各种数学公式
数学公式大全(数学)
数学公式大全(数学)数学公式大全数学是一门关于数量、结构、空间以及变化的学科,它是科学和工程中必不可少的基础。
数学公式是数学思想的精华所在,它们可以用来解决各种数学问题,并在实际应用中发挥重要作用。
本文将为您提供一份数学公式大全,涵盖了数学的各个领域。
一、代数和方程1. 一次方程式:ax + b = 0其中,a和b是已知常数,x是未知数。
2. 二次方程式:ax^2 + bx + c = 0其中,a、b、c是已知常数,x是未知数。
3. 四则运算:- 加法:a + b = c- 减法:a - b = c- 乘法:a × b = c- 除法:a ÷ b = c4. 幂运算:a^n表示将a自乘n次,其中a是底数,n是指数。
5. 开平方:√a表示寻找b,使得b^2 = a,其中a是要开方的数。
6. 排列和组合:- 排列:P(n, k) = n! / (n-k)!- 组合:C(n, k) = n! / (k!(n-k)!)其中,n为元素个数,k为要选择的元素个数,"!"表示阶乘运算。
二、几何和三角学1. 直角三角形:- 勾股定理:a^2 + b^2 = c^2- 正弦定理:sin(A) / a = sin(B) / b = sin(C) / c- 余弦定理:c^2 = a^2 + b^2 - 2abcos(C)2. 圆:- 圆的面积:A = πr^2- 圆的周长:C = 2πr其中,r为圆的半径,π是一个数学常数,近似值为3.14159。
3. 三角函数:- 正弦函数:sin(x)- 余弦函数:cos(x)- 正切函数:tan(x)其中,x为角度。
4. 三角恒等式:- 和差公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)- 二倍角公式:sin(2A) = 2sin(A)cos(A)三、微积分1. 导数:f'(x)表示函数f(x)对x的变化率。
数学的全部公式
数学的全部公式数学是一门自然科学,其研究对象是数量、结构、变化等数学概念和数学对象。
数学中有许多公式,这些公式可以帮助我们解决各种数学问题。
本文将介绍数学中的全部公式,包括代数、几何、微积分、概率等各个方面。
一、代数公式1. 二次方程公式:对于二次方程ax+bx+c=0,其解为x=[-b±√(b-4ac)]/2a。
2. 因式分解公式:对于多项式a-b,其可以因式分解为(a+b)(a-b)。
3. 平方差公式:对于(a+b),其可以展开为a+2ab+b。
4. 一次方程公式:对于一次方程ax+b=c,其解为x=(c-b)/a。
5. 乘法公式:对于两个数a和b,其乘积可以表示为(a+b)=a+2ab+b和(a-b)=a-2ab+b。
二、几何公式1. 三角形面积公式:对于三角形,其面积可以表示为S=1/2bh,其中b为底边长,h为高。
2. 圆周长公式:对于半径为r的圆,其周长可以表示为C=2πr,其中π为圆周率。
3. 球体积公式:对于半径为r的球体,其体积可以表示为V=4/3πr。
4. 直角三角形勾股定理:对于直角三角形,其直角边长分别为a和b,斜边长为c,有a+b=c。
5. 正弦定理:对于任意三角形ABC,其三条边分别为a、b、c,对应的角分别为A、B、C,则有a/sinA=b/sinB=c/sinC。
三、微积分公式1. 导数公式:对于函数f(x),其导数可以表示为f'(x)=lim(h →0)(f(x+h)-f(x))/h。
2. 积分公式:对于函数f(x),其积分可以表示为∫f(x)dx=F(x)+C,其中C为常数。
3. 洛必达法则:对于函数f(x)/g(x),如果在x=a处f(x)和g(x)的导数都存在且g'(a)≠0,则有lim(x→a)(f(x)/g(x))=lim(x→a)(f'(x)/g'(x))。
4. 牛顿-莱布尼茨公式:对于函数f(x),其在区间[a,b]上的定积分可以表示为∫a~bf(x)dx=F(b)-F(a),其中F(x)为f(x)的一个原函数。
数学全部的公式
数学公式全部有哪些?常用的数学公式:1、长方形面积=长×宽,计算公式S=ab。
2、正方形面积=边长×边长,计算公式S=a×a=a2。
3、长方形周长=(长+宽)×2,计算公式C=(a+b)×2。
4、正方形周长=边长×4,计算公式C=4a。
5、平行四边形面积=底×高,计算公式S=ah。
6、三角形面积=底×高÷2,计算公式S=a×h÷2。
7、梯形面积=(上底+下底)×高÷2,计算公式S=(a+b)×h÷2。
8、长方体体积=长×宽×高,计算公式V=abh。
9、圆的面积=圆周率×半径平方,计算公式V=πr2。
10、正方体体积=棱长×棱长×棱长,计算公式V=a3。
11、长方体和正方体的体积都可以写成底面积×高,计算公式V=sh。
12、圆柱的体积=底面积×高,计算公式V=sh。
13、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数。
14、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数。
15、速度×时间=路程路程÷速度=时间路程÷时间=速度。
16、单价×数量=总价总价÷单价=数量总价÷数量=单价。
17、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率。
18、加数+加数=和和-一个加数=另一个加数。
19、被减数-减数=差被减数-差=减数差+减数=被减数。
20、因数×因数=积积÷一个因数=另一个因数。
21、被除数÷除数=商被除数÷商=除数商×除数=被除数。
数学所有的公式大全
数学所有的公式大全
以下是一些数学公式:
1. 加法公式:加数+加数=和,和-一个加数=另一个加数。
2. 减法公式:被减数-减数=差,被减数-差=减数,差+减数=被减数。
3. 乘法公式:每份数×份数=总数,总数÷每份数=份数,总数÷份数=每份数。
4. 除法公式:被除数÷除数=商,被除数÷商=除数,商×除数=被除数。
5. 正方体体积和表面积公式:体积V=棱长^3,表面积S=6×棱长^2。
6. 三角形面积公式:面积S=底×高÷2。
7. 圆柱体体积公式:体积V=底面积S×高h。
8. 圆柱体表面积公式:表面积S=2πr^2+2πrh(其中r是底面半径,h是高)。
9. 圆周长公式:周长C=2πr(其中r是半径)。
10. 圆面积公式:面积S=πr^2(其中r是半径)。
11. 指数公式:a^n=b(其中a是底数,n是指数,b是结果)。
12. 对数公式:log_a(b)=n(其中a是底数,b是对数,n是指数)。
13. 三角函数公式:sin(A+B)=sinAcosB+cosAsinB,
cos(A+B)=cosAcosB-sinAsinB等。
14. 代数公式:x^2-bx+c=0(其中x是未知数,b和c是常数)。
15. 几何公式:平行四边形面积S=底×高,梯形面积S=(上底+下底)×高÷2等。
以上是一些常见的数学公式,它们在数学和科学领域中有着广泛的应用。
各种数学公式
各种数学公式1. 二次函数公式二次函数是一种常见的数学函数,其公式可以表示为:y = ax^2 + bx + c。
其中,a、b、c为常数,且a不等于0。
二次函数的图像通常是一个抛物线,其开口的方向取决于a的正负。
2. 导数公式导数是微积分中的重要概念,表示函数在某一点上的变化率。
导数的公式可以表示为:f'(x) = lim(h->0) [f(x+h) - f(x)] / h。
其中,f'(x)表示函数f(x)在x点的导数,h为自变量的增量。
3. 积分公式积分是微积分中的另一个重要概念,表示函数在某一区间上的累积效应。
积分的公式可以表示为:∫f(x) dx = F(x) + C。
其中,∫表示积分运算符,f(x)表示被积函数,F(x)表示f(x)的一个原函数,C为常数。
4. 泰勒级数公式泰勒级数是一种将函数表示为无穷级数的方法,用于近似表示复杂函数。
泰勒级数的公式可以表示为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ...。
其中,f(x)表示函数f在点x处的值,a 为近似点。
5. 矩阵乘法公式矩阵乘法是线性代数中的重要运算,用于将两个矩阵相乘得到一个新的矩阵。
矩阵乘法的公式可以表示为:C = A * B。
其中,A和B 为两个矩阵,C为它们的乘积。
6. 三角函数公式三角函数是数学中常见的函数类型,包括正弦函数、余弦函数和正切函数等。
三角函数的公式可以表示为:sin(x)、cos(x)、tan(x)等。
其中,x为角度或弧度。
7. 球体体积公式球体体积是几何中的一个重要概念,表示一个球的内部空间的大小。
球体体积的公式可以表示为:V = (4/3)πr^3。
其中,V表示球体的体积,r表示球的半径,π为圆周率。
8. 斜率公式斜率是直线的一个重要特征,表示直线上两个点之间的纵向变化与横向变化的比值。
斜率的公式可以表示为:m = (y2 - y1) / (x2 - x1)。
数学运算常用公式大全
数学运算常用公式大全1.加法和减法公式:-加法交换律:a+b=b+a-加法结合律:(a+b)+c=a+(b+c)-加法逆元(减法):a+(-a)=0-加法消去律:a+b=a+c,则b=c2.乘法和除法公式:-乘法交换律:a×b=b×a-乘法结合律:(a×b)×c=a×(b×c)-乘法逆元(倒数):a×(1/a)=1,其中a≠0-乘法消去律:a×b=a×c,则b=c3.指数公式:-幂的乘法:a^m×a^n=a^(m+n)-幂的除法:a^m÷a^n=a^(m-n)-幂的乘方:(a^m)^n=a^(m×n)-幂的零次方:a^0=1,其中a≠04.对数公式:- 对数的乘法:loga (xy) = loga x + loga y- 对数的除法:loga (x/y) = loga x - loga y- 对数的幂:loga (x^n) = n loga x5.三角函数公式:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:a^2 = b^2 + c^2 - 2bc cosA- 正切定理:tanA = sinA/cosA- 和差化积公式:sin(A ± B) = sinA cosB ± cosA sinB6.二次方程公式:- 一元二次方程:ax^2 + bx + c = 0,其中a≠0- 解的公式:x = (-b ± √(b^2 - 4ac)) / 2a- 判别式:Δ = b^2 - 4ac,若Δ > 0,则有两个不相等的实根;若Δ = 0,则有两个相等的实根;若Δ < 0,则没有实根。
7.统计学公式:-平均数:平均数=总和/数据个数-中位数:将数据从小到大排列,如果数据个数为奇数,中位数为中间的那个数;如果数据个数为偶数,中位数为中间两个数的平均数。
数学公式100个
数学公式100个1.加法交换律:a+b=b+a2.加法结合律:(a+b)+c=a+(b+c)3.减法的性质:a-(b+c)=a-b-c4.乘法交换律:ab=ba5.乘法结合律:(ab)c=a(bc)6.乘法分配律:(a+b)c=ac+bc7.除法的性质:a÷(b ×c)=a÷b÷c8.商不变的规律:被除数和除数同时乘或除以相同的数(0除外),商不变。
9.乘法验算:a÷b=(a ×c)÷(b×c)10.加法验算:a+b=c,则b=c-a11.减法验算:a-b=c,则b=a-c12.除法验算:a÷b=c,则b=a÷c13.分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
14.分数加减法的计算法则:同分母分数相加减,分母不变,只把分子相加减;异分母分数相加减,先通分,再加减。
15.分数化简:分子、分母是互质数的分数叫最简分数,最简分数的分子、分母互质。
16.圆的周长公式:C=2πr17.圆的面积公式:S=πr²18.正方形的周长公式:P=4a19.正方形的面积公式:S=a²20.长方形的周长公式:P=(a+b)×221.长方形的面积公式:S=ab22.三角形的面积公式:S=(底×高)÷223.梯形的面积公式:S=(上底+下底)×高÷224.平行四边形的面积公式:S=ah25.圆柱的侧面积公式:S=ch26.圆柱的表面积公式:S=2πrh+2πr²27.圆柱的体积公式:V=πr²h28.圆锥的体积公式:V=(1/3)πr²h29.长方体的表面积公式:S=(ab+ah+bh)×2 30.长方体的体积公式:V=abc31.正方体的表面积公式:S=6a²32.正方体的体积公式:V=a³33.容积的定义:物体所容纳的空间的大小叫做物体的容积。
数学公式表(完整版)
数学公式表(完整版)1. 数学基础公式1.1 代数公式- 平均值公式:$\frac{{x_1 + x_2 + \cdots + x_n}}{n}$- 二次方程求解公式:$x = \frac{{-b \pm \sqrt{b^2 - 4ac}}}{2a}$ - 因式分解公式:$a^2 - b^2 = (a-b)(a+b)$1.2 几何公式- 长方形面积公式:$A = l \times w$- 圆周长公式:$C = 2\pi r$- 三角形面积公式:$A = \frac{1}{2}bh$2. 微积分公式2.1 函数与导数- 函数$f(x)$在$x=c$处的导数:$f'(c) = \lim_{{h \to 0}}\frac{{f(c+h) - f(c)}}{h}$- 求导法则:- 导数的和:$(f+g)' = f' + g'$- 导数的积:$(fg)' = f'g + fg'$- 导数的商:$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$2.2 微分与积分- 定积分:$\int_a^b f(x) dx$- 常见定积分公式:- $\int k \, dx = kx + C$- $\int x^n \, dx = \frac{{x^{n+1}}}{n+1} + C$- $\int e^x \, dx = e^x + C$- $\int \sin x \, dx = -\cos x + C$- $\int \cos x \, dx = \sin x + C$3. 概率与统计公式3.1 概率公式- 排列公式:$P(n,r) = \frac{{n!}}{{(n-r)!}}$- 组合公式:$C(n,r) = \frac{{n!}}{{r!(n-r)!}}$- 条件概率公式:$P(A|B) = \frac{{P(A \cap B)}}{{P(B)}}$3.2 统计公式- 平均值公式:$\bar{x} = \frac{{x_1 + x_2 + \cdots + x_n}}{n}$ - 方差公式:$Var(X) = \frac{{\sum{{(x_i - \bar{x})^2}}}}{n}$ - 标准差公式:$SD(X) = \sqrt{Var(X)}$这份完整版的数学公式表包含了数学基础、微积分和概率统计方面的常用公式,希望能对您的学习和应用有所帮助。
数学公式大全
数学公式大全数学公式是数学领域中用来表达数学关系的符号和语言。
它们被广泛应用于科学、工程、经济和其他领域的解决问题中。
下面将为你介绍一些基本的数学公式。
一、代数公式1. 一元二次方程的根公式:设一元二次方程为ax²+bx+c=0,其根公式为:\[ x = \frac{-b \pm \sqrt{b^2-4ac}}{2a} \]2. 二项式定理:二项式定理用来展开二项式的幂,它表示为:\[ (a+b)^n = C_0 a^n b^0 + C_1 a^{n-1} b^1 + \cdots + C_n a^0 b^n \]其中,各个系数Cn可以通过组合数表达。
二、几何公式1. 三角形面积公式:对于已知三角形的底和高,可以使用以下公式计算其面积:\[ A = \frac{1}{2} \times \text{底} \times \text{高} \]2. 圆的周长和面积:圆的周长(C)和面积(A)可以通过半径(r)或直径(d)计算,公式如下:\[ C = 2\pi r = \pi d \]\[ A = \pi r^2 \]三、微积分公式1. 导数公式:导数用于描述函数在某个点的变化率,以下是一些常见函数的导数公式:- 常数函数的导数为0- 幂函数的导数为该函数的指数乘以常数- 指数函数的导数等于该函数自身乘以常数ln(x)- 对数函数的导数等于1/x- 三角函数的导数可以根据具体函数类型进行计算2. 积分公式:积分是导数的逆运算,以下是一些基本的积分公式:- 幂函数的积分等于该函数的幂次加1再除以新的幂次- 指数函数的积分等于该函数除以常数ln(x)- 对数函数的积分等于该函数自身乘以常数- 三角函数的积分可以根据具体函数类型进行计算四、概率与统计公式1. 期望值公式:期望值是一个随机变量的平均值,对于离散型随机变量X,其期望值计算公式为:\[ E(X) = \sum x P(X=x) \]其中,x表示随机变量的可能取值,P(X=x)表示该取值的概率。
数学公式大全
数学公式大全数学公式是数学中重要的概念和工具,用于描述和解决各种数学问题。
下面是数学公式的大全,包括代数、几何、概率与统计、微积分等方面的公式。
一、代数公式1. 二次方程的求根公式:对于一般的二次方程ax²+bx+c=0,其解可以通过求根公式计算:x=(-b±√(b²-4ac))/(2a)2. 四则运算法则:加法:a+b=b+a乘法:a*b=b*a减法:a-b=-(b-a)除法:a/b=1/(b/a)3. 指数与对数的关系:指数和对数是互为反函数的,即:a^loga(x)=xloga(a^x)=x二、几何公式1. 三角形的面积:对于已知底和高的三角形,其面积可以计算为:A=1/2 * 底 * 高2. 圆的面积和周长:圆的面积可以计算为:A=πr²圆的周长可以计算为:C=2πr3. 直角三角形的勾股定理:直角三角形的三边满足勾股定理:a²+b²=c²三、概率与统计公式1. 期望值的计算公式:对于一个离散型随机变量X,其期望值可以计算为:E(X)=∑(xP(X=x)),即各个取值x乘以相应的概率的加和2. 标准差的计算公式:标准差是描述变量离散程度的指标,可以计算为:σ=√(∑((x-μ)²P(X=x))),其中μ为随机变量X的期望值四、微积分公式1. 导数的定义:导数是函数在某一点处切线的斜率,可以定义为:f'(x)=lim(h→0) (f(x+h)-f(x))/h2. 求导法则:常见函数的求导法则包括:常数函数导数为0幂函数求导为幂次减1乘以导数指数函数求导为指数乘以导数对数函数求导为倒数乘以导数三角函数求导可以利用导数的定义累加求导数公式等以上是数学公式的部分内容,其中涵盖了代数、几何、概率与统计、微积分等方面的公式。
数学公式在数学领域中具有重要的应用价值和意义,可以帮助我们描述、分析和解决各种数学问题。
数学重点归纳常见公式大全
数学重点归纳常见公式大全在学习数学过程中,公式是我们必不可少的工具之一。
它们是数学知识的核心,帮助我们解决各种问题。
本文将为大家整理一份数学重点归纳常见公式的大全,以帮助学习者更好地掌握数学知识。
一、代数公式1. 二项式定理:(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + ... + C(n, n-1) * a^1 * b^(n-1) + C(n,n) * a^0 * b^n2. 平方差公式:(a + b) * (a - b) = a^2 - b^23. 三次方差公式:(a + b) * (a^2 - ab + b^2) = a^3 + b^34. 二次方差公式:(a + b) * (a^2 - ab + b^2) = a^3 - b^35. 求和公式:Σ(n) = (n/2) * (a + l),其中n为项数,a为首项,l为末项,Σ表示求和二、几何公式1. 周长和面积:矩形:周长=2(a+b),面积=a*b;正方形:周长=4a,面积=a^2;圆:周长=2πr,面积=πr^2;三角形:周长=a+b+c,其中a、b、c为三边长,面积=S=√(p(p-a)(p-b)(p-c)),其中p为半周长;2. 体积和表面积:立方体:体积=边长^3,表面积=6*(边长^2);圆柱体:体积=πr^2*h,侧面积=2πrh,表面积=2πrh+2πr^2;球体:体积=(4/3)πr^3,表面积=4πr^2;三、三角函数公式1. 正弦定理:a/sinA = b/sinB = c/sinC = 2R,其中a、b、c为三角形的边长,A、B、C为对应的角度,R为外接圆半径。
2. 余弦定理:c^2 = a^2 + b^2 - 2ab*cosC,其中c为斜边,a、b为两边,C为夹角。
3. 正切定理:tanA = sinA/cosA,其中A为角度。
4. 和差公式:sin(A±B) = sinA*cosB ± cosA*sinBcos(A±B) = cosA*cosB ∓ sinA*sinBtan(A±B) = (tanA ± tanB) / (1 ∓ tanA*tanB)四、微积分公式1. 导数公式:基本导数公式:(常数)' = 0, (x^n)' = n*x^(n-1), (e^x)' = e^x,(a^x)' = ln(a)*a^x, (sinx)' = cosx, (cosx)' = -sinx, (tanx)' = sec^2(x);导数的四则运算公式:(u±v)' = u' ± v', (c*u)' = c*u', (u*v)' = u'*v + v'*u, (u/v)' = (u'*v - v'*u) / (v^2);复合函数求导法则:(f(g(x)))' = f'(g(x))*g'(x),链式法则。
各种数学公式
各种数学公式数学是一门基础学科,广泛应用于自然科学、工程技术、经济管理等领域。
而数学公式则是数学思维的重要表达方式之一,通过公式的运算和推导,我们可以更好地理解和解决各类实际问题。
本文将介绍一些常见的数学公式,并探讨它们在不同领域的应用。
一、代数公式代数是数学的一个分支,研究运算和未知数之间的关系。
在代数中,有一些经典的公式被广泛应用于各类数学问题的求解。
1. 一次方程的解公式(ax + b = 0):x = -b/a2. 二次方程的解公式(ax^2 + bx + c = 0):x = (-b ± √(b^2 - 4ac)) / 2a3. 二次函数顶点坐标公式:x = -b/2ay = -Δ/4a (Δ为二次函数判别式,Δ=b^2-4ac)这些代数公式在解方程、求函数极值等问题中起到关键的作用,帮助我们快速而准确地找到解答。
二、几何公式几何是研究空间和图形的形状、大小、相对位置以及它们之间的关系的学科。
几何公式广泛应用于建筑、制图、计算机图形等领域。
1. 三角形的面积公式:S = 1/2 * 底边长度 * 高2. 矩形的面积公式:S = 长 * 宽3. 圆的面积公式:S = πr² (其中π是一个常数,约等于3.14159,r是圆的半径)这些几何公式使我们能够计算和推导出各类图形的面积、周长,帮助我们更好地理解和描述空间关系。
三、微积分公式微积分是数学的一个分支,研究函数的导数和积分。
微积分公式在物理学、经济学等领域中被广泛应用。
1. 导数定义公式:f'(x) = lim(h→0)(f(x+h)-f(x))/h2. 基本求导公式:(常数C)' = 0(x^n)' = nx^(n-1) (n为任意实数)(e^x)' = e^x(sinx)' = cosx(cosx)' = -sinx3. 不定积分基本公式:∫f'(x)dx = f(x) + C (C为常数)微积分公式为我们分析函数变化、计算曲线面积等提供了强有力的数学工具。
数学必背公式
数学必背公式一、代数公式1. 二次方程的求根公式:对于一般的二次方程 ax^2 + bx + c = 0,其求根公式为:x = (-b ± √(b^2 - 4ac)) / (2a)其中,± 表示两个解。
2. 因式分解公式:对于一般的二次多项式 ax^2 + bx + c,其因式分解公式为:ax^2 + bx + c = a(x - x1)(x - x2)其中,x1 和 x2 为二次多项式的两个解。
3. 二项式定理:对于任意实数 a 和 b,以及正整数 n,二项式定理可以表示为:(a + b)^n = C(n,0) * a^n + C(n,1) * a^(n-1)b + ... + C(n,n-1) * ab^(n-1) + C(n,n) * b^n其中,C(n,k) 为组合数,表示从 n 个元素中选取 k 个元素的方式数。
二、几何公式1. 面积公式:- 矩形的面积公式为:面积 = 长× 宽- 三角形的面积公式为:面积 = 底边长× 高 / 2- 圆的面积公式为:面积= π × 半径^22. 三角函数公式:- 正弦定理:在任意三角形 ABC 中,边长 a、b、c 对应的角度为 A、B、C,则有:a/sinA = b/sinB = c/sinC- 余弦定理:在任意三角形 ABC 中,边长 a、b、c 对应的角度为 A、B、C,则有:c^2 = a^2 + b^2 - 2abcosC- 正切公式:tan(A + B) = (tanA + tanB) / (1 - tanA * tanB)三、微积分公式1. 导数公式:- 基本导数公式:(常数)' = 0,(x^n)' = nx^(n-1),(sinx)' = cosx,(cosx)' = -sinx,(tanx)' = sec^2x- 复合函数求导:若 y = f(g(x)),则 y' = f'(g(x)) * g'(x)2. 积分公式:- 基本积分公式:∫x^n dx = (x^(n+1)) / (n+1) + C,∫sinx dx = -cosx + C,∫cosx dx = sinx + C- 定积分公式:∫[a,b] f(x) dx 表示从 a 到 b 的定积分,可以通过牛顿—莱布尼兹公式进行计算。
数学所有公式大全
数学所有公式大全数学是一门广泛而深入的学科,其中包含了众多的概念、定理和公式。
以下是一些常见的数学公式的大全,涵盖了代数、几何、微积分等不同领域的公式。
1.代数公式:-二次方程求根公式:对于二次方程ax^2+bx+c=0,其根可以通过公式x=(-b±√(b^2-4ac))/(2a)来求解。
-四则运算规则:加法:a+b=b+a,乘法:a×b=b×a,减法和除法也有相应的规则。
-平方差公式:(a+b)(a-b)=a^2-b^2,可用于分解平方差和求解因式分解问题。
2.几何公式:-面积公式:长方形面积A=长×宽,三角形面积A=1/2×底边长×高,圆面积A=π×半径^2。
-周长公式:长方形周长P=2×(长+宽),圆周长C=2π×半径。
-三角函数公式:正弦定理:a/sin(A)=b/sin(B)=c/sin(C),余弦定理:c^2=a^2+b^2-2abcos(C),正弦定理和余弦定理可以用于解决三角形的边长和角度关系问题。
3.微积分公式:-导数公式:常见函数的导数,如常数函数、幂函数、指数函数、对数函数、三角函数等的导数公式。
-积分公式:常见函数的不定积分和定积分公式,如幂函数、指数函数、对数函数、三角函数等的积分公式。
-牛顿-莱布尼茨公式:∫(a to b)f(x)dx=F(b)-F(a),表示定积分可以通过原函数在区间端点处的值之差来计算。
4.概率与统计公式:-条件概率公式:P(A|B)=P(A∩B)/P(B),表示事件A在事件B发生的条件下的概率。
-期望值公式:离散随机变量的期望值E(X)=ΣxP(X=x),连续随机变量的期望值E(X)=∫xf(x)dx,表示随机变量的平均值。
-方差公式:离散随机变量的方差Var(X)=Σ[(X-E(X))^2P(X)],连续随机变量的方差Var(X)=∫[(X-E(X))^2f(x)]dx,表示随机变量的离散程度。
数学公式大全
数学公式大全1.代数运算法则- 交换律:a + b = b + a, ab = ba- 结合律:(a + b) + c = a + (b + c), (ab)c = a(bc)- 分配律:a(b + c) = ab + ac- 幂运算:a^m * a^n = a^(m+n), (a^m)^n = a^(mn), (ab)^n =a^n * b^n2.一次方程- 一次方程的一般形式:ax + b = 0, 其中a和b为常数,x为未知数-一次方程解的唯一性:如果a不等于零,则方程有唯一的解x=-b/a3.二次方程- 二次方程的一般形式:ax^2 + bx + c = 0, 其中a、b和c为常数,a不等于零,x为未知数- 二次方程的求解公式:x = (-b ± √(b^2 - 4ac)) / 2a4.三角函数- 正弦函数的定义:sinθ = 对边/斜边- 余弦函数的定义:cosθ = 邻边/斜边- 正切函数的定义:tanθ = 对边/邻边- 余切函数的定义:cotθ = 邻边/对边- 正割函数的定义:secθ = 斜边/邻边- 余割函数的定义:cscθ = 斜边/对边5.三角恒等式- 余弦定理:c^2 = a^2 + b^2 - 2abcosC- 正弦定理:sinA/a = sinB/b = sinC/c- 三角和差公式:sin(A ± B) = sinAcosB ± cosAsinB, cos(A ± B) = cosAcosB ∓ sinAsinB- 两角和差公式:cos(A - B) = cosAcosB + sinAsinB, cos(A + B) = cosAcosB - sinAsinB6.指数与对数函数- 指数函数的性质:a^m * a^n = a^(m+n), (a^m)^n = a^(mn), (ab)^m = a^m * b^m- 对数函数的性质:log_a(m * n) = log_a(m) + log_a(n),log_a(m^n) = n * log_a(m), log_a(1) = 0, log_a(a) = 17.概率-加法原理:对于两个互斥事件A和B,P(A∪B)=P(A)+P(B)-乘法原理:对于两个相互独立的事件A和B,P(A∩B)=P(A)*P(B)-条件概率:P(A,B)=P(A∩B)/P(B)-全概率公式:P(A)=P(A,B)*P(B)+P(A,C)*P(C)+...-贝叶斯定理:P(B,A)=P(A,B)*P(B)/P(A)8.微积分-连续与导数:f(x)在[x,x+h]范围内连续,则f(x)在x处可导- 导数的定义:f'(x) = lim(h→0)(f(x+h) - f(x))/h-链式法则:(f(g(x)))'=f'(g(x))*g'(x)9.矩阵-矩阵乘法:若A是一个m行n列的矩阵,B是一个n行p列的矩阵,则AB是一个m行p列的矩阵-矩阵转置:矩阵A的转置记作A^T,其中A^T的第i行第j列的元素是A的第j行第i列的元素-行列式:行列式代表了方阵的一些性质,如行列式为零表示矩阵不可逆。
数学公式大全(数学)
数学公式大全(数学)数学公式大全数学是一门抽象而精确的学科,它以符号和公式为基础,通过逻辑推理和严密推导来研究数量、结构、变化和空间等概念。
在数学中,公式是表达数学关系的一种形式,它以符号和特定的排列组合方式来描述数学中的规律和定理。
在这篇文章中,我们将探讨一些常见的数学公式,它们涵盖了数学的多个分支,希望能帮助读者更好地理解和学习数学。
1. 代数公式1.1 一元二次方程公式一元二次方程公式是形如ax^2 + bx + c = 0的方程,其中a、b和c是常数,且a≠0。
它的解的公式为:x = (-b ± √(b^2 - 4ac))/(2a)这个公式也称为二次方程的求根公式,可以用来求解任意二次方程的根。
1.2 二项式定理二项式定理是指对于任意实数a和b以及自然数n,有以下公式成立:(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + C(n, 2)a^(n-2)b^2 + ... + C(n, n-1)ab^(n-1) + C(n, n)b^n其中C(n, k)表示从n个元素中选取k个元素的组合数,也称为二项式系数。
2. 几何公式2.1 勾股定理勾股定理是指在直角三角形中,直角边的平方和等于斜边的平方。
具体表达式为:a^2 + b^2 = c^2其中a和b分别表示直角边的长度,c表示斜边的长度。
2.2 圆的面积和周长圆的面积公式为:S = πr^2其中S表示圆的面积,r表示圆的半径。
圆的周长公式为:C = 2πr其中C表示圆的周长,r表示圆的半径。
3. 概率统计公式3.1 基本概率公式基本概率公式是指对于任意事件A,其概率的计算公式为:P(A) = N(A) / N(S)其中P(A)表示事件A发生的概率,N(A)表示事件A发生的次数,N(S)表示样本空间中事件发生的总次数。
3.2 期望公式期望是概率统计中衡量随机变量平均取值的指标。
对于随机变量X和它的概率分布P(X)而言,其期望的计算公式为:E(X) = ∑(x * P(x))其中x表示随机变量X可能取到的值,P(x)表示X取到x的概率。
数学的所有公式
数学的所有公式数学是一门关于数量、结构、空间以及变化的学科,广泛应用于各个领域。
它以其严密的逻辑性和抽象性而闻名,而数学公式则是数学领域中最重要的工具之一。
本文将为您介绍一些数学领域中常见的公式。
一、代数公式1. 一次方程式:ax + b = 0方程的解为 x = -b/a2. 二次方程式:ax^2 + bx + c = 0根据求根公式得解 x = (-b ± √(b^2 - 4ac)) / (2a)3. 三次方程式:ax^3 + bx^2 + cx + d = 0求解此方程的方法比较复杂,可以使用牛顿法或者高斯消元法等方法。
4. 指数函数:f(x) = a^x指数函数具有以下性质:a^0 = 1,a^m * a^n = a^(m+n),(a^m)^n = a^(mn),a^(-m) = 1/a^m5. 对数函数:f(x) = loga(x)对数函数是指数函数的逆运算,具有以下性质:loga(1) = 0,loga(a) = 1,loga(xy) = loga(x) + loga(y),loga(x/y) = loga(x) - loga(y)二、几何公式1. 矩形面积公式:A = l * w其中,A表示矩形的面积,l和w分别表示矩形的长度和宽度。
2. 三角形面积公式:A = 1/2 * b * h其中,A表示三角形的面积,b表示底边的长度,h表示底边上的高度。
3. 圆的面积公式:A = πr^2其中,A表示圆的面积,r表示圆的半径,π是一个常数,约等于3.14159。
4. 球的表面积公式:S = 4πr^2其中,S表示球的表面积,r表示球的半径。
5. 球的体积公式:V = (4/3)πr^3其中,V表示球的体积,r表示球的半径。
三、微积分公式1. 导数的定义:f'(x) = lim(h→0)[f(x+h) - f(x)] / h导数表示函数在某一点的变化率,也可以理解为函数的斜率。
(完整版)数学公式大全
三角函数公式1.正弦定理a=b=c= 2R (R 为三角形外接圆半径):sin A sin B sin C2.余弦定理 :a 2 =b 2 +c 2 -2bc cos Ab 2 =a 2 +c 2 -2ac cosB c 2 =a 2 +b 2 -2ab cosCcos A b 2c 2 a 22bc3. ⊿ = 1 a h a = 1 ab sinC = 1 bc sin A = 1 ac sin B = abc=2R 2 sin A sin B sinCS2224R2= a 2 sin Bsin C = b 2 sin Asin C = c 2 sin Asin B =pr= p( p a)( p b)( p c)2sin A2 sin B 2sin C( 此中 p1(a bc) , r为三角形内切圆半径 )24.引诱公试公式七:三角函数值等于的同名三角函数值,前方加上一个把看作锐角时,原三角函数值的符号;即:函数名1不变,符号看象限说明:cot xtan x5.和差角公式① sin()sin cos cos sin② cos()cos cos sin sin③ tan()tan tan1tan? tan④ tan()tan- tantan? tan16.二倍角公式:( 含全能公式 )① sin 2 2 sin cos② cos 2cos2sin22 cos21 12 sin2=1tan1 tan③ tan 22tan1 tan222④ sin 21 cos 22 ⑤ cos 21 cos 22⑥ Sin 2x+cos 2x=1⑦ 1+tan 2x=sec 2x⑧ 1+cot 2x=csc 2x7.半角公式:(符号的选择由2所在的象限确立)① sin1 cos② s in 21 cos ③ cos1 cos222 222 ④ cos 21 cos⑤1cos2 sin 2⑥1 cos2 cos 22222⑦1 sin(cossin ) 2cos 2 sin2228.积化和差公式:sin cos1 sin() sin() cos sin1 sin( ) sin()22cos cos1 cos( ) cos() sin sin1 cos( ) cos229.和差化积公式:① sinsin 2 sincos② sin sin 2 cossin2222③ coscos2 coscos④ coscos2 sinsin2222高等数学必备公式1、指数函数( 4 个):幂函数 5-8( 1)a m a n a m n(2) a m a m na nnm mm1( 3)n(4)aa a a m( 5)x m x n x m n( 6)x mx m n nx( 7)n x mm( 8)x m1 x nx m2、对数函数( 4 个):( 1)ln ab ln a ln b( 2)ln aln a ln bb( 3)ln a b b ln a( 4)N ln e N e ln N3、三角函数( 10 个):( 1)sin2x cos2 x1( 2)sin 2x2sin x cosx ( 3)cos2x cos2 x sin 2 x 2 cos2 x 1 1 2sin 2 x2x 1cos2x21cos 2x( 4)sin2( 5)cos x2(6)1tan2 x sec2 x(7)1cot 2 x csc2 x( 8)sin x1( 9)cos x1 csc x secx( 10)tan x1 cot x4、等价无量小( 11 个 ) :(等价无量小量只好用于乘、除法)当W时:sinW~W arcsinW~W tanW~W arctanW~W 021 ~We W 1 ~ln(1) ~ 1 cos ~ W n 1WW W W Wn2当x时:x3tan x x3x x3tan x sin x ~ ~sin x ~236幂函数:( 1)( c) =0(2)( x ) x1(3)11( 4)x1 x x2 2 x 指数对数:(5) ( a x )a x ln a(7) (log a x)1 x ln a三角函数:(6) (e x )e x (8) (ln x)1x(9) (sin x)cos x(11) (tan x)sec2 x(13) (sec x)secx tan x 反三角函数:(10) (cos x)(12) (cot x)(14) (csc x)sin xcsc2 xcsc x cot x(arcsin x)1(arccos x)1( 15) 1 x 2( 16) 1 x 2(17) (arctan x)1(18) (arc cot x)1 1 x2 1 x2求导法例:设 u=u(x),v=v(x)1.(u —v)’=u’— v’2.(cu)’=cu’(c 为常数 )3.(uv) ’=u’v+uv’4.( u)’=u' v2uv' v v幂函数:(1)(3)(5)kdx kx C11x 2 dx x C1dx ln x C(2)(4)1x dx x1)C (11dx 2 x Cxx ax(7) e x dx e x指数函数:( 6)a dx ln a C C 三角函数:(8)(10)(12)(14)(16)(18)(20)(22)(23)sin xdx cos x C( 9)cosxdx sin x Ctan xdx ln cos x C(11) cot xdx ln sin x Csec x tan xdx sec x C(13) csc x cot xdx csc x C dx212cos2x sec xdx tan x C( 15)sin2x dx csc xdx cot x C secxdx ln secx tan x C(17) cscxdx ln cscx cot x C 1dx arcsin x C1dx arcsinxC( 19)1 x 2a2x 2a11x2dx1x1x2dxarctan x C( 21)a2a arctan a C1dx ln x x2a2Cx2a21dx ln x x2a2C1a2dx1lnx aCx2a2(24) x22a x a增补:完整平方差:完整平方和:(a b) a 2 2ab b 2 (a b)a 2 2ab b 2平方差:立方差:a 2b 2( a b)(a b)a 3b 3( a )( 2ab b 2 )b a立方和 : a 3b 3 ( a b)( a 2 ab b 2 )常有的三角函数值奇 /偶函的班别方法:偶函数: f(-x)= f(x)奇函数: f(-x)= -f(x)常有的奇函数:2n+1 Sinx , arcsinx , tanx , arctanx , cotx , x常有的有界函数:Sinx , cosx , arcsinx , arccosx , arctanx , arccotx极限运算法例:若 lim f(x)=A, lim g(x)=B, 则有:1. lim [f(x)—g(x)]= lim f(x)—lim g(x)=A—B2. lim [f(x). g(x)]= lim f(x).—lim g(x)=A.Bf ( x) lim f ( x)A3. 又 B 不等于 0,则limg(x) lim g (x)B两个重要极限:sinx推行lim sin g(x)11lim x01g(x)x g( x)01x;1;1lim (1x)x推行lim (1g(x))g ( x)e.2.) e lim (1exx x x无量小的比较:设: lim=0,lim =01. 若lim=0,则称是比 较高价的无量小量2. 若lim=c ,(c 不等于 0) ,则称是比 是同阶的无量小量3. 若lim=1,则称是比 是等价的无量小量4. 若lim=,则称是比 较廉价的无量小量抓大头公式:a0 ,nmnn 1={b 0lim a 0x ma 1x m 1a n 1 x a n0, nmb 0x b1xb m 1x b m, nm积分:1.直接积分(带公式)2.换元法:① 简单根式代换a.b.方程中含 naxb ,令 naxb=tnax b,n axb方程中含cxd令cxd =tc. 方程中含 nax b 和 maxb ,令 paxb (此中p 为 n,m 的最小公倍数)② 三角代换:a. 方程中含 a 2x 2 b. 方程中含 a 2x 2 c. 方程中含 x 2a2,令 X=asint; t(- 2,2),令 X=atant;t (-2,2),令 X=asect;t(0, )2③ 分部积分∫ uv ’dx=uv-∫u ’v dx反(反三角函数)对幂指三, 谁在后边,谁为 v ’,依据 v ’求出 v.无量级数:1.等比级数 :aqnq 1,收敛,{1, 发散n 1q2.P 级数:1p ,{p1, 收敛n 1 np 1,发散3.limun 11,收敛正项级数:,{1,发散n 0u n1,没法判断,改用比较 鉴别法4.比较鉴别法:重找一个 V n (一般为 p 级数),limu nA , u n 与v n 敛散性一致v nn 1n 1n5. 交织级数:( 1) nu n (u n0),莱布尼茨鉴别法:{u nu n 1,n1lim n u则级数收敛。
数学公式大全 全套
数学公式大全:全套数学是科学世界中的语言,而公式则是数学中的词汇和语法。
掌握数学公式是理解和应用数学的关键。
本文将为您呈现全套数学公式,帮助您系统地掌握数学基础。
一、代数公式1.乘法分配律:a(b+c) = ab + ac2.乘法结合律:(ab)c = a(bc)3.乘法交换律:ab = ba4.除法定义:a÷b = c 表示a = b × c5.指数法则:a^m × a^n = a^(m+n)6.根式性质:√a^2 = |a|二、几何公式1.勾股定理:直角三角形中,直角边的平方和等于斜边的平方,即a^2 + b^2= c^22.圆周率公式:π = 22/7 或π =3.141593.圆的面积公式:S = πr^24.圆柱的体积公式:V = πr^2h三、三角函数公式1.正弦函数公式:sin(x) = sin(x + 2kπ)2.余弦函数公式:cos(x) = cos(x + 2kπ)3.正切函数公式:tan(x) = tan(x + kπ)4.余切函数公式:cot(x) = 1/tan(x)5.反正弦函数公式:arsin(x) = -i(log(iz))6.反余弦函数公式:arccos(x) = π - arcsin(x)7.反正切函数公式:arctan(x) = π/2 - arcsin(x/√(1+x^2))8.反余切函数公式:arccot(x) = π/2 - arctan(x)四、微积分公式1.导数定义:f'(x) = lim (h->0) [f(x+h) - f(x)] / h2.积分基本公式:∫ a dx = ax + C3.定积分公式:∫ [a, b] f(x) dx = F(b) - F(a)4.微分方程公式:dy/dx = f(x, y)5.级数求和公式:∑ [n=1,∞] a_n = S - S_n (n->∞)6.级数收敛判别法:∑ [n=1,∞] a_n 收敛当且仅当lim (n->∞) a_n = 07.多重积分公式:∫ [a, b] f(x, y, z) dV = Σ [S_k] F_k (S_k为k维曲面上的小区元)8.傅里叶变换公式:f(t) = Σ [n=-∞, ∞] c_n e^(i n t) (c_n为傅里叶系数)9.拉普拉斯变换公式:f(t) = Σ [n=0, ∞] s^n * (f^{(n)}(0)/n!) (s为复数变换参数)。
数学公式大全
数学公式大全数学作为一门科学,有着丰富的理论和方法,其中最为重要的莫过于数学公式。
数学公式通过简洁的符号表示,能够准确表达各种数学关系和定理,是数学研究和应用不可或缺的工具。
下面将介绍一些常用的数学公式,以帮助读者更好地理解和应用数学知识。
一、代数公式1. 一次方程的求解公式:对于方程ax + b = 0,其中a、b为已知常数且a ≠ 0,解x的公式是x = - b / a。
2. 二次方程的求解公式:对于方程ax² + bx + c = 0,其中a、b、c为已知常数且a ≠ 0,解x 的公式是:x = ( -b ± √(b² - 4ac) ) / 2a3. 勾股定理:对于直角三角形,斜边的平方等于两直角边的平方和。
即a² + b²= c²,其中a、b为直角边,c为斜边。
二、几何公式1. 面积公式:- 三角形的面积公式:对于三角形,面积S等于底乘以高的一半。
即S = (1/2) * 底 * 高。
- 矩形的面积公式:对于矩形,面积S等于长乘以宽。
即S = 长 * 宽。
- 正方形的面积公式:对于正方形,面积S等于边长的平方。
即S = 边长²。
- 圆的面积公式:对于圆,面积S等于半径的平方乘以π(圆周率)。
即S = π * 半径²。
2. 体积公式:- 立方体的体积公式:对于立方体,体积V等于边长的立方。
即V = 边长³。
- 圆柱体的体积公式:对于圆柱体,体积V等于底面积乘以高。
即V = 圆的面积 * 高。
- 球体的体积公式:对于球体,体积V等于4/3乘以π乘以半径的立方。
即V = (4/3) * π * 半径³。
三、微积分公式1. 导数公式:- 基本导数公式:- (常数函数导数准则)(k)' = 0,其中k为常数;- (幂函数导数准则)(x^n)' = nx^(n-1),其中n为正整数;- (指数函数导数准则)(a^x)' = ln(a) * a^x,其中a为大于0且不等于1的常数;- (对数函数导数准则)(logₐ(x))' = 1 / (x * ln(a)),其中a为大于0且不等于1的常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。
:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααα定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dxx f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。
代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。
与是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB AB j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-== (马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d czb y a x D Cz By Ax z y x M C B A n z z C y y B x x A多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuF v uG F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。