高等数学同济第六版上_答案解析第七章(PDF)

合集下载

同济第六版高等数学教材pdf文档

同济第六版高等数学教材pdf文档

同济第六版高等数学教材pdf文档同济大学第六版高等数学教材PDF文档数学是一门广泛应用于各个领域的学科,也是很多学生在学习过程中遇到的难题之一。

为了提供更好的教学资源和辅助学习工具,同济大学编写了第六版高等数学教材,并提供了PDF文档的电子版本供学生使用。

同济大学的高等数学教材是一本经典的教材,在教育界具有很高的声誉。

第六版的教材经过了全面的修订和更新,内容更加丰富,涵盖了高等数学的各个分支和重要概念。

教材的编写者是经验丰富的教授和专家,他们在数学教育领域拥有广泛的知识和经验。

PDF文档是一种电子文档格式,与传统的纸质书籍相比,具有很多优势。

首先,PDF文档可以在电脑、平板电脑、手机等多种设备上进行阅读,方便学生随时随地进行学习。

其次,PDF文档具有搜索功能,学生可以通过关键词快速查找到需要的知识点,提高学习效率。

此外,PDF文档还可以进行标注和批注,学生可以在文档中进行重要内容的标记和笔记,方便复习和回顾。

同济大学提供高等数学教材的PDF文档,为学生提供了便捷的学习资源。

学生可以通过在同济大学官方网站或其他合法渠道进行下载,获取到完整的教材内容。

同时,为了方便学生学习,同济大学还提供了答案和解析的附录,学生可以通过对照答案检查自己的学习情况,并理解解题思路和方法。

在使用同济大学高等数学教材的PDF文档时,我们需要注意以下几点。

首先,由于该教材是版权所有,学生应该遵守版权法律的规定,不得非法传播和使用。

其次,学生应该认真阅读教材的内容,根据自己的学习进度和需要进行学习和复习。

此外,如果学生在学习过程中遇到困难或问题,应该及时向老师和同学寻求帮助,共同解决问题。

综上所述,同济大学第六版高等数学教材的PDF文档是学生学习高等数学的重要资源。

通过利用这一资源,学生可以更加便捷地学习和理解数学知识,提高数学水平。

但同时也要注意合法使用教材,遵守版权法律的规定。

希望同济大学的高等数学教材能够帮助到更多的学生,促进他们在数学学习中取得更好的成绩。

同济大学高等数学第六版第七章第三节齐次方程

同济大学高等数学第六版第七章第三节齐次方程

y2 C2
2y v C
1
( y v)2 1 v2 C
得 y2 2C ( x C ) (抛物线)
故反射镜面为旋转抛物面.
2
第十一页,编辑于星期六:十四点 十三分。
说明:
y2
2C
(
x
C 2
)
若已知反射镜面的底面直径为 d ,
顶到底的距离为 h , 则将
代入通解表达式得 C d 2 8h
这时旋转曲面方程为
代回原方程 , 得齐次方程的解 y u0 x.
第三页,编辑于星期六:十四点 十三分。
例1. 解微分方程 y y tan y . xx
解: 令 u y , 则y u x u, 代入原方程得 x
u x u u tan u
分离变量
cosu d u dx
sin u
x
两边积分
cos u sin u
dxdy代入原方程得dxdudxdzdxdu两边积分后得dxdudxdy代入原方程dxdu例求方程通解ydxxdyduydxdu三小结齐次方程dxdyk次齐次函数和k次齐次方程的概念若对于任意的xyz和任意的实数t总有ftxtytztkfxyz对于代数线性方程aubvc0称ab为系数c为自由项
第三节 齐次方程
求解过程中丢失了.
第五页,编辑于星期六:十四点 十三分。
例 1 求解微分方程 dy 2 y y dx x x
例 2 求解微分方程 (x y)dy (x y)dx 0
例 3 求解微分方程 dy y tan y dx x x
第六页,编辑于星期六:十四点 十三分。
例 4 求解微分方程
( x y cos y)dx x cos y dy 0.
dx 2x 4z 3

同济大学高等数学第六版作者答案详解1-6

同济大学高等数学第六版作者答案详解1-6

25 1畅计算下列极限:(1)lim x →0sin ωx x ; (2)lim x →0tan 3xx;(3)lim x →0sin 2x sin 5x;(4)lim x →0x cot x ;(5)lim x →01-cos 2xx sin x;(6)lim n →∞2nsin x2n (x 为不等于零的常数).解 (1)当ω≠0时,lim x →0sin ωx x=lim x →0ω·sin ωx ωx =ωlim x →0sin ωx ωx =ω;当ω=0时,lim x →0sin ωxx=0=ω,故不论ω为何值,均有lim x →0sin ωxx=ω.(2)lim x →0tan 3x x =lim x →03·tan 3x 3x =3lim x →0tan 3x3x=3.(3)lim x →0sin 2xsin 5x =limx →0sin 2x 2x ·5x sin 5x ·25=25lim x →0sin 2x 2x ·lim x →05x sin 5x =25.(4)lim x →0x cot x =lim x →0x sin x ·cos x =lim x →0xsin x ·lim x →0cos x =1.(5)lim x →01-cos 2x x sin x =lim x →02sin 2x x sin x =2lim x →0sin xx =2.(6)lim n →∞2nsin x2n =lim n →∞sinx 2n x2n ·x =x .2畅计算下列极限:(1)lim x →0(1-x )1x ; (2)lim x →0(1+2x )1x ;(3)lim x →∞1+x x2x ;(4)lim x →∞1-1xkx(k 为正整数).解 (1)lim x →0(1-x )1x =lim x →0[1+(-x )]1(-x )(-1)=e-1.(2)lim x →0(1+2x )1x =lim x →0(1+2x )12x 2=e 2.(3)lim x →∞1+xx2x =lim x →∞1+1xx2=e 2.26 (4)lim x →∞1-1xkx=lim x →∞1+1(-x )(-x )(-k )=e-k.倡3畅根据函数极限的定义,证明极限存在的准则Ⅰ′.准则I ′ 如果(1)g (x )≤f (x )≤h (x ),x ∈U 。

《高等数学》同济第六版 第7章答案

《高等数学》同济第六版 第7章答案

1 3
1 (5)此级数为等比级数且公比 q = − ,所以该级数收敛,且收敛于 3
(6)此级数为等比级数且公比 q =
1 1 1 − (− ) 3
=
3 ; 4
7 > 1, ,所以该级数发散。. 6
6.将循环小数 0.25252525 " 写成无穷级数形式并用分数表示. 解: 0.25252525 " = 0.25 + 0.0025 + 0.000025 + "
∞ 1 1 1 (−1) n −1 = 1− + − +" = ∑ 3 5 7 n =1 2n − 1
级数
∞ ∞ 1 1 nπ (−1) 2 n −1 发散而级数 收敛,所以级数 条件收敛. sin ∑ ∑ ∑ 2 n =1 2n − 1 n =1 n n =1 2n − 1 ∞
(4) lim
n →∞
∑ (−1)
n+2 6n + 1
解: (1) lim
n →∞
∞ ∞ un 1 1 (2n − 1) 2 1 = lim = ,而级数 ∑ 2 收敛,所以级数 ∑ 收敛; 2 1 1 n →∞ 4 n =1 n n =1 (2n − 1) n2 n2
从而级数
∑ (−1)
n =1

n −1
1 绝对收敛; (2n − 1) 2
2n + 2 (1) ∑ 2n n =1

n! (2) ∑ n n =1 3

(3)
∑n
n =1

3
sin
π
2n
2n ⋅ n ! (4) ∑ nn n =1

2n + 4 ∞ n +1 2n + 2 a n +1 1 解: (1) lim = lim 2 = < 1 ,所以级数 收敛; n →∞ 2n + 2 n→∞ a 2 2n n n =1 2n

高等数学第六版(上册)第七章课后习题答案

高等数学第六版(上册)第七章课后习题答案

1 高等数学第六版(上册)第七章课后习题答案习题7-11.设 u =a -b +2c ,v =-a +3b -c .试用 a 、b 、c 表示 2u -3v . 解 2u -3v =2(a -b +2c )-3(-a +3b -c )=2a -2b +4c +3a -9b +3c=5a -11b +7c .2.如果平面上一个四边形的对角线互相平分,试用向量证明这是平行四边形.→ → → → → →证 AB =OB -OA ;DC =OC -OD ,→ → → →而OC =-OA ,OD =-OB , → → → → → →所以 DC =-OA +OB =OB -OA =-AB .这说明四边形ABCD 的对边AB =CD 且AB //CD ,从而四边形 ABCD 是平行四边形.3.把∆ABC 的BC 边五等分,设分点依次为D 1、D 2、D 3、D 4,再把→各分点与点A 连接.试以AB =c 、 → → →→BC =a 表示向量D 1A 、D 2 A 、D 3 A 、→ D 4 A .→ → → 解 D 1A =BA -BD 1 =-c -5a , → → → 2 D 2 A =BA -BD 2 =-c -5a , → → → 3 D 3 A =BA -BD 3 =-c -5a , → → → 4 D 4 A =BA -BD 4 =-c -5a .62 +72 +(-6)2 4.已知两点M 1(0, 1, 2)和M 2(1,-1, 0).试用坐标表示式表→ →示向量M 1M 2 及-2M 1M 2 .→解 M 1M 2 =(1, -1, 0)-(0,1, 2) =(1, -2, -2) ,→ -2M 1M 2 =-2(1, -2, -2)=(-2, 4, 4) .5.求平行于向量 a =(6, 7,-6)的单位向量.解 |a |= =11,平行于向量a =(6, 7,-6)的单位向量为 1a =(6, 7, -6) 或-1a =(-6, -7, 6) .|a | 1111 11 |a | 11 11116.在空间直角坐标系中,指出下列各点在哪个卦限?A (1,-2, 3);B (2, 3,-4);C (2,-3,-4);D (-2,-3, 1).解A 在第四卦限,B 在第五卦限,C 在第八卦限,D 在第三卦 限.7.在坐标面上和坐标轴上的点的坐标各有什么特征?指 出下列各点的位置:A (3, 4, 0);B (0, 4, 3);C (3, 0, 0);D (0,-1, 0).解 在 xOy 面上,点的坐标为(x ,y , 0);在 yOz面上,点的坐标为(0,y ,z );在 zOx 面上,点的坐标为(x , 0,z ).在 x 轴上,点的坐标为(x , 0, 0);在 y 轴上,点的坐标为(0,y , 0) ,在z 轴上,点的坐标为(0,0,z ).A 在 xOy 面上,B 在 yOz 面上,C 在 x 轴上,D 在 y 轴上.8.求点(a ,b ,c )关于(1)各坐标面; (2)各坐标轴;(3)坐标原点的对称点的坐标.解 (1)点(a ,b ,c )关于xOy 面的对称点为(a ,b ,-c ),点(a ,b ,c )关于yOz 面的对称点为(-a ,b ,c ),点(a ,b ,c )关于zOx面的对称点为(a ,-b ,c ).(2) 点(a ,b ,c )关于x 轴的对称点为(a ,-b ,-c ),点(a ,b ,c )关于y 轴的对称点为(-a ,b ,-c ),点(a ,b ,c )关于 z 轴的对称点为(-a , -b ,c ).(3) 点(a ,b ,c )关于坐标原点的对称点为(-a ,-b ,-c ).9.自点P 0(x 0,y 0,z 0)分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标.解 在 xOy 面、yOz 面和 zOx 面上,垂足的坐标分别为(x 0,y 0, 0)、(0,y 0,z 0)和(x 0, 0,z 0).在 x 轴、y 轴和 z 轴上,垂足的坐标分别为(x 0, 0, 0),(0,y 0, 0) 和(0, 0,z 0).10.过点P 0(x 0,y 0,z 0)分别作平行于z 轴的直线和平行于xOy 面的平面,问在它们上面的点的坐标各有什么特点?解 在所作的平行于 z 轴的直线上,点的坐标为(x 0,y 0,z );在所作的平行于 xOy 面的平面上,点的坐标为(x ,y ,z 0).11.一边长为a 的立方体放置在xOy面上,其底面的中心在坐标原点,底面的顶点在 x 轴和 y 轴上,求它各顶点的坐标.解因为底面的对角线的长为标分别为2a ,所以立方体各顶点的坐 (,(a ) ,2 , 0, 0), 2, 0, a ), 2 (0,, 0) ,(0, , a ) , 2, 2) . 212.求点 M (4,-3, 5)到各坐标轴的距离.(-3)2 +52 34 42 +52 41 ⎩ 解点M 到x 轴的距离就是点(4,-3, 5)与点(4, 0, 0)之间的距离,即d x = = .点M 到y 轴的距离就是点(4,-3, 5)与点(0,-3, 0)之间的距离,即d y = = .点 M 到 z 轴的距离就是点(4,-3, 5)与点(0, 0, 5)之间的距离, 即d z = =5 .13.在 yOz 面上,求与三点 A (3, 1, 2)、B (4,-2,-2)和 C (0, 5, 1) 等距离的点.解设所求的点为P (0,y ,z )与A 、B 、C 等距离,则→ |PA |2=32 +(y -1)2 +(z -2)2 ,→ |PB |2=42+(y +2)2+(z +2)2,→ | PC |2=(y -5)2 +(z -1)2 .由题意,有→ → → | PA |2=| PB |2=| PC |2 ,⎧32+(y -1)2+(z -2)2=(y -5)2+(z -1)2 ⎨42+(y +2)2+(z +2)2=(y -5)2+(z -1)2 解之得 y =1,z =-2,故所求点为(0, 1,-2).14.试证明以三点 A (4, 1, 9)、B (10,-1, 6)、C (2, 4,3)为顶点的三角形是等腰三角直角三角形.解因为42 +(-3)2 即(2-4)2 +(4-1)2 +(3-9)2 (2-10)2 +(4+1)2 +(3-6)2 2→ |AB |= →|AC |= → |BC |= → → → =7 ,=7 ,=7 ,→ →所以|BC |2=|AB |2+|AC |2,|AB |=|AC |.因此∆ABC 是等腰直角三角形.→ 15.设已知两点M 1(4, 的模、方向余弦和方向角.→2,1) 和M 2(3, 0, 2).计算向量M 1M 2 解 M 1M 2 =(3-4, 0- →|M 1M 2 |= 2, 2-1) =(-1, = 2 ;2,1) ;cos α=-1, 2 cos β 2 cos γ=1; 2α=2π, 3 β=3π, 4 γ=π. 316.设向量的方向余弦分别满足(1)cos α=0; (2)cos β=1;(3) cos α=cos β=0,问这些向量与坐标轴或坐标面的关系如何?解(1)当cos α=0时,向量垂直于x 轴,或者说是平行于yOz面.(2) 当cos β=1时,向量的方向与y 轴的正向一致,垂直于 zOx 面.(3) 当cos α=cos β=0时,向量垂直于x 轴和y 轴,平行于z轴,垂直于 xOy 面.17.设向量r 的模是4,它与轴u 的夹角是60︒,求r 在轴u 上的投影.(10-4)2 +(-1-1)2 +(6-9)2 (-1)2 +( 2)2 +12解 Pr j r =|r |⋅cos π=4⋅1=2 .u 3 218.一向量的终点在点 B (2,-1, 7),它在 x 轴、y 轴和 z轴上的投影依次为 4,-4, 7.求这向量的起点 A 的坐标.解设点A 的坐标为(x ,y ,z ).由已知得⎧⎪2-x =4 ⎨-1-y =-4 ,⎪⎩7-z =7解得 x =-2,y =3,z =0.点 A 的坐标为 A (-2, 3, 0).19.设m =3i +5j +8k ,n =2i -4j -7k 和p =5i +j -4k .求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解因为a =4m +3n -p=4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k ,所以 a =4m +3n -p 在 x 轴上的投影为 13,在 y 轴上的分向量 7j .17 习题 7-21.设 a =3i -j -2k ,b =i +2j -k ,求(1)a ⋅b 及 a ⨯b ; (2)(-2a )⋅3b 及 a ⨯2b ; (3)a 、b 夹角的余弦.解(1)a ⋅b =3⨯1+(-1)⨯2+(-2)⨯(-1)=3,i j k a ⨯b = 3-1 - 2 =5i +j + 7k .1 2 -1(2)(-2a )⋅3b =-6a ⋅b =-6⨯3=-18,a ⨯2b =2(a ⨯b )=2(5i +j +7k )=10i +2j +14k .(3)cos(a ,^b )=|a ⋅b |= 3 =3 .|a ||b |14 6 2212.设 a 、b 、c 为单位向量,且满足 a +b +c =0,求 a ⋅b +b ⋅c +c ⋅a .解因为a +b +c =0,所以(a +b +c )⋅(a +b +c )=0,即a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 a ⋅b +b ⋅c +c ⋅a =-1(a ⋅a +b ⋅b +c ⋅c )=-1(1+1+1)=-3.2 2 2→ → 3.已知M 1(1,-1, 2)、M 2(3, 3, 1)和M 3(3, 1, 3).求与M 1M 2 、M 2M 3 同时垂直的单位向 量.→ 解 M 1M 2=(3-1,3+1,1-2)=(2,4,-1),→M 2M 3 =(3-3,1-3, 3-1) =(0, - 2, 2) . → → i j k n =M 1M 2⨯M 2M 3 = 2 4 0 -2 -1 =6i - 4 j - 4k ,2|n |=36+16+16=2,e =±1(6i - 4 j -4k )=±1(3i - 2 j - 2k ) 为所求向量.2 17 174.设质量为100kg 的物体从点 M 1(3, 1, 8)沿直线称动到点 M 2(1, 4,2),计算重力所作的功(长度单位为 m ,重力方向为 z 轴负方向).解 F =(0, 0,-100⨯9. 8)=(0, 0,-980), →S =M 1M 2 =(1-3, 4-1, 2-8) =(-2, 3, -6) .W =F ⋅S =(0, 0,-980)⋅(-2, 3,-6)=5880(焦耳).→ 5.在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处,有一与O P 1 成角θ1的力F 1→作用着;在O 的另一侧与点O 的距离为x 2的点P 2处,有一与OP 2 成角θ1的力F 1作用着.问 θ1、θ2、x 1、x 2、|F 1|、|F 2|符合怎样的条件才能使杠杆保持平衡?解因为有固定转轴的物体的平衡条件是力矩的代数和为零,再注意到对力矩正负的22 + 22 +12OA OB 规定可得,使杠杆保持平衡的条件为x 1|F 1|⋅sin θ1-x 2|F 2|⋅sin θ2=0,即 x 1|F 1|⋅sin θ1=x 2|F 2|⋅sin θ2.6.求向量 a =(4,-3, 4)在向量 b =(2, 2, 1)上的投影.解Pr j b a =a ⋅e b =a ⋅b =1a ⋅b = 1 (4,-3,4)⋅(2,2,1)=1(4⨯2-3⨯2+4⨯1)=2. |b ||b | 3 7.设 a =(3, 5,-2),b =(2, 1, 4),问 λ与 μ有怎样的关系,能使得 λa +μb 与 z 轴垂直? 解 λa +μb =(3λ+2μ, 5λ+μ,-2λ+4μ),λa +μb 与 z 轴垂 ⇔λa +μb ⊥k⇔(3λ+2μ, 5λ+μ,-2λ+4μ)⋅(0, 0, 1)=0,即-2λ+4μ=0,所以 λ=2μ.当 λ=2μ时,λa +μb 与 z 轴垂直.8.试用向量证明直径所对的圆周角是直角.→ → 证明 设 AB 是圆 O 的直径,C 点在圆周上,则OB =-OA ,→ →|OC |=|OA | .→→→ → → → → → → → →→ 因为 AC ⋅BC =(OC -OA )⋅(OC -OB ) =(OC -OA )⋅(OC +OA ) =|OC |2 -|OA |2 =0 ,→ →所以 AC ⊥BC ,∠C =90︒.9.设已知向量 a =2i -3j +k ,b =i -j +3k 和 c =i -2j ,计算: (1)(a ⋅b )c -(a ⋅c )b ; (2)(a +b )⨯(b +c );(3)(a ⨯b )⋅c .解 (1)a ⋅b =2⨯1+(-3)⨯(-1)+1⨯3=8,a ⋅c =2⨯1+(-3)⨯(-2)=8,(a ⋅b )c -(a ⋅c )b =8c -8b =8(c -b )=8[(i -2j )-(i -j +3k )]=-8j -24k .(2)a +b =3i -4j +4k ,b +c =2i -3j +3k ,i j (a +b )⨯(b +c )=3 -4 2 -3 k 4 =-j -k . 3i (3) a ⨯b = 2 1 j k -3 1 =-8i -5 j +k , -1 3(a ⨯b )⋅c =-8⨯1+(-5)⨯(-2)+1⨯0=2.→ 10.已知OA =i +3 j , →OB =j +3k ,求 ∆OAB 的面积.→→ → →解 根据向量积的几何意义,于是∆OAB 的面积为S =1| →⨯→| . 2|OA ⨯OB | 表示以OA 和 OB 为邻边的平行四边形的面积,19 →→ i jk →→因为OA ⨯OB = 1 0 3 =-3i -3 j +k , |OA ⨯OB |=0 1 3 (-3)3 +(-3)2 +12= ,所以三角形∆OAB 的面积为 S =1|→⨯→|=1 19 . 2 OA OB 2 12.试用向量证明不等式:a 2 +a 2 +a 2b 2 +b 2 +b 2 ≥|a b +a b +a b | , 1 2 3 1 2 3 11 2 2 33其中a 1、a 2、a 3、b 1、b 2、b 3为任意实数,并指出等号成立的条件.解设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则有a ⋅b =|a |⋅|b |cos(a ,^b )≤|a |⋅|b | ,于是 a 2 +a 2 +a 2b 2 +b 2 +b 2 ≥|a b +a b +a b | , 1 2 3 1 2 3 11 2 2 3 3其中当cos(a ,^b ) =1时,即 a 与 b 平行是等号成立.14 6 x 2 +y 2 +z 2(x - 2)2 +(y -3)2 +(z - 4)2 29 y 2 +z 2 x 2 +y 2 习题 7-31.一动点与两定点(2, 3, 1)和(4, 5, 6)等距离,求这动点的轨迹方程.解设动点为M (x ,y ,z ),依题意有(x -2)2+(y -3)2+(z -1)2=(x -4)2+(y -5)2+(z -6)2,即4x +4y +10z -63=0. 2.建立以点(1, 3,-2)为球心,且通过坐标原点的球面方程.解 球的半径R =12+32+(-2)2= ,球面方程为(x -1)2+(y -3)2+(z +2)2=14, 即 x 2+y 2+z 2-2x -6y +4z =0.3.方程x 2+y 2+z 2-2x +4y +2z =0 表示什么曲面?解由已知方程得(x 2-2x +1)+(y 2+4y +4)+(z 2+2z +1)=1+4+1,即(x -1)2+(y +2)2 +(z +1)2=(6)2 ,所以此方程表示以(1,-2,-1)为球心,以为半径的球面.4.求与坐标原点O 及点(2, 3, 4)的距离之比为1:2 的点的全体所组成的曲面的方程,它表示怎样曲面?解设点(x ,y ,z )满足题意,依题意有=1 , 2 化简整理得(x +2)2 +(y +1)2 +(z +4)2 =116,3 3 9它表示以(-2,-1,-4)为球心,以2 为半径的球面.3 3 35.将zOx 坐标面上的抛物线z 2=5x 绕x 轴旋转一周,求所生成的旋转曲面的方程.解将方程中的z 换成± 得旋转曲面的方程y 2+z 2=5x . 6.将zOx 坐标面上的圆x 2+z 2=9绕z 轴旋转一周,求所生成的旋转曲面的方程.解将方程中的x 换成± 得旋转曲面的方程x 2+y 2+z 2=9.7.将 xOy 坐标面上的双曲线 4x 2-9y 2=36 分别绕 x 轴及 y轴旋转一周,求所生成的旋转曲面的方程.解双曲线绕x 轴旋转而得的旋转曲面的方程为4x2-9y2-9z2=36.双曲线绕y 轴旋转而得的旋转曲面的方程为4x2+4z2-9y2=36.8.画出下列方程所表示的曲面:(1) (x -a)2 +y2 =(a)2 ;2 2(2) -x2 +y2=1 ;4 9(3) x2 +z2 =1 ;9 4(4)y 2-z =0;(5)z =2-x 2.9.指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形:(1)x =2;解在平面解析几何中,x =2 表示平行于y 轴的一条直线;在空间解析几何中,x =2 表示一张平行于 yOz 面的平面.(2)y =x +1;解 在平面解析几何中,y =x +1 表示一条斜率是 1,在 y 轴上的截距也是 1的直线;在空间解析几何中,y =x +1 表示一张平行于 z 轴的平面.(3)x 2+y 2=4;解 在平面解析几何中,x 2+y 2=4 表示中心在原点,半径是 4 的圆;在空间解析几何中, x 2+y 2=4 表示母线平行于 z 轴,准线为 x 2+y 2=4 的圆柱面.(4)x 2-y 2=1.解 在平面解析几何中,x 2-y 2=1 表示双曲线;在空间解析几何中,x 2-y 2=1表示母线平行于 z 轴的双曲面.10.说明下列旋转曲面是怎样形成的:(1) x 2 +y 2 +z 2 =1 ; 4 9 9解这是xOy 面上的椭圆x 2 +y 2 =1绕x 轴旋转一周而形成的,或是zOx 面上的椭圆 4 9x2 +z2 =1 绕 x 轴旋转一周而形成的.4 9(2) x2 -y2+z2 =1 ; 4解这是xOy 面上的双曲线x2 -y2=1 y 轴旋转一周而形成的,或是yOz 面上的双曲4线-y2+z2 =1绕 y 轴旋转一周而形成的.4(3)x2-y2-z2=1;解这是xOy 面上的双曲线x2-y2=1 绕x 轴旋转一周而形成的,或是zOx 面上的双曲线x2-z2=1 绕 x 轴旋转一周而形成的.(4)(z-a)2=x2+y2.解这是zOx 面上的曲线(z-a)2=x2绕z轴旋转一周而形成的,或是yOz面上的曲线(z-a)2=y2绕 z 轴旋转一周而形成的.11.画出下列方程所表示的曲面:(1)4x2+y2-z2=4;(2)x2-y2-4z2=4;(3)z=x2 +y2 .3 4 9⎨y =2 4-x 2-y 2 ⎨x -y =0 ⎨x 2+2 2z 习题 7-41.画出下列曲线在第一卦限内的图形:(1) ⎧x =1 ; ⎩(2)⎧z = ; ⎩(3) ⎧x 2 +y 2 =a 2 . ⎩⎨y =2x -3 ⎩ ⎩⎨x 2+2 2z -y =0 ⎨x 2+2 2z -y =0 ⎨x 2+2 2z -y =0 ⎨z =0 ⎨y =x 2.指出下方程组在平面解析几何中与在空间解析几何中分别表示什么图形:(1) ⎧y = 5x +1 ; ⎩ 解 在平面解析几何中,⎧y = 5x +1 表示直线y =5x +1 与y =2x -3 的交点(-4, -17) ;在空 ⎨y =2x -3 3 3 间解析几何中,⎧y = 5x +1 表示平面y =5x +1 与y =2x -3 的交线,它表示过点(-4, -17, 0) ,并且行于 z 轴.⎨y =2x -3 3 3 ⎧⎪x 2+y 2 =1(2)⎨4 9 .⎪⎩y =3 ⎧⎪x 2+y 2 =1x 2 y 2 解 在平面解析几何中, ⎨4 9 ⎪⎩y =3 表示椭圆 4 9 =1 与其切线y =3 的交点(0,3);在 ⎧⎪x 2+y 2 =1 x 2 y 2 空间解析几何中, ⎨4 9 ⎪⎩y =3 表示椭圆柱面 4 +9 =1 与其切平面 y =3 的交线. 3.分别求母线平行于 x 轴及 y 轴而且通过曲线⎧2x 2 +y 2 +z 2 =16 的柱面方程. ⎩解把方程组中的x 消去得方程3y 2-z 2=16,这就是母线平行于x 轴且通过曲线⎧2x 2 +y 2 +z 2 =16 的柱面方程. ⎩把方程组中的y 消去得方程3x 2+2z 2=16,这就是母线平行于y 轴且通过曲线⎧2x 2 +y 2 +z 2 =16 的柱面方程. ⎩ 4.求球面 x 2+y 2+z 2=9 与平面 x +z =1 的交线在 xOy 面上的投影的方程.解由x +z =1 得z =1-x 代入x 2+y 2+z 2=9 得方程2x 2-2x +y 2=8,这是母线平行于z 轴,准线为球面x 2+y 2+z 2=9 与平面x +z =1 的交线的柱面方程,于是所求的投影方程为⎧2x 2 - 2x +y 2 =8 . ⎩5.将下列曲线的一般方程化为参数方程:(1) ⎧x 2 +y 2 +z 2 =9 ; ⎩⎨z =0 ⎨z =0解将y =x 代入x 2+y 2+z 2=9 得2x 2+z 2=9,即令 x =3cos t ,则 z =3sin t .2故所求参数方程为x 2 3 2 +z 2 =1 . 32 x = 3cos t , 2 y = 3cos t ,z =3sin t .2(2) ⎧(x -1)2 +y 2 +(z +1)2 = 4 . ⎩ 解 将 z =0 代入(x -1)2+y 2+(z +1)2=4 得(x -1)2+y 2=3.令 x =1+ 3cos t ,则 y =3 sin t ,于是所求参数方程为x =1+ 3 cos t , y = 3 sin t ,z =0.⎧⎪x =a c os θ 6.求螺旋线⎨y =a sin θ在三个坐标面上的投影曲线的直角坐标方程.⎪⎩z =b θ解由前两个方程得x 2+y 2=a 2,于是螺旋线在xOy 面上的投影曲线的直角坐标方程为⎧x 2 +y 2 =a 2 . ⎩由第三个方程得θ=z 代入第一个方程得 bx =cos z ,即 z =b arccos x ,a b a于是螺旋线在zOx 面上的投影曲线的直角坐标方程为⎧⎪z =b arccos x . ⎨ a ⎪⎩y =0由第三个方程得θ=z 代入第二个方程得 by =sin z ,即 z =b arcsin y ,a b a于是螺旋线在yOz 面上的投影曲线的直角坐标方程为⎧⎪x =0 ⎨z =b arcsin y ⎩⎪ a .a 2 -x 2 -y 2 a 2 -x 2 -y 27.求上半球0≤z ≤的投影. 与圆柱体x 2+y 2≤ax (a >0)的公共部分在xOy 面和zOx 面上 解圆柱体x 2+y 2≤ax 在xOy 面上的投影为x 2+y 2≤ax ,它含在半球0≤z ≤在 xOy 面上的投影 x 2+y 2≤a 2内,所以半球与圆柱体的公共部分在 xOy 面上的投影为 x 2+y 2≤ax .为求半球与圆柱体的公共部分在 zOx 面上的投影,由圆柱面方程 x 2+y 2=ax 得 y 2=ax -x 2,代入半球面方程z = ,得z =zOx 面上的投影为(0≤x ≤a ),于是半球与圆柱体的公共部分在0≤z ≤a 2 -ax (0≤x ≤a ),即 z 2+ax ≤a 2, 0≤x ≤a ,z ≥0.8.求旋转抛物面 z =x 2+y 2(0≤z ≤4)在三坐标面上的投影.解 令 z =4 得 x 2+y 2=4,于是旋转抛物面 z =x 2+y 2(0≤z ≤4)在 xOy 面上的投影为 x 2+y 2≤4. 令 x =0得 z =y 2,于是旋转抛物面 z =x 2+y 2(0≤z ≤4)在 yOz 面上的投影为 y 2≤z ≤4.令 y =0得 z =x 2,于是旋转抛物面 z =x 2+y 2(0≤z ≤4)在 zOx 面上的投影为 x 2≤z ≤4.a 2 -x 2 -y 2 a 2 -ax习题 7-51.求过点(3, 0,-1)且与平面3x-7y+5z-12=0 平行的平面方程.解所求平面的法线向量为n=(3,-7, 5),所求平面的方程为3(x-3)-7(y-0)+5(z+1)=0,即 3x-7y+5z-4=0.2.求过点M0(2, 9,-6)且与连接坐标原点及点M0的线段OM0垂直的平面方程.解所求平面的法线向量为n=(2, 9,-6),所求平面的方程为2(x-2)+9(y-9)-6(z-6)=0,即 2x+9y-6z-121=0.3.求过(1, 1,-1)、(-2,-2, 2)、(1,-1, 2)三点的平面方程.解 n1=(1,-1, 2)-(1, 1,-1)=(0,-2,3),n1=(1,-1, 2)-(-2,-2, 2)=(3, 1,0),所求平面的法线向量为i jn=n1⨯n2= 0 -23 1所求平面的方程为k3 =-3i +9 j +6k , 0-3(x-1)+9(y-1)+6(z+1)=0,即 x-3y-2z=0.4.指出下列各平面的特殊位置,并画出各平面:(1)x=0;解 x=0 是 yOz 平面.(2)3y-1=0;解3y-1=0 是垂直于y 轴的平面,它通过y 轴上的点(0, 1, 0).322 +(-2)2 +11(3)2x -3y -6=0;解 2x -3y -6=0 是平行于 z 轴的平面,它在 x 轴、y轴上的截距分别是 3 和-2.(4)x - 3y =0;解x - 3y =0是通过z 轴的平面,它在xOy 面上的投影的斜3(5)y +z =1;解y +z =1 是平行于x 轴的平面,它在y 轴、z 轴上的截距均 为 1.(6)x -2z =0;解 x -2z =0 是通过 y 轴的平面.(7)6x +5-z =0.解 6x +5-z =0 是通过原点的平面.5.求平面 2x -2y +z +5=0与各坐标面的夹角的余弦.解此平面的法线向量为 n =(2,-2, 1).此平面与yOz 面的夹角的余弦为cos α=cos(n ^,i )=n ⋅i = 2 =2;|n |⋅|i | 22+(-2)2+11 3此平面与zOx 面的夹角的余弦为cos β=cos(n ,^j )=n ⋅j = -2 =-2;|n |⋅|j | 3此平面与xOy 面的夹角的余弦为cos γ=cos(n ,^ k )=n ⋅k = 1 =1.|n |⋅|k | 22+(-2)2+11 36.一平面过点(1, 0,-1)且平行于向量 a=(2, 1, 1)和 b=(1,-1, 0),试求这平面方程.解所求平面的法线向量可取为i jn=a⨯b=2 11-1 所求平面的方程为k1 =i +j -3k , 0(x-1)+(y-0)-3(z+1)=0,即 x+y-3z-4=0.7.求三平面x+3y+z=1, 2x-y-z=0,-x+2y+2z=3 的交点.解解线性方程组⎧⎪x+3y+z=1⎨2x-y-z=0⎪⎩-x+2y+2z=3得 x=1,y=-1,z=3.三个平面的交点的坐标为(1,-1, 3).8.分别按下列条件求平面方程:(1)平行于zOx面且经过点(2,-5,3);解所求平面的法线向量为j =(0, 1, 0),于是所求的平面为0⋅(x-2)-5(y+5)+0⋅(z-3)=0,即 y=-5.(2)通过 z 轴和点(-3, 1,-2);解 所求平面可设为 Ax+By=0.因为点(-3, 1,-2)在此平面上,所以-3A+B=0,将B=3A 代入所设方程得Ax+3Ay=0,所以所求的平面的方程为x+3y=0,(3)平行于 x 轴且经过两点(4, 0,-2)和(5, 1, 7).解所求平面的法线向量可设为n=(0,b,c).因为点(4,0,-2) 和(5, 1, 7)都在所求平面上,所以向量n1=(5, 1, 7)-(4, 0,-2)=(1, 1, 9)与n 是垂直的,即b+9c=0,b=-9c ,于 是 n=(0,-9c,c)=-c(0, 9,-1).所求平面的方程为9(y-0)-(z+2)=0,即 9y-z-2=0.9.求点(1, 2, 1)到平面x+2y+2z-10=0 的距离.解点(1, 2, 1)到平面x+2y+2z-10=0 的距离为d =|1+2⨯2+2⨯1-10|=1.12 + 22 +22⎨2x +y +z =4 ⎨2x +y +z =4 ⎨2x +z =4习题 7-6 1.求过点(4,-1, 3)且平行于直线 x -3=y =z -1的直线方程.2 1 5解所求直线的方向向量为s =(2, 1, 5),所求的直线方程为x -4=y +1=z -3.2 1 52.求过两点 M 1(3,-2, 1)和 M 2(-1, 0, 2)的直线方程.解 所求直线的方向向量为 s =(-1, 0, 2)-(3,-2, 1)=(-4, 2, 1), 所求的直线方程为x -3=y +2=x -1.-4 2 13.用对称式方程及参数方程表示直线⎧x -y +z =1 . ⎩解 平面 x -y +z =1 和 2x +y +z =4 的法线向量为 n 1=(1,-1, 1), n 2=(2, 1, 1),所求直线的方向向量为i s =n 1⨯n 2 = 1 2 j k-1 1 =-2i +j +3k . 1 1在方程组⎧x -y +z =1 ⎩ 中,令 y =0,得⎧x +z =1 ⎩,解 得 x =3, z =-2.于是点(3, 0,-2)为所求直线上的点.所求直线的对称式方程为x -3=y =z +2;-2 1 3参数方程为x =3-2t ,y =t ,z =-2+3t .⎨3x +5y -2z +1=0 ⎩ ⎩⎨-2x +y +z =7 ⎨2x -y -z =0 4.求过点(2, 0,-3)且与直线⎧x -2y +4z -7=0 ⎩垂直的平面 方程.解所求平面的法线向量n 可取为已知直线的方向向量,即i j n =(1, -2, 4)⨯(3, 5, -2)= 1- 2 3 5 k 4=-16i +14 j +11k . -2所平面的方程为-16(x -2)+14(y -0)+11(z +3)=0,即 16x -14y -11z -65=0.5.求直线⎧5x -3y +3z -9=0与直线⎧2x +2y -z +23=0的夹角 的余弦.⎨3x -2y +z =0 ⎨3x +8y +z -18=0 解两直线的方向向量分别为i s 1 = 5 3 i j k-33 =3i + 4 j -k , -2 1j ks 2 = 22 38 -1 =10i -5 j +10k . 1两直线之间的夹角的余弦为cos(s ,^s )= s 1⨯s 2 1 2 | s |⋅|s | 1 2= 3⨯10+4⨯(-5)+(-1)⨯10 =0. 32 +42 +(-1)2 102 +(-5)2 +1026.证明直线⎧x +2y -z =7 ⎩ 与直线⎧3x +6y -3z =8平行. ⎩解两直线的方向向量分别为i j s 1=1 2 -21 i j k-1 =3i +j +5k , 1ks 2 = 3 2 6 -3=-9i -3j -15k .-1-1因为 s 2=-3s 1,所以这两个直线是平行的.7.求过点(0, 2,4)且与两平面 x +2z =1 和 y -3z =2平行的直线方程. 解因为两平面的法线向量n 1=(1, 0, 2)与n 2=(0, 1,-3)不平行,所以两平面相交于一直线,此直线的方向向量可作为所求直线的方向向量s ,即i j s = 10 01 k 2=-2i +3j +k . -3所求直线的方程为 x =y -2=z -4.-2 3 1 8.求过点(3, 1,-2)且通过直线 x -4=y +3=z 的平面方程.5 2 1 解所求平面的法线向量与直线x -4=y +3=z 的方向向量5 2 1s 1=(5, 2, 1)垂直.因为点(3, 1,-2)和(4,-3, 0)都在所求的平面上,所以所求平面的法线向量与向量s 2=(4,-3,0)-(3,1,-2)=(1,-4,2) 也是垂直的.因此所求平面的法线向量可取为⎨x -y -z =0 ⎨x -y -z =0i j n =s 1 ⨯s 2 =5 2 1-4 k 1 =8i -9 j -22k . 2所求平面的方程为8(x -3)-9(y -1)-22(z +2)=0,即 8x -9y -22z -59=0.9.求直线⎧x +y +3z =0 与平面 x -y -z +1=0 的夹角. ⎩解已知直线的方向向量为i s =(1,1, 3)⨯(1, -1, -1)=1 1 j k 1 3 -1 -1=2i + 4 j -2k =2(i + 2 j -k ) , 已知平面的法线向量为 n =(1,-1,-1).因为s ⋅n =2⨯1+4⨯(-1)+(-2)⨯(-1)=0,所以 s ⊥n ,从而直线⎧x +y +3z =0 与平面 x -y -z +1=0 的夹角为 0. ⎩10.试确定下列各组中的直线和平面间的关系: (1) x +3=y +4=z 和 4x -2y -2z =3;-2 -7 3解 所给直线的方向向量为 s =(-2,-7,3),所给平面的法线向量为 n =(4,-2,-2).因为 s ⋅n =(-2)⨯4+(-7)⨯(-2)+3⨯(-2)=0,所以 s ⊥n ,从而所给直线与所给平面平行.又因为直线上的点(-3,-4, 0)不满足平面方程 4x -2y -2z =3,所以所给直线不在所给平面上. (2) x =y =z 和 3x -2y +7z =8;3 -2 7⎩ ⎩解 所给直线的方向向量为 s =(3,-2,7),所给平面的法线向量为 n =(3,-2, 7).因为 s =n ,所以所给直线与所给平面是垂直的. (3) x -2=y +2=z -3和 x +y +z =3.3 1 -4解 所给直线的方向向量为 s =(3,1,-4),所给平面的法线向量为 n =(1, 1, 1).因为 s ⋅n =3⨯1+1⨯1+(-4)⨯1=0,所以 s ⊥n ,从而所给直线与所给平面平行.又因为直线上的点(2,-2,3)满足平面方程 x +y +z =3,所以所给直线在所给平面上. 11.求过点(1,2,1)而与两直线⎧x +2y -z +1=0 和⎧2x -y +z =0平行的平面的方程.⎨x -y +z -1=0 ⎨x -y +z =0 解已知直线的方向向量分别为i s 1=(1,2,-1)⨯(1,-1,1)=1 1 i s 1 =(2, -1,1)⨯(1, -1,1)=2 1 j k 2 -1 =i -2 j -3k ,-1 1j k -1 1 =-j -k . -1 1所求平面的法线向量可取为i n =s 1⨯s 2 =1 0 所求平面的方程为j k -2 -3 =-i +j -k ,-1 -1-(x -1)+(y -2)-(z -1)=0,即 x -y +z =0.12.求点(-1, 2, 0)在平面 x +2y -z +1=0 上的投影.⎨2x -y +z -4=0 解平面的法线向量为n =(1, 2,-1).过点(-1, 2, 0)并且垂直于已知平面的直线方程为x +1=y -2=z .1 2 -1将此方程化为参数方程x =-1+t ,y =2+2t ,z =-t ,代入平面方程 x +2y -z +1=0 中,得(-1+t )+2(2+2t )-(-t )+1=0,解得t =-2.再将t =-2代入直线的参数方程,得x =-5,y =2, 3 3 3 3z =2.于是点(-1, 2, 0) 在平面x +2y -z +1=0上的投影为点 3 (-5, 2, 2) . 2 3 313.求点 P (3,-1,2)到直线⎧x +y -z +1=0 ⎩ 解已知直线的方向向量为的距离.i s =(1,1,-1)⨯(2,-1,1)=1 2 j k 1 -1=-3j -3k . -1 1过点P 且与已知直线垂直的平面的方程为-3(y +1)-3(z -2)=0,即 y +z -1=0.解线性方程组⎧⎪x +y -z +1=0⎨2x -y +z -4=0 ,⎪⎩y +z -1=0得 x =1, y =-1, 2 z =3.22 ⎨2x -y +z -4=0 ⎨3x -y -2z -9=0 点P (3,-1, 2)到直线⎧x +y -z +1=0 ⎩与点(1, -1, 3) 间的距离,即的距离就是点P (3,-1, 2) 2 2d =. 214.设M 0是直线L 外一点,M 是直线L 上任意一点,且直线的方向向量为s ,试证:点M 0到直线L 的距离→ d =|M 0M ⨯s |. |s |→解设点M 0到直线L 的距离为d ,L 的方向向量s =MN ,根→ → 据向量积的几何意义,以M 0M 和MN 为邻边的平行四边形的面积为→ → →|M 0M ⨯MN |=|M 0M ⨯s | ,→ → → 又以 M 0M 和 MN 为邻边的平行四边形的面积为 d ⋅|MN |=d ⋅| s | . 因此→d ⋅|s |=| → M 0M ⨯s |, d =|M 0M ⨯s |. | s | 15.求直线⎧2x -4y +z =0 ⎩在平面4x -y +z =1 上的投影直线 的方程.解过已知直线的平面束方程为(2+3λ)x +(-4-λ)y +(1-2λ)z -9λ=0.为在平面束中找出与已知平面垂直的平面,令(4 -1, 1)⋅(2+3λ,-4-λ, 1-2λ)=0,⎩ 即4⋅(2+3λ)+(-1)⋅(-4-λ)+1⋅(1-2λ)=0.解之得λ=-13.将λ=-13代入平面束方程中,得11 1117x +31y -37z -117=0.故投影直线的方程为⎧4x -y +z =1 ⎨17x +31y -37z -117 =0 16.画出下列各曲面所围成的立体图形:(1)x =0,y =0,z =0,x =2,y =1, 3x +4y +2z -12=0;(2)x =0,z =0,x =1,y =2, z =y ;4.(3)z=0,z=3,x-y=0,x-3y=0,x2+y2=1(在第一卦限内);(4)x=0,y=0,z=0,x2+y2=R2,y2+z2=R2(在第一卦限内).总习题七1.填空(1)设在坐标系[O;i,j,k]中点A和点M的坐标依次为(x0,y0,z0)和(x,y,z),则在[A;i,j,k]→坐标系中,点M 的坐标为,向量OM的坐标为.解 M(x-x0,y-y0,z-z0),→OM =(x, y, z) .提示:自由向量与起点无关,它在某一向量上的投影不会因起点的位置的不同而改变.(2)设数λ1、λ2、λ3不全为0,使λ1a+λ2b+λ3c=0,则a、b、c三个向量是的.解共面.(3)设a=(2,1,2),b=(4,-1,10),c=b-λa,且a⊥c,则λ= .解 3.提示:因为 a⊥c,所以 a⋅c=0.又因为由a⋅c=a⋅b-λa⋅a=2⨯4+1⨯(-1)+2⨯10-λ(22+12+22)=27-9λ,所以λ=3.(4)设a、b、c都是单位向量,且满足a+b+c=0,则a⋅b+b⋅c+c⋅a= .解 -3.2提示:因为a+b+c=0,所以(a+b+c)⋅(a+b+c)=0,即a⋅a+b⋅b+c⋅c+2a⋅b+2a⋅c+2c⋅a=0,于是a⋅b+b⋅c+c⋅a=-1(a⋅a+b⋅b+c⋅c)=-1(1+1+1)=-3.2 2 2(5)设|a|=3,|b|=4,|c|=5,且满足a+b+c=0,则|a⨯b+b⨯c+c⨯a|= .解36.提示:c=-(a+b),a⨯b+b⨯c+c⨯a=a⨯b-b⨯(a+b)-(a+b)⨯a=a⨯b-b⨯a-b⨯a=3a⨯b,|a⨯b+b⨯c+c⨯a|=3|a⨯b|=3|a|⋅|b|=3⋅3⋅4=36.2.在y轴上求与点 A(1,-3, 7)和点 B(5, 7,-5)等距离的点.解设所求点为M(0,y, 0),则有12+(y+3)2+72=52+(y-7)2+(-5)2,即(y+3)2=(y-7)2,解得 y=2,所求的点为 M(0, 2, 0).3.已知 ∆ABC 的顶点为 A(3,2,-1)、B(5,-4,7)和C(-1,1,2),求从顶点 C 所引中线的长度.解线段AB 的中点的坐标为(3+5, 2-4, -1+7) =(4, -1, 3) .所求中线的长度为2 2 2.→→→4.设∆ABC 的三边BC =a 、CA=b 、AB =c ,三边中点依次为D、E、F,试用向量a、d = (4+1)2 +(-1-1)2 +(3- 2)2 = 30→→→b 、c 表示AD 、BE 、CF ,并证明→→→AD +BE +CF =0 . 解 →=→+→=c +1a , ADABBD 2→=→+→=a +1b , BEBCCE 2→=→+→=b +1c . CFCAAF 2→→→3 3AD +BE +CF =2 (a +b +c )=2(-c +c )=05.试用向量证明三角形两边中点的连线平行于第三边,且其长度等于第三边长度的一半.证明设D ,E 分别为AB ,AC 的中点,则有 →=→-→=1( →-→) , DE AE AD 2AC AB→ →→→→BC =BA +AC =AC -AB ,所以→1→DE =2BC ,从而 DE //BC ,且|DE |=1| BC | .26.设|a +b |=|a -b |,a =(3,-5, 8),b =(-1, 1,z ),求 z .解a +b =(2,-4, 8+z ),a -b =(4,-6, 8-z ).因为|a +b |=|a -b |,所以,解得 z =1.7.设|a |=, |b |=1,(a ,^b ) =π,求向量 a +b 与 a -b 的夹角.6解 |a +b |2=(a +b )⋅(a +b )=|a |2+|b |2+2a ⋅b =|a |2+|b |2+2|a |⋅|b |cos(a ,^b ) =3+1+2|a -b |2=(a -b )⋅(a -b )=|a |2+|b |2-2a ⋅b =|a |2+|b |2-2|a |⋅|b |cos(a ,^b )=3+1-2 设向量a +b 与a -b 的夹角为θ,则3 cos π=7 ,63 cos π=1 .6cos θ=(a +b )⋅(a -b )= |a |2 -|b |2 |a +b |⋅|a -b | θ=arccos 2.7|a +b |⋅|a -b | 22 +(-4)2 +(8+z )2 = 42 +(-6)2 +(8-z )2 38.设 a +3b ⊥7a -5b ,a -4b ⊥7a -2b ,求(a ,^b ) . 解 因为 a +3b ⊥7a -5b ,a -4b ⊥7a -2b , 所以 (a +3b )⋅(7a -5b )=0,(a -4b )⋅(7a -2b )=0, 即 7|a |2+16a ⋅b -15|b |2=0, 7|a |2-30a ⋅b +8|b |2=0, 又以上两式可得|a |=|b |= 2 a ⋅b ,于是cos(a ,^b ) =a ⋅b =1,(a ,^b ) =π.|a |⋅|b | 239.设 a =(2,-1,-2),b =(1, 1,z ),问 z 为何值时(a ,^b ) 最小?并求出此最小值. 解 cos(a ,^b ) =a ⋅b =1-2z . |a |⋅|b | 3 2+z 2因为当 0<(a ,^b )<π时,cos(a ,^b ) 为单调减函数.求(a ,^b ) 的最小值也就是求 f (z )=1-2z2的最大值.3 2+z 2令 f '(z ) =1⋅-4-z =0 ,得 z =-4.3 (2+z 2)3/ 2当z =-4时,cos(a ,^b )=2,所以(a ,^b )=2min2 410.设|a |=4, |b |=3, (a ,^b ) =π,求以 a +2b 和 a -3b 为边的平行四边形的面积.6解 (a +2b )⨯(a -3b )=-3a ⨯b +2b ⨯a =5b ⨯a .以a +2b 和a -3b 为边的平行四边形的面积为|(a + 2b )⨯(a -3b )|=5|b ⨯a |=5|b |⋅|a |sin(a ,^b ) =5⋅3⋅4⋅1=30 .211.设 a =(2,-3, 1),b =(1,-2, 3),c =(2, 1, 2),向量 r 满足 r ⊥a ,r ⊥b , Prj c r =14,求 r . 解 设 r =(x ,y ,z ).因为r ⊥a ,r ⊥b ,所以r ⋅a =0,r ⋅b =0,即 2x -3y +z =0,x -2y +3z =0.又因为Prj cr =14,所以r ⋅1c =14 ,即|c |2x +y +2z =42. 解线性方程组⎪(x -1)2+(y +1)2+(z -2)2⎧⎪2x -3y +z =0 ⎨x -2y +3z =0 , ⎪⎩2x +y +2z =42得 x =14,y =10,z =2,所以 r =(14, 10, 2).i j k另解 因为 r ⊥a ,r ⊥b ,所以 r 与a ⨯b =2-3 1 -2 1 =-7i -5 j -k 平行,故可设 r =λ(7, 5, 1).3又因为Prj c r =14,所以r ⋅1c =14 ,r ⋅c =42,即|c |λ(7⨯2+5⨯1+1⨯2)=42,λ=2,所以 r =(14, 10, 2).12.设a =(-1, 3, 2),b =(2,-3,-4),c =(-3, 12, 6),证明三向量a 、b 、c 共面,并用a 和b 表示 c .证明向量a 、b 、c 共面的充要条件是(a ⨯b )⋅c =0.因为i j a ⨯b =-1 3 2 -3 k2 =-6i -3k ,- 4 (a ⨯b )⋅c =(-6)⨯(-3)+0⨯12+(-3)⨯6=0,所以向量a 、b 、c 共面.设c =λa +μb ,则有(-λ+2μ, 3λ-3μ, 2λ-4μ)=(-3, 12, 6), 即有方程组⎧-λ+ 2μ=-3 ⎨3λ-3μ=12 , ⎪⎩2λ-4μ=6解之得λ=5,μ=1,所以 c =5a +b .13.已知动点 M (x ,y ,z )到 xOy 平面的距离与点 M 到点(1, -1, 2)的距离相等,求点 M 的轨迹方程.解根据题意,有|z |= ,或 z 2=(x -1)2+(y +1)2+(z -2)2,化简得(x -1)2+(y +1)2=4(z -1),这就是点 M 的轨迹方程.14.指出下列旋转曲面的一条母线和旋转轴:(1)z =2(x 2+y 2);解 旋转曲面的一条母线为 zOx 面上的曲线 z =2x 2,旋转轴为 z 轴.2⎨x =0 ⎨x =0⎨x =0 (2) x 2 +y 2 +z 2=1 ; 36 9 36解 旋转曲面的一条母线为 xOy 面上的曲线 x 2 +y 2=1,旋转轴为 y 轴.(3)z 2=3(x 2+y 2);36 9解 旋转曲面的一条母线为 yOz 面上的曲线 z = 3 y ,旋转轴为 z 轴.(4) x 2 -y 2 -z 2=1. 4 4解 旋转曲面的一条母线为 xOy 面上的曲线 x 2-y 2=1 ,旋转轴为 x 轴.415.求通过点 A (3, 0, 0)和 B (0, 0, 1)且与 xOy 面成 π角的平面的方程.3 解 设所求平面的法线向量为 n =(a ,b ,c ).→BA =(3, 0, -1) ,xOy 面的法线向量为 k =(0, 0, 1).→ 按要求有n ⋅ =0, n ⋅k =cos π,BA⎧⎪3a -c =0 |n |⋅|k | 3即解之得 c =3a , b =± 26a .于是所求的平面的方程为(x -3) ±26 y +3z =0 ,即x + 26y +3z =3,或 x -26 y +3z =3 .16.设一平面垂直于平面z =0,并通过从点(1, -1, 1)到直线⎧y -z +1= 0的垂线,求此平 ⎩面方程.解 直线⎧y -z +1= 0的方向向量为 s =(0, 1,-1)⨯(1, 0, 0)=(0,-1,-1). ⎩设点(1, -1, 1)到直线⎧y -z +1= 0的垂线交于点(x 0,y 0,z 0).因为点(x 0,y 0,z 0)在直线⎩⎨x =0⎧y -z +1= 0上,所以(x 0,y 0,z 0)=(0,y 0,y 0+1).于是,垂线的方向向量为 ⎩s 1=(-1,y 0+1,y 0).显然有s ⋅s 1=0,即-y 0-1-y 0=0, y =-1. 2 从而 s 1 =(-1, y 0 +1, y 0) =(-1, 1, -1) .2 2所求平面的法线向量可取为n =k ⨯s 1 =k ⨯(-i +1j -1k ) =-1i -j ,所求平面的方程为2 2 2 -1(x -1) -(y +1) =0 ,即 x +2y +1=0 217.求过点(-1, 0, 4),且平行于平面3x -4y +z -10=0,又与直线x +1=y -3=z相交的直1 12 线的方程.解过点(-1, 0, 4),且平行于平面3x -4y +z -10=0 的平面的方程为3(x +1)-4(y -0)+(z -4)=0,即 3x -4y +z -1=0. 将直线x +1=y -3=z化为参数方程 x =-1+t ,y =3+t ,z =2t ,代入平面方程 3x -4y +z -1=0,1 12 得3(-1+t )-4(3+t )+2t -1=0,解得t =16.于是平面3x -4y +z -1=0 与直线x +1=y -3=z的交点的坐标为(15, 19,32),这也1 12 是所求直线与已知直线的交点的坐标.所求直线的方向向量为s =(15, 19, 32)-(-1, 0, 4)=(16, 19, 28), 所求直线的方程为x +1=y =z -4. 16 19 2818.已知点 A (1, 0, 0)及点 B (0, 2, 1),试在 z 轴上求一点 C ,使∆ABC 的面积最小.→ 解 设所求的点为 C (0, 0,z ),则 AC =(-1, 0, z ) ,→BC =(0, - 2, z -1) .→→i j k因为 AC ⨯BC =-10 0 - 2 z z -1= 2z i +(z -1) j + 2k ,所以∆ABC 的面积为x 2 +y 2 x 2 +y 2 ⎨z = 22(x -1)+(y -1) ⎩ ⎩ ⎩⎨y =0 ⎩ ⎨x =0 ⎩ ⎩⎨z =0⎩ ⎩S =1|→⨯→|=14z 2 +(z -1)2 + 4 . 2AC BC 2令dS =1⋅ 8z +2(z -1)=0,得z =1,所求点为C (0,0,1). dz 4 4z 2 +(z -1)2 +4 5519.求曲线⎧z = 2-x 2 -y 2 ⎩ 在三个坐标面上的投影曲线的方程. 解在xOy 面上的投影曲线方程为⎧(x -1)2 +(y -1)2 = 2-x 2 -y 2 ,即⎧x 2 +y 2 =x +y .⎨z =0 ⎨z =0 在zOx 面上的投影曲线方程为⎧z =(x -1)2+(± ⎨y =0 2-x 2 -z -1)2 ,即⎧2x 2+ 2xz +z 2- 4x -3z + 2=0 .⎩ 在yOz 面上的投影曲线方程为⎧z =(±⎨x =0 2-y 2 -z -1)2 +(y -1)2 ,即⎧2y 2+ 2yz +z 2- 4y -3z + 2=0 .⎩20.求锥面z =与柱面z 2=2x 所围立体在三个坐标面上的投影.解锥面与柱面交线在xOy 面上的投影为⎧2x =x 2 +y 2 ,即⎧(x -1)2 +y 2 =1 ,⎨z =0 ⎨z =0 所以,立体在 xOy 面上的投影为⎧(x -1)2 +y 2 ≤1.⎩ 锥面与柱面交线在yOz 面上的投影为 ⎧⎪z =⎧⎪(z 2-2)2+y 2=1⎨ ,即⎨2 , ⎪⎩x ⎪⎩x =0⎧⎪(z 2-2)2+y 2≤1 所以,立体在yOz 面上的投影为⎨2 .⎪⎩x =0锥面z = 与柱面z 2=2x 与平面y =0 的交线为⎧z =|x |和⎧z = 2x ,⎨y =0 ⎨y =0所以,立体在zOx 面上的投影为⎩x 2 +y 2⎧x ≤z≤ ⎨y =021.画出下列各曲面所围立体的图形:(1)抛物柱面 2y 2=x ,平面 z =0 及x =y=z =1 ;4 2 2(2)抛物柱面 x 2=1-z ,平面 y =0,z =0 及 x +y =1;(3) 圆锥面z = 及旋转抛物面z =2-x 2-y 2;(4) 旋转抛物面x 2+y 2=z ,柱面y 2=x ,平面z =0及x =1.2x.。

同济大学第六版高等数学上册课后答案全集51682

同济大学第六版高等数学上册课后答案全集51682

高等数学第六版上册课后习题答案第一章习题1?11? 设A ?(??? ?5)?(5? ??)? B ?[?10? 3)? 写出A ?B ? A ?B ? A \B 及A \(A \B )的表达式? 解 A ?B ?(??? 3)?(5? ??)?A ?B ?[?10? ?5)?A \B ?(??? ?10)?(5? ??)?A \(A \B )?[?10? ?5)?2? 设A 、B 是任意两个集合? 证明对偶律? (A ?B )C ?A C ?B C ?证明 因为x ?(A ?B )C ?x ?A ?B ? x ?A 或x ?B ? x ?A C 或x ?B C ? x ?A C ?B C ?所以 (A ?B )C ?A C ?B C ?3? 设映射f ? X ?Y ? A ?X ? B ?X ? 证明(1)f (A ?B )?f (A )?f (B )?(2)f (A ?B )?f (A )?f (B )?证明 因为y ?f (A ?B )??x ?A ?B ? 使f (x )?y?(因为x ?A 或x ?B ) y ?f (A )或y ?f (B )? y ?f (A )?f (B )?所以 f (A ?B )?f (A )?f (B )?(2)因为y ?f (A ?B )??x ?A ?B ? 使f (x )?y ?(因为x ?A 且x ?B ) y ?f (A )且y ?f (B )? y ? f (A )?f (B )? 所以 f (A ?B )?f (A )?f (B )?4? 设映射f ? X ?Y ? 若存在一个映射g ? Y ?X ? 使X I f g = ? Y I g f = ? 其中I X 、I Y 分别是X 、Y 上的恒等映射? 即对于每一个x ?X ? 有I X x ?x ? 对于每一个y ?Y ? 有I Y y ?y ? 证明? f 是双射? 且g 是f 的逆映射? g ?f ?1?证明 因为对于任意的y ?Y ? 有x ?g (y )?X ? 且f (x )?f [g (y )]?I y y ?y ? 即Y 中任意元素都是X 中某元素的像? 所以f 为X 到Y 的满射?又因为对于任意的x 1?x 2? 必有f (x 1)?f (x 2)? 否则若f (x 1)?f (x 2)?g [ f (x 1)]?g [f (x 2)] ? x 1?x 2? 因此f 既是单射? 又是满射? 即f 是双射?对于映射g ? Y ?X ? 因为对每个y ?Y ? 有g (y )?x ?X ? 且满足f (x )?f [g (y )]?I y y ?y ? 按逆映射的定义? g 是f 的逆映射?5? 设映射f ? X ?Y ? A ?X ? 证明?(1)f ?1(f (A ))?A ?(2)当f 是单射时? 有f ?1(f (A ))?A ?证明 (1)因为x ?A ? f (x )?y ?f (A ) ? f ?1(y )?x ?f ?1(f (A ))?所以 f ?1(f (A ))?A ?(2)由(1)知f ?1(f (A ))?A ?另一方面? 对于任意的x ?f ?1(f (A ))?存在y ?f (A )? 使f ?1(y )?x ?f (x )?y ? 因为y ?f (A )且f 是单射? 所以x ?A ? 这就证明了f ?1(f (A ))?A ? 因此f ?1(f (A ))?A ?6? 求下列函数的自然定义域?(1)23+=x y ?解 由3x ?2?0得32->x ? 函数的定义域为) ,32[∞+-? (2)211xy -=? 解 由1?x 2?0得x ??1? 函数的定义域为(??? ?1)?(?1? 1)?(1? ??)?(3)211x xy --=? 解 由x ?0且1?x 2?0得函数的定义域D ?[?1? 0)?(0? 1]?(4)241x y -=? 解 由4?x 2?0得 |x |?2? 函数的定义域为(?2? 2)?(5)x y sin =?解 由x ?0得函数的定义D ?[0? ??)?(6) y ?tan(x ?1)?解 由21π≠+x (k ?0? ?1? ?2? ? ? ?)得函数的定义域为 12-+≠ππk x (k ?0? ?1? ?2? ? ? ?)? (7) y ?arcsin(x ?3)?解 由|x ?3|?1得函数的定义域D ?[2? 4]?(8)xx y 1arctan 3+-=? 解 由3?x ?0且x ?0得函数的定义域D ?(??? 0)?(0? 3)?(9) y ?ln(x ?1)?解 由x ?1?0得函数的定义域D ?(?1? ??)?(10)x e y 1=?解 由x ?0得函数的定义域D ?(??? 0)?(0? ??)?7? 下列各题中? 函数f (x )和g (x )是否相同?为什么?(1)f (x )?lg x 2? g (x )?2lg x ?(2) f (x )?x ? g (x )?2x ?(3)334)(x x x f -=?31)(-=x x x g ?(4)f (x )?1? g (x )?sec 2x ?tan 2x ?解 (1)不同? 因为定义域不同?(2)不同? 因为对应法则不同? x ?0时? g (x )??x ?(3)相同? 因为定义域、对应法则均相相同?(4)不同? 因为定义域不同?8? 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x ? 求)6(πϕ? )4(πϕ? )4(πϕ-? ?(?2)? 并作出函数y ??(x )的图形?解 21|6sin |)6(==ππϕ? 22|4sin |)4(==ππϕ? 22|)4sin(|)4(=-=-ππϕ? 0)2(=-ϕ? 9? 试证下列函数在指定区间内的单调性?(1)xx y -=1? (??? 1)? (2)y ?x ?ln x ? (0? ??)?证明 (1)对于任意的x 1? x 2?(??? 1)? 有1?x 1?0? 1?x 2?0? 因为当x 1?x 2时?0)1)(1(112121221121<---=---=-x x x x x x x x y y ? 所以函数xx y -=1在区间(??? 1)内是单调增加的? (2)对于任意的x 1? x 2?(0? ??)? 当x 1?x 2时? 有0ln )()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y ? 所以函数y ?x ?ln x 在区间(0? ??)内是单调增加的?10? 设 f (x )为定义在(?l ? l )内的奇函数? 若f (x )在(0? l )内单调增加? 证明f (x )在(?l ? 0)内也单调增加?证明 对于?x 1? x 2?(?l ? 0)且x 1?x 2? 有?x 1? ?x 2?(0? l )且?x 1??x 2?因为f (x )在(0? l )内单调增加且为奇函数? 所以f (?x 2)?f (?x 1)? ?f (x 2)??f (x 1)? f (x 2)?f (x 1)?这就证明了对于?x 1? x 2?(?l ? 0)? 有f (x 1)? f (x 2)? 所以f (x )在(?l ? 0)内也单调增加? 11? 设下面所考虑的函数都是定义在对称区间(?l ? l )上的? 证明?(1)两个偶函数的和是偶函数? 两个奇函数的和是奇函数?(2)两个偶函数的乘积是偶函数? 两个奇函数的乘积是偶函数? 偶函数与奇函数的乘积是奇函数?证明 (1)设F (x )?f (x )?g (x )? 如果f (x )和g (x )都是偶函数? 则F (?x )?f (?x )?g (?x )?f (x )?g (x )?F (x )?所以F (x )为偶函数? 即两个偶函数的和是偶函数?如果f (x )和g (x )都是奇函数? 则F (?x )?f (?x )?g (?x )??f (x )?g (x )??F (x )?所以F (x )为奇函数? 即两个奇函数的和是奇函数?(2)设F (x )?f (x )?g (x )? 如果f (x )和g (x )都是偶函数? 则F (?x )?f (?x )?g (?x )?f (x )?g (x )?F (x )?所以F (x )为偶函数? 即两个偶函数的积是偶函数?如果f (x )和g (x )都是奇函数? 则F (?x )?f (?x )?g (?x )?[?f (x )][?g (x )]?f (x )?g (x )?F (x )?所以F (x )为偶函数? 即两个奇函数的积是偶函数?如果f (x )是偶函数? 而g (x )是奇函数? 则F (?x )?f (?x )?g (?x )?f (x )[?g (x )]??f (x )?g (x )??F (x )?所以F (x )为奇函数? 即偶函数与奇函数的积是奇函数?12? 下列函数中哪些是偶函数? 哪些是奇函数? 哪些既非奇函数又非偶函数?(1)y ?x 2(1?x 2)?(2)y ?3x 2?x 3?(3)2211x x y +-=? (4)y ?x (x ?1)(x ?1)?(5)y ?sin x ?cos x ?1?(6)2x x a a y -+=? 解 (1)因为f (?x )?(?x )2[1?(?x )2]?x 2(1?x 2)?f (x )? 所以f (x )是偶函数?(2)由f (?x )?3(?x )2?(?x )3?3x 2?x 3可见f (x )既非奇函数又非偶函数?(3)因为())(111)(1)(2222x f xx x x x f =+-=-+--=-? 所以f (x )是偶函数? (4)因为f (?x )?(?x )(?x ?1)(?x ?1)??x (x ?1)(x ?1)??f (x )? 所以f (x )是奇函数?(5)由f (?x )?sin(?x )?cos(?x )?1??sin x ?cos x ?1可见f (x )既非奇函数又非偶函数?(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----? 所以f (x )是偶函数? 13? 下列各函数中哪些是周期函数?对于周期函数? 指出其周期?(1)y ?cos(x ?2)?解 是周期函数? 周期为l ?2??(2)y ?cos 4x ?解 是周期函数? 周期为2π=l ? (3)y ?1?sin ?x ?解 是周期函数? 周期为l ?2?(4)y ?x cos x ?解 不是周期函数?(5)y ?sin 2x ?解 是周期函数? 周期为l ???14? 求下列函数的反函数?(1)31+=x y ?解 由31+=x y 得x ?y 3?1? 所以31+=x y 的反函数为y ?x 3?1?(2)xx y +-=11? 解 由x x y +-=11得y y x +-=11? 所以x x y +-=11的反函数为xx y +-=11? (3)dcx b ax y ++=(ad ?bc ?0)? 解 由d cx b ax y ++=得a cy b dy x -+-=? 所以d cx b ax y ++=的反函数为acx b dx y -+-=? (4) y ?2sin3x ?解 由y ?2sin 3x 得2arcsin 31y x =? 所以y ?2sin3x 的反函数为2arcsin 31x y =? (5) y ?1?ln(x ?2)?解 由y ?1?ln(x ?2)得x ?e y ?1?2? 所以y ?1?ln(x ?2)的反函数为y ?e x ?1?2?(6)122+=x x y ? 解 由122+=x x y 得y y x -=1log 2? 所以122+=x x y 的反函数为x x y -=1log 2? 15? 设函数f (x )在数集X 上有定义? 试证? 函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界?证明 先证必要性? 设函数f (x )在X 上有界? 则存在正数M ? 使|f (x )|?M ? 即?M ?f (x )?M ? 这就证明了f (x )在X 上有下界?M 和上界M ?再证充分性? 设函数f (x )在X 上有下界K 1和上界K 2? 即K 1?f (x )? K 2 ? 取M ?max{|K 1|? |K 2|}? 则 ?M ? K 1?f (x )? K 2?M ?即 |f (x )|?M ?这就证明了f (x )在X 上有界?16? 在下列各题中? 求由所给函数复合而成的函数? 并求这函数分别对应于给定自变量值x 1和x 2的函数值?(1) y ?u 2? u ?sin x ? 61π=x ? 32π=x ? 解 y ?sin 2x ? 41)21(6sin 221===πy ?43)23(3sin 222===πy ? (2) y ?sin u ? u ?2x ? 81π=x ?42π=x ? 解 y ?sin2x ? 224sin )82sin(1==⋅=ππy ?12sin )42sin(2==⋅=ππy ?(3)u y =? u ?1?x 2? x 1?1? x 2? 2?解 21x y +=? 21121=+=y ? 52122=+=y ?(4) y ?e u ? u ?x 2? x 1 ?0? x 2?1?解 2x e y =? 1201==e y ? e e y ==212?(5) y ?u 2 ? u ?e x ? x 1?1? x 2??1?解 y ?e 2x ? y 1?e 2?1?e 2? y 2?e 2?(?1)?e ?2?17? 设f (x )的定义域D ?[0? 1]? 求下列各函数的定义域?(1) f (x 2)?解 由0?x 2?1得|x |?1? 所以函数f (x 2)的定义域为[?1? 1]?(2) f (sin x )?解 由0?sin x ?1得2n ??x ?(2n ?1)? (n ?0? ?1? ?2? ? ?)? 所以函数f (sin x )的定义域为[2n ?? (2n ?1)?] (n ?0? ?1? ?2? ? ?) ?(3) f (x ?a )(a >0)?解 由0?x ?a ?1得?a ?x ?1?a ? 所以函数f (x ?a )的定义域为[?a ? 1?a ]?(4) f (x ?a )?f (x ?a )(a ?0)?解 由0?x ?a ?1且0?x ?a ?1得? 当210≤<a 时? a ?x ?1?a ? 当21>a 时? 无解? 因此当210≤<a 时函数的定义域为[a ? 1?a ]? 当21>a 时函数无意义? 18? 设⎪⎩⎪⎨⎧>-=<=1|| 11||01|| 1)(x x x x f ? g (x )?e x ? 求f [g (x )]和g [f (x )]? 并作出这两个函数的图形? 解 ⎪⎩⎪⎨⎧>-=<=1|| 11||01|| 1)]([x x x e e e x g f ? 即⎪⎩⎪⎨⎧>-=<=0 10 00 1)]([x x x x g f ? ⎪⎩⎪⎨⎧>=<==-1|| 1|| e 1|| )]([101)(x e x x e e x f g x f ? 即⎪⎩⎪⎨⎧>=<=-1|| 1|| 11|| )]([1x e x x e x f g ?19? 已知水渠的横断面为等腰梯形? 斜角??40?(图1?37)? 当过水断面ABCD 的面积为定值S 0时? 求湿周L (L ?AB ?BC ?CD )与水深h 之间的函数关系式? 并指明其定义域? 图1?37解 40sin h DC AB ==? 又从0)]40cot 2([21S h BC BC h =⋅++ 得h hS BC ⋅-= 40cot 0? 所以h h S L40sin 40cos 20-+=? 自变量h 的取值范围应由不等式组h ?0? 040cot 0>⋅-h hS 确定? 定义域为40cot 00S h <<?20? 收敛音机每台售价为90元? 成本为60元? 厂方为鼓励销售商大量采购? 决定凡是订购量超过100台以上的? 每多订购1台? 售价就降低1分? 但最低价为每台75元?(1)将每台的实际售价p 表示为订购量x 的函数?(2)将厂方所获的利润P 表示成订购量x 的函数?(3)某一商行订购了1000台? 厂方可获利润多少?解 (1)当0?x ?100时? p ?90?令0?01(x 0?100)?90?75? 得x 0?1600? 因此当x ?1600时? p ?75?当100?x ?1600时?p ?90?(x ?100)?0?01?91?0? 01x ?综合上述结果得到⎪⎩⎪⎨⎧≥<<-≤≤=1600 75160010001.0911000 90x x x x p ? (2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 151600100 01.0311000 30)60(2x x x x x x x x p P ?(3) P ?31?1000?0?01?10002?21000(元)?习题1?21? 观察一般项x n 如下的数列{x n }的变化趋势? 写出它们的极限?(1)n n x 21=? 解 当n ??时? nn x 21=?0? 021lim =∞→n n ? (2)nx n n 1)1(-=? 解 当n ??时? n x n n 1)1(-=?0? 01)1(lim =-∞→nn n ? (3)212nx n +=? 解 当n ??时? 212n x n +=?2? 2)12(lim 2=+∞→n n ? (4)11+-=n n x n ?解 当n ??时? 12111+-=+-=n n n x n ?0? 111lim =+-∞→n n n ? (5) x n ?n (?1)n ?解 当n ??时? x n ?n (?1)n 没有极限?2? 设数列{x n }的一般项nn x n 2cos π=? 问n n x ∞→lim ?? 求出N ? 使当n ?N 时? x n 与其极限之差的绝对值小于正数? ? 当? ?0?001时? 求出数N ?解 0lim =∞→n n x ? n n n x n 1|2c o s ||0|≤=-π? ?? ?0? 要使|x n ?0|?? ? 只要ε<n 1? 也就是ε1>n ? 取]1[ε=N ? 则?n ?N ? 有|x n ?0|?? ?当? ?0?001时? ]1[ε=N ?1000? 3? 根据数列极限的定义证明?(1)01lim 2=∞→n n ? 分析 要使ε<=-221|01|n n ? 只须ε12>n ? 即ε1>n ? 证明 因为???0? ?]1[ε=N ? 当n ?N 时? 有ε<-|01|2n ? 所以01lim 2=∞→n n ? (2)231213lim =++∞→n n n ? 分析 要使ε<<+=-++n n n n 41)12(21|231213|? 只须ε<n41? 即ε41>n ? 证明 因为???0? ?]41[ε=N ? 当n ?N 时? 有ε<-++|231213|n n ? 所以231213lim =++∞→n n n ? (3)1lim 22=+∞→na n n ? 分析 要使ε<<++=-+=-+na n a n n a n n a n n a n 22222222)(|1|? 只须ε2a n >? 证明 因为???0? ?][2εa N =? 当?n ?N 时? 有ε<-+|1|22n a n ? 所以1lim 22=+∞→n a n n ? (4)19 999.0lim =⋅⋅⋅∞→ 个n n ? 分析 要使|0?99 ? ? ? 9?1|ε<=-1101n ? 只须1101-n ?? ? 即ε1lg 1+>n ?证明 因为???0? ?]1lg 1[ε+=N ? 当?n ?N 时? 有|0?99 ? ? ? 9?1|?? ? 所以19 999.0lim =⋅⋅⋅∞→个n n ? 4? a u n n =∞→lim ? 证明||||lim a u n n =∞→? 并举例说明? 如果数列{|x n |}有极限? 但数列{x n }未必有极限?证明 因为a u n n =∞→lim ? 所以???0? ?N ?N ? 当n ?N 时? 有ε<-||a u n ? 从而 ||u n |?|a ||?|u n ?a |?? ?这就证明了||||lim a u n n =∞→? 数列{|x n |}有极限? 但数列{x n }未必有极限? 例如1|)1(|lim =-∞→n n ? 但n n )1(lim -∞→不存在? 5? 设数列{x n }有界? 又0lim =∞→n n y ? 证明? 0lim =∞→n n n y x ? 证明 因为数列{x n }有界? 所以存在M ? 使?n ?Z ? 有|x n |?M ? 又0lim =∞→n n y ? 所以???0? ?N ?N ? 当n ?N 时? 有M y n ε<||? 从而当n ?N 时? 有 εε=⋅<≤=-MM y M y x y x n n n n n |||||0|? 所以0lim =∞→n n n y x ? 6? 对于数列{x n }? 若x 2k ?1?a (k ??)? x 2k ?a (k ??)?证明? x n ?a (n ??)?证明 因为x 2k ?1?a (k ??)? x 2k ?a (k ??)? 所以???0??K 1? 当2k ?1?2K 1?1时? 有| x 2k ?1?a |?? ??K 2? 当2k ?2K 2时? 有|x 2k ?a |?? ?取N ?max{2K 1?1? 2K 2}? 只要n ?N ? 就有|x n ?a |?? ?因此x n ?a (n ??)?习题1?31? 根据函数极限的定义证明?(1)8)13(lim 3=-→x x ? 分析 因为|(3x ?1)?8|?|3x ?9|?3|x ?3|?所以要使|(3x ?1)?8|?? ? 只须ε31|3|<-x ? 证明 因为???0? ?εδ31=? 当0?|x ?3|??时? 有 |(3x ?1)?8|?? ?所以8)13(lim 3=-→x x ? (2)12)25(lim 2=+→x x ?分析 因为|(5x ?2)?12|?|5x ?10|?5|x ?2|?所以要使|(5x ?2)?12|?? ? 只须ε51|2|<-x ? 证明 因为?? ?0? ?εδ51=? 当0?|x ?2|??时? 有 |(5x ?2)?12|?? ?所以12)25(lim 2=+→x x ? (3)424lim 22-=+--→x x x ? 分析 因为|)2(||2|244)4(2422--=+=+++=--+-x x x x x x x ? 所以要使ε<--+-)4(242x x ? 只须ε<--|)2(|x ? 证明 因为?? ?0? ?εδ=? 当0?|x ?(?2)|??时? 有ε<--+-)4(242x x ? 所以424lim 22-=+--→x x x ? (4)21241lim 321=+--→x x x ? 分析 因为|)21(|2|221|212413--=--=-+-x x x x ? 所以要使ε<-+-212413x x ? 只须ε21|)21(|<--x ? 证明 因为?? ?0? ?εδ21=? 当δ<--<|)21(|0x 时? 有 ε<-+-212413x x ? 所以21241lim 321=+--→x x x ? 2? 根据函数极限的定义证明?(1)2121lim 33=+∞→x x x ? 分析 因为333333||21212121x x x x x x =-+=-+?所以要使ε<-+212133x x ? 只须ε<3||21x ? 即321||ε>x ? 证明 因为?? ?0? ?321ε=X ? 当|x |?X 时? 有ε<-+212133x x ? 所以2121lim 33=+∞→x x x ? (2)0sin lim =+∞→xx x ?分析 因为xx x x x 1|s i n |0s i n ≤=-?所以要使ε<-0sin x x ? 只须ε<x1? 即21ε>x ? 证明 因为???0? ?21ε=X ? 当x ?X 时? 有ε<-0s i n xx ? 所以0sin lim =+∞→xx x ?3? 当x ?2时? y ?x 2?4? 问?等于多少? 使当|x ?2|<?时? |y ?4|<0?001? 解 由于当x ?2时? |x ?2|?0? 故可设|x ?2|?1? 即1?x ?3? 要使|x 2?4|?|x ?2||x ?2|?5|x ?2|?0?001? 只要0002.05001.0|2|=<-x ?取??0?0002? 则当0?|x ?2|??时? 就有|x 2?4|?0? 001?4? 当x ??时? 13122→+-=x x y ? 问X 等于多少? 使当|x |?X 时? |y ?1|?0?01? 解 要使01.034131222<+=-+-x x x ? 只要397301.04||=->x ? 故397=X ?5? 证明函数f (x )?|x |当x ?0时极限为零?证明 因为|f (x )?0|?||x |?0|?|x |?|x ?0|? 所以要使|f (x )?0|??? 只须|x |???因为对???0? ????? 使当0?|x ?0|??? 时有 |f (x )?0|?||x |?0|??? 所以0||lim 0=→x x ?6? 求,)(xx x f = x x x ||)(=ϕ当x ?0时的左﹑右极限? 并说明它们在x ?0时的极限是否存在?证明 因为11lim lim )(lim 000===---→→→x x x x x x f ?11l i m l i m)(l i m 000===+++→→→x x x x x x f ? )(lim )(lim 0x f x f x x +→→=-?所以极限)(lim 0x f x →存在?因为1lim ||lim )(lim 000-=-==---→→→xx x x x x x x ϕ?1l i m||l i m )(l i m 000===+++→→→x x x x x x x x ϕ? )(lim )(lim 0x x x x ϕϕ+→→≠-?所以极限)(lim 0x x ϕ→不存在?7? 证明? 若x ???及x ???时? 函数f (x )的极限都存在且都等于A ? 则A x f x =∞→)(lim ?证明 因为A x f x =-∞→)(lim ? A x f x =+∞→)(lim ? 所以??>0??X 1?0? 使当x ??X 1时? 有|f (x )?A |?? ??X 2?0? 使当x ?X 2时? 有|f (x )?A |?? ?取X ?max{X 1? X 2}? 则当|x |?X 时? 有|f (x )?A |?? ? 即A x f x =∞→)(lim ?8? 根据极限的定义证明? 函数f (x )当x ?x 0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等?证明 先证明必要性? 设f (x )?A (x ?x 0)? 则??>0? ???0? 使当0<|x ?x 0|<? 时? 有 |f (x )?A |<? ?因此当x 0??<x <x 0和x 0<x <x 0?? 时都有 |f (x )?A |<? ?这说明f (x )当x ?x 0时左右极限都存在并且都等于A ? 再证明充分性? 设f (x 0?0)?f (x 0?0)?A ? 则??>0? ??1>0? 使当x 0??1<x <x 0时? 有| f (x )?A <? ? ??2>0? 使当x 0<x <x 0+?2时? 有| f (x )?A |<? ?取??min{?1? ?2}? 则当0<|x ?x 0|<? 时? 有x 0??1<x <x 0及x 0<x <x 0+?2 ? 从而有 | f (x )?A |<? ? 即f (x )?A (x ?x 0)?9? 试给出x ??时函数极限的局部有界性的定理? 并加以证明?解 x ??时函数极限的局部有界性的定理? 如果f (x )当x ??时的极限存在? 则存在X ?0及M ?0? 使当|x |?X 时? |f (x )|?M ?证明 设f (x )?A (x ??)? 则对于? ?1? ?X ?0? 当|x |?X 时? 有|f (x )?A |?? ?1? 所以 |f (x )|?|f (x )?A ?A |?|f (x )?A |?|A |?1?|A |?这就是说存在X ?0及M ?0? 使当|x |?X 时? |f (x )|?M ? 其中M ?1?|A |?习题1?41? 两个无穷小的商是否一定是无穷小?举例说明之? 解 不一定?例如? 当x ?0时? ?(x )?2x ? ?(x )?3x 都是无穷小? 但32)()(lim 0=→x x x βα? )()(x x βα不是无穷小?2? 根据定义证明?(1)392+-=x x y 当x ?3时为无穷小; (2)xx y 1sin =当x ?0时为无穷小?证明 (1)当x ?3时|3|39||2-=+-=x x x y ? 因为???0? ???? ? 当0?|x ?3|??时? 有 εδ=<-=+-=|3|39||2x x x y ?所以当x ?3时392+-=x x y 为无穷小? (2)当x ?0时|0||1sin |||||-≤=x xx y ? 因为???0? ???? ? 当0?|x ?0|??时? 有εδ=<-≤=|0||1sin |||||x xx y ?所以当x ?0时xx y 1sin =为无穷小?3? 根据定义证明? 函数xx y 21+=为当x ?0时的无穷大? 问x 应满足什么条件? 能使|y |?104?证明 分析2||11221||-≥+=+=x x x x y ? 要使|y |?M ? 只须M x >-2||1? 即21||+<M x ?证明 因为?M ?0? ?21+=M δ? 使当0?|x ?0|??时? 有M xx >+21?所以当x ?0时? 函数xx y 21+=是无穷大?取M ?104? 则21014+=δ? 当2101|0|04+<-<x 时? |y |?104? 4? 求下列极限并说明理由? (1)x x x 12lim +∞→;(2)xx x --→11lim 20? 解 (1)因为xx x 1212+=+? 而当x ?? 时x 1是无穷小? 所以212lim =+∞→x x x ?(2)因为x xx +=--1112(x ?1)? 而当x ?0时x 为无穷小? 所以111lim 20=--→x x x ?5? 根据函数极限或无穷大定义? 填写下表?f (x )?A f (x )?? f (x )??? f (x )???x ?x 0 ???0? ???0? 使当0?|x ?x 0|??时? 有恒|f (x )?A |???x ?x 0? x ?x 0?x ?? ???0? ?X ?0? 使当|x |?X 时? 有恒|f (x )|?M ? x ??? x ???解f (x )?A f (x )?? f (x )??? f (x )??? x ?x 0 ???0? ???0? 使当0?|x ?x 0|??时? 有恒|f (x )?A |??? ?M ?0? ???0? 使当0?|x ?x 0|??时? 有恒|f (x )|?M ? ?M ?0? ???0? 使当0?|x ?x 0|??时? 有恒f (x )?M ? ?M ?0? ???0? 使当0?|x ?x 0|??时?有恒f (x )??M ? x ?x 0? ???0? ???0? 使当0?x ?x 0??时?有恒|f (x )?A |??? ?M ?0? ???0? 使当0?x ?x 0??时? 有恒|f (x )|?M ? ?M ?0? ???0? 使当0?x ?x 0??时? 有恒f (x )?M ? ?M ?0? ???0? 使当0?x ?x 0??时? 有恒f (x )??M ? x ?x 0? ???0? ???0? 使当0?x 0?x ??时?有恒|f (x )?A |??? ?M ?0? ???0? 使当0?x 0?x ??时? 有恒|f (x )|?M ? ?M ?0? ???0? 使当0?x 0?x ??时? 有恒f (x )?M ? ?M ?0? ???0? 使当0?x 0?x ??时? 有恒f (x )??M ? x ?? ???0? ?X ?0? 使当|x |?X 时? 有恒|f (x )?A |??? ???0? ?X ?0? 使当|x |?X 时? 有恒|f (x )|?M ? ???0? ?X ?0? 使当|x |?X 时? 有恒f (x )?M ? ???0? ?X ?0? 使当|x |?X 时? 有恒f (x )??M ? x ??? ???0? ?X ?0? 使当x ?X 时? 有恒|f (x )?A |??? ???0? ?X ?0? 使当x ?X 时? 有恒|f (x )|?M ? ???0? ?X ?0? 使当x ?X 时? 有恒f (x )?M ? ???0? ?X ?0? 使当x ?X 时? 有恒f (x )??M ? x ??? ???0? ?X ?0? 使当x ??X 时? 有恒|f (x )?A |??? ???0? ?X ?0? 使当x ??X 时? 有恒|f (x )|?M ? ???0? ?X ?0? 使当x ??X 时? 有恒f (x )?M ? ???0? ?X ?0? 使当x ??X 时? 有恒f (x )??M ?6? 函数y ?x cos x 在(??? ??)内是否有界?这个函数是否为当x ??? 时的无穷大?为什么?解 函数y ?x cos x 在(??? ??)内无界?这是因为?M ?0? 在(??? ??)内总能找到这样的x ? 使得|y (x )|?M ? 例如y (2k ?)?2k ? cos2k ??2k ? (k ?0? 1? 2? ? ? ?)?当k 充分大时? 就有| y (2k ?)|?M ?当x ??? 时? 函数y ?x cos x 不是无穷大?这是因为?M ?0? 找不到这样一个时刻N ? 使对一切大于N 的x ? 都有|y (x )|?M ? 例如0)22cos()22()22(=++=+ππππππk k k y (k ?0? 1? 2? ? ? ?)?对任何大的N ? 当k 充分大时? 总有N k x >+=22ππ? 但|y (x )|?0?M ?7? 证明? 函数xx y 1sin 1=在区间(0? 1]上无界? 但这函数不是当x ?0+时的无穷大?证明 函数xx y 1sin 1=在区间(0? 1]上无界? 这是因为?M ?0? 在(0? 1]中总可以找到点x k ? 使y (x k )?M ? 例如当221ππ+=k x k (k ?0? 1? 2? ? ? ?)时? 有22)(ππ+=k x y k ?当k 充分大时? y (x k )?M ?当x ?0+ 时? 函数xx y 1sin 1=不是无穷大? 这是因为?M ?0? 对所有的??0? 总可以找到这样的点x k ? 使0?x k ??? 但y (x k )?M ? 例如可取πk x k 21=(k ?0? 1? 2? ? ? ?)?当k 充分大时? x k ??? 但y (x k )?2k ?sin2k ??0?M ? 习题1?51? 计算下列极限?(1)35lim 22-+→x x x ? 解 9325235lim 222-=-+=-+→x x x ?(2)13lim 223+-→x x x ? 解 01)3(3)3(13lim 22223=+-=+-→x x x ? (3)112lim 221-+-→x x x x ? 解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x ? (4)xx x x x x 2324lim 2230++-→? 解 2123124lim 2324lim202230=++-=++-→→x x x x x x x x x x ? (5)hx h x h 220)(lim -+→?解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→?(6))112(lim 2x x x +-∞→?解 21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x ? (7)121lim 22---∞→x x x x ? 解 2111211lim 121lim 2222=---=---∞→∞→xx x x x xx x ? (8)13lim 242--+∞→x x x x x ? 解 013lim 242=--+∞→x x x x x (分子次数低于分母次数? 极限为零)? 或 012111lim 13lim 4232242=--+=--+∞→∞→x x x x x x x x x x ? (9)4586lim 224+-+-→x x x x x ? 解 32142412lim )4)(1()4)(2(lim4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x ? (10))12)(11(lim 2x x x -+∞→?解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x ? (11))21 41211(lim n n +⋅⋅⋅+++∞→? 解 2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n ? (12)2)1( 321limn n n -+⋅⋅⋅+++∞→?解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n ? (13)35)3)(2)(1(limn n n n n +++∞→?解 515)3)(2)(1(lim3=+++∞→n n n n n (分子与分母的次数相同? 极限为 最高次项系数之比)?或 51)31)(21)(11(lim 515)3)(2)(1(lim 3=+++=+++∞→∞→n n n n n n n n n ? (14))1311(lim 31x x x ---→?解 )1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112lim21-=+++-=→x x x x ? 2? 计算下列极限? (1)2232)2(2lim -+→x x x x ? 解 因为01602)2(lim 2322==+-→x x x x ? 所以∞=-+→2232)2(2lim x x x x ? (2)12lim 2+∞→x x x ?解 ∞=+∞→12lim 2x x x (因为分子次数高于分母次数)? (3))12(lim 3+-∞→x x x ?解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数)?3? 计算下列极限? (1)xx x 1sin lim 20→?解 01sin lim 20=→xx x (当x ?0时? x 2是无穷小? 而x 1sin 是有界变量)?(2)xx x arctan lim ∞→?解 0arctan 1lim arctan lim =⋅=∞→∞→x x xx x x (当x ??时? x 1是无穷小?而arctan x 是有界变量)?4? 证明本节定理3中的(2)? 习题1?51? 计算下列极限?(1)35lim 22-+→x x x ?解 9325235lim222-=-+=-+→x x x ? (2)13lim 223+-→x x x ? 解 01)3(3)3(13lim 22223=+-=+-→x x x ? (3)112lim 221-+-→x x x x ?解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x ? (4)xx x x x x 2324lim2230++-→? 解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x ? (5)hx h x h 220)(lim -+→?解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→? (6))112(lim 2x x x +-∞→?解 21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x ? (7)121lim 22---∞→x x x x ? 解 2111211lim 121lim 2222=---=---∞→∞→xx x x x xx x ? (8)13lim 242--+∞→x x x x x ? 解 013lim 242=--+∞→x x x x x (分子次数低于分母次数? 极限为零)? 或 012111lim 13lim 4232242=--+=--+∞→∞→x x x x x x x x x x ? (9)4586lim 224+-+-→x x x x x ? 解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x ?(10))12)(11(lim 2x x x -+∞→?解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x ? (11))21 41211(lim n n +⋅⋅⋅+++∞→? 解 2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n ?(12)2)1( 321limnn n -+⋅⋅⋅+++∞→? 解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n nn n n n n n ? (13)35)3)(2)(1(limn n n n n +++∞→?解 515)3)(2)(1(lim 3=+++∞→n n n n n (分子与分母的次数相同? 极限为 最高次项系数之比)?或 51)31)(21)(11(lim 515)3)(2)(1(lim 3=+++=+++∞→∞→n n n n n n n n n ? (14))1311(lim 31x x x ---→?解 )1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→112lim21-=+++-=→x x x x ? 2? 计算下列极限? (1)2232)2(2lim -+→x x x x ? 解 因为01602)2(lim 2322==+-→x x x x ? 所以∞=-+→2232)2(2lim x x x x ? (2)12lim 2+∞→x x x ?解 ∞=+∞→12lim 2x x x (因为分子次数高于分母次数)? (3))12(lim 3+-∞→x x x ?解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数)?3? 计算下列极限? (1)xx x 1sin lim 20→?解 01sin lim 20=→xx x (当x ?0时? x 2是无穷小? 而x 1sin 是有界变量)?(2)xx x arctan lim ∞→?解 0arctan 1lim arctan lim =⋅=∞→∞→x x xx x x (当x ??时? x 1是无穷小?而arctan x 是有界变量)?4? 证明本节定理3中的(2)?习题 1?71? 当x ?0时? 2x ?x 2 与x 2?x 3相比? 哪一个是高阶无穷小?解 因为02lim 2lim 202320=--=--→→xx x x x x x x x ? 所以当x ?0时? x 2?x 3是高阶无穷小? 即x 2?x 3?o (2x ?x 2)?2? 当x ?1时? 无穷小1?x 和(1)1?x 3? (2))1(212x -是否同阶?是否等价?解 (1)因为3)1(lim 1)1)(1(lim 11lim 212131=++=-++-=--→→→x x xx x x x x x x x ? 所以当x ?1时? 1?x 和1?x 3是同阶的无穷小? 但不是等价无穷小?(2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x ? 所以当x ?1时? 1?x 和)1(212x -是同阶的无穷小? 而且是等价无穷小?3? 证明? 当x ?0时? 有? (1) arctan x ~x ?(2)2~1sec 2x x -? 证明 (1)因为1tan limarctan lim 00==→→y yxx y x (提示? 令y ?arctan x ? 则当x ?0时? y ?0)? 所以当x ?0时? arctan x ~x ?(2)因为1)22sin 2(lim 22sin 2lim cos cos 1lim 2211sec lim 202202020===-=-→→→→x xx x x x x xx x x x x ? 所以当x ?0时? 2~1s e c 2x x -? 4? 利用等价无穷小的性质? 求下列极限? (1)xx x 23tan lim 0→?(2)mn x x x )(sin )sin(lim 0→(n ? m 为正整数)?(3)x x x x 30sin sin tan lim -→? (4))1sin 1)(11(tan sin lim320-+-+-→x x x x x ?解 (1)2323lim 23tan lim 00==→→x x x x x x ?(2)⎪⎩⎪⎨⎧<∞>===→→mn m n m n x xx x m n x m n x 0 1lim )(sin )sin(lim 00? (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x xx x x x x x x x x ? (4)因为32221)2(2~2s i n t a n 2)1(c o s t a n t a n s i n x x x x x x x x x -=⋅--=-=-(x ?0)? 23232223231~11)1(11x x x x x ++++=-+(x ?0)? x x x x x ~s i n ~1s i n 1s i n 1s i n 1++=-+(x ?0)? 所以 33121lim )1sin 1)(11(tan sin lim 230320-=⋅-=-+-+-→→x x x x x x x x x ? 5? 证明无穷小的等价关系具有下列性质?(1) ? ~? (自反性)?(2) 若? ~?? 则?~?(对称性)?(3)若? ~?? ?~?? 则?~?(传递性)?证明 (1)1lim =αα? 所以? ~? ? (2) 若? ~?? 则1lim =βα? 从而1lim =αβ? 因此?~? ? (3) 若? ~?? ?~?? 1lim lim lim =⋅=βαγβγα? 因此?~?? 习题1?81? 研究下列函数的连续性? 并画出函数的图形?(1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ? 解 已知多项式函数是连续函数? 所以函数f (x )在[0? 1)和(1? 2]内是连续的? 在x ?1处? 因为f (1)?1? 并且1lim )(lim 211==--→→x x f x x ? 1)2(lim )(lim 11=-=++→→x x f x x ? 所以1)(lim 1=→x f x ? 从而函数f (x )在x ?1处是连续的? 综上所述,函数f (x )在[0? 2]上是连续函数?(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f ? 解 只需考察函数在x ??1和x ?1处的连续性?在x ??1处? 因为f (?1)??1? 并且)1(11lim )(lim 11-≠==---→-→f x f x x ? )1(1lim )(lim 11-=-==++-→-→f x x f x x ? 所以函数在x ??1处间断? 但右连续?在x ?1处? 因为f (1)?1? 并且1lim )(lim 11==--→→x x f x x ?f (1)? 11lim )(lim 11==++→→x x x f ?f (1)? 所以函数在x ?1处连续?综合上述讨论? 函数在(??? ?1)和(?1? ??)内连续? 在x ??1处间断? 但右连续? 2? 下列函数在指出的点处间断? 说明这些间断点属于哪一类? 如果是可去间断点? 则补充或改变函数的定义使它连续?(1)23122+--=x x x y ? x ?1? x ?2? 解 )1)(2()1)(1(23122---+=+--=x x x x x x x y ? 因为函数在x ?2和x ?1处无定义? 所以x ?2和x ?1是函数的间断点?因为∞=+--=→→231lim lim 2222x x x y x x ? 所以x ?2是函数的第二类间断点? 因为2)2()1(lim lim 11-=-+=→→x x y x x ? 所以x ?1是函数的第一类间断点? 并且是可去间断点? 在x ?1处? 令y ??2? 则函数在x ?1处成为连续的?(2)xx y tan =? x ?k ? 2ππ+=k x (k ?0? ?1? ?2? ? ? ?)? 解 函数在点x ?k ?(k ?Z)和2ππ+=k x (k ?Z)处无定义? 因而这些点都是函数的间断点? 因∞=→xx k x tan lim π(k ?0)? 故x ?k ?(k ?0)是第二类间断点? 因为1tan lim 0=→x x x ? 0tan lim 2=+→x x k x ππ(k ?Z)? 所以x ?0和2ππ+=k x (k ?Z) 是第一类间断点且是可去间断点?令y |x ?0?1? 则函数在x ?0处成为连续的?令2 ππ+=k x 时? y ?0? 则函数在2ππ+=k x 处成为连续的? (3)xy 1cos 2=? x ?0?解 因为函数x y 1cos 2=在x ?0处无定义? 所以x ?0是函数xy 1cos 2=的间断点? 又因为xx 1cos lim 20→不存在? 所以x ?0是函数的第二类间断点? (4)⎩⎨⎧>-≤-=1 31 1x x x x y ? x ?1? 解 因为0)1(lim )(lim 11=-=--→→x x f x x ?2)3(lim )(lim 11=-=++→→x x f x x ? 所以x ?1是函数的第一类不可去间断点?3? 讨论函数x x x x f nn n 2211lim )(+-=∞→的连续性? 若有间断点? 判别其类型? 解 ⎪⎩⎪⎨⎧<=>-=+-=∞→1||1|| 01|| 11lim )(22x x x x x x x x x f n n n ? 在分段点x ??1处? 因为1)(lim )(lim 11=-=---→-→x x f x x ? 1lim )(lim 11-==++-→-→x x f x x ? 所以x ??1为函数的第一类不可去间断点?在分段点x ?1处? 因为1lim )(lim 11==--→→x x f x x ? 1)(lim )(lim 11-=-=++→→x x f x x ? 所以x ?1为函数的第一类不可去间断点?4? 证明? 若函数f (x )在点x 0连续且f (x 0)?0? 则存在x 0的某一邻域U (x 0)? 当x ?U (x 0)时? f (x )?0?证明 不妨设f (x 0)>0? 因为f (x )在x 0连续? 所以0)()(lim 00>=→x f x f x x ? 由极限的局部保号性定理? 存在x 0的某一去心邻域)(0x U ? 使当x ?)(0x U时f (x )>0? 从而当x ?U (x 0)时? f (x )>0? 这就是说? 则存在x 0的某一邻域U (x 0)? 当x ?U (x 0)时? f (x )?0?5? 试分别举出具有以下性质的函数f (x )的例子?(1)x ?0? ?1? ?2? 21±? ? ? ?? ?n ? n1±? ? ? ?是f (x )的所有间断点? 且它们都是无穷间断点?解 函数x x x f ππcsc )csc()(+=在点x ?0? ?1? ?2? 21±? ? ? ?? ?n ? n1±? ? ? ?处是间断的? 且这些点是函数的无穷间断点?(2)f (x )在R 上处处不连续? 但|f (x )|在R 上处处连续?解 函数⎩⎨⎧∉∈-=Q Q x x x f 1 1)(在R 上处处不连续? 但|f (x )|?1在R 上处处连续? (3)f (x )在R 上处处有定义? 但仅在一点连续?解 函数⎩⎨⎧∉-∈=QQ x x x x x f )(在R 上处处有定义? 它只在x ?0处连续? 习题1?91? 求函数633)(223-+--+=x x x x x x f 的连续区间? 并求极限)(lim 0x f x →? )(lim 3x f x -→及)(lim 2x f x →? 解 )2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f ? 函数在(??? ??)内除点x ?2和x ??3外是连续的? 所以函数f (x )的连续区间为(??? ?3)、(?3? 2)、(2? ??)?在函数的连续点x ?0处? 21)0()(lim 0==→f x f x ? 在函数的间断点x ?2和x ??3处?∞=-++-+=→→)2)(3()1)(1)(3(lim )(lim 22x x x x x x f x x ? 582)1)(1(lim )(lim 33-=-+-=-→-→x x x x f x x ? 2? 设函数f (x )与g (x )在点x 0连续? 证明函数?(x )?max{f (x )? g (x )}? ?(x )?min{f (x )? g (x )}在点x 0也连续?证明 已知)()(lim 00x f x f x x =→? )()(lim 00x g x g x x =→? 可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ? ] |)()(|)()([21)(x g x f x g x f x --+=ψ? 因此 ] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ? ] |)()(|)()([21)(00000x g x f x g x f x --+=ψ? 因为] |)()(|)()([210000x g x f x g x f -++=??(x 0)? 所以?(x )在点x 0也连续?同理可证明?(x )在点x 0也连续?3? 求下列极限?(1)52lim 20+-→x x x ? (2)34)2(sin lim x x π→?(3))2cos 2ln(lim 6x x π→?(4)xx x 11lim 0-+→? (5)145lim 1---→x x x x ? (6)ax a x a x --→sin sin lim ?(7))(lim 22x x x x x --++∞→? 解 (1)因为函数52)(2+-=x x x f 是初等函数? f (x )在点x ?0有定义? 所以55020)0(52lim 220=+⋅-==+-→f x x x ? (2)因为函数f (x )?(sin 2x )3是初等函数? f (x )在点4π=x 有定义? 所以 1)42(s i n )4()2(s i n lim 334=⋅==→πππf x x ? (3)因为函数f (x )?ln(2cos2x )是初等函数? f (x )在点6π=x 有定义? 所以 0)62cos 2ln()6()2cos 2ln(lim 6=⋅==→πππf x x ? (4))11(lim )11()11)(11(lim 11lim 000++=++++-+=-+→→→x x x x x x x x x x x x 211101111lim 0=++=++=→x x ? (5))45)(1()45)(45(lim 145lim 11x x x x x x x x x x x x +--+---=---→→ )45)(1(44lim 1x x x x x +---=→214154454lim 1=+-⋅=+-=→x x x ? (6)ax ax a x a x a x a x a x --+=--→→2sin 2cos 2lim sin sin lim a a a a x a x a x a x a x c o s 12c o s 22s i n lim 2cos lim =⋅+=--⋅+=→→? (7))())((lim )(lim 22222222x x x x x x x x x x x x x x x x x x -++-++--+=--++∞→+∞→ 1)1111(2lim )(2lim22=-++=-++=+∞→+∞→xx x x x x x x x ? 4? 求下列极限? (1)x x e 1lim ∞→?(2)xx x sin ln lim 0→?(3)2)11(lim xx x+∞→? (4)x x x 2cot 20)tan 31(lim +→? (5)21)63(lim -∞→++x x xx ? (6)xx x x x x -++-+→20sin 1sin 1tan 1lim ? 解 (1) 1lim 01lim 1===∞→∞→e e e x x x x ?(2) 01ln )sin lim ln(sin ln lim 00===→→x x xx x x ? (3) []e e xx xx x x ==+=+∞→∞→21212)11(lim )11(lim ? (4) []33tan 3120cot 2022)tan 31(lim )tan 31(lim e x x x x x x =+=+→→?(5)21633621)631()63(-+-⋅-+-+-+=++x x x x xx x ? 因为 e x x x =+-+-+∞→36)631(lim ? 232163lim -=-⋅+-∞→x x x ? 所以2321)63(lim --∞→=++e xx x x ? (6))sin 1tan 1)(1sin 1()1sin 1)(sin 1tan 1(lim sin 1sin 1tan 1lim 22020x x x x x x x x x x x x x x +++-++++-+=-++-+→→ 21)2(2lim 320=⋅=→xx x x ? 5? 设函数⎩⎨⎧≥+<=0 0 )(x x a x e x f x ? 应当如何选择数a ? 使得f (x )成为在(??? ??)内的连续函数?解 要使函数f (x )在(??? ??)内连续? 只须f (x )在x ?0处连续? 即只须a f x f x f x x ===+→-→)0()(lim )(lim 00? 因为1lim )(lim 00==-→-→x x x e x f ? a x a x f x x =+=+→+→)(lim )(lim 00? 所以只须取a ?1? 习题1?101? 证明方程x 5?3x ?1至少有一个根介于1和2之间?。

第六版同济大学高等数学上下课后答案详解

第六版同济大学高等数学上下课后答案详解
1
|sin x | | x | 3 求 ( ) ( ) ( ) (2) 并作出函数 y(x) 8 设 ( x) 4 6 4 | x | 0 3
的图形 解 ( ) |sin | 1 ( ) |sin | 2 ( ) |sin( )| 2 (2) 0 6 6 2 4 4 2 4 4 2 9 试证下列函数在指定区间内的单调性 (1) y x ( 1) 1 x (2)yxln x (0 ) 证明 (1)对于任意的 x1 x2( 1) 有 1x10 1x20 因为当 x1x2 时
对于映射 g YX 因为对每个 yY 有 g(y)xX 且满足 f(x)f[g(y)]Iy yy 按逆映射的定义 g 是 f 的逆映射 5 设映射 f XY AX 证明 (1)f 1(f(A))A (2)当 f 是单射时 有 f 1(f(A))A 证明 (1)因为 xA f(x)yf(A) f 1(y)xf 1(f(A)) f 1(f(A))A 所以 (2)由(1)知 f 1(f(A))A 另一方面 对于任意的 xf 1(f(A))存在 yf(A) 使 f 1(y)xf(x)y 因为 yf(A)且 f 是单射 所以 xA 这就证明了 f 1(f(A))A 因此 f 1(f(A))A 6 求下列函数的自然定义域 (1) y 3x 2 解 由 3x20 得 x 2 函数的定义域为 [ 2 , ) 3 3 (2) y 1 2 1 x 解 由 1x20 得 x1 函数的定义域为( 1)(1 1)(1 ) (3) y 1 1 x 2 x 解 由 x0 且 1x20 得函数的定义域 D[1 0)(0 1] (4) y
y1 y2
x1 x x1 x2 2 0 1 x1 1 x2 (1 x1)(1 x2 )

(完整word版)同济大学第六版高等数学课后答案详解全集

(完整word版)同济大学第六版高等数学课后答案详解全集

同济六版高等数学课后答案全集第一章习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A\B 及A\(A\B)的表达式.2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B)C =AC ⋃BC . .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f(A ⋃B)=f(A)⋃f(B);(2)f(A ⋂B)⊂f(A)⋂f(B).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中IX 、IY 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有IX x =x ; 对于每一个y ∈Y , 有IY y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f(A))⊃A ;(2)当f 是单射时, 有f -1(f(A))=A .6. 求下列函数的自然定义域:(1)23+=x y ;. (2)211x y -=; (3)211x x y --=;(4)241x y -=;(5)x y sin =; (6) y =tan(x +1);(7) y =arcsin(x -3); (8)x x y 1arctan 3+-=;. (9) y =ln(x +1);(10)x e y 1=.7. 下列各题中, 函数f(x)和g(x)是否相同?为什么?(1)f(x)=lg x2, g(x)=2lg x ;(2) f(x)=x , g(x)=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f(x)=1, g(x)=sec2x -tan2x .8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x)的图形.. 9. 试证下列函数在指定区间内的单调性:(1)x xy -=1, (-∞, 1);(2)y =x +ln x , (0, +∞).10. 设 f(x)为定义在(-l , l)内的奇函数, 若f(x)在(0, l)内单调增加, 证明f(x)在(-l , 0)内也单调增加.11. 设下面所考虑的函数都是定义在对称区间(-l , l)上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x2(1-x2);(2)y =3x2-x3;(3)2211x xy +-=;(4)y =x(x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x aa y -+= 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);.(2)y =cos 4x ;(3)y =1+sin πx ;(4)y =xcos x ;(5)y =sin2x .14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。

同济大学高等数学第六版作者答案详解1-7

同济大学高等数学第六版作者答案详解1-7

x x2



lim
x→ 0
1 - cos x2

1 cos
x


= lim x→ 0
2 si n2
x 2
x2
·
1 cos
x

sin2
= lim x→ 0
x
x


·
lim
x→ 0
1 cos
x=1,

所以
sec
x-1~
x2 2

x

0)

4畅 利用等价无穷小的性质 ,求下列极限 :
(1)
lim
x→ 0
x~
x ;
(2)
sec
x-1~
x2 2

证 (1) 令 x = tan t ,即 t = arctan x ,当 x → 0 时 ,t → 0 .
因为 所以
lim
x→ 0
a
r
c
ta x
n
x

lim
t→ 0
t tan
t=1,
arctan x ~ x ( x → 0) .
(2)
因为lim sec x→ 0
(4) 当 x > 0 时 , 1 < n 1 + x < 1 + x ;
当-1< x<0时,
n
1+ x< 1+ x<1.
而lim1 = 1 ,lim(1 + x) = 1 .由夹逼准则 ,即得证 .
x→ 0
x→ 0
(5) 当 x > 0 时 ,1 - x < x
1 x
则 ,即得证 .
≤ 1 .而 lim (1 - x) = 1 ,lim 1 = 1 .由夹逼准

同济大学高等数学第六版作者答案详解1-8

同济大学高等数学第六版作者答案详解1-8

(2) 对 x = 0 , 因为 f (0) 无定义 , lim x→ 0
30
x x = lim = 1 , 所以 x = 0 为第一类间 tan x x → 0 x
断点 ( 可去间断点 ) , 重新定义函数 : f 1 ( x) = x , tan x x ≠ kπ ,kπ + x=0 π , 2 ( k ∈ Z) ,
3 1 f ( x0 ) < f ( x) < f ( x0 ) < 0 . 2 2 因此 ,不 论 f ( x0 ) > 0 或 f ( x0 ) < 0 ,总 存在 x0 的 某一 邻 域 U ( x0 ) ,当 x ∈ U ( x0 ) 时 , f ( x) ≠ 0 .

7畅 设 f ( x) = x ,x ∈ Q , 0 ,x ∈ Q ,

0≤ x≤1, 1< x≤2; -1≤ x≤1, x< -1或 x>1.

图 1- 8
2- x, x, 1,
解 (1) f ( x) 在 [0 , 1) 及 (1 , 2] 内连续 , 在 x=1处,
x→ 1 - x→ 1 x→ 1 x→ 1
故 f ( x) 在 x = 1 处连续 , 因此 f ( x) 在 [0 , 2] 上连续 , 函数的图形如图 1 - 9 所示 .
C
32
证明 : (1) f ( x) 在 x = 0 连续 ; (2) f ( x) 在非零的 x 处都不连续 . 证 (1) 橙 ε > 0 , 取 δ = ε, 则当 | x - 0| = | x| < δ 时 , 故 lim f ( x) = f (0) , 即 f ( x) 在 x = 0 连续 . x→ 0 | f ( x) - f (0) | = | f ( x) | ≤ | x | < ε ,

同济大学第六版高等数学上下册课后习题答案7-6

同济大学第六版高等数学上下册课后习题答案7-6

同济大学第六版高等数学上下册课后习题答案7-6 习题7,6yx,3z,1,, 1, 求过点(4~ ,1~ 3)且平行于直线的直线方程,215解所求直线的方向向量为s,(2~ 1~ 5)~所求的直线方程为y,1x,4z,3,,,2152, 求过两点M(3~ ,2~ 1)和M(,1~ 0~ 2)的直线方程, 12解所求直线的方向向量为s,(,1~ 0~ 2),(3~ ,2~ 1),(,4~ 2~ 1)~所求的直线方程为y,2x,3x,1,,,,421x,y,z,1, 3, 用对称式方程及参数方程表示直线, ,2x,y,z,4,解平面x,y,z,1和2x,y,z,4的法线向量为n,(1~ ,1~ 1)~ 1n,(2~ 1~ 1)~所求直线的方向向量为 2ijk, s,n,n,1,11,,2i,j,3k12211x,y,z,1x,z,1,, 在方程组中~令y,0~得~解得x,3~ ,,2x,y,z,42x,z,4,,z,,2, 于是点(3~ 0~ ,2)为所求直线上的点,所求直线的对称式方程为yx,3z,2,, ,,213参数方程为x,3,2t~ y,t~ z,,2,3t,x,2y,4z,7,0, 4, 求过点(2~ 0~ ,3)且与直线垂直的平面,3x,5y,2z,1,0,方程,解所求平面的法线向量n可取为已知直线的方向向量~即ijk, n,(1, ,2, 4),(3, 5, ,2),1,24,,16i,14j,11k35,2所平面的方程为,16(x,2),14(y,0),11(z,3),0~即 16x,14y,11z,65,0,2x,2y,z,23,05x,3y,3z,9,0,, 5, 求直线与直线的夹角,,3x,2y,z,03x,8y,z,18,0,,的余弦,解两直线的方向向量分别为ijk~ s,5,33,3i,4j,k13,21ijk, s,22,1,10i,5j,10k2381两直线之间的夹角的余弦为s,s^12cos(s, s), 12|s|,|s|123,10,4,(,5),(,1),10,,0 , 2222223,4,(,1)10,(,5),10x,2y,z,73x,6y,3z,8,, 6, 证明直线与直线平行, ,,,2x,y,z,72x,y,z,0,, 解两直线的方向向量分别为ijk~ s,12,1,3i,j,5k1,211ijk, s,36,3,,9i,3j,15k22,1,1因为s,,3s~所以这两个直线是平行的, 217, 求过点(0~ 2~ 4)且与两平面x,2z,1和y,3z,2平行的直线方程,解因为两平面的法线向量n,(1~ 0~ 2)与n,(0~ 1~ ,3)不平12行~所以两平面相交于一直线~此直线的方向向量可作为所求直线的方向向量s~即ijk, s,102,,2i,3j,k01,3所求直线的方程为y,2xz,4,, ,,231y,3x,4z,, 8, 求过点(3~ 1~ ,2)且通过直线的平面方程,521y,3x,4z,, 解所求平面的法线向量与直线的方向向量521s,(5~ 2~ 1)垂直, 因为点(3~ 1~ ,2)和(4~ ,3~ 0)都在所求的平面上~ 1所以所求平面的法线向量与向量s,(4~ ,3~ 0),(3~ 1~ ,2),(1~ ,4~2)2也是垂直的, 因此所求平面的法线向量可取为ijk, n,s,s,521,8i,9j,22k121,42所求平面的方程为8(x,3),9(y,1),22(z,2),0~即 8x,9y,22z,59,0,x,y,3z,0, 9, 求直线与平面x,y,z,1,0的夹角, ,x,y,z,0,解已知直线的方向向量为ijk~ s,(1, 1, 3),(1, ,1, ,1),113,2i,4j,2k,2(i,2j,k)1,1,1已知平面的法线向量为n,(1~ ,1~ ,1),因为s,n,2,1,4,(,1),(,2),(,1),0~x,y,3z,0,所以s ,n~从而直线与平面x,y,z,1,0的夹角为0, ,x,y,z,0, 10, 试确定下列各组中的直线和平面间的关系:y,4x,3z,, (1)和4x,2y,2z,3,,2,73解所给直线的方向向量为s,(,2~ ,7~ 3)~所给平面的法线向量为n,(4~ ,2~ ,2),因为s,n,(,2),4,(,7),(,2),3,(,2),0~所以s,n~从而所给直线与所给平面平行, 又因为直线上的点(,3~ ,4~ 0)不满足平面方程4x,2y,2z,3~所以所给直线不在所给平面上,yxz,, (2)和3x,2y,7z,8,3,27解所给直线的方向向量为s,(3~ ,2~ 7)~所给平面的法线向量为n,(3~ ,2~ 7),因为s,n~所以所给直线与所给平面是垂直的,y,2x,2z,3,, (3)和x,y,z,3,31,4解所给直线的方向向量为s,(3~ 1~ ,4)~所给平面的法线向量为n,(1~1~ 1),因为s,n,3,1,1,1,(,4),1,0~所以s,n~从而所给直线与所给平面平行, 又因为直线上的点(2~ ,2~ 3)满足平面方程x,y,z,3~所以所给直线在所给平面上,x,2y,z,1,02x,y,z,0,, 11, 求过点(1~ 2~ 1)而与两直线和 ,,x,y,z,1,0x,y,z,0,,平行的平面的方程,解已知直线的方向向量分别为ijk~ s,(1, 2, ,1),(1, ,1, 1),12,1,i,2j,3k11,11ijk, s,(2, ,1, 1),(1, ,1, 1),2,11,,j,k11,11所求平面的法线向量可取为ijk~ n,s,s,1,2,3,,i,j,k120,1,1所求平面的方程为,(x,1),(y,2),(z,1),0~即x,y,z,0,12, 求点(,1~ 2~ 0)在平面x,2y,z,1,0上的投影,解平面的法线向量为n,(1~ 2~ ,1), 过点(,1~ 2~ 0)并且垂直于已知平面的直线方程为y,2x,1z,, ,12,1将此方程化为参数方程x,,1,t~ y,2,2t~ z,,t~代入平面方程x,2y,z,1,0中~得(,1,t),2(2,2t),(,t),1,0~5222x,,解得t,,, 再将t,,代入直线的参数方程~得~~ y,33332, 于是点(,1~ 2~ 0)在平面x,2y,z,1,0上的投影为点z,3522(,, , ),233x,y,z,1,0, 13, 求点P(3~ ,1~ 2)到直线的距离, ,2x,y,z,4,0,解已知直线的方向向量为ijk, s,(1, 1, ,1),(2, ,1, 1),11,1,,3j,3k2,11过点P且与已知直线垂直的平面的方程为,3(y,1),3(z,2),0~即y,z,1,0,解线性方程组x,y,z,1,0,,2x,y,z,4,0 ~ ,,y,z,1,0,13y,,z,得x,1~~ ,22x,y,z,1,0, 点P(3~ ,1~ 2)到直线的距离就是点P(3~ ,1~ 2),2x,y,z,4,0,13与点间的距离~即 (1, ,, )2213322 , d,(3,1),(,1,),(2,),222214, 设M是直线L外一点~ M是直线L上任意一点~且直0线的方向向量为s~试证: 点M到直线L的距离 0,|MM,s|0 , d,|s|,s,MN 解设点M到直线L的距离为d~ L的方向向量~根0,,MN据向量积的几何意义~以和为邻边的平行四边形的面MM0积为,,,~ |MM,MN|,|MM,s|00,,,MN又以和为邻边的平行四边形的面积为, MMd,|MN|,d,|s|0因此,,|,s|MM0, d,|s|,|MM,s|~ , d0|s|2x,4y,z,0, 15, 求直线在平面4x,y,z,1上的投影直线,3x,y,2z,9,0, 的方程,解过已知直线的平面束方程为(2,3,)x,(,4,,)y,(1,2,)z,9,,0, 为在平面束中找出与已知平面垂直的平面~令(4 ,1~ 1),(2,3,~ ,4,,~ 1,2,),0~即 4,(2,3,),(,1),(,4,,),1,(1,2,),0,1313解之得, 将代入平面束方程中~得 ,,,,,,111117x,31y,37z,117,0,故投影直线的方程为4x,y,z,1, , ,17x,31y,37z,117,0,16, 画出下列各曲面所围成的立体图形:(1)x,0~ y,0~ z,0~ x,2~ y,1~ 3x,4y,2z,12,0,yz, (2)x,0~ z,0~ x,1~ y,2~ ,422 (3)z,0~ z,3~ x,y,0~~ x,y,1(在第一卦限内), x,3y,0222222 (4)x,0~ y,0~ z,0~ x,y,R~ y,z,R(在第一卦限内),。

《高等数学》第六版同济大学上册课后答案详解

《高等数学》第六版同济大学上册课后答案详解

《高等数学》第六版同济大学上册课后答案详解
《高等数学》第六版同济大学上册课后答案详解
第六版同济大学高等数学上册课后答案详解
《高等数学第六版上册》是2007年高等教育出版社出版的图书。

本书是同济大学数学系编《高等数学》的第六版,依据最新的“工科类本科数学基础课程教学基本要求”,为高等院校工科类各专业学生修订而成。

本次修订时对教材的深广度进行了适度的调整,使学习本课程的学生都能达到合格的要求,并设置部分带*号的内容以适应分层次教学的需要;吸收国内外优秀教材的优点对习题的类型和数量进行了凋整和充实,以帮助学生提高数学素养、培养创新意识、掌握运用数学工具去解决实际问题的能力;对书中内容进一步锤炼和调整,将微分方程作为一元函数微积分的应用移到上册,更有利于学生的学习与掌握。

本书分上、下两册出版,上册包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、微分方程等内容,书末还附有二、三阶行列式简介、几种常用的曲线、积分表、习题答案与提示
高等数学是大学必修数学科目之一,当然这对于非数学专业的同学而言,简直就是难上加难,但是对于数学专业同学而言,这就是基础课,必须踏踏实实的学好,否则对于以后的学习真的就是难上加难,牧边我就是深有体会啊。

同济大学高等数学第六版第七章第九节欧拉方程

同济大学高等数学第六版第七章第九节欧拉方程
3 2 3 2
(1)
方程(1)所对应的齐次方程为
其特征方程
r 3 2r 2 3r 0,
特征方程的根为 r1 0, r2 1, r3 3.
所以齐次方程的通解为
Y C1 C2e C3e
t
3t
C2 C1 C3 x 3 . x
设特解为 y be2 t bx2 ,
解 作变量变换 x e t 或 t ln x,
原方程化为
D( D 1)( D 2) y D( D 1) y 4 Dy 3e 2t ,
即 或
D3 y 2 D2 y 3 Dy 3e 2 t ,
d y d y dy 2 2 3 3e 2 t . dt 3 dt dt d y d y dy 2 2 3 0, 3 dt dt dt
2
的方程(其中 p1 , p2 pn 为常数) 叫欧拉方程.
特点:各项未知函数导数的阶数与乘积因子自 变量的方次数相同. 解法:欧拉方程是特殊的变系数方程,通过t 或 t ln x,
将自变量换为 t ,
dy dy dt 1 dy , dx dt dx x dt
第九节 欧拉方程
欧拉方程
x y
n ( n)
第七章
p1 x
n 1 ( n 1)
y
pn 1 x y pn y f ( x)
( pk 为常数 )
令 x et , 即 t ln x
常系数线性微分方程
一、欧拉方程
形如
x n y ( n ) p1 x n1 y ( n1) pn1 xy pn y f ( x )

一般地, x k y ( k ) D( D 1)( D k 1) y.

同济大学第六版高等数学上册课后答案全集

同济大学第六版高等数学上册课后答案全集

高等数学第六版上册课后习题答案第一章习题1?11? 设A ?(??? ?5)?(5? ??)? B ?[?10? 3)? 写出A ?B ? A ?B ? A \B 及A \(A \B )的表达式? 解 A ?B ?(??? 3)?(5? ??)? A ?B ?[?10? ?5)?A \B ?(??? ?10)?(5? ??)? A \(A \B )?[?10? ?5)?2? 设A 、B 是任意两个集合? 证明对偶律? (A ?B )C ?A C ?B C ? 证明 因为x ?(A ?B )C ?x ?A ?B ? x ?A 或x ?B ? x ?A C 或x ?B C ? x ?A C ?B C ? 所以 (A ?B )C ?A C ?B C ?3? 设映射f ? X ?Y ? A ?X ? B ?X ? 证明(1)f (A ?B )?f (A )?f (B )? (2)f (A ?B )?f (A )?f (B )? 证明 因为y ?f (A ?B )??x ?A ?B ? 使f (x )?y?(因为x ?A 或x ?B ) y ?f (A )或y ?f (B ) ? y ?f (A )?f (B )?所以 f (A ?B )?f (A )?f (B )? (2)因为y ?f (A ?B )??x ?A ?B ? 使f (x )?y ?(因为x ?A 且x ?B ) y ?f (A )且y ?f (B )? y ? f (A )?f (B )? 所以 f (A ?B )?f (A )?f (B )?4? 设映射f ? X ?Y ? 若存在一个映射g ? Y ?X ? 使X I f g =ο? Y I g f =ο? 其中I X 、I Y 分别是X 、Y 上的恒等映射? 即对于每一个x ?X ? 有I X x ?x ? 对于每一个y ?Y ? 有I Y y ?y ? 证明? f 是双射? 且g 是f 的逆映射? g ?f ?1?证明 因为对于任意的y ?Y ? 有x ?g (y )?X ? 且f (x )?f [g (y )]?I y y ?y ? 即Y 中任意元素都是X 中某元素的像? 所以f 为X 到Y 的满射?又因为对于任意的x 1?x 2? 必有f (x 1)?f (x 2)? 否则若f (x 1)?f (x 2)?g [ f (x 1)]?g [f (x 2)] ? x 1?x 2? 因此f 既是单射? 又是满射? 即f 是双射?对于映射g ? Y ?X ? 因为对每个y ?Y ? 有g (y )?x ?X ? 且满足f (x )?f [g (y )]?I y y ?y ? 按逆映射的定义? g 是f 的逆映射?5? 设映射f ? X ?Y ? A ?X ? 证明? (1)f ?1(f (A ))?A ?(2)当f 是单射时? 有f ?1(f (A ))?A ?证明 (1)因为x ?A ? f (x )?y ?f (A ) ? f ?1(y )?x ?f ?1(f (A ))? 所以 f ?1(f (A ))?A ?(2)由(1)知f ?1(f (A ))?A ?另一方面? 对于任意的x ?f ?1(f (A ))?存在y ?f (A )? 使f ?1(y )?x ?f (x )?y ? 因为y ?f (A )且f 是单射? 所以x ?A ? 这就证明了f ?1(f (A ))?A ? 因此f ?1(f (A ))?A ? 6? 求下列函数的自然定义域? (1)23+=x y ?解 由3x ?2?0得32->x ? 函数的定义域为) ,32[∞+-?(2)211xy -=?解 由1?x 2?0得x ??1? 函数的定义域为(??? ?1)?(?1? 1)?(1? ??)? (3)211x x y --=?解 由x ?0且1?x 2?0得函数的定义域D ?[?1? 0)?(0? 1]? (4)241x y -=? 解 由4?x 2?0得 |x |?2? 函数的定义域为(?2? 2)? (5)x y sin =?解 由x ?0得函数的定义D ?[0? ??)? (6) y ?tan(x ?1)?解 由21π≠+x (k ?0? ?1? ?2? ? ? ?)得函数的定义域为 12-+≠ππk x (k ?0? ?1? ?2? ? ? ?)?(7) y ?arcsin(x ?3)?解 由|x ?3|?1得函数的定义域D ?[2? 4]?(8)xx y 1arctan 3+-=?解 由3?x ?0且x ?0得函数的定义域D ?(??? 0)?(0? 3)? (9) y ?ln(x ?1)?解 由x ?1?0得函数的定义域D ?(?1? ??)? (10)x e y 1=?解 由x ?0得函数的定义域D ?(??? 0)?(0? ??)?7? 下列各题中? 函数f (x )和g (x )是否相同?为什么? (1)f (x )?lg x 2? g (x )?2lg x ? (2) f (x )?x ? g (x )?2x ? (3)334)(x x x f -=?31)(-=x x x g ?(4)f (x )?1? g (x )?sec 2x ?tan 2x ? 解 (1)不同? 因为定义域不同?(2)不同? 因为对应法则不同? x ?0时? g (x )??x ? (3)相同? 因为定义域、对应法则均相相同? (4)不同? 因为定义域不同?8? 设⎪⎩⎪⎨⎧≥<=3||03|| |sin |)(ππϕx x x x ? 求)6(πϕ? )4(πϕ? )4(πϕ-? ?(?2)? 并作出函数y ??(x )的图形? 解 21|6sin |)6(==ππϕ? 22|4sin |)4(==ππϕ? 22|)4sin(|)4(=-=-ππϕ? 0)2(=-ϕ? 9? 试证下列函数在指定区间内的单调性? (1)x x y -=1? (??? 1)?(2)y ?x ?ln x ? (0? ??)?证明 (1)对于任意的x 1? x 2?(??? 1)? 有1?x 1?0? 1?x 2?0? 因为当x 1?x 2时? 0)1)(1(112121221121<---=---=-x x x x x x x x y y ? 所以函数x x y -=1在区间(??? 1)内是单调增加的?(2)对于任意的x 1? x 2?(0? ??)? 当x 1?x 2时? 有 0ln)()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y ? 所以函数y ?x ?ln x 在区间(0? ??)内是单调增加的?10? 设 f (x )为定义在(?l ? l )内的奇函数? 若f (x )在(0? l )内单调增加? 证明f (x )在(?l ? 0)内也单调增加?证明 对于?x 1? x 2?(?l ? 0)且x 1?x 2? 有?x 1? ?x 2?(0? l )且?x 1??x 2?因为f (x )在(0? l )内单调增加且为奇函数? 所以f (?x 2)?f (?x 1)? ?f (x 2)??f (x 1)? f (x 2)?f (x 1)?这就证明了对于?x 1? x 2?(?l ? 0)? 有f (x 1)? f (x 2)? 所以f (x )在(?l ? 0)内也单调增加? 11? 设下面所考虑的函数都是定义在对称区间(?l ? l )上的? 证明? (1)两个偶函数的和是偶函数? 两个奇函数的和是奇函数?(2)两个偶函数的乘积是偶函数? 两个奇函数的乘积是偶函数? 偶函数与奇函数的乘积是奇函数?证明 (1)设F (x )?f (x )?g (x )? 如果f (x )和g (x )都是偶函数? 则 F (?x )?f (?x )?g (?x )?f (x )?g (x )?F (x )? 所以F (x )为偶函数? 即两个偶函数的和是偶函数?如果f (x )和g (x )都是奇函数? 则F (?x )?f (?x )?g (?x )??f (x )?g (x )??F (x )? 所以F (x )为奇函数? 即两个奇函数的和是奇函数?(2)设F (x )?f (x )?g (x )? 如果f (x )和g (x )都是偶函数? 则 F (?x )?f (?x )?g (?x )?f (x )?g (x )?F (x )? 所以F (x )为偶函数? 即两个偶函数的积是偶函数? 如果f (x )和g (x )都是奇函数? 则F (?x )?f (?x )?g (?x )?[?f (x )][?g (x )]?f (x )?g (x )?F (x )? 所以F (x )为偶函数? 即两个奇函数的积是偶函数? 如果f (x )是偶函数? 而g (x )是奇函数? 则F (?x )?f (?x )?g (?x )?f (x )[?g (x )]??f (x )?g (x )??F (x )? 所以F (x )为奇函数? 即偶函数与奇函数的积是奇函数?12? 下列函数中哪些是偶函数? 哪些是奇函数? 哪些既非奇函数又非偶函数? (1)y ?x 2(1?x 2)? (2)y ?3x 2?x 3?(3)2211x x y +-=? (4)y ?x (x ?1)(x ?1)? (5)y ?sin x ?cos x ?1?(6)2x x a a y -+=? 解 (1)因为f (?x )?(?x )2[1?(?x )2]?x 2(1?x 2)?f (x )? 所以f (x )是偶函数? (2)由f (?x )?3(?x )2?(?x )3?3x 2?x 3可见f (x )既非奇函数又非偶函数?(3)因为())(111)(1)(2222x f xx x x x f =+-=-+--=-? 所以f (x )是偶函数? (4)因为f (?x )?(?x )(?x ?1)(?x ?1)??x (x ?1)(x ?1)??f (x )? 所以f (x )是奇函数? (5)由f (?x )?sin(?x )?cos(?x )?1??sin x ?cos x ?1可见f (x )既非奇函数又非偶函数?(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----? 所以f (x )是偶函数?13? 下列各函数中哪些是周期函数?对于周期函数? 指出其周期? (1)y ?cos(x ?2)?解 是周期函数? 周期为l ?2?? (2)y ?cos 4x ?解 是周期函数? 周期为2π=l ?(3)y ?1?sin ?x ?解 是周期函数? 周期为l ?2? (4)y ?x cos x ?解 不是周期函数? (5)y ?sin 2x ?解 是周期函数? 周期为l ??? 14? 求下列函数的反函数? (1)31+=x y ?解 由31+=x y 得x ?y 3?1? 所以31+=x y 的反函数为y ?x 3?1? (2)xx y +-=11?解 由x x y +-=11得y yx +-=11? 所以x x y +-=11的反函数为xx y +-=11?(3)dcx b ax y ++=(ad ?bc ?0)?解 由d cx b ax y ++=得a cy bdy x -+-=? 所以d cx b ax y ++=的反函数为acx b dx y -+-=?(4) y ?2sin3x ?解 由y ?2sin 3x 得2arcsin 31yx =? 所以y ?2sin3x 的反函数为2arcsin 31x y =?(5) y ?1?ln(x ?2)?解 由y ?1?ln(x ?2)得x ?e y ?1?2? 所以y ?1?ln(x ?2)的反函数为y ?e x ?1?2?(6)122+=xxy ? 解 由122+=x x y 得y y x -=1log 2? 所以122+=x x y 的反函数为x x y -=1log 2?15? 设函数f (x )在数集X 上有定义? 试证? 函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界?证明 先证必要性? 设函数f (x )在X 上有界? 则存在正数M ? 使|f (x )|?M ? 即?M ?f (x )?M ? 这就证明了f (x )在X 上有下界?M 和上界M ?再证充分性? 设函数f (x )在X 上有下界K 1和上界K 2? 即K 1?f (x )? K 2 ? 取M ?max{|K 1|? |K 2|}? 则 ?M ? K 1?f (x )? K 2?M ? 即 |f (x )|?M ?这就证明了f (x )在X 上有界?16? 在下列各题中? 求由所给函数复合而成的函数? 并求这函数分别对应于给定自变量值x 1和x 2的函数值?(1) y ?u 2? u ?sin x ? 61π=x ? 32π=x ?解 y ?sin 2x ? 41)21(6sin 221===πy ?43)23(3sin 222===πy ?(2) y ?sin u ? u ?2x ? 81π=x ?42π=x ?解 y ?sin2x ? 224sin )82sin(1==⋅=ππy ?12sin )42sin(2==⋅=ππy ? (3)u y =? u ?1?x 2? x 1?1? x 2? 2?解 21x y +=? 21121=+=y ? 52122=+=y ? (4) y ?e u ? u ?x 2? x 1 ?0? x 2?1? 解 2x e y =? 1201==e y ? e e y ==212?(5) y ?u 2 ? u ?e x ? x 1?1? x 2??1?解 y ?e 2x ? y 1?e 2?1?e 2? y 2?e 2?(?1)?e ?2?17? 设f (x )的定义域D ?[0? 1]? 求下列各函数的定义域? (1) f (x 2)?解 由0?x 2?1得|x |?1? 所以函数f (x 2)的定义域为[?1? 1]? (2) f (sin x )?解 由0?sin x ?1得2n ??x ?(2n ?1)? (n ?0? ?1? ?2? ? ?)? 所以函数f (sin x )的定义域为 [2n ?? (2n ?1)?] (n ?0? ?1? ?2? ? ?) ? (3) f (x ?a )(a >0)?解 由0?x ?a ?1得?a ?x ?1?a ? 所以函数f (x ?a )的定义域为[?a ? 1?a ]? (4) f (x ?a )?f (x ?a )(a ?0)?解 由0?x ?a ?1且0?x ?a ?1得? 当210≤<a 时? a ?x ?1?a ? 当21>a 时? 无解? 因此当210≤<a 时函数的定义域为[a ? 1?a ]? 当21>a 时函数无意义?18? 设⎪⎩⎪⎨⎧>-=<=1||11||01||1)(x x x x f ? g (x )?e x ? 求f [g (x )]和g [f (x )]? 并作出这两个函数的图形? 解 ⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)]([x x x e e e x g f ? 即⎪⎩⎪⎨⎧>-=<=0 10001)]([x x x x g f ? ⎪⎩⎪⎨⎧>=<==-1|| 1|| e 1|| )]([101)(x e x x e e x f g x f ? 即⎪⎩⎪⎨⎧>=<=-1|| 1|| 11|| )]([1x e x x e x f g ?19? 已知水渠的横断面为等腰梯形? 斜角??40?(图1?37)? 当过水断面ABCD 的面积为定值S 0时? 求湿周L (L ?AB ?BC ?CD )与水深h 之间的函数关系式? 并指明其定义域? 图1?37解 ο40sin h DC AB ==? 又从)]40cot 2([21S h BC BC h =⋅++ο得h hS BC ⋅-=ο40cot 0? 所以h h S L οο40sin 40cos 20-+=? 自变量h 的取值范围应由不等式组h ?0?040cot 0>⋅-h hS ο确定? 定义域为ο40cot 00S h <<?20? 收敛音机每台售价为90元? 成本为60元? 厂方为鼓励销售商大量采购? 决定凡是订购量超过100台以上的? 每多订购1台? 售价就降低1分? 但最低价为每台75元? (1)将每台的实际售价p 表示为订购量x 的函数? (2)将厂方所获的利润P 表示成订购量x 的函数? (3)某一商行订购了1000台? 厂方可获利润多少? 解 (1)当0?x ?100时? p ?90?令0?01(x 0?100)?90?75? 得x 0?1600? 因此当x ?1600时? p ?75? 当100?x ?1600时?p ?90?(x ?100)?0?01?91?0? 01x ? 综合上述结果得到⎪⎩⎪⎨⎧≥<<-≤≤=1600 75160010001.091100090x x x x p ? (2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 151600100 01.0311000 30)60(2x x x x x x x x p P ?(3) P ?31?1000?0?01?10002?21000(元)?习题1?21? 观察一般项x n 如下的数列{x n }的变化趋势? 写出它们的极限? (1)nn x 21=?解 当n ??时? nn x 21=?0? 021lim =∞→n n ? (2)nx n n 1)1(-=?解 当n ??时? n x n n 1)1(-=?0? 01)1(lim =-∞→nn n ?(3)212nx n +=?解 当n ??时? 212n x n +=?2? 2)12(lim 2=+∞→n n ? (4)11+-=n n x n ?解 当n ??时? 12111+-=+-=n n n x n ?0? 111lim =+-∞→n n n ?(5) x n ?n (?1)n ?解 当n ??时? x n ?n (?1)n 没有极限?2? 设数列{x n }的一般项n n x n 2cos π=? 问n n x ∞→lim ?? 求出N ? 使当n ?N 时? x n 与其极限之差的绝对值小于正数? ? 当? ?0?001时? 求出数N ? 解 0lim =∞→n n x ?n n n x n 1|2cos ||0|≤=-π? ?? ?0? 要使|x n ?0|?? ? 只要ε<n 1? 也就是ε1>n ? 取]1[ε=N ? 则?n ?N ? 有|x n ?0|?? ?当? ?0?001时? ]1[ε=N ?1000?3? 根据数列极限的定义证明?(1)01lim 2=∞→n n ?分析 要使ε<=-221|01|n n ? 只须ε12>n ? 即ε1>n ? 证明 因为???0? ?]1[ε=N ? 当n ?N 时? 有ε<-|01|2n ? 所以01lim 2=∞→n n ?(2)231213lim =++∞→n n n ?分析 要使ε<<+=-++n n n n 41)12(21|231213|? 只须ε<n41? 即ε41>n ? 证明 因为???0? ?]41[ε=N ? 当n ?N 时? 有ε<-++|231213|n n ? 所以231213lim =++∞→n n n ?(3)1lim22=+∞→na n n ?分析 要使ε<<++=-+=-+na n a n n a n n a n n a n 22222222)(|1|? 只须ε2a n >?证明 因为???0? ?][2εa N =? 当?n ?N 时? 有ε<-+|1|22n a n ? 所以1lim 22=+∞→n a n n ?(4)19 999.0lim =⋅⋅⋅∞→43421个n n ? 分析 要使|0?99 ? ? ? 9?1|ε<=-1101n ? 只须1101-n ?? ? 即ε1lg 1+>n ? 证明 因为???0? ?]1lg 1[ε+=N ? 当?n ?N 时? 有|0?99 ? ? ? 9?1|?? ? 所以19 999.0lim =⋅⋅⋅∞→43421个n n ? 4? a u n n =∞→lim ? 证明||||lim a u n n =∞→? 并举例说明? 如果数列{|x n |}有极限? 但数列{x n }未必有极限?证明 因为a u n n =∞→lim ? 所以???0? ?N ?N ? 当n ?N 时? 有ε<-||a u n ? 从而||u n |?|a ||?|u n ?a |?? ?这就证明了||||lim a u n n =∞→?数列{|x n |}有极限? 但数列{x n }未必有极限? 例如1|)1(|lim =-∞→n n ? 但n n )1(lim -∞→不存在?5? 设数列{x n }有界? 又0lim =∞→n n y ? 证明? 0lim =∞→n n n y x ?证明 因为数列{x n }有界? 所以存在M ? 使?n ?Z ? 有|x n |?M ?又0lim =∞→n n y ? 所以???0? ?N ?N ? 当n ?N 时? 有M y n ε<||? 从而当n ?N 时? 有εε=⋅<≤=-M M y M y x y x n n n n n |||||0|?所以0lim =∞→n n n y x ?6? 对于数列{x n }? 若x 2k ?1?a (k ??)? x 2k ?a (k ??)? 证明? x n ?a (n ??)?证明 因为x 2k ?1?a (k ??)? x 2k ?a (k ??)? 所以???0? ?K 1? 当2k ?1?2K 1?1时? 有| x 2k ?1?a |?? ? ?K 2? 当2k ?2K 2时? 有|x 2k ?a |?? ?取N ?max{2K 1?1? 2K 2}? 只要n ?N ? 就有|x n ?a |?? ? 因此x n ?a (n ??)?习题1?31? 根据函数极限的定义证明? (1)8)13(lim 3=-→x x ?分析 因为|(3x ?1)?8|?|3x ?9|?3|x ?3|? 所以要使|(3x ?1)?8|?? ? 只须ε31|3|<-x ?证明 因为???0? ?εδ31=? 当0?|x ?3|??时? 有|(3x ?1)?8|?? ? 所以8)13(lim 3=-→x x ?(2)12)25(lim 2=+→x x ?分析 因为|(5x ?2)?12|?|5x ?10|?5|x ?2|? 所以要使|(5x ?2)?12|?? ? 只须ε51|2|<-x ?证明 因为?? ?0? ?εδ51=? 当0?|x ?2|??时? 有 |(5x ?2)?12|?? ? 所以12)25(lim 2=+→x x ?(3)424lim22-=+--→x x x ? 分析 因为|)2(||2|244)4(2422--=+=+++=--+-x x x x x x x ? 所以要使ε<--+-)4(242x x ? 只须ε<--|)2(|x ? 证明 因为?? ?0? ?εδ=? 当0?|x ?(?2)|??时? 有ε<--+-)4(242x x ? 所以424lim22-=+--→x x x ? (4)21241lim 321=+--→x x x ? 分析 因为|)21(|2|221|212413--=--=-+-x x x x ? 所以要使ε<-+-212413x x ? 只须ε21|)21(|<--x ? 证明 因为?? ?0? ?εδ21=? 当δ<--<|)21(|0x 时? 有ε<-+-212413x x ?所以21241lim 321=+--→x x x ?2? 根据函数极限的定义证明?(1)2121lim 33=+∞→x x x ? 分析 因为333333||21212121x x x x x x =-+=-+? 所以要使ε<-+212133x x ? 只须ε<3||21x ? 即321||ε>x ? 证明 因为?? ?0? ?321ε=X ? 当|x |?X 时? 有ε<-+212133x x ? 所以2121lim 33=+∞→x x x ? (2)0sin lim =+∞→xx x ?分析 因为xx x x x 1|sin |0sin ≤=-?所以要使ε<-0sin x x ? 只须ε<x1? 即21ε>x ?证明 因为???0? ?21ε=X ? 当x ?X 时? 有ε<-0sin xx ?所以0sin lim =+∞→xx x ?3? 当x ?2时? y ?x 2?4? 问?等于多少? 使当|x ?2|<?时? |y ?4|<0?001? 解 由于当x ?2时? |x ?2|?0? 故可设|x ?2|?1? 即1?x ?3? 要使|x 2?4|?|x ?2||x ?2|?5|x ?2|?0?001? 只要0002.05001.0|2|=<-x ?取??0?0002? 则当0?|x ?2|??时? 就有|x 2?4|?0? 001?4? 当x ??时? 13122→+-=x x y ? 问X 等于多少? 使当|x |?X 时? |y ?1|?0?01? 解 要使01.034131222<+=-+-x x x ? 只要397301.04||=->x ? 故397=X ?5? 证明函数f (x )?|x |当x ?0时极限为零?证明 因为|f (x )?0|?||x |?0|?|x |?|x ?0|? 所以要使|f (x )?0|??? 只须|x |???因为对???0? ????? 使当0?|x ?0|??? 时有 |f (x )?0|?||x |?0|??? 所以0||lim 0=→x x ?6? 求,)(xx x f = x x x ||)(=ϕ当x ?0时的左﹑右极限? 并说明它们在x ?0时的极限是否存在?证明 因为11lim lim )(lim 000===---→→→x x x x x x f ?11lim lim )(lim 000===+++→→→x x x x x x f ?)(lim )(lim 0x f x f x x +→→=-?所以极限)(lim 0x f x →存在?因为1lim ||lim )(lim 000-=-==---→→→xx x x x x x x ϕ?1lim ||lim )(lim 000===+++→→→x x x x x x x x ϕ?)(lim )(lim 0x x x x ϕϕ+→→≠-?所以极限)(lim 0x x ϕ→不存在?7? 证明? 若x ???及x ???时? 函数f (x )的极限都存在且都等于A ? 则A x f x =∞→)(lim ?证明 因为A x f x =-∞→)(lim ? A x f x =+∞→)(lim ? 所以??>0??X 1?0? 使当x ??X 1时? 有|f (x )?A |?? ??X 2?0? 使当x ?X 2时? 有|f (x )?A |?? ?取X ?max{X 1? X 2}? 则当|x |?X 时? 有|f (x )?A |?? ? 即A x f x =∞→)(lim ?8? 根据极限的定义证明? 函数f (x )当x ?x 0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等?证明 先证明必要性? 设f (x )?A (x ?x 0)? 则??>0? ???0? 使当0<|x ?x 0|<? 时? 有 |f (x )?A |<? ?因此当x 0??<x <x 0和x 0<x <x 0?? 时都有 |f (x )?A |<? ?这说明f (x )当x ?x 0时左右极限都存在并且都等于A ? 再证明充分性? 设f (x 0?0)?f (x 0?0)?A ? 则??>0? ??1>0? 使当x 0??1<x <x 0时? 有| f (x )?A <? ? ??2>0? 使当x 0<x <x 0+?2时? 有| f (x )?A |<? ?取??min{?1? ?2}? 则当0<|x ?x 0|<? 时? 有x 0??1<x <x 0及x 0<x <x 0+?2 ? 从而有 | f (x )?A |<? ? 即f (x )?A (x ?x 0)?9? 试给出x ??时函数极限的局部有界性的定理? 并加以证明?解 x ??时函数极限的局部有界性的定理? 如果f (x )当x ??时的极限存在? 则存在X ?0及M ?0? 使当|x |?X 时? |f (x )|?M ?证明 设f (x )?A (x ??)? 则对于? ?1? ?X ?0? 当|x |?X 时? 有|f (x )?A |?? ?1? 所以 |f (x )|?|f (x )?A ?A |?|f (x )?A |?|A |?1?|A |?这就是说存在X ?0及M ?0? 使当|x |?X 时? |f (x )|?M ? 其中M ?1?|A |? 习题1?41? 两个无穷小的商是否一定是无穷小?举例说明之? 解 不一定?例如? 当x ?0时? ?(x )?2x ? ?(x )?3x 都是无穷小? 但32)()(lim0=→x x x βα? )()(x x βα不是无穷小?2? 根据定义证明?(1)392+-=x x y 当x ?3时为无穷小;(2)xx y 1sin =当x ?0时为无穷小?证明 (1)当x ?3时|3|39||2-=+-=x x x y ? 因为???0? ???? ? 当0?|x ?3|??时? 有 εδ=<-=+-=|3|39||2x x x y ?所以当x ?3时392+-=x x y 为无穷小? (2)当x ?0时|0||1sin |||||-≤=x xx y ? 因为???0? ???? ? 当0?|x ?0|??时? 有εδ=<-≤=|0||1sin |||||x xx y ?所以当x ?0时xx y 1sin =为无穷小?3? 根据定义证明? 函数xx y 21+=为当x ?0时的无穷大? 问x 应满足什么条件? 能使|y |?104?证明 分析2||11221||-≥+=+=x x x x y ? 要使|y |?M ? 只须M x >-2||1? 即21||+<M x ?证明 因为?M ?0? ?21+=M δ? 使当0?|x ?0|??时? 有M xx >+21?所以当x ?0时? 函数xx y 21+=是无穷大?取M ?104? 则21014+=δ? 当2101|0|04+<-<x 时? |y |?104? 4? 求下列极限并说明理由? (1)xx x 12lim +∞→;(2)xx x --→11lim 20? 解 (1)因为xx x 1212+=+? 而当x ?? 时x 1是无穷小? 所以212lim =+∞→x x x ?(2)因为x xx +=--1112(x ?1)? 而当x ?0时x 为无穷小? 所以111lim 20=--→x x x ?解 函数y ?x cos x 在(??? ??)内无界?这是因为?M ?0? 在(??? ??)内总能找到这样的x ? 使得|y (x )|?M ? 例如y (2k ?)?2k ? cos2k ??2k ? (k ?0? 1? 2? ? ? ?)?当k 充分大时? 就有| y (2k ?)|?M ?当x ??? 时? 函数y ?x cos x 不是无穷大?这是因为?M ?0? 找不到这样一个时刻N ? 使对一切大于N 的x ? 都有|y (x )|?M ? 例如0)22cos()22()22(=++=+ππππππk k k y (k ?0? 1? 2? ? ? ?)?对任何大的N ? 当k 充分大时? 总有N k x >+=22ππ? 但|y (x )|?0?M ?7? 证明? 函数xx y 1sin 1=在区间(0? 1]上无界? 但这函数不是当x ?0+时的无穷大?证明 函数xx y 1sin 1=在区间(0? 1]上无界? 这是因为?M ?0? 在(0? 1]中总可以找到点x k ? 使y (x k )?M ? 例如当221ππ+=k x k (k ?0? 1? 2? ? ? ?)时? 有22)(ππ+=k x y k ?当k 充分大时? y (x k )?M ?当x ?0+ 时? 函数xx y 1sin 1=不是无穷大? 这是因为?M ?0? 对所有的??0? 总可以找到这样的点x k ? 使0?x k ??? 但y (x k )?M ? 例如可取πk x k 21=(k ?0? 1? 2? ? ? ?)?当k 充分大时? x k ??? 但y (x k )?2k ?sin2k ??0?M ? 习题1?51? 计算下列极限?(1)35lim 22-+→x x x ? 解 9325235lim222-=-+=-+→x x x ? (2)13lim 223+-→x x x ? 解 01)3(3)3(13lim 22223=+-=+-→x x x ?(3)112lim 221-+-→x x x x ? 解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x ? (4)xx x x x x 2324lim2230++-→? 解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x ? (5)hx h x h 220)(lim -+→?解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→?(6))112(lim 2xx x +-∞→? 解 21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x ? (7)121lim 22---∞→x x x x ? 解 2111211lim 121lim 2222=---=---∞→∞→xx x x x xx x ? (8)13lim 242--+∞→x x x x x ? 解 013lim 242=--+∞→x x x x x (分子次数低于分母次数? 极限为零)? 或 012111lim 13lim 4232242=--+=--+∞→∞→x x x x x x x x x x ? (9)4586lim 224+-+-→x x x x x ? 解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x ?(10))12)(11(lim 2x x x -+∞→?解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x ? (11))21 41211(lim n n +⋅⋅⋅+++∞→? 解 2211)21(1lim )2141211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n ?(12)2)1( 321limn n n -+⋅⋅⋅+++∞→?解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n ? (13)35)3)(2)(1(limn n n n n +++∞→?解 515)3)(2)(1(lim 3=+++∞→n n n n n (分子与分母的次数相同? 极限为最高次项系数之比)?或 51)31)(21)(11(lim 515)3)(2)(1(lim 3=+++=+++∞→∞→n n n n n n n n n ? (14))1311(lim 31x x x ---→?解 )1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112lim21-=+++-=→x x x x ? 2? 计算下列极限? (1)2232)2(2lim -+→x x x x ? 解 因为01602)2(lim 2322==+-→x x x x ? 所以∞=-+→2232)2(2limx x x x ? (2)12lim 2+∞→x x x ? 解 ∞=+∞→12lim 2x x x (因为分子次数高于分母次数)? (3))12(lim 3+-∞→x x x ?解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数)?3? 计算下列极限? (1)xx x 1sin lim 20→?解 01sin lim 20=→xx x (当x ?0时? x 2是无穷小? 而x 1sin 是有界变量)?(2)xx x arctan lim ∞→?解 0arctan 1lim arctan lim =⋅=∞→∞→x x xx x x (当x ??时? x 1是无穷小?而arctan x 是有界变量)?4? 证明本节定理3中的(2)? 习题1?51? 计算下列极限?(1)35lim 22-+→x x x ? 解 9325235lim 222-=-+=-+→x x x ? (2)13lim 223+-→x x x ? 解 01)3(3)3(13lim 22223=+-=+-→x x x ? (3)112lim 221-+-→x x x x ? 解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x ? (4)xx x x x x 2324lim2230++-→? 解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x ? (5)hx h x h 220)(lim -+→?解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→? (6))112(lim 2x x x +-∞→?解 21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x ? (7)121lim 22---∞→x x x x ? 解 2111211lim 121lim 2222=---=---∞→∞→xx x x x x x x ? (8)13lim 242--+∞→x x x x x ? 解 013lim 242=--+∞→x x x x x (分子次数低于分母次数? 极限为零)? 或 012111lim 13lim 4232242=--+=--+∞→∞→x x x x x x x x x x ? (9)4586lim 224+-+-→x x x x x ?解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x ?(10))12)(11(lim 2xx x -+∞→? 解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x ? (11))21 41211(lim nn +⋅⋅⋅+++∞→?解 2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n ? (12)2)1( 321limnn n -+⋅⋅⋅+++∞→? 解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n nn n n n n n ? (13)35)3)(2)(1(limn n n n n +++∞→?解 515)3)(2)(1(lim 3=+++∞→nn n n n (分子与分母的次数相同? 极限为 最高次项系数之比)?或 51)31)(21)(11(lim 515)3)(2)(1(lim 3=+++=+++∞→∞→n n n n n n n n n ? (14))1311(lim 31x x x ---→?解 )1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112lim21-=+++-=→x x x x ? 2? 计算下列极限? (1)2232)2(2lim -+→x x x x ? 解 因为01602)2(lim 2322==+-→x x x x ? 所以∞=-+→2232)2(2lim x x x x ? (2)12lim 2+∞→x x x ?解 ∞=+∞→12lim 2x x x (因为分子次数高于分母次数)? (3))12(lim 3+-∞→x x x ?解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数)?3? 计算下列极限? (1)xx x 1sin lim 20→?解 01sin lim 20=→xx x (当x ?0时? x 2是无穷小? 而x 1sin 是有界变量)?(2)xx x arctan lim ∞→?解 0arctan 1lim arctan lim =⋅=∞→∞→x x xx x x (当x ??时? x 1是无穷小?而arctan x 是有界变量)?4? 证明本节定理3中的(2)? 习题 1?71? 当x ?0时? 2x ?x 2 与x 2?x 3相比? 哪一个是高阶无穷小?解 因为02lim 2lim 202320=--=--→→xx x x x x x x x ?所以当x ?0时? x 2?x 3是高阶无穷小? 即x 2?x 3?o (2x ?x 2)?2? 当x ?1时? 无穷小1?x 和(1)1?x 3? (2))1(212x -是否同阶?是否等价?解 (1)因为3)1(lim 1)1)(1(lim 11lim 212131=++=-++-=--→→→x x xx x x x x x x x ? 所以当x ?1时? 1?x 和1?x 3是同阶的无穷小? 但不是等价无穷小?(2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x ? 所以当x ?1时? 1?x 和)1(212x -是同阶的无穷小? 而且是等价无穷小?3? 证明? 当x ?0时? 有? (1) arctan x ~x ?(2)2~1sec 2x x -? 证明 (1)因为1tan limarctan lim 00==→→y yxx y x (提示? 令y ?arctan x ? 则当x ?0时? y ?0)? 所以当x ?0时? arctan x ~x ?(2)因为1)22sin 2(lim 22sin 2lim cos cos 1lim 2211sec lim 202202020===-=-→→→→x xx x x x x xx x x x x ? 所以当x ?0时? 2~1sec 2x x -? 4? 利用等价无穷小的性质? 求下列极限? (1)xx x 23tan lim 0→?(2)mn x x x )(sin )sin(lim 0→(n ? m 为正整数)?(3)x x x x 30sin sin tan lim -→? (4))1sin 1)(11(tan sin lim320-+-+-→x x x x x ?解 (1)2323lim 23tan lim 00==→→x x x x x x ?(2)⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim00? (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x xx x x x x x x x x ? (4)因为32221)2(2~2sin tan 2)1(cos tan tan sin x x x x x x x x x -=⋅--=-=-(x ?0)?23232223231~11)1(11x x x x x ++++=-+(x ?0)? x x x x x ~sin ~1sin 1sin 1sin 1++=-+(x ?0)? 所以 33121lim )1sin 1)(11(tan sin lim 230320-=⋅-=-+-+-→→x x x x x x x x x ?5? 证明无穷小的等价关系具有下列性质? (1) ? ~? (自反性)?(2) 若? ~?? 则?~?(对称性)? (3)若? ~?? ?~?? 则?~?(传递性)? 证明 (1)1lim =αα? 所以? ~? ?(2) 若? ~?? 则1lim =βα? 从而1lim=αβ? 因此?~? ? (3) 若? ~?? ?~?? 1lim limlim =⋅=βαγβγα? 因此?~?? 习题1?81? 研究下列函数的连续性? 并画出函数的图形?(1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ?解 已知多项式函数是连续函数? 所以函数f (x )在[0? 1)和(1? 2]内是连续的? 在x ?1处? 因为f (1)?1? 并且1lim )(lim 211==--→→x x f x x ? 1)2(lim )(lim 11=-=++→→x x f x x ?所以1)(lim 1=→x f x ? 从而函数f (x )在x ?1处是连续的?综上所述,函数f (x )在[0? 2]上是连续函数?(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f ?解 只需考察函数在x ??1和x ?1处的连续性? 在x ??1处? 因为f (?1)??1? 并且)1(11lim )(lim 11-≠==---→-→f x f x x ?)1(1lim )(lim 11-=-==++-→-→f x x f x x ?所以函数在x ??1处间断? 但右连续? 在x ?1处? 因为f (1)?1? 并且1lim )(lim 11==--→→x x f x x ?f (1)? 11lim )(lim 11==++→→x x x f ?f (1)?所以函数在x ?1处连续?综合上述讨论? 函数在(??? ?1)和(?1? ??)内连续? 在x ??1处间断? 但右连续?2? 下列函数在指出的点处间断? 说明这些间断点属于哪一类? 如果是可去间断点? 则补充或改变函数的定义使它连续?(1)23122+--=x x x y ? x ?1? x ?2? 解 )1)(2()1)(1(23122---+=+--=x x x x x x x y ? 因为函数在x ?2和x ?1处无定义? 所以x ?2和x ?1是函数的间断点?因为∞=+--=→→231lim lim 2222x x x y x x ? 所以x ?2是函数的第二类间断点?因为2)2()1(limlim 11-=-+=→→x x y x x ? 所以x ?1是函数的第一类间断点? 并且是可去间断点? 在x ?1处?令y ??2? 则函数在x ?1处成为连续的?(2)x x y tan =? x ?k ? 2ππ+=k x (k ?0? ?1? ?2? ? ? ?)?解 函数在点x ?k ?(k ?Z)和2ππ+=k x (k ?Z)处无定义? 因而这些点都是函数的间断点?因∞=→x x k x tan lim π(k ?0)? 故x ?k ?(k ?0)是第二类间断点?因为1tan lim0=→x x x ? 0tan lim2=+→xx k x ππ(k ?Z)? 所以x ?0和2 ππ+=k x (k ?Z) 是第一类间断点且是可去间断点?令y |x ?0?1? 则函数在x ?0处成为连续的?令2 ππ+=k x 时? y ?0? 则函数在2ππ+=k x 处成为连续的?(3)xy 1cos 2=? x ?0?解 因为函数x y 1cos 2=在x ?0处无定义? 所以x ?0是函数x y 1cos 2=的间断点? 又因为xx 1cos lim 20→不存在? 所以x ?0是函数的第二类间断点?(4)⎩⎨⎧>-≤-=1 311x x x x y ? x ?1?解 因为0)1(lim )(lim 11=-=--→→x x f x x ?2)3(lim )(lim 11=-=++→→x x f x x ? 所以x ?1是函数的第一类不可去间断点?3? 讨论函数x x x x f nnn 2211lim )(+-=∞→的连续性? 若有间断点? 判别其类型? 解 ⎪⎩⎪⎨⎧<=>-=+-=∞→1||1|| 01|| 11lim)(22x x x x x x x x x f nn n ? 在分段点x ??1处? 因为1)(lim )(lim 11=-=---→-→x x f x x ? 1lim )(lim 11-==++-→-→x x f x x ? 所以x ??1为函数的第一类不可去间断点?在分段点x ?1处? 因为1lim )(lim 11==--→→x x f x x ? 1)(lim )(lim 11-=-=++→→x x f x x ? 所以x ?1为函数的第一类不可去间断点?4? 证明? 若函数f (x )在点x 0连续且f (x 0)?0? 则存在x 0的某一邻域U (x 0)? 当x ?U (x 0)时? f (x )?0?证明 不妨设f (x 0)>0? 因为f (x )在x 0连续? 所以0)()(lim 00>=→x f x f x x ? 由极限的局部保号性定理? 存在x 0的某一去心邻域)(0x U ο? 使当x ?)(0x U ο时f (x )>0? 从而当x ?U (x 0)时? f (x )>0? 这就是说? 则存在x 0的某一邻域U (x 0)? 当x ?U (x 0)时? f (x )?0? 5? 试分别举出具有以下性质的函数f (x )的例子?(1)x ?0? ?1? ?2? 21±? ? ? ?? ?n ? n1±? ? ? ?是f (x )的所有间断点? 且它们都是无穷间断点?解 函数x x x f ππcsc )csc()(+=在点x ?0? ?1? ?2? 21±? ? ? ?? ?n ? n1±? ? ? ?处是间断的?且这些点是函数的无穷间断点?(2)f (x )在R 上处处不连续? 但|f (x )|在R 上处处连续?解 函数⎩⎨⎧∉∈-=Q Qx x x f 1 1)(在R 上处处不连续? 但|f (x )|?1在R 上处处连续?(3)f (x )在R 上处处有定义? 但仅在一点连续?解 函数⎩⎨⎧∉-∈=Q Qx x x x x f )(在R 上处处有定义? 它只在x ?0处连续?习题1?91? 求函数633)(223-+--+=x x x x x x f 的连续区间? 并求极限)(lim 0x f x →? )(lim 3x f x -→及)(lim 2x f x →? 解 )2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f ? 函数在(??? ??)内除点x ?2和x ??3外是连续的? 所以函数f (x )的连续区间为(??? ?3)、(?3? 2)、(2? ??)?在函数的连续点x ?0处? 21)0()(lim 0==→f x f x ?在函数的间断点x ?2和x ??3处? ∞=-++-+=→→)2)(3()1)(1)(3(lim)(lim 22x x x x x x f x x ? 582)1)(1(lim )(lim 33-=-+-=-→-→x x x x f x x ?2? 设函数f (x )与g (x )在点x 0连续? 证明函数?(x )?max{f (x )? g (x )}? ?(x )?min{f (x )? g (x )} 在点x 0也连续?证明 已知)()(lim 00x f x f x x =→? )()(lim 00x g x g x x =→?可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ?] |)()(|)()([21)(x g x f x g x f x --+=ψ?因此 ] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ?] |)()(|)()([21)(00000x g x f x g x f x --+=ψ?因为] |)()(|)()([210000x g x f x g x f -++=??(x 0)?所以?(x )在点x 0也连续?同理可证明?(x )在点x 0也连续? 3? 求下列极限? (1)52lim 20+-→x x x ?(2)34)2(sin lim x x π→?(3))2cos 2ln(lim 6x x π→?(4)xx x 11lim 0-+→?(5)145lim 1---→x x x x ?(6)a x a x a x --→sin sin lim ?(7))(lim 22x x x x x --++∞→?解 (1)因为函数52)(2+-=x x x f 是初等函数? f (x )在点x ?0有定义? 所以 55020)0(52lim 220=+⋅-==+-→f x x x ?(2)因为函数f (x )?(sin 2x )3是初等函数? f (x )在点4π=x 有定义? 所以1)42(sin )4()2(sin lim 334=⋅==→πππf x x ?(3)因为函数f (x )?ln(2cos2x )是初等函数? f (x )在点6π=x 有定义? 所以0)62cos 2ln()6()2cos 2ln(lim 6=⋅==→πππf x x ?(4))11(lim)11()11)(11(lim 11lim 000++=++++-+=-+→→→x x x x x x x x x x x x 211101111lim=++=++=→x x ?(5))45)(1()45)(45(lim 145lim 11x x x x x x x x x x x x +--+---=---→→)45)(1(44lim1x x x x x +---=→214154454lim 1=+-⋅=+-=→x x x ? (6)ax ax a x a x a x a x a x --+=--→→2sin 2cos 2limsin sin lim a a a a x ax a x a x a x cos 12cos 22sin lim2cos lim =⋅+=--⋅+=→→? (7))())((lim )(lim 22222222x x x x x x x x x x x x x x x x x x -++-++--+=--++∞→+∞→1)1111(2lim )(2lim 22=-++=-++=+∞→+∞→xx x x x x x x x ?4? 求下列极限? (1)xx e 1lim∞→?(2)x x x sin ln lim 0→?(3)2)11(lim xx x +∞→? (4)x x x 2cot 20)tan 31(lim +→?(5)21)63(lim -∞→++x x xx ? (6)xx x xx x -++-+→2sin 1sin 1tan 1lim?解 (1) 1lim 01lim 1===∞→∞→e ee xx x x ?(2) 01ln )sin lim ln(sin ln lim 00===→→x x xx x x ?(3) []e e xxx x xx ==+=+∞→∞→21212)11(lim)11(lim ?(4) []33tan 3120cot 2022)tan 31(lim)tan 31(lim e x x x x x x =+=+→→?(5)21633621)631()63(-+-⋅-+-+-+=++x x x x xx x ? 因为 e x x x =+-+-+∞→36)631(lim ? 232163lim -=-⋅+-∞→x x x ?所以2321)63(lim --∞→=++e xx x x ?(6))sin 1tan 1)(1sin 1()1sin 1)(sin 1tan 1(limsin 1sin 1tan 1lim 22020x x x x x x x x x x x x x x +++-++++-+=-++-+→→ 21)2(2lim 320=⋅=→xx x x ? 5? 设函数⎩⎨⎧≥+<=0 0)(x x a x e x f x ? 应当如何选择数a ? 使得f (x )成为在(??? ??)内的连续函数?解 要使函数f (x )在(??? ??)内连续? 只须f (x )在x ?0处连续? 即只须 a f x f x f x x ===+→-→)0()(lim )(lim 0?因为1lim )(lim 0==-→-→x x x e x f ? a x a x f x x =+=+→+→)(lim )(lim 00? 所以只须取a ?1?习题1?101? 证明方程x 5?3x ?1至少有一个根介于1和2之间?证明 设f (x )?x 5?3x ?1? 则f (x )是闭区间[1? 2]上的连续函数?因为f (1)??3? f (2)?25? f (1)f (2)?0? 所以由零点定理? 在(1? 2)内至少有一点? (1???2)? 使f (?)?0? 即x ?? 是方程x 5?3x ?1的介于1和2之间的根? 因此方程x 5?3x ?1至少有一个根介于1和2之间?2? 证明方程x ?a sin x ?b ? 其中a ?0? b ?0? 至少有一个正根? 并且它不超过a ?b ? 证明 设f (x )?a sin x ?b ?x ? 则f (x )是[0? a ?b ]上的连续函数? f (0)?b ? f (a ?b )?a sin (a ?b )?b ?(a ?b )?a [sin(a ?b )?1]?0?若f (a ?b )?0? 则说明x ?a ?b 就是方程x ?a sin x ?b 的一个不超过a ?b 的根?若f (a ?b )?0? 则f (0)f (a ?b )?0? 由零点定理? 至少存在一点??(0? a ?b )? 使f (?)?0? 这说明x ?? 也是方程x =a sin x ?b 的一个不超过a ?b 的根?。

高等数学同济第六版上_答案解析第七章

高等数学同济第六版上_答案解析第七章
^
于是
3 已知 M1(1 1 2)、M2(3 3 1)和 M3(3 1 3) 求与 M1M 2 、 M 2 M 3 同时垂直的单位向
轴 垂直于 xOy 面
u 上的投影
ww
(2)当 cos1 时 向量的方向与 y 轴的正向一致 垂直于 zOx 面 (3)当 coscos0 时 向量垂直于 x 轴和 y 轴 平行于 z 17 设向量 r 的模是 4 它与轴 u 的夹角是 60 求个学科的课后答案、视频教程在线浏览及下载。
解 设所求的点为 P(0 y z)与 A、B、C 等距离 则
| PA|2 32 ( y 1)2 ( z 2)2

由题意 有

| PA|2 | PB |2 | PC |2

解之得 y1 z2 故所求点为(0 1 2)
14 试证明以三点 A(4 1 9)、B(10 1 6)、C(2 4 3)为顶点 的三角形是等腰三角直角三角形
t
此文档由天天learn()为您收集整理。
关于 yOz 面的对称点为(a b c) 点(a b c)关于 zOx 面的对称点 为(a b c)
(2)点(a b c)关于 x 轴的对称点为(a b c) 点(a b c)关于 y 轴的对称点为(a b c) 点(a b c)关于 z 轴的对称点为(a b c) (3)点(a b c)关于坐标原点的对称点为(a b c) 9 自点 P0(x0 y0 z0)分别作各坐标面和各坐标轴的垂线 写 出各垂足的坐标
w.

tt
cos 1 cos 2 cos 1 2 2 2 2 3 3 3 4 16 设 向 量 的 方 向 余 弦 分 别 满 足 (1)cos0 (2)cos1 (3)coscos0 问这些向量与坐标轴或坐标面的关系如何?

(完整版)高等数学第六版(同济大学)上册课后习题答案解析

(完整版)高等数学第六版(同济大学)上册课后习题答案解析

高等数学第六版上册课后习题答案及解析第一章习题1—11. 设A=(-, —5)(5, +),B=[-10, 3), 写出A B,A B, A\B及A\(A\B)的表达式。

解A B=(-, 3)(5, +),A B=[-10,—5),A\B=(—, -10)(5, +),A\(A\B)=[-10, -5).2. 设A、B是任意两个集合,证明对偶律: (A B)C=A C B C。

证明因为x(A B)C x A B x A或x B x A C或x B C x A C B C,所以(A B)C=A C B C。

3. 设映射f : X Y, A X, B X。

证明(1)f(A B)=f(A)f(B);(2)f(A B)f(A)f(B).证明因为y f(A B)x A B, 使f(x)=y(因为x A或x B) y f(A)或y f(B)y f(A)f(B),所以f(A B)=f(A)f(B).(2)因为y f(A B)x A B, 使f(x)=y(因为x A且x B) y f(A)且y f(B)yf (A )f (B ),所以 f (A B )f (A )f (B )。

4。

设映射f : XY , 若存在一个映射g : Y X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个xX , 有I X x =x ; 对于每一个y Y , 有I Y y =y 。

证明:f 是双射, 且g 是f 的逆映射: g =f —1.证明 因为对于任意的yY , 有x =g (y )X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射. 又因为对于任意的x 1x 2, 必有f (x 1)f (x 2), 否则若f (x 1)=f (x 2)g [ f (x 1)]=g [f (x 2)]x 1=x 2。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档