数”为;“半期数”3247的“伴随数”是.(2)已知四位数P=abcd是“半期数”,三位数Q=2ab,且441Q﹣4P=88991,求F(P')的最大值.【答案】(1)4192,7324;(2)42.【解析】【分析】(1)根据“半期数”的定义分析最大的四位“半期数”应该是千位最大,最大只能为4,所以百位是1,十位最大是9,个位是2,所以最大半期数为:4192,分析3247的所有可能为,2473,4732,7324.根据题意|b+2c﹣a﹣d|最小的数是7324,所以3247的“伴随数”是:7324.(2)根据定义可知a+b=5,c+d=11.再根据441Q﹣4P=88991,可以算出P的值,从而求出F(P')的最大值.【详解】解;(1)根据题意可得最大的四位“半期数”应该是千位最大,最大只能为4,所以百位是1,十位最大是9,个位是2,所以最大半期数为:4192.∵3247的所有可能为,2473,4732,7324.∵|4+14﹣2﹣3|=13,|7+6﹣4﹣2|=7,|3+4﹣7﹣4|=4, 4最小,所以7324为3247的“伴随数”.故答案为4192;7324.(2)∵P为“半期数”∴a+b=5,c+d=11,∴b=5﹣a,d=11﹣c,∴P=1000a+100(5﹣a)+10c+11﹣c=900a+9c+511.∵Q=200+10a+c,∴441Q﹣4P=88991,∴441(200+10a+c)﹣4(900a+9c+511)=88991化简得:2a+c=7①当a=1时,c=5,此时这个四位数为1456符合题意;②当a=2时,c=3,此时这个四位数为2338不符合题意,舍去;③当a=3时,c=1,不符合题意,舍去;综上所述:这个四位数只能是1456,则P'可能为4561,5614,6145.∵|5+12﹣4﹣1|=12,|6+2﹣5﹣4|=1,|1+8﹣6﹣5|=2,1最小,所以5614为P的“伴随数”,∴F(5614)=a2+c2﹣2bd=25+1﹣2×6×4=﹣22;F(4561)=a2+c2﹣2bd=16+36﹣2×5×1=42;F(6145)=a2+c2﹣2bd=36+16﹣2×1×5=42;∴F(P')的最大值为42.【点睛】解决本道题的关键是理解好半期数的定义:一个四位正整数m 各个数位上的数字互不相同且都不为0,四位数m 的前两位数字之和为5,后两位数字之和为11,称这样的四位数m 为“半期数”,然后根据当|b +2c ﹣a ﹣d |最小时,称此时的m '是m 的“伴随数”来确定伴随数.8.由多项式的乘法:(x +a)(x +b)=x 2+(a +b)x +ab ,将该式从右到左使用,即可得到用“十字相乘法”进行因式分解的公式:x 2+(a +b)x +ab =(x +a)(x +b).实例 分解因式:x 2+5x +6=x 2+(2+3)x +2×3=(x +2)(x +3).(1)尝试 分解因式:x 2+6x +8;(2)应用 请用上述方法解方程:x 2-3x -4=0.【答案】(1) (x+2)(x +4);(2) x =4或x =-1.【解析】【分析】(1)类比题干因式分解方法求解可得;(2)利用十字相乘法将左边因式分解后求解可得.【详解】(1)原式=(x+2)(x +4);(2)x 2-3x -4=(x -4)(x +1)=0,所以x -4=0或x +1=0,即x =4或x =-1.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.9.(探究)如图①,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,有阴影部分沿虚线剪开,拼成图②的长方形(1)请你分别表示出这两个图形中阴影部分的面积(2)比较两图的阴影部分面积,可以得到乘法公式 (用字母表示)(应用)请应用这个公式完成下列各题①已知22412m n -=,24m n +=,则2m n -的值为②计算:(2)(2)a b c a b c +--+(拓展)①()()()()24832(21)21212121+1+++++结果的个位数字为 ②计算:222222221009998974321-+-++-+-【答案】[探究](1)a2﹣b2;(a+b)(a﹣b);(2)(a+b)(a﹣b)=a2﹣b2;[应用]①3;②4a2﹣b2+2bc﹣c2;[拓展]①6;②5050.【解析】【分析】[探究](1)由面积公式可得答案;(2)公式由(1)直接可得;[应用]①用平方差公式分解4m2﹣n2,将已知值代入可求解;②将三项恰当组分成两组,先用平方差,再用完全平方公式展开后合并同类项即可;[拓展]①将原式乘以(2﹣1),就可以反复运用平方差公式化简,最后按照循环规律可得解;②将原式从左向右依次两项一组,运用平方差公式分解,化为100+99+98+…+4+3+2+1,从而可得答案.【详解】(1)图①按照正方形面积公式可得:a2﹣b2;图②按照长方形面积公式可得:(a+b)(a﹣b).故答案为:a2﹣b2;(a+b)(a﹣b).(2)令(1)中两式相等可得:(a+b)(a﹣b)=a2﹣b2故答案为:(a+b)(a﹣b)=a2﹣b2.【应用】①∵4m2﹣n2=12,2m+n=4,4m2﹣n2=(2m+n)(2m﹣n),∴(2m﹣n)=12÷4=3.故答案为:3.②(2a+b﹣c)(2a﹣b+c)=[2a+(b﹣c)][2a﹣(b﹣c)]=4a2﹣(b﹣c)2=4a2﹣b2+2bc﹣c2【拓展】①原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1)+1=(22﹣1)(22+1)(24+1)(28+1)…(232+1)+1=(24﹣1)(24+1)(28+1)…(232+1)+1=(28﹣1)(28+1)…(232+1)+1=(216﹣1)…(232+1)+1=264﹣1+1=264.∵2的正整数次方的尾数为2,4,8,6循环,64÷4=16.故答案为:6.②原式=(100+99)(100﹣99)+(98+97)(98﹣97)+…+(4+3)(4﹣3)+(2+1)(2﹣1)=100+99+98+97+…+4+3+2+1=5050.【点睛】本题考查了平方差公式的几何背景及其应用与拓展,计算具有一定的难度,属于中档题.10.阅读材料:小明发现一些含根号的式子可以写成另一个式子的平方,如=()2,善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为正整数)则有:=m2+2n2,所以a=m2+2n2,b=2mn.这样小明就找到了一种把的式子化为平方式的方法.请仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若()2,用含m、n的式子分别表示a、b,得a=,b=(2)若(2(其中a、b、m、n均为正整数),求a的值.【答案】(1)m2+3n2,2mn;(2)13.【解析】试题分析:(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.试题解析:(1)∵)2,∴2+3n2∴a=m2+3n2,b=2mn.故a=m2+3n2,b=2mn;(2)由题意,得223 {42a m nmn=+=∵4=2mn,且m、n为正整数,∴m=2,n=1或m=1,n=2,∴a=22+3×12=7或a=12+3×22=13。
整式的乘法与因式分解单元测试(一)(人教版)(含答案).docx
学生做题前请先回答以下问题问题1:同底数幕相乘, ___________ , ___________ .即 ______________同底数幕相除,__________ , __________ .即_______________ .问题2:鬲的乘方, ____________ , ____________ .即 ______________积的乘方等于____________ .即_______________ •规定:&= __________ (__________ ).问题3:根据幕的定义:a n = a a--a f推导下列公式:问题4:单项式x单项式:_______ 乘以____ , ______ 乘以_____ .单项式三单项式:____ 除以_____ , _____ 除以____ ・问题5:单项式x多项式:根据 __________________ ,转化为___________多项式x多项式:根据__________________,转化为 __________ •问题6:多项式—单项式:借用 _____________ ,转化为___________ .问题7:因式分解的定义是什么?问题8:公式法中的“公式"指的是?整式的乘法与因式分解单元测试(一)(人教版)一、单选题(共12道,每道8分)1.观察以下5个式子:①3/+5/ = 8疋;②= ,③/ • x4 =严;④(-3)—3:⑤齐3-呎其中正确的是()A.①③B.①②③C.①④⑤D.①⑤答案:D 解题思路:判断运算是否正确,要根据运算法则进行一一判断:① 3/+5/=8/,考查合并同类项,根据对应法则可知这个 运算正确;② 恋“4 ,考查同底数幕的乘法,根据运算法则可知, m 2-?w = m 3,故错误; ®x 3-x 4 = x n ,考查同底数幕的乘法,根据运算法则可知, x 3 x 4=x 7,故错误;④ (-3)4.(-3)2=-35,考查同底数幕的乘法,根据运算法则可 知,(-3)4-(-3)2 = (-3)6=36,故错误; ⑤ (x-v)2-(v-x)J = (v-x)\考查同底数籌的乘法,根据对 应的运算法则可知, (X- V )2• (v -X)3 = (V -X )2• (V-X )3 = (V-xf ,故正确.综上,正确的运算是①⑤.故选D试题难度:三颗星知识点:帚的运算2•计算3 %耐%结果是()C.OD.1答案:C 解题思路:根据幕的运算法则可知,3)4皿越=0故选C 试题难度:三颗星知识点:幕的运算AfB.a 17C.OD.l答案:C 解题思路:根据幕的运算法则可知, (-3)如+3(-3)"=(-3严 + 3・3"_ +32好 1=0 故选C试题难度:三颗星知识点:幕的运算2013xl.S^xf-l )2013的结果是(A. 3B. 22 3c.m答案:D 解题思路:根据乘方的积等于积的乘方可知,故选D A. 2x+2 O 2M +2BPxl.5叫(-1 严试题难度:三颗星知识点:积的乘方5.已知h = x" = 3,则产皿的值为()A.72B.36C.12D.17答案:A解题思路:x3^=x3M-x h2=(x M)3-(x w)2 =23x32 =8x9 = 72 ・故选A 试题难度:三颗星知识点:幕的运算(/ \20136.若4~2巴则(—4)的值为()A.lB.-1C.OD.52013答案:A 解题思路:由40 = 2“可得,2加=2曲,••2Q = Q +5;解得,。
【精选】整式的乘法与因式分解单元测试卷(含答案解析)
一、八年级数学整式的乘法与因式分解解答题压轴题(难)1.因式分解是多项式理论的中心内容之一,是代数中一种重要的恒等变形,它是学习数学和科学技术不可缺少的基础知识.在初中阶段,它是分式中研究约分、通分、分式的化简和计算的基础;利用因式分解的知识,有时可使某些数值计算简便.因式分解的方法很多,请根据提示完成下面的因式分解并利用这个因式分解解决提出的问题.(1)填空: ①()242221144x x x x ⎡⎤+=++-=⎢⎥⎣⎦( )22x -=( )( ) ②()()242116=644⎡⎤+++-⎢⎥⎣⎦=( )( )=( )⨯ ( ) (2)解决问题,计算:4444116844115744⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ 【答案】(1)①212x +,221122x x x x ⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭,,②26,26,2211666622⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭,,42.530.5,;(2)14541 【解析】【分析】(1)根据完全平方公式和平方差公式计算可得;(2)利用前面所得规律变形即可.【详解】(1)()242221144x x x x ⎡⎤+=++-⎢⎥⎣⎦ 22212x x ⎛⎫=+- ⎪⎝⎭ 221122x x x x ⎛⎫⎛⎫=++-+ ⎪⎪⎝⎭⎝⎭ ()2422211666624⎡⎤+=++-⎢⎥⎣⎦ 2211666622⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭42.530.5=⨯ 故答案为:①212x +,221122x x x x ⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭,,②26,26,2211666622⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭,,42.530.5,; (2)4444116844115744⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭=⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ 2222222211116666888822221111555577772222⎛⎫⎛⎫⎛⎫⎛⎫++-+++-+ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫++-+++-+ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 42.530.372.556.530.520.556.542.5⨯⨯⨯=⨯⨯⨯ 14541= 【点睛】本题考查了因式分解的应用;熟练掌握完全平方公式和平方差公式是解题的关键.2.观察以下等式:(x+1)(x 2-x+1)=x 3+1(x+3)(x 2-3x+9)=x 3+27(x+6)(x 2-6x+36)=x 3+216...... ......(1)按以上等式的规律,填空:(a+b )(___________________)=a 3+b 3(2)利用多项式的乘法法则,证明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y )(x 2-xy+y 2)-(x-y )(x 2+xy+y 2)【答案】(1)a 2-ab+b 2;(2)详见解析;(3)2y 3.【解析】【分析】(1)根据所给等式可直接得到答案(a+b )(a 2-ab+b 2)=a 3+b 3;(2)利用多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加进行计算即可得到答案;(3)结合题目本身的特征,利用(1)中的公式直接运用即可.【详解】(1)(a+b )(a 2-ab+b 2)=a 3+b 3;(2)(a+b )(a 2-ab+b 2)=a 3-a 2b+ab 2+a 2b-ab 2+b 3=a 3+b 3;(3)(x+y )(x 2-xy+y 2)-(x-y )(x 2+xy+y 2)=x 3+y 3-(x 3-y 3)=2y 3.【点睛】本题考查了多项式乘以多项式,关键是掌握多项式乘法法则,注意观察所给例题,找出其中的规律是解决本题的基本思路.3.你会对多项式(x 2+5x+2)(x 2+5x+3)﹣12分解因式吗?对结构较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),能使复杂的问题简单化、明朗化.从换元的个数看,有一元代换、二元代换等.对于(x 2+5x+2)(x 2+5x+3)﹣12.解法一:设x 2+5x =y ,则原式=(y+2)(y+3)﹣12=y 2+5y ﹣6=(y+6)(y ﹣1)=(x 2+5x+6)(x 2+5x ﹣1)=(x+2)(x+3)(x 2+5x ﹣1).解法二:设x 2+5x+2=y ,则原式=y(y+1)﹣12=y 2+y ﹣12=(y+4)(y ﹣3)=(x 2+5x+6)(x 2+5x ﹣1)=(x+2)(x+3)(x 2+5x ﹣1).解法三:设x 2+2=m ,5x =n ,则原式=(m+n)(m+n+1)﹣12=(m+n)2+(m+n)﹣12=(m+n+4)(m+n ﹣3)=(x 2+5x+6)(x 2+5x ﹣1)=(x+2)(x+3)(x 2+5x ﹣1).按照上面介绍的方法对下列多项式分解因式:(1)(x 2+x ﹣4)(x 2+x+3)+10;(2)(x+1)(x+2)(x+3)(x+6)+x 2;(3)(x+y ﹣2xy)(x+y ﹣2)+(xy ﹣1)2.【答案】(1) (x+2)(x-1) (2 x x ++1)(2)(266x x ++)2(3) (x+y-xy-1)2【解析】【分析】(1)令m=2x x +,原式=()()4m 310m -++因式分解即可;(2)()()()()21236x x x x x +++++=(276x x ++)(256x x ++)+2x ,令n=256x x ++,再将原式=(n+2)n+x 2进行因式分解即可;(3)令a=x+y,b=xy ,代入原式即可因式分解.【详解】(1)令m=2x x +,原式=()()4m 310m -++=m 2-m-2=(m-2)(m+1)= (2x x +-2)(2x x ++1)=(x+2)(x-1) (2x x ++1)(2)()()()()21236x x x x x +++++=(276x x ++)(256x x ++)+2x , 令n=256x x ++,原式=(n+2)n+x 2=n 2+2n+x 2=(n+x)2=(266x x ++)2(3) 令a=x+y,b=xy ,原式=()()()2221a b a b --+-=(a-b)2-2(a-b)+1=(a-b-1)2=(x+y-xy-1)2【点睛】此题主要考查复杂的因式分解,解题的关键是读懂材料学会材料中因式分解的方法.4.阅读下列因式分解的过程,解答下列问题:1+x +x (x +1)+x (x +1)2=(1+x )[1+x +x (x +1)]=(1+x )2(1+x )=(1+x )3.(1)上述分解因式的方法是____________,共应用了________次;(2)若分解因式1+x +x (x +1)+x (x +1)2+…+x (x +1)2019,则需要应用上述方法________次,结果是________;(3)分解因式:1+x +x (x +1)+x (x +1)2+…+x (x +1)n (n 为正整数).【答案】(1)提取公因式法,2;(2)2019,(1+x)2020;(3) (1+x)n +1.【解析】【分析】(1)根据已知计算过程直接得出因式分解的方法即可;(2)根据已知分解因式的方法可以得出答案;(3)由(1)中计算发现规律进而得出答案.【详解】(1)提取公因式法,2(因式分解的方法是提公因式法,共应用了2次)(2)2019,(1+x)2020(分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2019,则需应用上述方法2019次,结果是(1+x)2020)(3)原式=(1+x)[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -1]=(1+x)2[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -2]=(1+x)3[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -3]=(1+x)n (1+x)=(1+x)n +1.【点睛】本题考查的知识点是因式分解-提公因式法,解题的关键是熟练的掌握因式分解-提公因式法.5.阅读下列因式分解的过程,再回答所提出的问题:1+x +x (x +1)+x (x +1)2=(1+x )[1+x +x (x +1)]=(1+x )2(1+x )=(1+x )3(1)上述分解因式的方法是 ,共应用了 次.(2)若分解1+x +x (x +1)+x (x +1)2+…+ x (x +1)2004,则需应用上述方法 次,结果是 .(3)分解因式:1+x +x (x +1)+x (x +1)2+…+ x (x +1)n (n 为正整数).【答案】(1)提公因式,两次;(2)2004次,(x +1)2005;(3) (x +1)1n +【解析】【分析】(1)根据已知材料直接回答即可;(2)利用已知材料进而提取公因式(1+x ),进而得出答案;(3)利用已知材料提取公因式进而得出答案.【详解】(1)上述分解因式的方法是:提公因式法,共应用了2次.故答案为提公因式法,2次;(2)1+x+x (x+1)+x (x+1)2+…+ x (x +1)2004,=(1+x )[1+x+x (1+x )+…+ x (x +1)2003]⋯=22003(1)(1)(1)(1)(1)x x x x x +++++个=(1+x )2005,故分解1+x+x (x+1)+x (x+1)2+…+ x (x +1)2004,,则需应用上述方法2004次,结果是:(x+1)2005.(3)分解因式:1+x+x (x+1)+x (x+1)2…+x (x+1)n (n 为正整数)的结果是:(x+1)n+1.故答案为(x+1)n+1.【点睛】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.6.仔细阅读下面例题,解答问题:例题:已知二次三项式2x 4x m -+有一个因式是()x 3+,求另一个因式以及m 的值. 解:设另一个因式为()x n +,得()()2x 4x m x 3x n -+=++则()22x 4x m x n 3x 3n -+=+++ {n 34m 3n +=-∴=.解得:n 7=-,m 21=- ∴另一个因式为()x 7-,m 的值为21-问题:仿照以上方法解答下面问题:已知二次三项式22x 3x k +-有一个因式是()2x 5-,求另一个因式以及k 的值.【答案】()4,x + 20.【解析】【分析】根据例题中的已知的两个式子的关系,二次三项式2x 4x m -+的二次项系数是1,因式是()x 3+的一次项系数也是1,利用待定系数法求出另一个因式.所求的式子22x 3x k +-的二次项系数是2,因式是()2x 5-的一次项系数是2,则另一个因式的一次项系数一定是1,利用待定系数法,就可以求出另一个因式.【详解】解:设另一个因式为()x a +,得()()22x 3x k 2x 5x a +-=-+则()222x 3x k 2x 2a 5x 5a +-=+-- {2a 535a k -=∴-=-解得:a 4=,k 20=故另一个因式为()x 4+,k 的值为20【点睛】正确读懂例题,理解如何利用待定系数法求解是解本题的关键.7.阅读下列材料:1637年笛卡尔在其《几何学》中,首次应用“待定系数法”将四次方程分解为两个二次方程求解,并最早给出因式分解定理.他认为:对于一个高于二次的关于x 的多项式,“x a =是该多项式值为0时的一个解”与“这个多项式一定可以分解为(x a -)与另一个整式的乘积”可互相推导成立.例如:分解因式3223x x +-.∵1x =是32230x x +-=的一个解,∴3223x x +-可以分解为()1x -与另一个整式的乘积.设()()322231x x x ax bx c +-=-++ 而()()()()2321x ax bx c ax b a x c b x c -++=+-+--,则有 1203a b a c b c =⎧⎪-=⎪⎨-=⎪⎪-=-⎩,得133a b c =⎧⎪=⎨⎪=⎩,从而()()32223133x x x x x +-=-++运用材料提供的方法,解答以下问题:(1)①运用上述方法分解因式323x x ++时,猜想出3230x x ++=的一个解为_______(只填写一个即可),则323x x ++可以分解为_______与另一个整式的乘积;②分解因式323x x ++;(2)若1x -与2x +都是多项式32x mx nx p +++的因式,求m n -的值.【答案】(1)①:x=-1;(x+1);②3223=(1)(3)x x x x x +++-+;(2)3【解析】【分析】(1)①计算当x=-1时,方程成立,则323x x ++必有一个因式为(x+1),即可作答; ②根据待定系数法原理先设另一个多项式,然后根据多项式乘多项式的计算即可求得结论;(2))设32=(1)(2)x mx mx p x x M +++-+(其中M 为二次整式),由材料可知,x=1,x=-2是方程320x mx nx p +++=的解,然后列方程组求解即可.【详解】解:(1)①323x x ++,观察知,显然x=-1时,原式=0,则3230x x ++=的一个解为x=-1;原式可分解为(x+1)与另一个整式的积.故答案为:x=-1;(x+1)②设另一个因式为(x 2+ax+b ),(x+1)(x 2+ax+b )=x 3+ax 2+bx+x 2+ax+b=x 3+(a+1)x 2+(a+b )x+b∴a+1=0 ,a=-1, b=3∴多项式的另一因式为x 2-x+3.∴3223=(1)(3)x x x x x +++-+.(2)设32=(1)(2)x mx nx p x x M +++-+(其中M 为二次整式),由材料可知,x=1,x=-2是方程320x mx nx p +++=的解, ∴可得108420m n p m n p +++=⎧⎨-+-+=⎩①②, ∴②-①,得m-n=3∴m n -的值为3.【点睛】本题考查了分解因式,正确理解题意,利用待定系数法和多项式乘多项式的计算法则求解是解题的关键.8.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b )2=a 2+2ab+b 2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z=.(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:.【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)30;(3)9;(4)x3﹣x=(x+1)(x﹣1)x【解析】【分析】(1)依据正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,可得等式;(2)依据a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,进行计算即可;(3)依据所拼图形的面积为:xa2+yb2+zab,而(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+5b2+2ab,即可得到x,y,z的值.(4)根据原几何体的体积=新几何体的体积,列式可得结论.【详解】(1)由图2得:正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∵a+b+c=10,ab+ac+bc=35,∴102=a2+b2+c2+2×35,∴a2+b2+c2=100﹣70=30,故答案为:30;(3)由题意得:(2a+b)(a+2b)=xa2+yb2+zab,∴2a2+5ab+2b2=xa2+yb2+zab,∴225xyz=⎧⎪=⎨⎪=⎩,∴x+y+z=9,故答案为:9;(4)∵原几何体的体积=x3﹣1×1•x=x3﹣x,新几何体的体积=(x+1)(x﹣1)x,∴x3﹣x=(x+1)(x﹣1)x.故答案为:x3﹣x=(x+1)(x﹣1)x.【点睛】本题主要考查的是整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.9.在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的6位数密码就很有必要了.有一种用“因式分解法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=18时,x﹣1=17,x+1=19,x+2=20,此时可以得到数字密码171920.(1)根据上述方法,当x=21,y=7时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(写出两个)(2)若多项式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用本题的方法,当x=27时可以得到其中一个密码为242834,求m、n的值.【答案】(1)可以形成的数字密码是:212814、211428;(2)m的值是56,n的值是17.【解析】【分析】(1)先将多项式进行因式分解,然后再根据数字密码方法形成数字密码即可;(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),当x=27时可以得到其中一个密码为242834,得到方程解出p、q、r,然后回代入原多项式即可求得m、n【详解】(1)x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y),当x=21,y=7时,x+y=28,x﹣y=14,∴可以形成的数字密码是:212814、211428;(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),∵当x=27时可以得到其中一个密码为242834,∴27+p=24,27+q=28,27+r=34,解得,p=﹣3,q=1,r=7,∴x3+(m﹣3n)x2﹣nx﹣21=(x﹣3)(x+1)(x+7),∴x3+(m﹣3n)x2﹣nx﹣21=x3+5x2﹣17x﹣21,∴3517m nn-=⎧⎨-=-⎩得,5617mn=⎧⎨=⎩即m的值是56,n的值是17.【点睛】本题属于阅读理解题型,考查知识点以因式分解为主,本题第一问关键在于理解题目中给到的数字密码的运算规则,第二问的关键在于能够将原多项式设成(x+p)(x+q)(x+r),解出p、q、r10.(观察)1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621,…,47×3=141,48×2=96,49×1=49.(发现)根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是.(类比)观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为,并用你学过的知识加以证明.【答案】(1)625;(2)a+b=50; 900;证明见解析.【解析】【分析】发现:(1)观察题目给出的等式即可发现两数相乘,积的最大值为625;(2)观察题目给出的等式即可发现a与b的数量关系是a+b=50;类比:由于m+n=60,将n=60−m代入mn,得mn=−m2+60m=−(m−30)2+900,利用二次函数的性质即可得出m=30时,mn的最大值为900.【详解】解:发现:(1)上述内容中,两数相乘,积的最大值为625.故答案为625;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50.故答案为a+b=50;类比:由题意,可得m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,∴m=30时,mn的最大值为900.故答案为900.【点睛】本题考查了因式分解的应用,配方法,二次函数的性质,是基础知识,需熟练掌握.。
《整式乘法与因式分解》单元综合测试卷(含答案)
第九章《整式乘法与因式分解》单元综合测试卷(考试时间:90分钟 满分:100分)一、选择题(每小题3分,共24分) 1. 下列关系式中正确的是( )A.222()a b a b -=- B.22()()a b a b a b +-=- C.222()a b a b +=+ D.222()2a b a ab b +=-+ 2. 若223649x mxy y -+是完全平方式,则m 的值是( )A.1764B.42C.84D.84± 3. 对代数式244ax ax a -+分解因式,下列结果正确的是( )A.2(2)a x - B.2(2)a x + C.2(4)a x - D.(2)(2)a x x +- 4. 已知13x x -=,则221x x+的值( ) A.9 B.7 C.11 D.不能确定 5. 下列多项式中,不能用公式法因式分解的是( )A.2214x xy y -+ B.222x xy y ++ C.22x y -+ D.22x xy y ++ 6. 若2x y +=,2xy =-,则(1)(1)x y --的值是( )A.1-B.1C.5D.3-7. 从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式( )A.222()2a b a ab b -=-+ B.222()2a b a ab b +=++ C.22()()a b a b a b -=+- D.22(2)()2a b a b a ab b +-=+-8. 若(3)(5)M x x =--,(2)(6)N x x =--,则M 与N 的关系为( )A.M N =B.M N >C.M N <D. M 与N 的大小由x 的取值而定 二、填空题(每小题2分,共20分)9. 计算:(1)32(2)(3)a ab -= ; (2)2(231)x x x -+= .10. 若32mx y 与23n x y -是同类项,则322(3)mn x yx y -= .11. 多项式23264m n mn m n +-的公因式是 .12. 如果要使22(1)(2)x x ax a +-+的乘积中不含扩2x 项,则a = .13. 分解因式:325x x -= ;()()()a x y b y x c x y ---+-= .14. 若二次三项式2(21)4x m x +-+是一个完全平方式,则m = . 15. (1)若10m m +=,24mn =,则22m n += .(2)若13a b -=,2239a b -=,则2()a b += .16. 2(2)(23)26x x x mx +-=+-,则m = . 17. 已知210t t +-=,则3222016t t ++= .18. 若249a +加上一个单项式后可化为一个整式的平方的形式,则这个单项式可以是 .(写一个即可) 三、解答题(共56分) 19. (8分)计算:(1)22()(23)()a b a b a ab a b ab +---(2)2(4)(4)(2)x x x +---(3)225(21)(23)(5)x x x x x --++--+(4)(34)(34)x y z x y z +--+20. ( 8分)把下列各式因式分解:(1) 22()()a x y b y x -+- (2)4224168x x y y -+(3) (2)(4)1x x +++ (4)222(4)16x x +-21. (6分)(1)先化简,再求值: 2(32)(32)7(1)2(1)x x x x x +-----,其中13x =-(2)先化简,再求值: 22(1)3(3)(3)(5)(2)x x x x x +--+++-,其中x 满足22245x y x y +=--.22. ( 6分)(1)已知3()()2x a x +-的结果中不含关于字母x 的一次项,求2(2)(1)(1)a a a +---- 的值;(2)已知221x x -=,求2(1)(31)(1)x x x -+-+的值.23. ( 4分)若x ,y 满足2254x y +=,12xy =-,求下列各式的值. (1) 2()x y + (2)44x y +24. ( 5分)如图,将一张矩形大铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为m cm 的大正方形,两块是边长都为n cm 的小正方形,五块是长、宽分别是m cm ,n cm 的小矩形,且m n >.(1)用含m ,n 的代数式表示切痕的总长为 cm:(2)若每块小矩形的面积为34.5cm 2,四个正方形的面积和为200cm 2 ,试求m n +的值.25. (6分)阅读并探索:在数学中,有些大数值问题可以通过用字母代替数转化成整式问题来解决.例:试比转2015040820150405⨯与2015040620150407⨯的大小. 解:设20150407a =,2015040820150405x =⨯,2015040620150407y =⨯ 则2(1)(2)2x a a a a =+-=--,2(1)y a a a a =-=- 因为x y -=所以x y (填“>”或“<”). 填完后,你学到了这种方法吗?不妨尝试一下.计算: (22.2015)(14.2015)(18.2015)(17.2015)m m m m ++-++26. ( 7分)动手操作:如图①是一个长为2a ,宽为2b 的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形. 提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的面积: ; ; (2)请写出三个代数式2()a b +,2()a b -,ab 之间的一个等量关系: ; 问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知7x y +=,6xy =,求x y -的值.27. ( 6分)你能求999897(1)(1)x x x xx -+++++…的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值. ①2(1)(1)1x x x -+=- ②23(1)(1)1x x x x -++=- ③324(1)(1)1x x x x x -+++=- ……由此我们可以得到:999897(1)(1)x xx x x -+++++=…请你利用上面的结论,再完成下面两题的计算: (1) 504948(2)(2)(2)(2)1-+-+-++-+…(2)若3210x x x +++=,求2016x 的值.参考答案一、1. B 2. D 3. A 4. C5. D6. D7. C8. B 二、9. (1)4224a b - (2)3223x x x -+ 10. 646x y - 11. 2mn 12. 0.513. (5)(5)x x x +- ()()x y a b c -++14. 52或32- 15. (1)52 (2)916. 1 17. 201718. 12a (或12a -,24a -,9-,449a ,答案不唯一,写对一个即可) 三、19. (1)原式3223232222233a b a b a b a b a b a b =+-++-323222322a b a b a b a b =--+(2)原式2216(44)420x x x x =---+=- (3)原式32325105(102153)x x x x x x =---+--32371515x x x =--+(4)原式[(34)][(34)]x y z x y z =+---22(34)x y z =-- 22292416x y yz z =-+-20. (1)原式22()()()()()a b x y a b a b x y =--=+-- (2)原式22222(4)(2)(2)x y x y x y =-=+- (3)原式2269(3)x x x =++=+(4)原式2222(44)(44)(2)(2)x x x x x x =+++-=+- 21. (1)2(32)(32)7(1)2(1)x x x x x +-----222(94)772(21)x x x x x =--+--+2229477242x x x x x =--+-+-116x =-当13x =-时,原式1129633=--=-(2)原式2222(21)3(9)(310)x x x x x =++--++-719x =+由22245x y x y +=--,得22(1)(2)0x y -++= 故1x =,2y =- 故原式711926=⨯+= 22. (1)3()()2x a x +-23322x x ax a =-+-233()22x a x a =+--因为不含关于字母x 的一次项,所以302a -=所以32a =2(2)(1)(1)a a a +---- 2244(1)a a a =++--22441a a a =++-+34545112a =+=⨯+=(2)2(1)(31)(1)x x x -+-+2232121x x x x =----- 2242x x =--22(2)2x x =--因为221x x -= 所以原式2120=⨯-= 23. (1)原式222x xy y =++5112()424=+⨯-= (2)原式=22222()2x y x y +-22511()2()14216=-⨯-= 24. (1)66m n +(2)依题意,得34.5mn =,2222200m n += 故22100m n +=因为222()210069169m n m mn n +=++=+= 且0m n +> 所以13m n += 25. 2- <设18.2015m x +=则原式(4)(4)(1)x x x x =+---2216x x x =--+16x =-18.201516m =+-2.2015m =+26. (1)2()4a b ab +- 2()a b -(2)22()4()a b ab a b +-=- 问题解决:由(2)知22()()4x y x y xy -=+- 当7x y +=,6xy =时22()474625x y xy +-=-⨯=故5x y -=± 27. 1001x-(1)504948(2)(2)(2)(2)1-+-+-++-+…504948(21)[(2)(2)(2)(2)1]=(21)---+-+-++-+--…5049481(21)[(2)(2)(2)(2)1]3=-⨯---+-+-++-+ (511)[(2)1]3=-⨯--512133=+ (2)因为3210x x x +++= 所以32(1)(1)0x x x x -+++= 所以41x = 所以20164504()1x x ==。
《整式的乘法与因式分解》单元测试题(含答案)
∴a2b8=(ab4)2=32=9.
故选B.
点睛:单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式,利用这个法则先算出ab4的值,再平方.
9.下列各式中与 的相等的是
A. B. C. D.
【答案】B
【解析】
【分析】
根据完全平方公式进行选择即可.
14.若 , ,则 ________________.
【答案】-32
【解析】
分析:
先逆用“同底数幂 除法和幂的乘方的法则”把 转化为用含“ ”和“ ”的式子表达,再代值计算即可.
详解:
∵ ,
∴ .
故答案为: .
点睛:熟悉 和 ,并能逆用是解答本题的关键.
15.计算:(a-2b+c)2=________.
20.已知: ( 为多项式),则 ________________________.
三、解答题(共5小题;共60分)
21.计算:
(1) (2)
(3) (4)
22.因式分解:
(1) (2)
(3) (4)
23.先化简,再求值.
(1) ,其中 ,
(2) ,其中 ,
24.仔细阅读下面例题,然后按要求解答问题:
16.定义新运算: ,则 ___________________.
17.若代数式 2a- b 的值是 3,则多项式8- 6a3b的值是______.
18.计算: _________________.
19.如图,在边长为 的正方形中央剪去一边长为 的小正方形 ,将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为__________________.
《整式的乘法与因式分解》单元测试卷(带答案)
6.现有A、B、C三种型号地砖,其规格如图所示,用这三种地砖铺设一个长为x+y,宽为3x+2y 长方形地面,则需要A种地砖___________块.
二、选择题:
7.下列从左边到右边的变形,是因式分解的是( )
A.(A﹣1)(A﹣2)=A2﹣3A+2B.A2﹣3A+2=(A﹣1)(A﹣2)
[答案]D
[解析]
[分析]
根据同底数幂乘法、积 乘方、幂的乘方法进行计算.
[详解]A选项:A3•A2=A5,故是错误的;
B选项:(﹣A2)3=-A6,故是错误的;
C选项:A3和A4不能接相加,故是错误的;
D选项:A2•(A3)4=A14,故是正解的;
故选D.
[点睛]主要考查了同底数幂乘法、积的乘方、幂的乘方和除法法则,正确记忆运算法则是解题关键.
二、选择题:
7.下列从左边到右边的变形,是因式分解的是( )
A. (A﹣1)(A﹣2)=A2﹣3A+2B.A2﹣3A+2=(A﹣1)(A﹣2)
C. (A﹣1)2+(A﹣1)=A2﹣AD.A2﹣3A+2=(A﹣1)2﹣(A﹣1)
[答案]B
[解析]
试题分析:利用因式分解的意义判断即可.
试题解析:A2-3A+2=(A-1)(A-2)是因式分解.
D、左边是单项式,不是因式分解,错误;.
故选B.
“点睛”此题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.
9.下列计算正确的是( )
A.A3•A2=A6B.(﹣A2)3=A6C.A3+A4=A7D.A2•(A3)4=A14
八年级整式的乘法与因式分解单元测试卷 (word版,含解析)
八年级整式的乘法与因式分解单元测试卷 (word 版,含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.如果多项式29x kx -+能用公式法分解因式,那么k 的值是( )A .3B .6C .3±D .6±【答案】D【解析】由于可以利用公式法分解因式,所以它是一个完全平方式222a ab b ±+,所以236k =±⨯=±.故选D.2.已知(x -2015)2+(x -2017)2=34,则(x -2016)2的值是( )A .4B .8C .12D .16【答案】D【解析】(x -2 015)2+(x -2 017)2=(x -2 016+1)2+(x -2 016-1)2=22(2016)2(2016)1(2016)2(2016)1x x x x -+-++---+=22(2016)2x -+=34∴2(2016)16x -=故选D.点睛:本题主要考查了完全平方公式的应用,把(x -2 015)2+(x -2 017)2化为 (x -2 016+1)2+(x -2 016-1)2,利用完全平方公式展开,化简后即可求得(x -2 016)2的值,注意要把x-2016当作一个整体.3.若(x +y )2=9,(x -y )2=5,则xy 的值为( )A .-1B .1C .-4D .4【答案】B【解析】试题分析:根据完全平方公式,两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,分别化简可知(x+y )2=x 2+2xy+y 2=9①,(x ﹣y )2= x 2-2xy+y 2=5②,①-②可得4xy=4,解得xy=1.故选B点睛:此题主要考查了完全平方公式的应用,解题关键是抓住公式的特点:两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,然后比较各式的特点,直接进行计算,再两式相减即可求解..4.下列多项式中,能运用公式法进行因式分解的是( )A .a 2+b 2B .x 2+9C .m 2﹣n 2D .x 2+2xy+4y 2【解析】试题分析:直接利用公式法分解因式进而判断得出答案.解:A、a2+b2,无法分解因式,故此选项错误;B、x2+9,无法分解因式,故此选项错误;C、m2﹣n2=(m+n)(m﹣n),故此选项正确;D、x2+2xy+4y2,无法分解因式,故此选项错误;故选C.5.规定一种运算:a*b=ab+a+b,则a*(﹣b)+a*b的计算结果为()A.0 B.2a C.2b D.2ab 【答案】B【解析】【分析】【详解】解:∵a*b=ab+a+b∴a*(﹣b)+a*b=a(﹣b)+a -b+ab+a+b=﹣ab+a -b+ab+a+b=2a故选B.考点:整式的混合运算.6.如果是个完全平方式,那么的值是()A.8 B.-4 C.±8 D.8或-4【答案】D【解析】试题解析:∵x2+(m-2)x+9是一个完全平方式,∴(x±3)2=x2±2(m-2)x+9,∴2(m-2)=±12,∴m=8或-4.故选D.7.已知4y2+my+9是完全平方式,则m为()A.6 B.±6 C.±12 D.12【答案】C【解析】【分析】原式利用完全平方公式的结构特征求出m的值即可.∵4y2+my+9是完全平方式,∴m=±2×2×3=±12.故选:C.【点睛】此题考查完全平方式,熟练掌握完全平方公式是解题的关键.8.下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2 B.x2+4x+4=(x+2)2C.(a+b)(a﹣b)=a2﹣b2 D.ax2﹣a=a(x2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A选项,从左到右变形错误,不符合题意,B选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.9.下列等式由左边向右边的变形中,属于因式分解的是 ( )A.x2+5x-1=x(x+5)-1 B.x2-4+3x=(x+2)(x-2)+3xC.(x+2)(x-2)=x2-4 D.x2-9=(x+3)(x-3)【答案】D【解析】【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【详解】解:A、右边不是积的形式,故A错误;B、右边不是积的形式,故B错误;C、是整式的乘法,故C错误;D、x2-9=(x+3)(x-3),属于因式分解.故选D.此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.10.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++【答案】B【解析】【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案.【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形;()232S S x x +=++正方形小矩形;()36S S x x +=++小矩形小矩形.故选:B.【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.如果关于x 的二次三项式24x x m -+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值)【答案】5【解析】【分析】根据前两项,此多项式如用十字相乘方法分解,m 应是3或-5;若用完全平方公式分解,m应是4,若用提公因式法分解,m 的值应是0,排除3、-5、4、0的数即可.【详解】当m=5时,原式为245x x -+,不能因式分解,故答案为:5.【点睛】此题考查多项式的因式分解方法,熟记每种分解的因式的特点及所用因式分解的方法,掌握技巧才能熟练运用解题.12.在实数范围内因式分解:231x x +-=____________【答案】3322x x ⎛⎫⎛++ ⎪ ⎪⎝⎭⎝⎭【解析】【分析】利用一元二次方程的解法在实数范围内分解因式即可.【详解】令2310x x +-=∴1x =2x =∴231x x +-=x x ⎛+ ⎝⎭⎝⎭故答案为:x x ⎛+ ⎝⎭⎝⎭【点睛】本题考查实数范围内的因式分解,利用一元二次方程的解法即可解答,熟练掌握相关知识点是解题关键.13.(m+n+p+q) (m-n-p-q)=(__________) 2-(__________) 2.【答案】m n+p+q【解析】(m+n+p+q)(m-n-p-q)=[m+(n+p+q)][m-(n+p+q)]=()22m n p q -++,故答案为(1)m ,(2)n+p+q. 点睛:本题主要考查了平方差公式,平方差公式是两个数的和与这两个数的差的积,等于这两个数的平方差,多项式与多项相乘时,要注意观察能否将其中符号相同的项结合成为一项后,再运用平方差公式运算.14.222---x xy y =__________【答案】()2x y -+【解析】根据因式分解的方法,先提公因式“﹣”,再根据完全平方公式分解因式为:()()2222222x xy y x xy y x y ---=-++=-+. 故答案为()2x y -+.点睛:此题主要考查了因式分解,因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),注意符号的变化.15.分解因式:x 3y ﹣2x 2y+xy=______.【答案】xy (x ﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy (x 2-2x+1)=xy (x-1)2.故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.分解因式:2x 2﹣8=_____________【答案】2(x+2)(x ﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x 2﹣8,=2(x 2﹣4),=2(x+2)(x ﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.17.因式分解:mn (n ﹣m )﹣n (m ﹣n )=_____.【答案】()()1n n m m -+【解析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1),故答案为n(n-m)(m+1).18.若()2242x ax x ++=-,则a =_____.【答案】-4【解析】【分析】直接利用完全平方公式得出a 的值.【详解】解:∵()2242x ax x ++=-,∴4a =-故答案为:4-【点睛】此题主要考查了公式法分解因式,正确应用公式是解题关键.19.若2x+5y ﹣3=0,则4x •32y 的值为________.【答案】8【解析】∵2x+5y ﹣3=0,∴2x+5y=3,∴4x •32y =(22)x ·(25)y =22x ·25y =22x+5y =23=8, 故答案为:8.【点睛】本题主要考查了幂的乘方的性质,同底数幂的乘法,转化为以2为底数的幂是解题的关键,整体思想的运用使求解更加简便.20.已知x 2+2x =3,则代数式(x +1)2﹣(x +2)(x ﹣2)+x 2的值为_____.【答案】8【解析】【分析】利用完全平方公式及平方差公式把原式第一项和第二项展开,去括号合并同类项得到最简结果,把x 2+2x =3代入即可得答案.【详解】原式=x 2+2x+1-(x 2-4)+x 2=x 2+2x+1-x 2+4+x 2=x 2+2x+5.∵x 2+2x =3,∴原式=3+5=8.故答案为8【点睛】此题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.。
《整式的乘法与因式分解》单元测试(带答案)
[分析]
先分别进行幂的乘方与积的乘方运算,然后再根据单项式乘除法的法则进行计算即可得.
[详解]原式=A6•A6B2÷A2B
=A12B2÷A2B
=A10B,
故答案 A10B.
[点睛]本题考查了单项式乘除混合运算,熟练掌握各运算的运算法则以及确定好运算顺序是解题的关键.
12.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米= 米,用科学记数法将16纳米表示为__________________米.
4.已知多项式2x2+Bx+C分解因式为2(x-3)(x+1),则B,C的值为().
A.B=3,C=-1B.B=-6,C=2
C.B=-6,C=-4D.B=-4,C=-6
[答案]D
[解析]
[分析]
利用整式的乘法计算出2(x-3)(x+1)的结果,与2x2+Bx+C对应找到一次项的系数和常数项即可解题.
考点:因式分解.
10.已知 则 的大小关系是()
A. B. C. D.
[答案]A
[解析]
[分析]
先把A,B,C化成以3为底数的幂的形式,再比较大小.
[详解]解:
故选A.
[点睛]此题重点考察学生对幂的大小比较,掌握同底数幂的大小比较方法是解题的关键.
二、填空题
11. =____________
[答案]
C.两数和的完全平方公式D.两数差的完全平方公式
(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.
(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.
《整式的乘法与因式分解》单元测试卷(含答案)
《整式的乘法与因式分解》单元测试卷(时间:120分钟满分:150分)一、选择题1.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(A +B )2=A 2+2A B +B 2.你根据图乙能得到的数学公式是()A . (A +B )(A ﹣B )=A 2﹣B 2 B . (A ﹣B )2=A 2﹣2A B +B 2C . A (A +B )=A 2+A BD . A (A ﹣B )=A 2﹣A B2.若(x-A )(x+B )=x2+mx+n,则m,n分别为()A . m=B -A ,n=-A B B . m=B -A ,n=A BC . m=A -B ,n=-A BD . m=A +B ,n=-A B3.现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A . 1.1111111×1016B . 1.1111111×1027C . 1.111111×1056D . 1.1111111×10174.x m+1x m-1÷(x m) 2的结果是 ( )A . -lB . 1C . 0D . ±15.若3x+2y=3,求27x×9y的值为()A . 9B . 27C . 6D . 06. 观察下列各式及其展开式:(A +B )2=A 2+2A B +B 2(A +B )3=A 3+3A 2B +3A B 2+B 3(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5…请你猜想(A +B )10的展开式第三项的系数是()A . 36B . 45C . 55D . 667.若(x﹣5)(2x﹣n)=2x2+mx﹣15,则m、n的值分别是()A . m=﹣7,n=3B . m=7,n=﹣3C . m=﹣7,n=﹣3D . m=7,n=38.要使(y2-ky+2y)(-y)的展开式中不含y2项,则k的值为()A . -2B . 0C . 2D . 3二、填空题9.若x+=3,分式(x-)2=________.10.当A =-2时,(B -A )(A +B )(A 2+B 2)-(A 4+B 4)的值为_____.11.已知8×2m×16m=211,则m的值为____.12.若27m÷9÷3=321,则m=_____.13.用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图),则由图形能得出(A -B )2=_____(化为A 、B 两数和与积的形式).14.如图,在长为A 、宽为B 的长方形场地中,横向有两条宽均为n的长方形草坪,斜向有一条平行四边形的草坪,且其中一边长为m,则图中空地面积用含有A 、B 、m、n的代数式表示是_____.15.给下列多项式添括号,使它们的最高次项系数变为正数.(1)-x2+x=_____;(2)3x2-2xy2+2y2=_____;(3)-A 3+2A 2-A +1=_____;(4)-3x2y2-2x3+y3=______.16.计算(﹣A 2B )3=__.三、解答题17.若x=3A n,y=-A 2n-1,当A =2,n=3时,求A n x-A y的值.18.计算:(x+3)(x-5)-x(x-2).19.如图1所示,边长为A 的正方形中有一个边长为B 的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含A ,B 的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.20.天宫一号腾空之后某一时刻飞行速度是音速的22倍,而音速是3.4×102米/秒,一架喷气式飞机的速度是5×102米/秒,试问:这一时刻天宫一号腾空之后飞行速度是这架喷气式飞机的速度的几倍?21.工厂要做一个棱长为1.5×103mm的正方体铁箱,至少要多少mm2的铁皮?参考答案一、选择题1.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(A +B )2=A 2+2A B +B 2.你根据图乙能得到的数学公式是()A . (A +B )(A ﹣B )=A 2﹣B 2 B . (A ﹣B )2=A 2﹣2A B +B 2C . A (A +B )=A 2+A BD . A (A ﹣B )=A 2﹣A B[答案]B[解析]大正方形的面积=(A -B )2,还可以表示为A 2-2A B +B 2,∴(A -B )2=A 2-2A B +B 2.故选B .2.若(x-A )(x+B )=x2+mx+n,则m,n分别为()A . m=B -A ,n=-A B B . m=B -A ,n=A BC . m=A -B ,n=-A BD . m=A +B ,n=-A B[答案]A[解析][分析]先将式子展开,再根据展开后的式子求m和n.[详解](x-A )(x+B )=x2+mx+n故选A[点睛]此题重点考察学生对整式乘法的理解,整式乘法的法则是解题的关键.3.现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A . 1.1111111×1016B . 1.1111111×1027C . 1.111111×1056D . 1.1111111×1017[答案]D[解析]试题分析:根据题意得:第⑧个式子为5555555552-4444444452=(555555555+444444445)×(555555555-444444445)=1.1111111×1017.故选D .考点:1.因式分解-运用公式法;2.科学记数法—表示较大的数.4.x m+1x m-1÷(x m) 2的结果是 ( )A . -lB . 1C . 0D . ±1[答案]B[解析]试题分析:根据同底数幂相乘除和幂的乘方,直接计算可得x m+1x m-1÷(x m) 2=1.故选:B点睛:此题主要考查了幂的运算性质,解题时直接应用幂的运算性质,再根据幂的混合运算的顺序计算即可.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘.5.若3x+2y=3,求27x×9y的值为()A . 9B . 27C . 6D . 0[答案]B[解析][分析]先把27x×9y 进行转换再求值.[详解]故选B[点睛]此题重点考察学生对整式乘法的应用,根据规律化简是解题的关键.6. 观察下列各式及其展开式:(A +B )2=A 2+2A B +B 2(A +B )3=A 3+3A 2B +3A B 2+B 3(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5…请你猜想(A +B )10的展开式第三项的系数是()A . 36B . 45C . 55D . 66[答案]B[解析]试题分析:归纳总结得到展开式中第三项系数即可.解:解:(A +B )2=A 2+2A B +B 2;(A +B )3=A 3+3A 2B +3A B 2+B 3;(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4;(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5;(A +B )6=A 6+6A 5B +15A 4B 2+20A 3B 3+15A 2B 4+6A B 5+B 6;(A +B )7=A 7+7A 6B +21A 5B 2+35A 4B 3+35A 3B 4+21A 2B 5+7A B 6+B 7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(A +B )10的展开式第三项的系数为45.故选B .考点:完全平方公式.[此处有视频,请去附件查看]7.若(x﹣5)(2x﹣n)=2x2+mx﹣15,则m、n的值分别是()A . m=﹣7,n=3B . m=7,n=﹣3C . m=﹣7,n=﹣3D . m=7,n=3 [答案]C[解析]试题解析:∵(x-5)(2x-n)=2x2+mx-15,∴2x2+(-n-10)x-5n=2x2+mx-15∴5n=-15,-n-10=m,解得:n=-3,m=7,故选C .[点睛]此题主要考查了因式分解法的应用,正确得出各项对应相等是解题关键.8.要使(y2-ky+2y)(-y)的展开式中不含y2项,则k的值为()A . -2B . 0C . 2D . 3[答案]C[解析][分析]先用整式乘法将式子展开,再根据展开式中不含的要求求出k的值.[详解](y2-ky+2y)(-y)=要使展开式中不含的项,则故选C[点睛]此题重点考察学生对整式乘法的理解,因式分解是解题的关键.二、填空题9.若x+=3,分式(x-)2=________.[答案]5[解析]因为x+=3,(x-)2=x2-2+()2= x2-2+()2+4-4= x2+2+()2-4=(x-)2-4=9-4=5.故答案是:5.10.当A =-2时,(B -A )(A +B )(A 2+B 2)-(A 4+B 4)的值为_____.[答案]-32[解析][分析]先化简再把A =-2带入求值.[详解]:解:(B -A )(A +B )(A 2+B 2)-(A 4+B 4)= (B 2-A 2)(A 2+B 2)-(A 4+B 4)=(B 4-A 4) -(A 4+B 4)=-2A 4∵A =-2,∴原式=-2×(-2)4=-32.故答案为:-32.[点睛]此题重点考察学生对整式乘法的理解,会正确使用平方差公式是解题的关键.11.已知8×2m×16m=211,则m的值为____.[答案][解析][分析]先把式子左边化简成2n的形式,即可求得m的值.[详解]8×2m×16m=211故答案为[点睛]此题重点考察学生对整式乘法的应用,正确化简是解题的关键.12.若27m÷9÷3=321,则m=_____.[答案]8[解析][分析]先把式子左边化简成3n的形式,即可求得m的值.[详解]27m÷9÷3=321故答案为8[点睛]此题重点考察学生对整式乘法的应用,正确化简是解题的关键.13.用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图),则由图形能得出(A -B )2=_____(化为A 、B 两数和与积的形式).[答案](A +B )2-4A B[解析][分析]根据图形先求出大正方形的面积,然后再减去四个长方形的面积.[详解]小正方形的边长为:(A -B ),∴面积为(A -B )2,小正方形的面积=大正方形的面积-4×长方形的面积=(A +B )2-4A B故答案为(A +B )2-4A B[点睛]此题重点考察学生对整式乘法中完全平方公式的理解,关键公式计算小正方形面积是解题的关键. 14.如图,在长为A 、宽为B 的长方形场地中,横向有两条宽均为n的长方形草坪,斜向有一条平行四边形的草坪,且其中一边长为m,则图中空地面积用含有A 、B 、m、n的代数式表示是_____.[答案](B -2n)(A -m)[解析][分析]利用平移的方法先找出空地的长和宽,再计算面积即可.[详解]利用平移的方法可知:空地长为A -m,宽为B -2n,图中空地面积用含有A 、B 、m、n的代数式表示是(B -2n)(A -m)[点睛]解题的关键在于找到空地的长和宽,再利用长方形面积计算公式列出式子.15.给下列多项式添括号,使它们的最高次项系数变为正数.(1)-x2+x=_____;(2)3x2-2xy2+2y2=_____;(3)-A 3+2A 2-A +1=_____;(4)-3x2y2-2x3+y3=______.[答案] (1). (1)-(x2-x);(2). (2)-(2xy2-3x2-2y2);(3). (3)-(A 3-2A 2+A -1);(4). (4)-(3x2y2+2x3-y3).[解析][分析]要使(1)(2)(3)(4)的最高次项系数变为正数,仔细观察每个最高次项系数都是负数,则直接在整个式子前加负号即可.[详解](1)-x2+x=-(x2-x);(2)3x2-2xy2+2y2=-(2xy2-3x2-2y2);(3)-A 3+2A 2-A +1=-(A 3-2A 2+A -1);(4)-3x2y2-2x3+y3=-(3x2y2+2x3-y3);故答案为(1)-(x2-x);(2)-(2xy2-3x2-2y2);(3)-(A 3-2A 2+A -1);(4)-(3x2y2+2x3-y3).[点睛]此题重点考察学生对多项式最高次数项的认识,抓住最高次项系数为正数是解题的关键.16.计算(﹣A 2B )3=__.[答案]−A 6B 3[解析][分析]根据积的乘方的运算方法:(A B )n=A n B n,求出(-A 2B )3的值是多少即可.[详解](-A 2B )3=(−)3⋅(A 2)3⋅B 3=−A 6B 3.故答案为:−A 6B 3.[点睛]本题考查了幂的乘方与积的乘方,解题的关键是熟练的掌握幂的乘方与积的乘方的运算法则.三、解答题17.若x=3A n,y=-A 2n-1,当A =2,n=3时,求A n x-A y的值.[答案]224.[解析][分析]先把A =2,n=3带入x=3A n,y=-A 2n-1求出x和y,再带入A n x-A y计算即可.[详解]A n x-A y=A n×3A n-A ×(-A 2n−1)=3A 2n+A 2n=A 2n∵A =2,n=3,∴A 2n =×26=224.[点睛]此题重点考察学生对整式乘法的应用能力,熟练整式乘法法则是解题的关键.18.计算:(x+3)(x-5)-x(x-2).[答案]-15.[解析][分析]先利用整式乘法进行展开,再合并同类项进行计算.[详解]原式=x2-5x+3x-15-x2+2x=-15.[点睛]此题重点考察学生对整式乘法的应用,熟悉整式乘法是解题的关键.19.如图1所示,边长为A 的正方形中有一个边长为B 的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含A ,B 的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.[答案](1)S1=A 2-B 2,S2=(A +B )(A ﹣B );(2)(A +B )(A ﹣B )=A 2﹣B 2;(3)216.[解析]试题分析:(1)根据两个图形的面积相等,即可写出公式;(2)根据面积相等可得(A +B )(A -B )=A 2-B 2;(3)从左到右依次利用平方差公式即可求解.试题解析:(1)S1=A 2-B 2,S2=(A +B )(A ﹣B );(2)(A +B )(A ﹣B )=A 2﹣B 2;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=(216﹣1)+1=216.[点睛]运用了平方差的几何背景以及平方差公式的应用,正确理解平方差公式的结构是关键.20.天宫一号腾空之后某一时刻飞行速度是音速的22倍,而音速是3.4×102米/秒,一架喷气式飞机的速度是5×102米/秒,试问:这一时刻天宫一号腾空之后飞行速度是这架喷气式飞机的速度的几倍?[答案]天宫一号腾空之后飞行速度是这架喷气式飞机的速度的14.96倍.[解析][分析]根据题意直接列式解答即可,注意整式乘法的运算法则.[详解]依题意得(3.4×102)×22÷(5×102)=3.4×22÷5=14.96.答:天宫一号腾空之后飞行速度是这架喷气式飞机的速度的14.96倍.21.工厂要做一个棱长为1.5×103mm的正方体铁箱,至少要多少mm2的铁皮?[答案]至少要1.35×107mm2的铁皮.[解析][分析]求出正方体表面积即可知道需要多少铁皮.[详解]正方体的表面积为6×(1.5×103)2=6×2.25×106=1.35×107mm2.答:至少要1.35×107mm2的铁皮.[点睛]此题重点考察学生对整式乘法的实际应用能力,会计算正方体表面积是解题的关键.。
《第14章整式的乘法与因式分解》单元测试题(含答案).doc
(第10题图)第十四章 整式的乘法与因式分解一、选择题1.下列各式由左边到右边的变形为因式分解的是( )A.a 2-b 2+1=(a+b)(a-b)+1B.m 2-4m+4=(m-2)2C.(x+3)(x-3)=x 2-9D.t 2+3t-16=(t+4)(t-4)+3t2.分解因式:x 3-x,结果为( )A.x(x 2-1)B.x(x-1)2C.x(x+1)2D.x(x+1)(x-1)3.下列因式分解正确的是( )A.16m 2-4=(4m+2)(4m-2)B.m 4-1=(m 2+1)(m 2-1)C.m 2-6m+9=(m-3)2D.1-a 2=(a+1)(a-1)4.下列多项式能因式分解的是( )A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n5.计算(2x 3y )2的结果是( )A .4x 6y 2B .8x 6y 2C .4x 5y 2D .8x 5y 26.已知a+b=3,ab=2,计算:a 2b+ab 2等于( )A .5B .6C .9D .17、下列运算中结果正确的是( )A 、633·x x x =;B 、422523x x x =+;C 、532)(x x =;D 、222()x y x y +=+.8、ab 减去22b ab a +-等于 ( )。
A 、222b ab a ++;B 、222b ab a +--;C 、222b ab a -+-;D 、222b ab a ++-9、已知x 2+kxy+64y 2是一个完全式,则k 的值是( )A 、8B 、±8C 、16D 、±1610、如下图(1),边长为a 的大正方形中一个边长为b小正方形,小明将图(1)的阴影部分拼成了一个矩形,如图(2)。
这一过程可以验证( )A 、a 2+b 2-2ab=(a -b)2 ;B 、a 2+b 2+2ab=(a+b)2 ;C 、2a 2-3ab+b 2=(2a -b)(a -b) ;D 、a 2-b 2=(a+b) (a -b)二、填空题11.若单项式-3x 4a-b y 2与3x 3y a+b 是同类项,则这两个单项式的积为 . 图1 图212.已知(x-1)(x+2)=ax2+bx+c,则代数式4a-2b+c的值为.13.若16b2+a2+m是完全平方式,则m= .14.分解因式:x3﹣x= .15.因式分解:43a﹣122a+9a= .16、若4x2+kx+25=(2x-5)2,那么k的值是三、解答题17.(8分)因式分解:(1)3a2-27b2; (2)x2-8(x-2).18. (10分)计算:(1)已知a+b=3,ab=-2,求a2+b2和a2-ab+b2的值;(2)已知(x+y)2=1,(x-y)2=49,求x2+y2和xy的值;(3)已知a-b=1,a2+b2=25,求ab的值.19.已知一个长方形的周长为20,其长为a,宽为b,且a,b满足a2-2ab+b2-4a+4b+4=0,求a,b的值.20、李老师给学生出了一道题:当a=0.35,b= -0.28时,求3323323a ab a b a a b a b a-+++--的值.题目出完后,小聪说:“老师给76336310的条件a=0.35,b= -0.28是多余的.”小明说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?21、如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)•展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+_____a3b+_____a2b2+______ab3+b4答案BDCCA BACDD11.-9x 6y 412.013.±8ab14.x (x+1)(x ﹣1).15.a 2(23)a -16.-20;17.解 (1)3a 2-27b 2=3(a 2-9b 2)=3(a+3b)(a-3b);(2)x 2-8(x-2)=x 2-8x+16=(x-4)2.18 (1)a 2+b 2=(a+b)2-2ab=32-2×(-2)=13;a 2-ab+b 2=(a+b)2-3ab=32-3×(-2)=15.(2)∵(x+y)2=x 2+y 2+2xy=1,(x-y)2=x 2+y 2-2xy=49,即解得(3)∵a-b=1,∴(a-b)2=a 2+b 2-2ab=1.∵a 2+b 2=25,∴25-2ab=1,解得ab=12.19.解 ∵长方形的周长为20,其长为a,宽为b,∴a+b=20÷2=10.∵a 2-2ab+b 2-4a+4b+4=0,∴(a-b)2-4(a-b)+4=0.∴(a-b-2)2=0.∴a-b-2=0,由此得方程组解得 20.原式=332(7310)(66)(33)0a a b a b +-+-++-=,合并得结果为0,与a 、b 的取值无关,所以小明说的有道理.21.4;6;4;。
(完整版)整式的乘法与因式分解单元检测(含答案)
八年级上第十四章 整式的乘法与因式分解单元检测一、选择题(本大题共8小题,每小题3分,共24分.)1.下列计算中正确的是( ).A .a 2+b 3=2a 5B .a 4÷a =a 4C .a 2·a 4=a 8D .(-a 2)3=-a 62.(x -a )(x 2+ax +a 2)的计算结果是( ).A .x 3+2ax 2-a 3B .x 3-a 3C .x 3+2a 2x -a 3D .x 3+2ax 2+2a 2-a 33.下面是某同学在一次测验中的计算摘录,其中正确的个数有( ).①3x 3·(-2x 2)=-6x 5;②4a 3b ÷(-2a 2b )=-2a ;③(a 3)2=a 5;④(-a )3÷(-a )=-a 2.A .1个B .2个C .3个D .4个4.已知被除式是x 3+2x 2-1,商式是x ,余式是-1,则除式是( ).A .x 2+3x -1B .x 2+2xC .x 2-1D .x 2-3x +15.下列各式是完全平方式的是( ).A .x 2-x +14B .1+x 2C .x +xy +1D .x 2+2x -1 6.把多项式ax 2-ax -2a 分解因式,下列结果正确的是( ).A .a (x -2)(x +1)B .a (x +2)(x -1)C .a (x -1)2D .(ax -2)(ax +1)7.如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ).A .-3B .3C .0D .18.若3x =15,3y =5,则3x -y 等于( ).A .5B .3C .15D .10二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)9.计算(-3x 2y )·(213xy )=__________。
10.计算:22()()33m n m n -+--=__________. 11.计算:223()32x y --=_____ 12.计算:(-a 2)3+(-a 3)2-a 2·a 4+2a 9÷a 3=__________。
第15章《整式的乘除与因式分解》单元测试题(含答案)[
《整式的乘除与因式分解》单元测试题一、选择题(共5小题,每小题4分,共20分)1、下列运算正确的是 ( )A 、 933842x x x ÷=B 、2323440a b a b ÷=C 、22m m aa a ÷= D 、2212()42abc ab c ÷-=- 2、计算(32)2013×1.52012×(-1)2014的结果是( ) A 、32 B 、23 C 、-32 D 、-23 3、下列多项式乘法中可以用平方差公式计算的是( ) A 、))((b a b a -+- B 、)2)(2(x x ++ C 、)31)(31(x y y x -+ D 、)1)(2(+-x x 4、 把代数式ax ²- 4ax +4a ²分解因式,下列结果中正确的是( )A 、a (x -2) 2B 、 a (x +2) 2C 、a (x -4) 2D 、a (x -2) (x +2)5、在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),再沿虚线剪开,如图①,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( )。
A 、a 2+b 2=(a +b )(a -b )B 、(a +b )2=a 2+2abC 、(a -b )2=a 2-2ab +b 2D 、a 2-b 2=(a -b )2二、填空题(共5小题,每小题4分,共20分)6、运用乘法公式计算:(32a -b )(32a +b )= ;(-2x -5)(2x -5)= 7、计算:534515a b c a b -÷=8、若a +b =1,a -b =2006,则a 2-b 2=9、在多项式4x 2+1中添加一个单项式,使其成为完全平方式,则添加的单项式为 (只写出一个即可)10、小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x 2y -2xy 2,商式必须是2xy ,则小亮报一个除式是 。
整式的乘法与因式分解单元练习(Word版 含答案)
∴(x±3)2=x2±2(m-2)x+9,
∴2(m-2)=±12,
∴m=8或-4.
故选D.
9.下面计算正确的是( )
A. x3 4x3 5x6
C. 2x3 4 16x12
【答案】C
B. a2 a3 a6
D. x 2 y x 2 y x2 2y2
【解析】 【分析】 A.合并同类项得到结果;B.利用同底数幂的乘法法则计算得到结果;C.利用幂的乘方与积 的乘方运算法则计算得到结果;D.利用平方差公式计算得到结果,即可作出判断. 【详解】
4.下列运算正确的是
A. b5 b3 b2
B. (b5 )2 b7
C. b2·b4 b8
【答案】A 【解析】
D. a(·a 2b) a2 2ab
选项 A, b5 b3 b2,正确;选项 B,
b5
2
b10
,错误;选项 C, b2·b4 b6 ,错误;
选项 D, a·a 2b a2 2ab ,错误.故选 A.
B.(a-b)2=a2-2ab+b2 D.(a-b)(a+2b)=a2+ab-b2
【解析】 图(4)中, ∵ S 正方形=a2-2b(a-b)-b2=a2-2ab+b2=(a-b)2, ∴ (a-b)2=a2-2ab+b2. 故选 B
7.下列运算正确的是( )
A. 2a2 4a2
B. a b2 a2 b2
C.12
【答案】D
【解析】
(x-2 015)2+(x-2 017)2
=(x-2 016+1)2+(x-2 016-1)2
= (x 2016)2 2(x 2016) 1 (x 2016)2 2(x 2016) 1
《整式的乘法与因式分解》单元测试题(带答案)
A. B. C. D.
[答案]D
[解析]
[分析]
根据平方差公式(A+B)(A-B)=A2-B2对各选项分别进行判断即可.
[详解]能用平方差公式计算的是 ,
故选D.
[点睛]本题考查了平方差公式,熟练掌握平方差公式(A+B)(A-B)=A2-B2是解本题的关键.
10.下列从左到右的变形,是因式分解的是
4.下列计算正确的是()
A 3A2﹣4A2=A2B.A2•A3=A6C.A10÷A5=A2D.(A2)3=A6
5.下列各式中,运算正确的是()
A. B. C. D.
6.下列运算错误的是()
A.(m2)3=m6B.A10÷A9=AC.x3•x5=x8D.A4+A3=A7
7.化简(A2)A3所得 结果是()
(2)用两种不同的方法求图中阴影部分的面积.
11.下列运算正确的是()
A. B. C. D.
[答案]D
[解析]
[分析]
根据同底数幂的乘除法法则,幂的乘方,积的乘方一一判断即可.
[详解]解:A、错误.应该是x3•x3=x6;
B、错误.应该是x8÷x4=x4;
C、错误.(A B3)2=A2B6.
D、正确.
故选D.
[点睛]本题考查同底数幂的乘除法法则,幂的乘方,积的乘方等知识,解题的关键是熟练掌握基本知识.
∴A2﹣4A+4+B2﹣8B+16=0,
∴(A﹣2)2+(B﹣4)2=0,
又∵(A﹣2)2≥0,(B﹣4)2≥0,
∴A﹣2=0,B﹣4=0,
∴A=2,B=4,
∴△A B C的周长为A+B+C=2+4+3=9,
第十四章 整式的乘法与因式分解单元测试题(含答案)
第十四章《整式的乘法与因式分解》单元检测题一、选择题(每题3分,共30分)1.下列因式分解正确的是()A.2-=+-x y x y x y94(94)(94) +=+B.2224(24)a a a aC.22(1)2-+=-m m mx x x x--=--D.2269(3)2.已知m=1﹣n,则m3+m2n+2mn+n2的值为()A.﹣2 B.﹣1 C.1 D.23.下列运算正确的是()A.3a﹣(2a﹣b)=a﹣b B.(a3b2﹣2a2b)÷ab=a2b﹣2C.(a+2b)(a﹣2b)=a2﹣2b2D.(﹣a2b)3=﹣a6b34.如果(3x+p)(x+q)=3x2+13x-10,则q与p的值分别是()A.-5,2 B.5,-2 C.-2,5 D.2,-55.下列计算中,正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个 C.3个 D.4个6.下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y-x)C.(x+y)(-y-x)D.(-x+y)(y-x)7.计算()2021×()2022×(﹣1)2023的结果是()A.B.C.D.8.若(x2+ax+2)(2x﹣4)的结果中不含x2项,则a的值为()A.0 B.2 C.D.﹣29.已知a=8131,b=2741,c=961,则a、b、c的大小关系是()A.a>b>c B.b>a>c C.b>c>a D.a>c>b 10.如图1,将一个大长方形沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示图形,正好是边长为x的大正方形剪去一个边长为1的小正方形(阴影部分).这两个图能解释下列哪个等式()A.(x﹣1)2=x2﹣2x+1 B.(x+1)(x﹣1)=x2﹣1C.(x+1)2=x2+2x+1 D.x(x﹣1)=x2﹣x二、填空题(每题3分,共24分)11.因式分解:18a﹣2a3=.12.计算2m2n3⋅(﹣3m)的结果是.13.因式分解:a2﹣1=.14.比较大小:a2+b22ab﹣1.(选填“>”、“≥”、“<”、“≤”或“=”)15.分解因式:b2+c2+2bc﹣a2=.16.计算:(12x2y3﹣9x3y2)÷(3x2y)=.17.已知长方形的面积为4a2-4b2,如果它的一边长为a+b,则它的周长为 .18. 将12张长为a,宽为b(a>b)的小长方形纸片,按如图方式不重叠地放在大长方形ABCD内,未被覆盖的部分用阴影表示,若阴影部分的面积是大长方形面积的13,则小长方形纸片的长a与宽b的比值为 ___.三.解答题(共46分,19题6分,20 ---24题8分)19.计算: (1)(-1)2 018+⎝ ⎛⎭⎪⎫-12 2-(3.14-π)0; (2)(2x 3y )2·(-2xy )+(-2x 3y )3÷2x 2;(3)(2x -3)2-(2x +3)(2x -3);(4)[(a -2b )2+(a -2b )(2b +a )-2a (2a -b )]÷2a .20.分解因式:(1)m 3n -9mn; (2)(x 2+4)2-16x 2; (3)x 2-4y 2-x +2y;(4)4x 3y +4x 2y 2+xy 3.21.先化简,再求值:(1)(x 2-4xy +4y 2)÷(x -2y )-(4x 2-9y 2)÷(2x -3y ),其中x =-4,y =15;(2)(m -n )(m +n )+(m +n )2-2m 2,其中m ,n 满足⎩⎨⎧m +2n =1,3m -2n =11.22.简便计算:(1)2 0202-2 019×2 021; (2)2 0182-4 036×2 017+2 0172.23、某学校教学楼前有一块长为()62a b +米,宽为()42+a b 米的长方形空地要铺地砖,如图所示,空白的甲、乙两正方形区域是草坪,不需要铺地砖.两正方形区域的边长均为()a b +米.(1)求铺设地砖的面积是多少平方米;(2)当2a =,3b =时,需要铺地砖的面积是多少?24.都是剪成边为a 的大正方形,④⑤⑥都是剪成边长为b 的小正方形,剩下的都是剪成边长分别为a 、b 的小长方形.(1)观察图形,可以发现多项式223103a ab b ++可以因式分解为______________. (2)若每块小长方形的的面积为210cm ,六个正方形的面积之和为287cm ,试求图中所有裁剪线(虚线部分)长之和.答案一、选择题(每题3分,共30分)二、填空题(每题3分,共24分)11.解:18a﹣2a3=2a(9﹣a2)=2a(3+a)(3﹣a).故答案为:2a(3+a)(3﹣a).12.解:2m2n3⋅(﹣3m)=﹣6m3n3.故答案为:﹣6m3n3.13.解:a2﹣1=a2﹣12=(a+1)(a﹣1).14.解:(a2+b2)﹣(2ab﹣1)=a2+b2﹣2ab+1=(a﹣b)2+1.∵(a﹣b)2≥0,∴(a﹣b)2+1>0,∴a2+b2>2ab﹣1.故答案为:>.15.解:原式=(b+c)2﹣a2=(b+c+a)(b+c﹣a).故答案为:(b+c+a)(b+c﹣a)16.解:(12x2y3﹣9x3y2)÷(3x2y)=12x2y3÷(3x2y)﹣9x3y2÷(3x2y)=4y2﹣3xy.故答案为:4y2﹣3xy.17.10a-6b18.4三.解答题(共46分,19题6分,20 ---24题8分)19.解:(1)原式=1+14-1=14;(2)原式=4x 6y 2·(-2xy )-8x 9y 3÷2x 2=-8x 7y 3-4x 7y 3=-12x 7y 3; (3)原式=(2x -3)·[(2x -3)-(2x +3)]=(2x -3)·(-6)=-12x +18; (4)原式=(a 2-4ab +4b 2+a 2-4b 2-4a 2+2ab )÷2a =(-2a 2-2ab )÷2a =-a -b .20.解:(1)原式=mn (m 2-9)=mn (m +3)(m -3);(2)原式=(x 2+4+4x )(x 2+4-4x )=(x +2)2(x -2)2;(3)原式=x 2-4y 2-(x -2y )=(x +2y )(x -2y )-(x -2y )=(x -2y )(x +2y -1);(4)原式=xy (4x 2+4xy +y 2)=xy (2x +y )2.21.解:(1)原式=(x -2y )2÷(x -2y )-(2x +3y )(2x -3y )÷(2x -3y )=x -2y-2x -3y =-x -5y . ∵x =-4,y =15,∴原式=-x -5y =4-5×15=3.(2)原式=m 2-n 2+m 2+2mn +n 2-2m 2=2mn . 解方程组⎩⎨⎧m +2n =1,3m -2n =11,得⎩⎨⎧m =3,n =-1. ∴原式=2mn =2×3×(-1)=-6.22.解:(1)原式=2 0202-(2 020-1)×(2 020+1)=2 0202-(2 0202-12)=1;(2)原式=2 0182-2×2 018×2 017+2 0172=(2 018-2 017)2=1.23、解:(1)根据题意得:铺设地砖的面积为:(6a+2b)(4a+2b)-2(a+b)2=24a2+20ab+4b2-2a2-4ab-2b2=22a2+16ab+2b2(平方米);(2)当a=2,b=3时,原式=88+96+18=202(平方米).24.(1)(a+3b)(3a+b);(2)84【解析】解:(1)观察图形,大长方形的边长分别为a+3b和3a+b,而各部分面积之和为3a2+10ab+3b2,∴3a2+10ab+3b2=(a+3b)(3a+b).故答案为:(a+3b)(3a+b).(2)∵每块小长方形的的面积为10cm2,∴ab=10,∵六个正方形的面积之和为87cm2,∴3a2+3b2=87,∴a2+b2=29,∴a2+2ab+b2=49,∴(a+b)2=49,∵a+b>0,∴a+b=7,∵图中虚线长度的和为12a+12b=12(a+b),∴图中所有裁剪线(虚线部分)长之和为:12×7=84.。
整式乘法与因式分解单元测试卷及参考答案
整式乘法与因式分解单元测试卷(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分) 1.下列运算正确的是( )A .3a 2-2a 2=1B .(a 2)3=a 5C .a 2·a 4=a 6D .(3a)2=6a 2 2.下列计算错误的是( )A .(5-2)0=1B .28x 4y 2÷7x 3=4xy 2C .(4xy 2-6x 2y +2xy)÷2xy=2y -3xD .(a -5)(a +3)=a 2-2a -15 3.下列因式分解正确的是( )A .a 4b -6a 3b +9a 2b =a 2b(a 2-6a +9)B .x 2-x +14=(x -12)2C .x 2-2x +4=(x -2)2D .4x 2-y 2=(4x +y)(4x -y)4.将(2x)n -81分解因式后得(4x 2+9)(2x +3)(2x -3),则n 等于( ) A .2 B .4 C .6 D .85.若m =2100,n =375,则m ,n 的大小关系是( ) A .m>n B .m<n C .m =n D .无法确定6.已知a +b =3,ab =2,则a 2+b 2的值为( ) A .3 B .4 C .5 D .67.计算:(a -b +3)(a +b -3)=( ) A .a 2+b 2-9 B .a 2-b 2-6b -9C .a 2-b 2+6b -9D .a 2+b 2-2ab +6a +6b +9 8.在边长为a 的正方形中挖去一个边长为b 的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .(a +b)2=a 2+2ab +b 2B .(a -b)2=a 2-2ab +b 2C .a 2-b 2=(a +b)(a -b)D .(a +2b)(a -b)=a 2+ab -2b 29.若x 2+mx -15=(x -3)(x +n),则m ,n 的值分别是( ) A .4,3 B .3,4 C .5,2 D .2,5 10.观察下列各式及其展开式:(a +b)2=a 2+2ab +b 2(a +b)3=a 3+3a 2b +3ab 2+b 3(a +b)4=a 4+4a 3b +6a 2b 2+4ab 3+b 4(a +b)5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5…请你猜想(a +b)10的展开式第三项的系数是( ) A .36 B .45 C .55 D .66二、填空题(每小题3分,共24分)11.计算:(x -y)(x 2+xy +y 2)=__ __.12.(2015·孝感)分解因式:(a -b)2-4b 2=__ __.13.若(2x +1)0=(3x -6)0,则x 的取值范围是__ _.14.已知a m =3,a n =2,则a 2m -3n=_ _.15.若一个正方形的面积为a 2+a +14,则此正方形的周长为__ _.16.已知实数a ,b 满足a 2-b 2=10,则(a +b)3·(a -b)3的值是_ .17.已知△ABC 的三边长为整数a ,b ,c ,且满足a 2+b 2-6a -4b +13=0,则c 为_ .18.观察下列各式,探索发现规律:22-1=1×3;32-1=2×4;42-1=3×5;52-1=4×6;….按此规律,第n 个等式为__ _.三、解答题(共66分) 19.(8分)计算:(1)y(2x -y)+(x +y)2; (2)(-2a 2b 3)÷(-6ab 2)·(-4a 2b).20.(8分)用乘方公式计算:(1)982;(2)899×901+1.21.(12分)分解因式:(1)18a 3-2a ; (2)ab(ab -6)+9; (3)m 2-n 2+2m -2n.22.(10分)先化简,再求值:(1) (2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-12;(2)[(x +2y)(x -2y)-(x +4y)2]÷4y,其中x =-5,y =2.23.(8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.24.(8分)学习了分解因式的知识后,老师提出了这样一个问题:设n为整数,则(n+7)2-(n-3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出一个反例.25.(12分)阅读材料并回答问题:课本中多项式与多项式相乘是利用平面几何图形中的面积来表示的,例如:(2a+b)(a +b)=2a2+3ab+b2就可以用如图①②所示的图形的面积来表示.(1)请写出如图③所示的图形的面积表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示为(a+b)(a+3b)=a2+4ab+3b2;(3)请仿照上述方法另写一个含有a,b的代数恒等式,并画出与之对应的几何图形.整式乘法与因式分解单元测试卷参考答案一、选择题(每小题3分,共30分) 1.(2015·徐州)下列运算正确的是( C )A .3a 2-2a 2=1 B .(a 2)3=a 5 C .a 2·a 4=a 6 D .(3a)2=6a 2 2.下列计算错误的是( C ) A .(5-2)0=1 B .28x 4y 2÷7x 3=4xy 2 C .(4xy 2-6x 2y +2xy)÷2xy =2y -3x D .(a -5)(a +3)=a 2-2a -15 3.(2015·毕节)下列因式分解正确的是( B )A .a 4b -6a 3b +9a 2b =a 2b(a 2-6a +9)B .x 2-x +14=(x -12)2C .x 2-2x +4=(x -2)2D .4x 2-y 2=(4x +y)(4x -y)4.将(2x)n -81分解因式后得(4x 2+9)(2x +3)(2x -3),则n 等于( B ) A .2 B .4 C .6 D .85.若m =2100,n =375,则m ,n 的大小关系是( B ) A .m>n B .m<n C .m =n D .无法确定 6.已知a +b =3,ab =2,则a 2+b 2的值为( C ) A .3 B .4 C .5 D .67.计算:(a -b +3)(a +b -3)=( C ) A .a 2+b 2-9 B .a 2-b 2-6b -9C .a 2-b 2+6b -9D .a 2+b 2-2ab +6a +6b +98.在边长为a 的正方形中挖去一个边长为b 的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( C )A .(a +b)2=a 2+2ab +b 2B .(a -b)2=a 2-2ab +b 2C .a 2-b 2=(a +b)(a -b)D .(a +2b)(a -b)=a 2+ab -2b 29.若x 2+mx -15=(x -3)(x +n),则m ,n 的值分别是( D ) A .4,3 B .3,4 C .5,2 D .2,5 10.(2015·日照)观察下列各式及其展开式:(a +b)2=a 2+2ab +b 2(a +b)3=a 3+3a 2b +3ab 2+b 3(a +b)4=a 4+4a 3b +6a 2b 2+4ab 3+b 4(a +b)5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5 …请你猜想(a +b)10的展开式第三项的系数是( B ) A .36 B .45 C .55 D .66 二、填空题(每小题3分,共24分)11.计算:(x -y)(x 2+xy +y 2)=__x 3-y 3__. 12.(2015·孝感)分解因式:(a -b)2-4b 2=__(a +b )(a -3b )__.13.若(2x +1)0=(3x -6)0,则x 的取值范围是__x ≠-12且x ≠2__.14.已知a m =3,a n =2,则a 2m -3n =__98__.15.若一个正方形的面积为a 2+a +14,则此正方形的周长为__4a +2__.16.已知实数a ,b 满足a 2-b 2=10,则(a +b)3·(a -b)3的值是__1000__.17.已知△ABC 的三边长为整数a ,b ,c ,且满足a 2+b 2-6a -4b +13=0,则c 为__2或3或4__.18.观察下列各式,探索发现规律:22-1=1×3;32-1=2×4;42-1=3×5;52-1=4×6;….按此规律,第n 个等式为__(n +1)2-1=n (n +2)__.三、解答题(共66分) 19.(8分)计算: (1)(2015·重庆)y(2x -y)+(x +y)2; (2)(-2a 2b 3)÷(-6ab 2)·(-4a 2b).解:原式=x 2+4xy 解:原式=-43a 3b 220.(8分)用乘方公式计算: (1)982; (2)899×901+1.解:原式=9604 原式=81000021.(12分)分解因式:(1)18a 3-2a ; (2)ab(ab -6)+9; (3)m 2-n 2+2m -2n.22.(10分)先化简,再求值:(1)(2015·随州)(2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-12;解:原式=4-2ab ,当ab =-12时,原式=5(2)[(x +2y)(x -2y)-(x +4y)2]÷4y ,其中x =-5,y =2. 解:原式=-2x -5y ,当x =-5,y =2时,原式=023.(8分)如图,某市有一块长为(3a +b)米,宽为(2a +b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.解:绿化面积为(3a +b )(2a +b )-(a +b )2=5a 2+3ab (平方米).当a =3,b =2时,5a 2+3ab =63,即绿化面积为63平方米24.(8分)学习了分解因式的知识后,老师提出了这样一个问题:设n为整数,则(n+7)2-(n-3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出一个反例.解:(n+7)2-(n-3)2=(n+7+n-3)(n+7-n+3)=20(n+2),∴一定能被20整除25.(12分)阅读材料并回答问题:课本中多项式与多项式相乘是利用平面几何图形中的面积来表示的,例如:(2a+b)(a +b)=2a2+3ab+b2就可以用如图①②所示的图形的面积来表示.(1)请写出如图③所示的图形的面积表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示为(a+b)(a+3b)=a2+4ab+3b2;(3)请仿照上述方法另写一个含有a,b的代数恒等式,并画出与之对应的几何图形.解:(1)(a+2b)(2a+b)=2a2+5ab+2b2(2)如图④(3)(答案不唯一)(a+2b)(a+3b)=a2+5ab+6b2,如图⑤。
安徽滁州市八年级数学上册第十四章《整式的乘法与因式分解》经典测试(含答案解析)
一、选择题1.根据等式:()()2111x x x -+=-,()()23111,x x x x -++=-()()324111x x x x x -+++=-,()()4325111,x x x x x x -++++=-……的规律,则可以推算得出2021202020192222...221++++++的末位数字是( )A .1B .3C .5D .72.下列各式由左边到右边的变形中,是分解因式的为( ) A .2105525x x x x x -=⋅- B .()a x y ax ay +=+C .()22442x x x -+=- D .()()2163443x x x x x -+=-++3.下列等式中从左到右边的变形是分解因式的是( )A .()21a a b a ab a +-=+-B .()2211a a a a --=--C .()()22492323a b a b a b -+=-++D .1212x x x ⎛⎫+=+⎪⎝⎭4.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如左图可以用来解释(a+b )2-(a -b )2=4ab .那么通过右图面积的计算,验证了一个恒等式,此等式是( )A .22()()a b a b a b -=+-B .22()(2)a b a b a ab b -+=+-C .222()2a b a ab b -=-+D .222()2a b a ab b +=++ 5.如果x+y =6,x 2-y 2=24,那么y-x 的值为( )A .﹣4B .4C .﹣6D .66.按照如图所示的运算程序,能使输出y 的值为5的是( )A .1,4m n ==B .2,5m n ==C .5,3m n ==D .2,2m n == 7.2a =1,b 是2的相反数,则a+b 的值是( ) A .1B .-3C .-1或-3D .1或-38.下列分解因式正确的是( ) A .xy ﹣2y 2=x (y ﹣2x ) B .m 3n ﹣mn =mn (m 2﹣1) C .4x 2﹣24x +36=(2x ﹣6)2 D .4x 2﹣9y 2=(2x ﹣3y )(2x +3y ) 9.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( ) A .6163m n - B .6323m n - C .383m n - D .6169m n - 10.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( ) A .a b c >> B .b c a >>C .c a b >>D .a c b >>11.下列计算正确的是( )A .224x x x +=B .222()x y x y -=-C .26()x y x y =3D .235x x x12.已知()()22113(21)a b ab ++=-,则1b a a ⎛⎫- ⎪⎝⎭的值是( ) A .0B .1C .-2D .-113.若()()()248(21)2121211A =+++++,则A 的末位数字是( ) A .4B .2C .5D .614.下列各式计算正确的是( ) A .5210a a a =B .()428=a a C .()236a ba b = D .358a a a +=15.已知2|5213|(310)0x y x y +-+--=,则x y 的立方根为( ) A .1B .1-C .2D .2-二、填空题16.如果210x x m -+是一个完全平方式,那么m 的值是__________.17.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为______.18.已知x-3y=-1,那么代数式3-2x+6y 的值是________ 19.若()2340x y -+=,则x y -=______.20.分解因式:32520=x xy -________________.21.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.22.计算:32(2)a b -=________.23.一个长方形的两邻边分别是8x -,2x -,若()()228213x x -+-=,则这个长方形的面积是_________24.若210x x --=,则3225x x -+的值为________. 25.已知4222112x x +-⋅=,则x =________ 26.分解因式3225a ab -=____.三、解答题27.如图,点M 是AB 的中点,点P 在MB 上.分别以AP ,PB 为边,作正方形APCD 和正方形PBEF ,连结MD 和ME .设AP =a ,BP =b ,且a +b =8,ab =6,求图中阴影部分的面积.28.(1)因式分解:()222224x y x y +-(2)计算:()()()233323a b a b a b a b ⎡⎤----++÷-⎣⎦29.分解因式: (1)25105x x ++ (2)()()2249ax y b y x -+-30.已知5x y -=,6xy =,求下列各式的值. (1)22xy +;(2)x y +。
滁州市八年级数学上册第四单元《整式的乘法与因式分解》测试题(包含答案解析)
一、选择题1.多项式2425a ma ++是完全平方式,那么m 的值是( )A .10±B .20±C .10D .202.下列运算正确的是( ) A .()23636a =B .()()22356a a a a --=-+ C .842x x x ÷= D .326326x x x ⋅=3.已知3x y +=,1xy =,则23x xy y -+的值是()A .7B .8C .9D .12 4.若3a b +=-,10ab =-,则-a b 的值是( )A .0或7B .0或13-C .7-或7D .13-或135.在下列的计算中正确的是( )A .23a ab a b ⋅=;B .()()2224a a a +-=+; C .235x y xy +=;D .()22369x x x -=++6.下列运算正确..的是( ) A .246x x x ⋅=B .246()x x =C .3362x x x +=D .33(2)6x x -=-7.下列各式计算正确的是( ) A .224a a a += B .236a a a ⋅=C .()22439a a -= D .22(1)1a a +=+8.记A n =(1﹣212)(1﹣213)(1﹣214)…(1﹣21n ),其中正整数n ≥2,下列说法正确的是( ) A .A 5<A 6 B .A 52>A 4A 6C .对任意正整数n ,恒有A n <34D .存在正整数m ,使得当n >m 时,A n <100820159.下列计算正确的是( ) A .(a 2)3=a 5B .(2a 2)2=2a 4C .a 3•a 4=a 7D .a 4÷a =a 410.下列各式中,正确的是( ) A .2222x y yx x y -+= B .22445a a a += C .()2424m m --=-+D .33a b ab +=11.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:-a b ,x y -,x y +,+a b ,22x y -,22a b -分别对应下列六个字:通、爱、我、昭、丽、美、现将()()222222xy a x y b ---因式分解,结果呈现的密码信息可能是( )A .我爱美丽B .美丽昭通C .我爱昭通D .昭通美丽12.下列运算正确的是( ) A .428a a a ⋅= B .()23624a a =C .6233()()ab ab a b ÷=D .22()()a b a b a b +-=+二、填空题13.如果210x x m -+是一个完全平方式,那么m 的值是__________. 14.如果23a b -的值为1-,则645b a -+的值为_____. 15.若23x =,25y =,则22x y +=____________. 16.若26x x m ++为完全平方式,则m =____.17.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式42()5f x mx nx x =+++,当2x =时,多项式的值为(2)1647f m n =++,若(2)10f =,则()2f -的值为_________.18.对于有理数a ,b ,定义min{,}a b 的含义为:当a b <时,min{,}a b a =;当a b >时,min{,}a b b =.例如:min{1,22}-=-,min{3,1}1-=-.已知}a =}b b =,且a 和b 是两个连续的正整数,则a+b =_____.19.如果()()223232x x y ---=-,那么代数式()3()4(2)x y x y x y ++----的值是___________.20.计算:32(2)a b -=________.三、解答题21.因式分解(1)m 3﹣36m (2)(m 2+n 2)2-4m 2n 222.把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.如:①用配方法分解因式:a 2+6a +8, 解:原式=a 2+6a +8+1-1=a 2+6a +9-1 =(a +3)2-12=[(a +3)+1][(a +3)-1]=(a +4)(a +2) ②M =a 2-2a -1,利用配方法求M 的最小值. 解:a 2-2a -1=a 2-2a +1=(a -1)2-2∵(a -b )2≥0,∴当a =1时,M 有最小值-2. 请根据上述材料解决下列问题: (1)用配方法...因式分解:x 2+2x -3. (2)若M=2x 2-8x ,求M 的最小值.23.如图,将一张长方形铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为acm 的大正方形,两块是边长都为bcm 的小正方形,五块是长、宽分别是acm bcm 、的全等小长方形,且a b >.(1)用含a b 、的代数式表示切痕的总长为_ cm ;(2)若每块小长方形的面积为212cm ,四块正方形的面积和为280cm ,试求+a b 的值. 24.所谓完全平方式,就是对一个整式M ,如果存在另一个整式N ,使2M N =,则称M 是完全平方式,如:422()x x =、222)2(x xy y x y =+++,则称4x 、222x xy y++是完全平方式.(1)下列各式中是完全平方式的编号有 .①2244a a b ++;②24x ;③22x xy y -+; ④21025y y --;⑤21236x x ++;⑥2124949a a -+ (2)已知a 、b 、c 是ABC ∆的三边长,满足22222()a b c c a b ++=+,判定ABC ∆的形状.(3)证明:多项式2(4)(8)64x x x +++是一个完全平方式.25.已知多项式35ax bx +-,当2x =-时,该多项式的值是7,则当2x =时,该多项式的值是多少? 26.计算 (1)()()433a a -⋅-(2)(ab 2)2 •(﹣a 3b )3÷(﹣5ab )【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B【分析】由4a 2+ma+25是完全平方式,可知此完全平方式可能为(2a±5)2,再求得完全平方式的结果,根据多项式相等,即可求得m 的值. 【详解】解:∵4a 2+ma+25是完全平方式, ∴4a 2+ma+25=(2a±5)2=4a 2±20a+25, ∴m=±20. 故选:B . 【点睛】本题考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.2.B解析:B 【分析】分别根据同底数幂的除法法则,同底数幂的乘方法则,多项式乘以多项式法则以及单项式乘以单项式法则逐一判断即可. 【详解】 解:A. ()23633a a =,故本选项不符合题意;B .()()22356a a a a --=-+,正确,故本选项符合题意; C .844x x x ÷=,故本选项不合题意; D .325326x x x ⋅=,故本选项不合题意. 故选:B . 【点睛】本题主要考查了整式的乘除运算,熟记相关的运算法则是解答本题的关键.3.A解析:A 【分析】先把3x y +=代入原式,可得23x xy y -+=22xy +,结合完全平方公式,即可求解.【详解】 ∵3x y +=,∴23x xy y -+=2()x xy x y y -++=22x xy xy y -++=22x y +,∵1xy =,∴23x xy y -+=22x y +=22()23217x y xy +-=-⨯=,故选A . 【点睛】本题主要考查代数式求值,熟练掌握完全平方公式及其变形公式,是解题的关键.4.C解析:C 【分析】根据完全平方公式得出( a-b )2=( a + b )2-4ab ,进而求出( a-b )2的值,再求出 a-b 的值即可 【详解】( a-b )2=( a + b )2-4ab∴ ()22(3) 4(10)a b =--⨯-- ∴()249a b -=∴7a b -=± 故答案选:C 【点睛】考查完全平方公式的应用,掌握完全平方公式的特点和相应的变形,是正确解答的关键.5.A解析:A 【分析】根据单项式的乘法,平方差公式,完全平方公式,对各选项计算后利用排除法求解. 【详解】A 、a 2•ab =a 3b ,正确;B 、应为(a +2)(a−2)=a 2−4,故本选项错误;C 、2x 与3y 不是同类项不能合并;D 、应为(x−3)2=x 2−6x +9,故本选项错误. 故选:A . 【点睛】本题主要考查平方差公式,单项式的乘法法则,完全平方公式,熟练掌握运算法则和公式是解题的关键,合并同类项时,不是同类项的不能合并.6.A解析:A 【分析】根据同底数幂的乘法、幂的乘方、积的乘方以及合并同类项进行判断即可. 【详解】A 选项246x x x ⋅=,选项正确,故符合题意;B 选项248()x x =,选项错误,故不符合题意;C 选项3332x x x +=,选项错误,故不符合题意;D 选项33(2)8x x -=-,选项错误,故不符合题意.故选:A . 【点睛】本题考查同底数幂的乘法、幂的乘方、积的乘方以及合并同类项,属于基础题,熟练掌握这些计算公式和方法是解决本题的关键.7.C解析:C 【分析】根据合并同类项、完全平方公式、幂的乘方与积的乘方进行计算. 【详解】解:A. 2222a a a +=,故选项A 计算错误; B. 235a a a ⋅=,故选项B 计算错误; C. ()22439a a -=,故选项C 计算正确;D. 22(11)2a a a +=++,故选项D 计算错误; 故选:C 【点睛】本题考查了合并同类项、完全平方公式、幂的乘方与积的乘方,熟记计算法则即可解题.8.D解析:D 【分析】根据平方差公式因式分解然后约分,便可归纳出来即可. 【详解】 解:A 、A 5=22221111631111==2345105⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, A 6=231715612⎛⎫⨯-= ⎪⎝⎭, 37512> ∴A 5>A 6, 此选项不符合题意; B 、A 4=2221115111=2348⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭, ∴A 52=925,A 4A 6=5735=81290⨯, ∵9352590<, ∴A 52<A 4A 6,此选项不符合题意; C 、∵A 2=2131=24-,且345674681012<<<<<,∴n ≥2时,恒有A n ≤34,此选项不符合题意;D 、当m =2015时,A m =2015+120161008==2201540302015⨯,当n >m 时,A n <10082015, ∴存在正整数m ,使得当n >m 时,A n <10082015, 此选项符合题意; 故选择:D . 【点睛】本题考查数字的变化规律,平方差公式,关键是根据题目找出规律是关键.9.C解析:C 【分析】根据幂的乘方、积的乘方、同底数幂的乘除法逐项判断即可得. 【详解】A 、236()a a =,此项错误;B 、224(2)4a a =,此项错误;C 、347a a a ⋅=,此项正确;D 、34a a a ÷=,此项错误; 故选:C . 【点睛】本题考查了幂的乘方、积的乘方、同底数幂的乘除法,熟练掌握各运算法则是解题关键.10.A解析:A 【分析】根据同类项的定义与单项式的乘法法则,分别判断分析即可. 【详解】解:A.2222x y yx x y -+=,故A 正确;B.22245a a a +=,故B 不正确;C.-2(m-4)=-2m+8,故C 不正确;D.3a 与b 不是同类项,不能合并,故D 不正确. 故选A. 【点睛】本题考查了合并同类项与单项式的乘法、去括号与添括号.注意,去括号时,如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.11.C解析:C 【分析】将式子先提取公因式再用平方差公式因式分解可得:(x 2-y 2)a 2-(x 2-y 2)b 2=(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ),再结合已知即可求解. 【详解】解:(x 2-y 2)a 2-(x 2-y 2)b 2 =(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ), 由已知可得:我爱昭通, 故选:C . 【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求解是解题的关键.12.B解析:B 【分析】根据同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式依次计算判断. 【详解】A 、426a a a ⋅=,故该项错误;B 、()23624aa =,故该项正确;C 、4624()()ab ab a b ÷=,故该项错误;D 、22()()a b a b a b +-=-,故该项错误; 故选:B . 【点睛】此题考查整式的计算法则,正确掌握整式的同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式是解题的关键.二、填空题13.25【分析】利用完全平方公式的结构特征即可求出m 的值【详解】解:∵x2-10x+m 是一个完全平方式∴m==25故答案为:25【点睛】此题考查了完全平方式熟练掌握完全平方公式是解本题的关键解析:25 【分析】利用完全平方公式的结构特征,即可求出m 的值. 【详解】解:∵x 2-10x +m 是一个完全平方式,∴m=210()2-=25. 故答案为:25. 【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.7【分析】把所求代数式整理成已知条件的形式然后整体代入进行计算即可得解【详解】解:∵2a-3b=-1∴3b-2a=1∴=2+5=7故答案是:7【点睛】本题考查了代数式求值整体思想的利用是解题的关键解析:7 【分析】把所求代数式整理成已知条件的形式,然后整体代入进行计算即可得解. 【详解】 解:∵2a-3b=-1, ∴3b -2a=1,∴()64523b 2a 5b a -+=-+=2+5=7, 故答案是:7. 【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.15.75【分析】逆用积的乘方可得再逆用幂的乘方即可求解【详解】解:故答案为:75【点睛】本题考查积的乘方和幂的乘方的逆用掌握积的乘方和幂的乘方是解题的关键解析:75 【分析】逆用积的乘方可得22222x y x y +=⋅,再逆用幂的乘方即可求解. 【详解】 解:()2222222223575x yxyxy +=⋅=⋅=⨯=,故答案为:75. 【点睛】本题考查积的乘方和幂的乘方的逆用,掌握积的乘方和幂的乘方是解题的关键.16.9【分析】完全平方式可以写为首末两个数的平方则中间项为x 和积的2倍即可解得m 的值【详解】解:根据题意是完全平方式且6>0可写成则中间项为x 和积的2倍故∴m=9故答案填:9【点睛】本题是完全平方公式的解析:9 【分析】完全平方式可以写为首末两个数的平方(2x ,则中间项为x 2倍,即可解得m 的值. 【详解】解:根据题意,26x x m ++是完全平方式,且6>0,可写成(2x +,则中间项为x 2倍,故62x = ∴m =9, 故答案填:9. 【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意中间项的符号,避免漏解.17.6【分析】由得把它整体代入求值【详解】解:∵∴即∴故答案是:6【点睛】本题考查代数式求值解题的关键是掌握整体代入的思想求值解析:6 【分析】由(2)10f =得1643m n +=,把它整体代入()21643f m n -=++求值. 【详解】解:∵(2)10f =,∴164710m n ++=,即1643m n +=, ∴()216425336f m n -=+-+=+=. 故答案是:6. 【点睛】本题考查代数式求值,解题的关键是掌握整体代入的思想求值.18.9【分析】根据新定义得出ab 的值再求和即可【详解】解:∵min{a}=min{b}=b ∴<ab <又∵a 和b 为两个连续正整数∴a=5b=4则a+b=9故答案为:9【点睛】本题主要考查了算术平方根和实数解析:9 【分析】根据新定义得出a ,b 的值,再求和即可. 【详解】解:∵,b}=b , ∴a ,b又∵a 和b 为两个连续正整数, ∴a=5,b=4, 则a+b=9. 故答案为:9.【点睛】本题主要考查了算术平方根和实数的大小比较,正确得出a ,b 的值是解题关键. 19.8【分析】先解求出将代入代数式即可得解【详解】∵∴式子展开得:化简得:∴将代入代数式故答案为:8【点睛】此题考查整式的化简求值掌握整式的去括号法则和合并同类项法则是解题的关键解析:8【分析】先解()()223232x x y ---=-,求出0y =,将0y =代入代数式()3()4(2)x y x y x y ++---- 即可得解.【详解】∵()()223232x x y ---=-,∴式子展开得:223232x x y --+=-,化简得:0y =,∴将0y =代入代数式()3()4(2)x y x y x y ++---- 34(2)x x x =+--448x x =-+8=.故答案为:8.【点睛】此题考查整式的化简求值,掌握整式的去括号法则和合并同类项法则是解题的关键. 20.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.【详解】32(2)a b -=624a b ,故答案为:624a b .【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.三、解答题21.(1)m (m +6)(m -6);(2)(m +n )2(m -n )2【分析】(1)首先提取公因式法进行因式分解,再利用平方差公式因式分解即可;(2)首先利用平方差公式分解因式,再利用完全平方公式进行因式分解即可.【详解】解:(1)m 3﹣36m= m (m 2﹣36)=m(m+6)(m-6)(2)(m 2+n 2)2-4m 2n 2=(m 2+n 2)2-(2mn )2=(m 2+n 2+2mn )(m 2+n 2-2mn )=(m+n )2(m-n )2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 22.(1)()(33)x x +-;(2)-8【分析】(1)应用配方法以及平方差公式,把x 2+2x -3因式分解即可.(2)应用配方法,把2x 2-8x 化成22(2)8x --,再根据偶次方的非负性质,求出M 的最小值是多少即可.【详解】解:(1)原式=22344x x +-+-=2214x x ++-=22(1)2x +-=()(33)x x +-(2)228x x -=22(4)x x -=2(2444x x -+-)=22(2)8x --因为2(2)x -0≥,所以当x =2时,M 有最小值为-8【点睛】此题主要考查了利用平方差公式和完全平方式进行因式分解,以及偶次方的非负性质的应用,要熟练掌握.23.(1)()66a b +;(2)8【分析】(1)根据切痕长有两横两纵列出算式,再根据合并同类项法则整理即可;(2)根据小矩形的面积和正方形的面积列出算式,再利用完全平方公式整理求出a+b 的值,即可得到结论.【详解】解:(1)切痕总长=2[(b+2a )+(2b+a )],=6a+6b ;故答案为:()66a b +;(2)依题意得,222280,12a b ab +==,2240,a b ∴+=()2222,a b a ab b +=++()24021264a b ∴+=+⨯=, 0,a b +>8a b +=.【点睛】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形周长和面积展开分析.24.(1)②⑤⑥;(2)ABC ∆是等边三角形;(3)见详解【分析】(1)根据完全平方公式的结构特征和完全平方式的定义,逐一判断即可;(2)把等式右边的代数式移到左边,再利用完全平方公式写成平方和的形式,从而即可得到a ,b ,c 的关系,进而即可得到结论;(3)利用完全平方公式进行因式分解,把原式写成一个整式的平方的形式,即可得到结论.【详解】(1)②24x =2(2)x ;⑤21236x x ++=2(6)x +;⑥2124949a a -+=21(7)7a -是完全平方式,①2244a a b ++;③22x xy y -+; ④21025y y --不是完全平方式,各式中完全平方式的编号有②⑤⑥,故答案为:②⑤⑥;(2)∵22222()a b c c a b ++=+,∴()()2222220a ac cb bc c -++-+=, ∴()()220a c b c -+-=,∴a-c=0且b-c=0,∴a=b=c ,∴ABC ∆是等边三角形;(3)∵原式=2(8)(4)64x x x +++=22(8)(816)64x x x x ++++=222(8)16(8)64x x x x ++++=22(8)8x x ⎡⎤++⎣⎦ =()2288x x ++,∴多项式2(4)(8)64x x x +++是一个完全平方式.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.25.-17【分析】首先把x=-2代入多项式35ax bx +-,整理成关于a 、b 的等式,再把x=2代入,观察两个式子的联系,进一步求得数值即可.【详解】解:x =-2时, 35ax bx +-=7,即-8a -2b -5=7,所以8a+2b =-12,当x=2时,35ax bx +-=8a+2b -5=-12-5=-17,所以该多项式的值是-17.【点睛】本题考查了代数式求值,注意代入数值的特点,发现前后式子的联系,整体代入解决问题. 26.(1)15a -;(2)10615a b 【分析】(1)先算乘方,再算同底数幂的乘法即可;(2)先算乘方,再算乘法,后算除法.【详解】(1)()()433a a -⋅- =()123a a ⋅- =15a -;(2)(ab 2)2 •(﹣a 3b)3÷(﹣5ab)=a 2b 4.(-a 9b 3) ÷(﹣5ab)= -a 11b 7÷(﹣5ab) =10615a b . 【点睛】 本题考查了整式的混合运算,熟练掌握运算顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滁州数学整式的乘法与因式分解单元测试卷 (word 版,含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .3【答案】D【解析】【分析】根据20192019a x =+,20192020b x =+,20192021c x =+分别求出a-b 、a-c 、b-c 的值,然后利用完全平方公式将题目中的式子变形,即可完成.【详解】∵20192019a x =+,20192020b x =+,20192021c x =+, 20192019201920201a b x x -=+--=-20192019201920212a c x x -=+--=-20192020201920211b c x x -=+--=-∴222a b c ab ac bc ++---2221(222222)2a b c ab ac bc =++--- 2222221(222)2a ab b a ac c b bc c =-++-++-+ 222111()()()222a b a c b c =-+-+- 222111(1)(2)(1)222=⨯-+⨯-+⨯- 11222=++ 3=故选D【点睛】本题考查完全平方公式的应用,熟练掌握完全平方公式是解题关键.2.若3x y -=,则226x y y --=( )A .3B .6C .9D .12 【答案】C【解析】【分析】由3x y -=得x=3+y ,然后,代入所求代数式,即可完成解答.【详解】解:由3x y -=得x=3+y代入()2222369669y y y y y y y +--=++--=故答案为C.【点睛】本题主要考查了完全平方公式的应用,灵活对代数式进行变形是解答本题的关键.3.如果多项式29x kx -+能用公式法分解因式,那么k 的值是( )A .3B .6C .3±D .6±【答案】D【解析】由于可以利用公式法分解因式,所以它是一个完全平方式222a ab b ±+,所以236k =±⨯=±.故选D.4.已知4821-可以被在0~10之间的两个整数整除,则这两个数是( )A .1、3B .3、5C .6、8D .7、9【答案】D【解析】248-1=(224+1)(224-1)= (224+1)(212+1)(212-1)= (224+1)(212+1)(26+1)(26-1)=(224+1)(212+1)(26+1)(23+1) (23-1) , 23+1=9, 23-1=7,所以这两个数是7、9.故选D.点睛:平方差公式:a 2-b 2=(a +b )(a -b ).5.下列多项式中,能运用公式法进行因式分解的是( )A .a 2+b 2B .x 2+9C .m 2﹣n 2D .x 2+2xy+4y 2【答案】C【解析】试题分析:直接利用公式法分解因式进而判断得出答案.解:A 、a 2+b 2,无法分解因式,故此选项错误;B 、x 2+9,无法分解因式,故此选项错误;C 、m 2﹣n 2=(m+n )(m ﹣n ),故此选项正确;D 、x 2+2xy+4y 2,无法分解因式,故此选项错误;故选C .6.如图将4个长、宽分别均为a ,b 的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是( )A.a2+2ab+b2=(a+b)2B.a2﹣2ab+b2=(a﹣b)2C.4ab=(a+b)2﹣(a﹣b)2D.(a+b)(a﹣b)=a2﹣b2【答案】C【解析】【分析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4个矩形的面积.【详解】∵大正方形的面积﹣小正方形的面积=4个矩形的面积,∴(a+b)2﹣(a﹣b)2=4ab,即4ab=(a+b)2﹣(a﹣b)2.故选C.7.下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2 B.x2+4x+4=(x+2)2C.(a+b)(a﹣b)=a2﹣b2 D.ax2﹣a=a(x2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A选项,从左到右变形错误,不符合题意,B选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法. 8.不论x,y为何有理数,x2+y2﹣10x+8y+45的值均为()A .正数B .零C .负数D .非负数【答案】A【解析】【详解】 因为x 2+y 2-10x +8y +45=()()225440x y -+++>, 所以x 2+y 2-10x +8y +45的值为正数,故选A.9.将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( )A .4xB .4x -4C .4x 4D .4x -【答案】B【解析】【分析】完全平方公式:()222=2a b a ab b +++,此题为开放性题目.【详解】设这个单项式为Q ,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x ;如果这里首末两项是Q 和1,则乘积项是22422x x =⋅,所以Q=44x ;如果该式只有24x 项,它也是完全平方式,所以Q=−1;如果加上单项式44x -,它不是完全平方式故选B.【点睛】此题考查完全平方式,解题关键在于掌握完全平方式的基本形式.10.下列运算中正确的是( )A .236a a a ⋅=B .()325a a =C .226235a a a +=D .()()22224a b a b a b +--=【答案】D【解析】【分析】根据同底数幂的乘法,可判断A 和B ,根据合并同类项,可判断C ,根据平方差公式,可判断D .【详解】A. 底数不变指数相加,故A 错误;B. 底数不变指数相乘,故B 错误;C. 系数相加字母部分不变,故C 错误;D. 两数和乘以这两个数的差等于这两个数的平方差,故D 正确;故选D.【点睛】本题考查了平方差公式、合并同类项以及同底数幂的乘法,解题的关键是熟练的掌握平方差公式、合并同类项以及同底数幂的乘法的运算.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.在边长为a 的正方形中剪掉一个边长为b 的小正方形()a b >,再沿虚线剪开,如图①,然后拼成一个梯形,如图②.根据这两个图形的面积关系,用等式表示是____________.【答案】a 2-b 2=(a+b)(a-b)【解析】【分析】根据正方形的面积公式和梯形的面积公式,即可求出答案.【详解】∵第一个图形的面积是a 2-b 2,第二个图形的面积是12(b +b +a +a )(a -b )=(a +b )(a -b ), ∴根据两个图形的阴影部分的面积相等得:a 2-b 2=(a+b)(a-b).故答案为a 2-b 2=(a+b)(a-b).【点睛】 本题考查了平方差公式得几何背景,熟练掌握平方差公式的定义是本题解题的关键.12.已知a-b=4,ab=6,则22a b += _________.【答案】28【解析】【分析】对完全平方公式进行变形即可解答.【详解】解:∵222()216a b a ab b -=-+=∴22a b +=2()a b -+2ab=16+2×6=28故答案为28.本题考查了完全平方公式的应用,掌握完全平方公式并能够进行灵活变形是解答本题的关键.13.(a-b )2(x-y )-(b-a )(y-x )2=(a-b )(x-y )×________.【答案】(a-b+x-y )【解析】运用公因式的概念,把多项式(a-b )2(x-y )-(b-a )(y-x )2运用提取公因式法因式分解(a-b )2(x-y )-(b-a )(y-x )2=(a-b )(x-y )×(a-b+x-y ). 故答案为:(a-b+x-y ).点睛:此题主要考查了提公因式法分解因式,关键是根据找公因式的方法,确定公因式,注意符号的变化.14.如果关于x 的二次三项式24x x m -+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值)【答案】5【解析】【分析】根据前两项,此多项式如用十字相乘方法分解,m 应是3或-5;若用完全平方公式分解,m 应是4,若用提公因式法分解,m 的值应是0,排除3、-5、4、0的数即可.【详解】当m=5时,原式为245x x -+,不能因式分解,故答案为:5.【点睛】此题考查多项式的因式分解方法,熟记每种分解的因式的特点及所用因式分解的方法,掌握技巧才能熟练运用解题.15.设2m =5,82n =10,则62m n -=________. 【答案】12【解析】试题分析:将62m n - 变形为228m n ÷ ,然后结合同底数幂的除法的概念和运算法则进行求解即可. 本题解析: 6621222285102m n m n m n -=÷=÷=÷= 故答案为: 12. 点睛:本题主要考查了同底数幂的除法法则的逆用,同底数幂的除法法则:同底数幂相乘,底数不变,指数相减.即m n m n a a a +÷= (m,n 是正整数).16.若(x+p)与(x+5)的乘积中不含x 的一次项,则p =_____.【答案】-5【解析】根据多项式乘以多项式的法则,可表示为(a +b )(m +n )=am +an +bm +bn 计算,再根据乘积中不含x 的一次项,得出它的系数为0,即可求出p 的值.【详解】解:(x +p )(x +5)=x 2+5x +px +5p =x 2+(5+p )x +5p ,∵乘积中不含x 的一次项,∴5+p =0,解得p =﹣5,故答案为:﹣5.17.若a+b=4,ab=1,则a 2b+ab 2=________.【答案】4【解析】【分析】分析式子的特点,分解成含已知式的形式,再整体代入.【详解】解:a 2b+ab 2=ab(a+b)=1×4=4.故答案为:4.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.18.因式分解:a 3﹣2a 2b+ab 2=_____.【答案】a (a ﹣b )2.【解析】【分析】先提公因式a ,然后再利用完全平方公式进行分解即可.【详解】原式=a (a 2﹣2ab+b 2)=a (a ﹣b )2,故答案为a (a ﹣b )2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.若()2242x ax x ++=-,则a =_____.【答案】-4【解析】【分析】直接利用完全平方公式得出a 的值.【详解】解:∵()2242x ax x ++=-,∴4a =-故答案为:4-【点睛】此题主要考查了公式法分解因式,正确应用公式是解题关键.20.分解因式:3x 2-6x+3=__.【答案】3(x-1)2【解析】【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【详解】()()22236332131x x x x x -+=-+=-.故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。