四川省成都市高一下学期期末数学考试试卷(A卷)

合集下载

2022-2023学年四川省成都市高一下册学期期末数学试题【含答案】

2022-2023学年四川省成都市高一下册学期期末数学试题【含答案】

成都市2022-2023学年下学期第二次测评高一年级数学学科试题考试时间120分钟满分150分一、单选题:本大题共8小题,每小题5分,共40分12i12i -=+()A.-1B.i- C.43i 55- D.43i 55+2.化简PA PB AB -+所得的结果是()A.2ABB.2BAC.0D.PA3.已知4sin 5α=,则3πcos 2α⎛⎫+= ⎪⎝⎭()A.35B.35-C.45D.45-4.下列化简不正确的是()A.1cos82sin 52sin 82cos1282︒︒+︒︒=-B.1sin15sin 30sin 758︒︒︒=C.223cos 15sin 152︒-︒=D.tan 48tan 7231tan 48tan 72︒+︒=-︒︒5.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =2,b =3,π3B =,则角A 为()A.3π4B.π3C.π4D.π4或3π46.“石龙对石虎,金银万万五,谁能识得破,买进成都府”.这个民谣在彭山地区流传了三百多年,2020年彭山江口沉银遗址水下考古取得重大突破,出水文物超过10000件,实证确认了“张献忠江口沉银”以及“木鞘藏金”的传说“木鞘藏金”指的是可视为圆柱的木料内放置了一个可视为球体的金疙瘩,这个金疙瘩与木料的底面和侧面都相切,则这个金疙瘩的体积与该木鞘(这个圆柱体)的体积之比为()A.13B.23C.15D.257.如图,在正方体ABCD A B C D -''''中,E 、F 分别为棱CC '、AB 的中点,则异面直线A D ''与EF 所成角的余弦值是()A.63B.33C.22D.128.已知函数()44cos 2sin cos sin f x x x x x =--,则()f x 的最小正周期为()A.2πB.πC.2π D.4π二、多选题:本大题共4小题,每小题5分,共20分9.已知复数ππsini cos 66z =+,则()A.z 的虚部为3i 2B.z 在复平面内对应的点在第四象限C.z z z+= D.z 是关于x 的方程210x x -+=的一个根10.已知空间中,a b 是两条不同的直线,,αβ是两个不同的平面,则下列命题不正确的是()A.,a b a b αα⊥⊥⇒∥B.,a a b b αα⊥⊥⇒∥C.,,a b a αβαβ⊂⊂⇒∥与b 异面D.,,b a b a βααββ⊥⋂=⊥⇒⊥11.下列四个命题为真命题的是()A.若向量a 、b 、c ,满足//a b r r ,//b c,则//a cr r B.若向量()1,3a =- ,()2,6b =r ,则a 、b可作为平面向量的一组基底C.若向量()5,0a = ,()4,3b = ,则a 在b 上的投影向量为1612,55⎛⎫ ⎪⎝⎭D.若向量m 、n满足2m = ,3n = ,3m n ⋅= ,则7m n +=12.已知圆锥顶点为S ,高为1,底面圆O 的直径AB 长为22.若C 为底面圆周上不同于,A B 的任意一点,则下列说法中正确的是()A.圆锥SO 的侧面积为62πB.SAC 面积的最大值为32C.圆锥SO 的外接球的表面积为9πD.若AC BC =,E 为线段AC 上的动点,则SE BE +的最小值为742+三、填空题:本大题共4小题,每小题5分,共20分13.已知tan 5α=,则224sin 3sin cos 4cos sin cos αααααα+=-____________.14.如图,在梯形ABCD 中,AD BC ∥,AB BC ⊥,1AD =,2AB =,3BC =,M ,N 分别为CD ,AD 的中点,则BM BN ⋅=______.15.如图所示,要在两山顶M N 、间建一索道,需测量两山顶M N 、间的距离.已知两山的海拔高度分别是1003MC =米和502NB =米,现选择海平面上一点A 为观测点,从A 点测得M 点的仰角60MAC ∠=︒,点N 的仰角30NAB ∠=︒以及45MAN ∠=︒,则MN 等于_________米.16.已知直四棱柱1111ABCD A B C D -,13,2,1,60AA AB AD BAD ∠====,底面ABCD 为平行四边形,侧棱1AA ⊥底面ABCD ,以1D 为球心,半径为2的球面与侧面11BCC B 的交线的长度为___________.四、解答题:本大题共6小题,共70分.其中17题10分,其余各题12分,解答应写出文字说明,证明过程或演算步骤17.已知4a = ,8b = ,a 与b 的夹角为2π3.(1)求a b -;(2)当k 为何值时,()()2a b ka b +⊥- .18.如图四边形ABCD 是矩形,AB ⊥平面BCE ,BE EC ⊥,点F 为线段BE 的中点.(1)求证:CE ⊥平面ABE ;(2)求证://DE 平面ACF .19.已知函数()() sin (00π)f x A x A ωϕωϕ=+>><,,的部分图像如图所示.(1)求()f x 的解析式及对称中心;(2)先将()f x 的图像纵坐标缩短到原来的12倍,再向右平移π12个单位后得到()g x 的图像,求函数()y g x =在π3π124x ⎡⎤∈⎢⎥⎣⎦,上的单调减区间.20.如图,三棱柱111ABC A B C -中,111A B C △与11AB C △均是边长为2的正三角形,且16AA =.(1)证明:平面11AB C ⊥平面111A B C ;(2)求四棱锥11A BB C C -的体积.21.第31届世界大学生夏季运动会将于2022年6月在成都举行,需规划公路自行车比赛赛道,该赛道的平面示意图为五边形ABCDE (如图),根据自行车比赛的需要,需预留出AC ,AD 两条服务车道(不考虑宽度),DC ,CB ,BA ,AE ,ED 为赛道,已知23ABC AED π∠=∠=,3cos 5CAD ∠=,23km =BC ,42km =CD ,______.(注:km 为千米)请从①4BAC π∠=;②()33km =-AB 这两个条件中任选一个,补充在题干中,然后解答补充完整的问题.(1)求服务通道AD 的长;(2)在(1)的条件下,求折线赛道AED 的最大值(即AE ED +最大).注:如果选择两个条件解答,按第一个解答计分.22.已知a b c ,,分别为ABC 三个内角A B C ,,的对边,222cos cos 1cos A C B +=+且1b =,(1)求B ;(2)若12AB AC ⋅< ,求11a c+的取值范围;(3)若O 为ABC 的外接圆,若PM PN 、分别切O 于点M N 、,求PM PN ⋅的最小值.成都市2022-2023学年下学期第二次测评高一年级数学学科试题考试时间120分钟满分150分一、单选题:本大题共8小题,每小题5分,共40分1.2i12i -=+()A.-1B.i- C.43i 55- D.43i 55+B【分析】由复数的除法法则求解即可【详解】()()()()2i 12i 2i 5ii 12i 12i 12i 5----===-++-,故选:B2.化简PA PB AB -+所得的结果是()A.2ABB.2BAC.0D.PAC【分析】根据向量加,减法运算,即可化简.【详解】0PA PB AB PA AB PB P P B B -++=-=-=.故选:C 3.已知4sin 5α=,则3πcos 2α⎛⎫+= ⎪⎝⎭()A 35B.35-C.45D.45-C【分析】直接利用诱导公式求解.【详解】由题得3π4cos sin 25αα⎛⎫+== ⎪⎝⎭.故选:C4.下列化简不正确的是()A.1cos82sin 52sin 82cos1282︒︒+︒︒=-B.1sin15sin 30sin 758︒︒︒=C.223cos 15sin 152︒-︒= D.tan 48tan 7231tan 48tan 72︒+︒=-︒︒D【分析】利用三角恒等变换的知识进行化简,从而确定正确答案.【详解】A 选项,cos82sin 52sin82cos128︒︒︒+︒()cos82sin 52sin 82co 18052s =︒︒︒︒-+︒cos82sin 52si 5s 2n82co -=︒︒︒︒()sin 528i 0221s n 3=︒︒=-︒=--,所以A 选项正确.B 选项,sin15sin 30sin 75︒︒︒()1111sin15sin 9015sin15cos15sin 302248=︒︒-︒=︒︒=︒=,B 选项正确.C 选项,223cos 15sin 15cos302︒-︒=︒=,C 选项正确.D 选项,()tan 48tan 72tan 4872tan12031tan 48tan 72︒+︒=︒+︒=︒=--︒︒,D 选项错误.故选:D5.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =2,b =3,π3B =,则角A 为()A.3π4B.π3C.π4D.π4或3π4C【分析】由正弦定理即可求解.【详解】由正弦定理sin sin a bA B=,得π2sinsin 23sin 23a B A b===,又a b <,所以A B <,所以A 为锐角,所以π4A =.故选:C .6.“石龙对石虎,金银万万五,谁能识得破,买进成都府”.这个民谣在彭山地区流传了三百多年,2020年彭山江口沉银遗址水下考古取得重大突破,出水文物超过10000件,实证确认了“张献忠江口沉银”以及“木鞘藏金”的传说“木鞘藏金”指的是可视为圆柱的木料内放置了一个可视为球体的金疙瘩,这个金疙瘩与木料的底面和侧面都相切,则这个金疙瘩的体积与该木鞘(这个圆柱体)的体积之比为()A.13B.23C.15D.25B【分析】设球的半径为r ,结合组合体的特征,利用圆柱和球的体积公式,求得圆柱和球的体积,即可求解.【详解】由题意,圆柱的木料内放置了一个可视为球体与木料的底面和侧面都相切,设内切球的半径为r ,可得343V r π=球,2322V r r r ππ=⋅=圆柱,所以23V V =球圆柱.故选:B.7.如图,在正方体ABCD A B C D -''''中,E 、F 分别为棱CC '、AB 的中点,则异面直线A D ''与EF 所成角的余弦值是()A.63B.33C.22D.12A【分析】取CD 的中点G ,连接EG 、FG ,设正方体ABCD A B C D -''''的棱长为2,分析可知直线A D ''与EF 所成角为EFG ∠或其补角,计算出FG 、EF 的长,即可求得EFG ∠的余弦值.【详解】取CD 的中点G ,连接EG 、FG ,设正方体ABCD A B C D -''''的棱长为2,因为四边形ABCD 为正方形,则//AB CD 且2AB CD ==,F 、G 分别为AB 、CD 的中点,则//AF DG 且AFDG =,所以,四边形ADGF 为平行四边形,故//FG AD 且2FG AD ==,因为//A D AD '',//A D FG ''∴,故直线A D ''与EF 所成角为EFG ∠或其补角,AD ⊥ 平面CDD C '',EG ⊂平面CDD C '',则AD EG ⊥,故FG EG ⊥,因为222EG CE CG =+=,226EF FG EG ∴=+=,所以,26cos 36FG EFG EF ∠===.因此,直线A D ''与EF 所成角的余弦值是63.故选:A.8.已知函数()44cos 2sin cos sin f x x x x x =--,则()f x 的最小正周期为()A.2π B.πC.2π D.4πB【分析】利用平方关系、降幂及辅助角公式可得()2cos(2)4f x x π=+,根据三角函数性质求最小正周期.【详解】由题设,44()(cos sin )2sin cos cos 2sin 22cos(2)4f x x x x x x x x π=--=-=+,所以最小正周期为22T ππ==.故选:B二、多选题:本大题共4小题,每小题5分,共20分9.已知复数ππsini cos 66z =+,则()A.z 的虚部为3i 2B.z 在复平面内对应的点在第四象限C.z z z +=D.z 是关于x 的方程210x x -+=的一个根BCD【分析】把复数化成13i 22z =+,利用复数的意义判断A ;求出z 、||z 判断BC ;利用复数的四则运算计算判断D 作答.【详解】依题意,复数13i 22z =+,复数z 的虚部为32,A 错误;13i 22z =-在复平面内对应的点13(,)22-在第四象限,B 正确;2213||()()122z =+=,1313(i)(i)12222z z +=++-=,则z z z +=,C 正确;22131313131(i)(i)1(i)i+1022222222z z -+=+-++=-+--=,即z 是关于x 的方程210x x -+=的一个根,D 正确.故选:BCD10.已知空间中,a b 是两条不同的直线,,αβ是两个不同的平面,则下列命题不正确的是()A.,a b a b αα⊥⊥⇒∥B.,a a b b αα⊥⊥⇒∥C.,,a b a αβαβ⊂⊂⇒∥与b 异面D.,,b a b a βααββ⊥⋂=⊥⇒⊥BCD【分析】根据空间中的线与平面,以及平面与平面的位置关系即可逐一判断.【详解】A :由垂直于同一平面的两直线平行,可知A 正确;B :由a α⊥,a b ⊥r r可得b α∥或者b α⊂,故B 错误;C :由a α⊂,b β⊂,αβ∥可得a 与b 异面或//a b ,故C 错误;D :由βα⊥,b αβ= ,a b ⊥r r,当a α⊄时,不能得到a β⊥,只有当a α⊂时,才可以得到a β⊥,故D 错误.故选:BCD11.下列四个命题为真命题的是()A.若向量a 、b 、c ,满足//a b r r ,//b c,则//a cr r B.若向量()1,3a =- ,()2,6b =r ,则a 、b可作为平面向量的一组基底C.若向量()5,0a = ,()4,3b = ,则a 在b 上的投影向量为1612,55⎛⎫⎪⎝⎭D.若向量m 、n满足2m = ,3n = ,3m n ⋅= ,则7m n += BC【分析】取0b =,可判断A 选项;利用基底的概念可判断B 选项;利用投影向量的概念可判断C 选项;利用平面向量数量积的运算性质可判断D 选项.【详解】对于A 选项,若0b = 且//a b r r ,//b c ,则a 、c不一定共线,A 错;对于B 选项,若向量()1,3a =- ,()2,6b =r ,则()1623⨯≠⨯-,则a 、b不共线,所以,a 、b可作为平面向量的一组基底,B 对;对于C 选项,因为向量()5,0a = ,()4,3b =,所以,a 在b上的投影向量为()2220cos ,4,325b a b a b a a b a b b b a b b⋅⋅⋅=⋅⋅=⋅=⋅1612,55⎛⎫= ⎪⎝⎭,C 对;对于D 选项,因为向量m 、n满足2m = ,3n = ,3m n ⋅= ,则()2222492319m n m nm n m n +=+=++⋅=++⨯=,D 错.故选:BC.12.已知圆锥顶点为S ,高为1,底面圆O 的直径AB 长为22.若C 为底面圆周上不同于,A B 的任意一点,则下列说法中正确的是()A.圆锥SO 的侧面积为62πB.SAC 面积的最大值为32C.圆锥SO 的外接球的表面积为9πD.若AC BC =,E 为线段AC 上的动点,则SE BE +的最小值为742+BCD【分析】对A :根据圆锥的侧面积公式分析运算;对B :根据题意结合三角形的面积公式分析运算;对C :根据题意可得圆锥SO 的外接球即为SAB △的外接圆,利用正弦定理求三角形的外接圆半径,即可得结果;对D :将平面ABC 与平面SAC 展开为一个平面,当,,S E B 三点共线时,SE BE +取到最小值,结合余弦定理分析运算.【详解】对A :由题意可知:222,1,3OA OB SO SA SB SC SO OB ======+=,故圆锥SO 的侧面积为π236π⨯⨯=,A 错误;对B :SAC 面积113sin 33sin sin 222SAC S SA SC ASC ASC ASC =⋅⋅∠=⨯⨯⨯∠=∠ ,在SAB △中,2223381cos 023233SA SB AB ASB SA SB +-+-∠===-<⋅⨯⨯,故ASB ∠为钝角,由题意可得:0ASC ASB <∠<∠,故当π2ASC ∠=时,SAC 面积的最大值为33sin 22ASC ∠=,B 正确;对C :由选项B 可得:1cos 3ASB ∠=-,SAB ∠为钝角,可得222sin 1cos 3SAB SAB ∠=-∠=,由题意可得:圆锥SO 的外接球即为SAB △的外接圆,设其半径为R ,则2223sin 223AB R ASB ===∠,即32R =;故圆锥SO 的外接球的表面积为234π9π2⎛⎫⨯= ⎪⎝⎭,C 正确;对D :将平面ABC 与平面SAC 展开为一个平面,如图所示,当,,S E B 三点共线时,SE BE +取到最小值,此时π2,2AC BC ACB ==∠=,在SAC ,2224333cos 023223AC SC AS ACS AC SC +-+-∠===>⋅⨯⨯,则ACS ∠为锐角,则26sin 1cos 3ACS ACS ∠=-∠=,在SBC △,则()π6cos cos cos sin 23SCB SCA ACB SCA ACS ⎛⎫∠=∠+∠=∠+=-∠=- ⎪⎝⎭,由余弦定理可得22262cos 342327423SB SC BC SC BC SCB ⎛⎫=+-⋅⋅∠=+-⨯⨯⨯-=+ ⎪ ⎪⎝⎭,则742SB =+,故SE BE +的最小值为742+,D 正确.故选:BCD.三、填空题:本大题共4小题,每小题5分,共20分13.已知tan 5α=,则224sin 3sin cos 4cos sin cos αααααα+=-____________.115-【分析】将分式的分子和分母同时除以2cos α,化简求值即可.【详解】tan 5α =,2224sin 3sin cos 4tan 3tan 425351154cos sin cos 4tan 45ααααααααα++⨯+⨯∴===----故115-14.如图,在梯形ABCD 中,AD BC ∥,AB BC ⊥,1AD =,2AB =,3BC =,M ,N 分别为CD ,AD 的中点,则BM BN ⋅=______.3【分析】建立平面直角坐标系,利用向量数量积的坐标表示可得.【详解】如图,分别以BC ,BA 所在直线为x 轴,y 轴建立直角坐标系,由题意,(0,0),(0,2),(1,2),(3,0)B A D C ,M ,N 分别为CD ,AD 的中点,所以1(2,1),(,2)2M N ,所以1(2,1),(,2)2BM BN == ,所以121232BM BN ⋅=⨯+⨯= ,故315.如图所示,要在两山顶M N 、间建一索道,需测量两山顶M N 、间的距离.已知两山的海拔高度分别是1003MC =米和502NB =米,现选择海平面上一点A 为观测点,从A 点测得M 点的仰角60MAC ∠=︒,点N 的仰角30NAB ∠=︒以及45MAN ∠=︒,则MN 等于_________米.1002【分析】先求得,AM AN ,再利用余弦定理求得MN .【详解】10031003sin 60,200sin 60AM AM ︒===︒,502502sin 30,1002sin 30AN AN ︒===︒,在三角形AMN 中,由余弦定理得()()22200100222001002cos 45MN =+-⨯⨯⨯︒1002=米.故100216.已知直四棱柱1111ABCD A B C D -,13,2,1,60AA AB AD BAD ∠====,底面ABCD 为平行四边形,侧棱1AA ⊥底面ABCD ,以1D 为球心,半径为2的球面与侧面11BCC B 的交线的长度为___________.π2【分析】根据已知,结合图形,利用弧长公式、勾股定理、线面垂直计算求解.【详解】如图,连接11D B ,直四棱柱1111ABCD A B C D -,2,1,60AB AD BAD ∠=== ,所以11111112,1,60C D B C B C D ∠===,在111B C D △中,由余弦定理有:22211111111112cos 60D B C D C B C D C B =+-⋅ ,代入数据,解得113D B =,所以222111111D B C B C D +=,即1111D B C B ⊥,又111BB D B ⊥,1111BB C B B = ,所以11D B ⊥平面11BCC B ,在平面11BCC B 上,以点1B 为圆心,作半径为1的圆,交棱11,BB CC 于点1,M C ,得到弧 1MC ,在 1MC 上任取一点与11,B D 都构成直角三角形,根据勾股定理可知弧 1MC 上任取一点到点1D 的长度为2,所以以1D 为球心,半径为2的球面与侧面11BCC B 的交线的长度为弧 1MC 的长,因为11π2BB C ∠=,所以根据弧长公式有:弧 1MC 的长度为ππ122⨯=.故答案为π2四、解答题:本大题共6小题,共70分.其中17题10分,其余各题12分,解答应写出文字说明,证明过程或演算步骤17.已知4a = ,8b = ,a 与b 的夹角为2π3.(1)求a b -;(2)当k 为何值时,()()2a b ka b +⊥- .(1)47a b -=(2)7k =-【分析】(1)利用平面向量数量积的运算性质可求得a b -的值;(2)由已知可得出()()20a b ka b +⋅-=,利用平面向量数量积的运算性质可求得实数k 的值.【小问1详解】解:因为4a = ,8b = ,a 与b 的夹角为2π3,则2π1cos 481632a b a b ⎛⎫⋅=⋅=⨯⨯-=- ⎪⎝⎭,所以,()()2222224216847a b a ba ab b -=-=-⋅+=-⨯-+=.【小问2详解】解:因为()()2a b ka b +⊥-,则()()()222212a b ka b ka k a b b+⋅-=+-⋅- ()161621264161120k k k =---⨯=--=,解得7k =-.18.如图四边形ABCD 是矩形,AB ⊥平面BCE ,BE EC⊥,点F 为线段BE 的中点.(1)求证:CE ⊥平面ABE ;(2)求证://DE 平面ACF .(1)证明见解析(2)证明见解析【分析】(1)利用线面垂直的判定定理可得答案;(2)连接BD 交AC 于O 点,连接FO ,由中位线定理可得//FO DE ,再由线面平行的判定定理可得答案.【小问1详解】因为AB ⊥平面BCE ,EC ⊂平面BCE ,所以AB EC ⊥,因为BE EC ⊥,AB BE B = ,、⊂AB BE 平面ABE ,所以CE ⊥平面ABE ;连接BD 交AC 于O 点,连接FO ,所以O 点为BD 中点,因为点F 为线段BE 的中点,所以//FO DE ,因为FO ⊂平面ACF ,DE ⊄平面ACF ,所以//DE 平面ACF .19.已知函数()()sin (00π)f x A x A ωϕωϕ=+>><,,的部分图像如图所示.(1)求()f x 的解析式及对称中心;(2)先将()f x 的图像纵坐标缩短到原来的12倍,再向右平移π12个单位后得到()g x 的图像,求函数()y g x =在π3π124x ⎡⎤∈⎢⎥⎣⎦,上的单调减区间.(1)()π2sin 23f x x ⎛⎫=-⎪⎝⎭,对称中心为ππ023k ⎛⎫- ⎪⎝⎭,,Z k ∈(2)π3π24⎡⎤⎢⎥⎣⎦,【分析】(1)由函数的图像的顶点坐标求出A ,由周期求出ω,由五点法作图求出ϕ的值,可得()f x 的解析式,再利用三角函数的图像得出对称中心.(2)由题意利用函数()()sin f x A x =+ωϕ的图像变换规律,求得()g x 的解析式,再利用余弦函数的单调性得出结论.根据函数()()sin (00π)f x A x A ωϕωϕ=+>><,,的部分图像,可得2A =,32π5π4123πω⋅=+,2ω∴=.再根据五点法作图,5ππ2122ϕ⨯+=,π3ϕ∴=-,故有()π2sin 23f x x ⎛⎫=-⎪⎝⎭.根据图像可得,0π3⎛⎫- ⎪⎝⎭,是()f x 的图像的一个对称中心,故函数的对称中心为ππ023k ⎛⎫- ⎪⎝⎭,,Z k ∈.【小问2详解】先将()f x 的图像纵坐标缩短到原来的12,可得πsin 23y x ⎛⎫=- ⎪⎝⎭的图像,再向右平移12π个单位,得到sin 2sin 2cos 212π32ππy x x x ⎡⎤⎛⎫⎛⎫=--=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图像,即()cos 2g x x =-,令2ππ22πk x k -≤≤,Z k ∈,解得πππ2k x k -≤≤,Z k ∈,可得()g x 的减区间为πππ2k k ⎡⎤-⎢⎥⎣⎦,,Z k ∈,结合π3π124x ⎡⎤∈⎢⎥⎣⎦,,可得()g x 在4π312π⎡⎤⎢⎥⎣⎦,上的单调递减区间为π3π24⎡⎤⎢⎥⎣⎦,.20.如图,三棱柱111ABC A B C -中,111A B C △与11AB C △均是边长为2的正三角形,且16AA =.(1)证明:平面11AB C ⊥平面111A B C ;(2)求四棱锥11A BB C C -的体积.(1)证明见解析(2)2【分析】(1)取11B C 的中点O ,连接AO ,1A O ,利用勾股定理证明1AO AO ⊥,易得1AO ⊥平面111A B C ,再根据面面垂直判定定理即可证明;(2)由(1)可证明AO 为三棱柱的高,利用同底等高的椎体与柱体的关系,通过割补法即可求解.【小问1详解】取11B C 的中点O ,连接AO ,1A O .∵111A B C △与11AB C △均是边长为2的正三角形,∴11AO B C ⊥,111AO B C ⊥,13AO AO ==.∴1AOA ∠为二面角111A B C A --的平面角.∵16AA =,∴22211A O AO A A +=,∴1AO AO ⊥.因为1AO AO ⊥,111AO B C ⊥,11O AO B C ⋂=,11,AO B C ⊂平面11AB C 所以1AO ⊥平面111A B C ,又1A O ⊂平面111A B C ,∴平面11AB C ⊥平面111A B C .【小问2详解】111111111112A BB C C ABC A B C A A B C A A B C V V V V ----=-=由(1)知,1AO AO ⊥,11AO B C ⊥.∵111AO B C O ⋂=,11B C ⊂平面111A B C ,1A O ⊂平面111A B C ,∴AO ⊥平面111A B C .∴AO 为三棱锥111A A B C -的高.∴111111113431334A ABC A B C V S AO -=⨯⨯=⨯⨯⨯= .∴四棱锥11A BB C C -的体积为2.21.第31届世界大学生夏季运动会将于2022年6月在成都举行,需规划公路自行车比赛赛道,该赛道的平面示意图为五边形ABCDE (如图),根据自行车比赛的需要,需预留出AC ,AD 两条服务车道(不考虑宽度),DC ,CB ,BA ,AE ,ED 为赛道,已知23ABC AED π∠=∠=,3cos 5CAD ∠=,23km =BC ,42km =CD ,______.(注:km 为千米)请从①4BAC π∠=;②()33km =-AB 这两个条件中任选一个,补充在题干中,然后解答补充完整的问题.(1)求服务通道AD 的长;(2)在(1)的条件下,求折线赛道AED 的最大值(即AE ED +最大).注:如果选择两个条件解答,按第一个解答计分.(1)52km(2)106km 3【分析】(1)选择条件①由正弦定理得32AC =,选择条件②由余弦定理得32AC =,再结合余弦定理可得AD 的长;(2)根据余弦定理结合均值不等式即可求角线段和最大值.【小问1详解】解:若选择条件①,在△ABC 中,由正弦定理得:sin sin AC BC ABC BAC =∠∠,即232sin sin 34=AC ππ,解得32AC =;若选择条件②,在△ABC 中,由余弦定理得:2222cos AC AB BC AB BC ABC=+-⋅⋅∠即()()()()2222332323323cos 183=-+-⨯-⨯⋅=AC π解得32AC =;在△ACD 中,由余弦定理得2222cos CD AD AC AC AD CAD =+-⋅⋅∠,即()()222342322325=+-⨯⨯AD AD 解得52AD =或725=-AD (舍去)∴服务通道AD 的长为52km .【小问2详解】在△ADE 中,由余弦定理得:2222cos =+-⋅⋅∠AD AE ED AE DE AED ,∴()22252AE ED AE DE =++⋅,即()250AE ED AE ED =+-⋅,∵22AE ED AE ED +⎛⎫⋅≤ ⎪⎝⎭,∴()23504+≤AE ED ,∴1063+≤AE ED (当且仅当563AE ED ==时取等号)∴折线赛道AED 的最大值为106km 3.22.已知a b c ,,分别为ABC 三个内角A B C ,,的对边,222cos cos 1cos A C B +=+且1b =,(1)求B ;(2)若12AB AC ⋅< ,求11a c+的取值范围;(3)若O 为ABC 的外接圆,若PM PN 、分别切O 于点M N 、,求PM PN ⋅的最小值.(1)2B π=;(2)()22,+∞;(3)2324-.【分析】(1)由题目条件可证得222sin sin sin A C B +=,可得ABC 为直角三角形,可求出2B π=.(2)由数量积的定义可求得2102c <<,设sin ,cos ,0,4c a πθθθ⎛⎫==∈ ⎪⎝⎭,则11sin cos sin cos a c θθθθ++=,令()sin cos 2sin ,1,24t t πθθθ⎛⎫=+=+∈ ⎪⎝⎭,则()21122,1,211t t a c t t t +==∈--,判断出21y t t =-的单调性,即可得出答案.(3)用PO 分别表示出PM PN ⋅ ,结合均值不等式即可求出答案.【小问1详解】因为222cos cos 1cos A C B +=+,则2221sin 1sin 11sin A C B -+-=+-,所以222sin sin sin A C B +=,则222a c b +=,所以ABC 为直角三角形,所以2B π=.【小问2详解】221cos 2AB AC AB AC A AB c ⋅=⋅⋅==< ,所以2102c <<,而221a c +=,所以设sin ,cos ,0,4c a πθθθ⎛⎫==∈ ⎪⎝⎭,所以1111sin cos sin cos sin cos a c θθθθθθ++=+=,令()sin cos 2sin ,1,24t t πθθθ⎛⎫=+=+∈ ⎪⎝⎭,又因为()22sin cos 12sin cos ,t θθθθ=+=+所以21sin cos 2t θθ-=,所以()2112,1,21t t a c t +=∈-,令()222,1,211t y t t t t ==∈--,因为1t t -在()1,2t ∈上单调递增,所以21y t t =-在()1,2t ∈上单调递减,所以222122y >=-.所以11a c +的取值范围为()22,+∞【小问3详解】ABC 的外接圆的半径为r ,12r OA OC ===,设(),P m n ,则2222214PN PM PO ON PO ==-=-,其中214PO >,所以()2cos ,2cos 1PM PN PM PN PM PN PM PN NPO ⋅=⋅⋅=⋅⋅∠- ,而2222214cos PO PN NPO PO PO -∠==,222114214PO PM PN PO PO ⎛⎫- ⎪⎛⎫⋅=-⋅- ⎪ ⎪⎝⎭ ⎪⎝⎭2213238424PO PO +-≥-=,当且仅当342PO -=取等.所以PM PN ⋅ 的最小值为2324-.关键点点睛:本题考查向量相关的取值范围问题,考查面较广,涉及了基本不等式、函数值域、正弦定理、三角函数等,需要对知识掌握熟练且灵活运用.考查学生的运算能力和逻辑推理能力,属于难题.。

四川省成都市高一下学期期末数学考试试卷(A卷)

四川省成都市高一下学期期末数学考试试卷(A卷)

四川省成都市高一下学期期末数学考试试卷(A卷)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)三位七进制的数表示的最大的十进制的数是()A . 322B . 402C . 342D . 3652. (2分)用秦九韶算法计算函数f(x)=2x4+3x3+5x﹣4,当x=2时的函数值为()A . 58B . 60C . 62D . 643. (2分)某校共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()A . 24B . 18C . 16D . 124. (2分) (2019高二下·海珠期末) 某射手每次射击击中目标的概率为,这名射手进行了10次射击,设为击中目标的次数,,,则 =()A .B .C .D .5. (2分)已知一扇形的圆心角的弧度数为2,其弧长也是2,则该扇形的面积为()A . 1B . 2C . sin1D . 2sin16. (2分) (2017高二下·眉山期中) 已知函数f(x)= x3﹣(a﹣1)x2+b2x,其中a∈{1,2,3,4},b∈{1,2,3},则函数f(x)在R上是增函数的概率为()A .B .C .D .7. (2分)(2018·郑州模拟) 我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛(河南初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数满足成等差数列且成等比数列,则的最小值为()A .B .C .D . 98. (2分) (2019高三上·临沂期中) 将函数y=2sin(2x﹣)的图象向左平移个单位长度,所得图象的一个对称中心为()A . (,0)B . (,0)C . (,0)D . (,0)9. (2分)(2017·贵港模拟) 若3sinα+cosα=0,则的值为()A .B .C .D . ﹣210. (2分)(2019·河北模拟) 已知向量,满足,,且在方向上的投影是,则实数()A .B .C . 2D .11. (2分)(2020·奉贤模拟) 如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线,终边为射线,过点P作直线的垂线,垂足为M,将点M到直线的距离表示成x的函数,则在上的图象大致为()A .B .C .D .12. (2分)(2014·广东理) 已知向量 =(1,0,﹣1),则下列向量中与成60°夹角的是()A . (﹣1,1,0)B . (1,﹣1,0)C . (0,﹣1,1)D . (﹣1,0,1)二、填空题 (共8题;共9分)13. (1分) (2017高一下·珠海期末) 使用辗转相除法,得到315和168的最大公约数是________.14. (1分) (2016高二下·宝坻期末) 已知tanα=2,tan(α+β)=﹣1,则tanβ=________.15. (1分)如图程序框图输出的结果为________ .16. (1分) (2016高二下·姜堰期中) 如图,边长为2的正方形内有一不规则阴影部分,随机向正方形内投入200粒芝麻,恰好60粒落入阴影部分,则不规则图形的面积为________.17. (1分) (2016高三上·六合期中) 设函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣<φ<,x∈R)的部分图象如图所示.则A+ω+φ=________.18. (2分)某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图,每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500)①根据频率分布直方图算出样本数据的中位数为________②为了分析居民的收入与年龄、职业等方面的关系,按月收入从这10 000人中用分层抽样方法抽出100人作进一步分析,则应在月收入为[2500,3000)的人中抽取________人.19. (1分) (2020高一上·合肥期末) 若,,,,则 ________.20. (1分) (2017高一上·淮安期末) 如图,在△ABC中,已知 = ,P是BN上一点,若,则实数m的值是________.三、解答题 (共5题;共55分)21. (10分) (2019高一下·吉林期末) 已知向量,,且.(1)求及;(2)求函数的最大值,并求使函数取得最大值时的值22. (15分) (2019高一下·东莞期末) 东莞市公交公司为了方便广大市民出行,科学规划公交车辆的投放,计划在某个人员密集流动地段增设一个起点站,为了研究车辆发车的间隔时间与乘客等候人数y之间的关系,选取一天中的六个不同的时段进行抽样调查,经过统计得到如下数据:间隔时间(分钟)81012141618等候人数(人)161923262933调查小组先从这6组数据中选取其中的4组数据求得线性回归方程,再用剩下的2组数据进行检验,检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数y的差,若两组差值的绝对值均不超过1,则称所求的回归方程是“理想回归方程”.参考公式:用最小二乘法求线性回归方程的系数公式:,(1)若选取的是前4组数据,求y关于x的线性回归方程;(2)判断(1)中的方程是否是“理想回归方程”:(3)为了使等候的乘客不超过38人,试用(1)中方程估计间隔时间最多可以设置为多少分钟?23. (10分) (2019高二上·南宁期中) 如图,在三角形中,,的角平分线交于,设,且.(1)求和的值;(2)若,求的长.24. (10分) (2019高二下·盐城期末) 某超市在节日期间进行有奖促销,凡在该超市购物满元的顾客,将获得一次摸奖机会,规则如下:一个袋子装有只形状和大小均相同的玻璃球,其中两只是红色,三只是绿色,顾客从袋子中一次摸出两只球,若两只球都是红色,则奖励元;共两只球都是绿色,则奖励元;若两只球颜色不同,则不奖励.(1)求一名顾客在一次摸奖活动中获得元的概率;(2)记为两名顾客参与该摸奖活动获得的奖励总数额,求随机变量的分布列和数学期望.25. (10分) (2018高一下·山西期中) 已知向量,,设函数.(1)求函数的单调递增区间;(2)若,求的值.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共8题;共9分)答案:13-1、解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、解答题 (共5题;共55分)答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:。

四川省成都市第七中学2023-2024学年高一下学期期末考试数学试卷

四川省成都市第七中学2023-2024学年高一下学期期末考试数学试卷

成都七中高 2026 届高一下期期末考试数学试题一. 单项选择题: 本大题共 8 小题, 每小题 5 分, 共计 40 分. 每小题给出的四个选项中, 只有一项是符合题目要求的.1. 若z=2−i ,则|z−z|=() .A. √2B. 2iC. 2D. 42. 若|a⃗|=2,a⃗与b⃗⃗夹角为60∘ ,且b⃗⃗⊥(a⃗−b⃗⃗) ,则|b⃗⃗|=().A. √32B. 1C. √3D. 23. 已知tanα=2,α为锐角,则sin(α+π4)=() .A. −√1010B. √1010C. −3√1010D. 3√10104. 将函数f(x)=sinx的图象先向左平移π3个单位长度,再将得到的图象上所有点的横坐标扩大到原来的 2 倍,纵坐标不变,得到函数g(x)的图象,则g(x)的一条对称轴可能为().A. 5π12B. π12C. 5π3D. π35. 已知α,β,γ是三个不同的平面, m,n是两条不同的直线,且α∩β=m ,给出下列四个命题: ①若m//n ,则n//α或n//β②若m⊥n ,则n⊥α或n⊥β③若α⊥β , γ⊥β ,则α//γ④若γ∩β=n,m//n ,则γ//α则上述命题中正确的个数为().A. 0B. 1C. 2D. 36. 同时抛掷两枚质地均匀的六面骰子, 则所得点数之差绝对值小于 2 的概率为().A. 23B. 59C. 49D. 137. 羌族是中国西部地区的一个古老民族, 被称为“云朵上的民族”, 其建筑颇具特色. 碉楼是羌族人用来御敌、储存粮食柴草的建筑, 一般多建于村寨住房旁. 现有一碉楼, 其主体部分可以抽象成正四棱台ABCD−A1B1C1D1 ,如图,已知该棱台的体积为224 m3,AB=8 m ,A1B1=4 m ,则二面角A1−AB−C的正切值为().A. 3B. 3√22 C. √3 D. 328. 在 △ABC 中,角 A,B,C 所对的边分别为 a,b,c ,已知 a =1,A =60∘ ,设 O,G 分别是 △ABC 的外心和重心,则 AO ⃗⃗⃗⃗⃗⃗⋅AG⃗⃗⃗⃗⃗⃗ 的最大值是( ) A. 12 B. 13 C. 14 D. 16二. 多项选择题: 本大题共 3 小题, 每小题 6 分, 共计 18 分. 每小题给出的四个选项中, 有多项符合题目要求. 全部选对得 6 分, 选对但不全的得部分分, 有选错的得 0 分.9. 已知 a ⃗⃗=(1,λ),b ⃗=(λ+2,3) ,则( ).A. “ λ=1 ” 是 “ a⃗⃗//b ⃗ ” 的必要条件 B. “ λ=−3 ” 是 “ a ⃗⃗//b ⃗ ” 的充分条件 C. “ λ=−12 ” 是 “ a ⃗⃗⊥b ⃗ ” 的必要条件 D. “ λ=12 ” 是 “ a ⃗⃗⊥b ⃗ ” 的充分条件 10. 已知一组样本数据 x 1,x 2,⋯,x 20,(x 1≤x 2≤⋯≤x 20) 下列说法正确的是( ).A. 该样本数据的第 60 百分位数为 x 12B. 若样本数据的频率分布直方图为单峰不对称, 且在右边 “拖尾”, 则其平均数大于中位数C. 若样本数据的方差 s 2=120∑x i 220i=1−25 ,则这组样本数据的总和为 100D. 若由 y i =2x i (i =1,2,⋯,20) 生成一组新的数据 y 1,y 2,⋯,y 20 ,则这组新数据的平均值是原数据平均值的 2 倍11. 如图,在长方体 ABCD −A ′B ′C ′D ′ 中, AB =BC =2,AA ′=4,N 为棱 C ′D ′ 中点,D ′M =12,P 为线段 A ′B 上一动点,下列结论正确的是( ). A. 线段 DP 长度的最小值为 6√55B. 存在点 P ,使 AP +PC =2√3C. 存在点 P ,使 A ′C ⊥ 平面 MNPD. 以 B 为球心, 176 为半径的球体被平面 AB ′C 所截的截面面积为 6π 三. 填空题: 本大题共 3 小题, 每小题 5 分, 共计 15 分.12. 习主席曾提出 “绿水青山就是金山银山” 的科学论断, 为响应国家号召, 农学专业毕业的小李回乡创业, 在自家的田地上种植了 A, B 两种有机生态番茄共 5000 株, 为控制成本,其中 A 品种番茄占 40% . 为估计今年这两种番茄的总产量,小李采摘了 10 株 A 品种番茄与 10 株 B 品种番茄,其中 A 品种番茄总重 17 kg, B 品种番茄总重 23 kg ,则小李今年共可收获番茄约 kg .13. 已知三棱锥 A −BCD,△ABC 是边长为 2 的等边三角形, △BCD 是面积为 2 的等腰直角三角形,且平面 ABC ⊥ 平面 BCD ,则三棱锥 A −BCD 的外接球表面积为 .14. 在 △ABC 中, AB ⊥AC,AB =4,AC =3,P 为斜边 BC 上一动点,点 Q 满足 |PQ |=2 ,且 AQ⃗⃗⃗⃗⃗⃗=mAB⃗⃗⃗⃗⃗⃗+nAC ⃗⃗⃗⃗⃗⃗ ,则 2m +n 的最大值为 .四. 解答题: 本大题共 5 小题, 共计 77 分. 解答应写出文字说明、证明过程或演算步骤.15. (13 分) 如图,棱长为 6 的正方体 ABCD −A 1B 1C 1D 1 中, O 是 AC 的中点, E 是 AA 1 的中点,点 F 在 AB 上.(I) 当 F 是 AB 的中点时,证明: 平面 EFO// 平面 A 1D 1C ;(II) 当 F 是靠近 B 的三等分点时,求异面直线 FO 与 A 1C 所成角的余弦值.16. (15 分) 2024 年 4 月 26 日, 主题为“公园城市、美好人居” 的世界园艺博览会在四川成都正式开幕, 共建成 113 个室外展园, 涵盖了英式、法式、日式、意式、中东、东南亚等全球主要园林风格, 吸引了全球各地游客前来参观游玩. 现从展园之一的天府人居馆中随机抽取了 50 名游客, 统计他们的参观时间 (从进入至离开该展园的时长, 单位: 分钟, 取整数),将时间分成[45,55),[55,65),⋯,[85,95]五组,并绘制成如图所示的频率分布直方图.(I) 求图中a的值;(II) 由频率分布直方图, 试估计该展园游客参观时间的第 75 百分位数 (保留一位小数);(III) 由频率分布直方图,估计样本的平均数x(每组数据以区间的中点值为代表).17. (15 分) 甲、乙两位同学进行羽毛球比赛, 并约定规则如下: 在每个回合中, 若发球方赢球, 则得 1 分, 并且下一回合继续由其发球; 若发球方输球, 则双方均不得分, 且下一回合交换发球权; 比赛持续三回合后结束, 若最终甲乙得分相同, 则为平局.,各回合比赛结果相互独立,第一回合由甲发球.已知在每回合中,甲获胜的概率均为23(I) 求甲至少赢 1 个回合的概率;(II) 求第二回合中有选手得分的概率;(III) 求甲乙两人在比赛中平局的概率.18. (17 分) 记 △ABC 的内角 A,B,C 的对边分别为 a,b,c ,已知 a =4,c =2 , asinA +csinC =2bsinB.D 是线段 AC 上的一点,满足 AD =13AC ,过 D 作一条直线分别交射线 BA 、射线 BC 于 M 、N 两点.(I) 求 b ,并判断 △ABC 的形状;(II) 求 BD 的长;(III) 求 BM ⃗⃗⃗⃗⃗⃗⃗⋅BN⃗⃗⃗⃗⃗⃗⃗ 的最小值.19. (17 分) 如图,斜三棱柱 A 1B 1C 1−ABC 中, ∠ABC =90∘ ,四边形 ABB 1A 1 是菱形, D 为 AB 中点, A 1D ⊥ 平面 ABC ,点 A 1 到平面 BCC 1B 1 的距离为 √3,AA 1 与 CC 1 的距离为 2 . (I) 求证: CB ⊥ 平面 ABB 1A 1 ;(II) 求 A 1C 与平面 BCC 1B 1 所成角的正弦值;(III) 若 E,F 分别为 AA 1,AC 的中点,求此斜三棱柱被平面 B 1EF 所截的截面面积.。

2023-2024学年四川省成都市成都高一上册期末数学试题(含解析)

2023-2024学年四川省成都市成都高一上册期末数学试题(含解析)

2023-2024学年四川省成都市成都高一上册期末数学试题第I 卷(选择题,共60分)一.单选题:(本题共8小题,每小题5分,共40分.)1.已知{M xx A =∈∣且}x B ∉,若集合{}{}1,2,3,4,5,2,4,6,8A B ==,则M =()A.{}2,4 B.{}6,8 C.{}1,3,5 D.{}1,3,6,8【正确答案】C【分析】根据集合M 的定义求解即可【详解】因为集合{}{}1,2,3,4,5,2,4,6,8A B ==,{M xx A =∈∣且}x B ∉,所以{}1,3,5M =,故选:C2.已知α为第三象限角,且25sin 5α=-,则cos α=()A.5B.55-C.5D.【正确答案】B【分析】利用同角三角函数的平方关系22sin cos 1αα+=,计算可得结果【详解】αQ为第三象限角,cos 0α∴<,22sin cos 1αα+= ,cos 5α∴===,故选:B.本题主要考查同角三角函数的基本关系,属于基础题.3.已知a 为实数,使“[]3,4,0x x a ∀∈-≤”为真命题的一个充分不必要条件是()A.4a ≥B.5a ≥ C.3a ≥ D.5a ≤【正确答案】B【分析】根据全称量词命题的真假性求得a 的取值范围,然后确定其充分不必要条件.【详解】依题意,全称量词命题:[]3,4,0x x a ∀∈-≤为真命题,a x ≥在区间[]3,4上恒成立,所以4a ≥,所以使“[]3,4,0x x a ∀∈-≤”为真命题的一个充分不必要条件是“5a ≥”.故选:B4.当a >1时,在同一坐标系中,函数y =a -x 与y =log a x 的图像为()A. B.C. D.【正确答案】C【分析】根据指数函数和对数函数的图像,即可容易判断.【详解】∵a >1,∴0<1a<1,∴y =a -x 是减函数,y =log a x 是增函数,故选:C.本题考查指数函数和对数函数的单调性,属基础题.5.下列函数中,定义域是R 且为增函数的是A.x y e -= B.3y x = C.ln y x= D.y x=【正确答案】B【分析】分别求出选项中各函数的定义域,并判断其单调性,从而可得结论.【详解】对于A ,1xxy e e -⎛⎫== ⎪⎝⎭,是R 上的减函数,不合题意;对于B ,3y x =是定义域是R 且为增函数,符合题意;对于C ,ln y x =,定义域是()0,∞+,不合题意;对于D ,y x =,定义域是R ,但在R 上不是单调函数,不合题,故选B.本题主要考查函数的定义域与单调性,意在考查对基础知识的掌握与灵活运用,属于基础题.6.已知函数()21log f x x x=-在下列区间中,包含()f x 零点的区间是()A.()01,B.()12,C.()23, D.()34,【正确答案】B【分析】确定函数单调递增,计算()10f <,()20f >,得到答案.【详解】()21log f x x x =-在()0,∞+上单调递增,()110f =-<,()1121022f =-=>,故函数的零点在区间()12,上.故选:B 7.设0.343log 5,lg 0.1,a b c -===,则()A.c<a<bB.b<c<aC.a b c<< D.c b a<<【正确答案】A【分析】利用指数函数与对数函数的单调性即可判断.【详解】因为3x y =在R 上单调递增,且30x y =>恒成立,所以0.300331-<<=,即01a <<,因为4log y x =在()0,∞+上单调递增,所以44log 541log b =>=,因为lg y x =在()0,∞+上单调递增,所以lg 0.1lg10c =<=,综上.c<a<b 故选:A8.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次命题正确的是使用“<”和“>”符号,并逐渐被数学届接受,不等号的引入对不等式的发展影响深远.若a ,b ,c ∈R ,则下列命题正确的是()A.若a <b ,则11a b> B.若a >b >0,则11b ba a+<+C.若a >b ,则22ac bc > D.若22ac bc >,则a >b【正确答案】D【分析】举反例说明选项AC 错误;作差法说明选项B 错误;不等式性质说明选项D 正确.【详解】当0a b <<时,11a b<,选项A 错误;()1011b b a ba a a a +--=>++,所以11b b a a +>+,所以选项B 错误;0c =时,22ac bc =,所以选项C 错误;22ac bc >时,a b >,所以选项D 正确.故选:D二.多选题:(本题共4小题,每小题5分,共20分.全部选对得5分,部分选对得2分,有错选得0分)9.已知幂函数()f x 的图像经过点(9,3),则()A.函数()f x 为增函数B.函数()f x 为偶函数C.当4x ≥时,()2f x ≥D.当120x x >>时,1212()()f x f x x x -<-【正确答案】AC【分析】设幂函数()f x 的解析式,代入点(9,3),求得函数()f x 的解析式,根据幂函数的单调性可判断A 、C 项,根据函数()f x 的定义域可判断B 项,结合函数()f x 的解析式,利用单调递增可判断D 项.【详解】设幂函数()f x x α=,则()993f α==,解得12α=,所以()12f x x =,所以()f x 的定义域为[)0,∞+,()f x 在[)0,∞+上单调递增,故A 正确,因为()f x 的定义域不关于原点对称,所以函数()f x 不是偶函数,故B 错误,当4x ≥时,()()12442f x f ≥==,故C 正确,当120x x >>时,因为()f x 在[)0,∞+上单调递增,所以()()12f x f x >,即()()12120f x f x x x ->-,故D 错误.故选:AC.10.已知下列等式的左、右两边都有意义,则能够恒成立的是()A.5tan tan 66ππαα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭B.sin cos 36ππαα⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭C.2222tan sin tan sin αααα=- D.442sin cos 2sin 1ααα-=-【正确答案】BCD【分析】利用诱导公式分析运算即可判断AB ,根据平方关系和商数关系分析计算即可判断CD.【详解】解:对于A ,55tan tan tan 666πππαπαα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故A 错误;对于B ,sin sin cos 3266ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=+-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故B 正确;对于C ,22222222sin 1cos tan sin sin sin cos cos αααααααα-==⋅22222221sin 1sin sin tan sin cos cos ααααααα⎛⎫=-=-=- ⎪⎝⎭,故C 正确;对于D ,()()44222222sincos sin cos sin cos sin cos αααααααα-=+-=-()222sin 1sin 2sin 1ααα=--=-,故D 正确.故选:BCD.11.已知函数()22f x x x a =-+有两个零点1x ,2x ,以下结论正确的是()A .1a < B.若120x x ≠,则12112x x a+=C.()()13f f -= D.函数有()y fx =四个零点【正确答案】ABC【分析】根据零点和二次函数的相关知识对选项逐一判断即可.【详解】二次函数对应二次方程根的判别式2(2)4440,1a a a ∆=--=-><,故A 正确;韦达定理122x x +=,12x x a =,121212112x x x x x x a++==,故B 正确;对于C 选项,()1123f a a -=++=+,()3963f a a =-+=+,所以()()13f f -=,故C 选项正确;对于D 选项,当0a =时,由()0y f x ==得220x x -=,所以1230,2,2xx x ==-=故有三个零点,则D 选项错误.故选::ABC12.设,a b 为正实数,4ab =,则下列不等式中对一切满足条件的,a b 恒成立的是()A.4a b +≥ B.228a b +≤ C.111a b+≥D.+≤【正确答案】AC【分析】根据特殊值以及基本不等式对选项进行分析,从而确定正确选项.【详解】A选项,由基本不等式得4a b +≥=,当且仅当2a b ==时等号成立,A 选项正确.B 选项,1,4a b ==时,4ab =,但22178a b +=>,B 选项错误.C 选项,由基本不等式得111a b +≥=,,当且仅当11,2a b a b ===时等号成立,C 选项正确.D 选项,1,4a b ==时,4ab =,但3=>D 选项错误.故选:AC第II 卷(选择题,共60分)三.填空题:(本题共4小题,每小题5分,共20分.)13.已知函数log (3)1a y x =-+(0,1a a >≠)的图像恒过定点P ,则点P 的坐标为____.【正确答案】()4,1【分析】由log 10a =,令真数为1,即4x =代入求值,可得定点坐标.【详解】∵log 10a =,∴当4x =时,log 111a y =+=,∴函数的图像恒过定点()4,1故()4,114.已知角θ的终边经过点(),1(0)P x x >,且tan x θ=.则sin θ的值为_________【正确答案】2【分析】根据三角函数定义即可求解.【详解】由于角θ的终边经过点(),1(0)P x x >,所以1tan x xθ==,得1x =所以sin 2θ==故215.函数y =的定义域为_________.【正确答案】3{|1}4x x <≤【分析】根据根式、对数的性质有0.5430log (43)0x x ->⎧⎨-≥⎩求解集,即为函数的定义域.【详解】由函数解析式知:0.5430log (43)0x x ->⎧⎨-≥⎩,解得314x <≤,故答案为.3{|1}4x x <≤16.对于函数()xf x e =(e 是自然对数的底数),a ,b ∈R ,有同学经过一些思考后提出如下命题:①()()()f a f b f a b =⋅+;②()()()()af a bf b af b bf a +≥+;③3()12f a a ≥+;④()()22a b f a f b f ++⎛⎫≤⎪⎝⎭.则上述命题中,正确的有______.【正确答案】①②④【分析】根据指数函数的单调性,结合基本不等式,特殊值代入,即可得到答案;【详解】对①,()()()a b a b f a f b e e e f a b +⋅=⋅==+,故①正确;对②,()()()()af a bf b af b bf a +≥+()()()()f a a b f b a b ⇔--,当a b =时,显然成立;当a b >时,()()f a f b >;当a b <时,()()f a f b <,综上可得:()()()()f a a b f b a b --成立,故②正确;对③,取12a =,1724f ⎛⎫= ⎪⎝⎭不成立,故③错误;对④,2()()222a b a be e a bf a f b ef ++++⎛⎫=⇒≤⎪⎝⎭,故④正确;故答案为:①②④本题考查指数函数的性质及基本不等式的应用,求解时还要注意特殊值法的运用.四.解答题:(本题共6小题,共70分17题10分,18-22题每小题12分.)17.(1)求值:()()()5242lg50.250.5lg5lg2lg20-+⨯+⨯+;(2)若tan 2α=,求22sin sin cos 1cos αααα++的值.【正确答案】(1)2.5;(2)1【分析】(1)应用指对数运算律计算即可;(2)根据正切值,弦化切计算可得.【详解】(1)()()()()()()524245lg50.250.5lg5lg2lg200.50.5lg5lg5lg2lg210.5lg5lg210.5112.5--+⨯+⨯+=⨯⨯+++=+++=++=+(2)因为tan 2α=,所以2222222sin sin cos sin sin cos tan tan 611cos sin 2cos tan 26αααααααααααα+++====+++18.已知集合{}2230A x x x =-->,{}40B x x a =-≤.(1)当1a =时,求A B ⋂;(2)若A B = R ,求实数a 的取值范围.【正确答案】(1)()(]134∞--⋃,,(2)34⎡⎫+∞⎪⎢⎣⎭【分析】(1)代入1a =,求解集合A ,B ,按照交集的定义直接求解即可;(2)求解集合B ,由并集为全集得出集合B 的范围,从而求出a 的范围.【小问1详解】解:由2230x x -->得1x <-或3x >.所以()()13A ∞∞=--⋃+,,.当1a =时,(]4B ∞=-,.所以()(]134A B ∞⋂=--⋃,,.【小问2详解】由题意知(4B a ∞=-,].又()()13A ∞∞=--⋃+,,,因为A B = R ,所以43a ≥.所以34a ≥.所以实数a 的取值范围是34⎡⎫+∞⎪⎢⎣⎭,.19.已知函数()332x xf x --=.(1)判断函数()f x 的奇偶性,并说明理由;(2)判断函数()f x 在()0,∞+上的单调性,并用单调性定义证明;(3)若()()120f ax f x -+->对任意(],2a ∈-∞恒成立,求x 的取值范围.【正确答案】(1)奇函数,理由见解析;(2)单调递增,证明见解析;(3)(]1,0-.【分析】(1)根据证明函数的奇偶性步骤解决即可;(2)根据单调性定义法证明即可;(3)根据奇偶性,单调性转化解不等式即可.【小问1详解】()332x xf x --=为奇函数,理由如下易知函数的定义域为(),-∞+∞,关于原点对称,因为33()()2---==-x xf x f x ,所以()f x 为奇函数.【小问2详解】()f x 在()0,∞+上的单调递增,证明如下因为()332x xf x --=,()0,x ∈+∞,设任意的12,(0,)x x ∈+∞,且12x x <,所以()()()()121211221233333333222----------==-x x x x x x x x f x f x ()()121212121233133331333322⎛⎫-⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭==x x x x x x x x x x 因为12,(0,)x x ∈+∞,12x x <,所以1212330,330-<>x x x x ,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在()0,∞+上的单调递增.【小问3详解】由(1)知()f x 为奇函数,由(2)知()f x 在()0,∞+上的单调递增,所以()f x 在(),-∞+∞单调递增,因为()()120f ax f x -+->对任意(],2a ∈-∞恒成立,所以(1)(2)(2)->--=-f ax f x f x ,所以12ax x ->-对任意(],2a ∈-∞恒成立,令()()10g a xa x =+->,(],2a ∈-∞则只需0(2)2(1)0x g x x ≤⎧⎨=+->⎩,解得10-<≤x ,所以x 的取值范围为(]1,0-.20.有一种放射性元素,最初的质量为500g ,按每年10%衰减(1)求两年后,这种放射性元素的质量;(2)求t 年后,这种放射性元素的质量w (单位为:g )与时间t 的函数表达式;(3)由(2)中的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需的时间叫做半衰期).(精确到0.1年,已知:lg20.3010≈,lg30.4771≈)【正确答案】(1)405g(2)5000.9tw =⨯(3)6.6年.【分析】(1)根据衰减率直接求解即可;(2)根据衰减规律归纳出函数表达式;(3)半衰期即为质量衰减为原来的一半,建立等式,利用换底公式求解.【小问1详解】经过一年后,这种放射性元素的质量为500(10.1)5000.9⨯-=⨯,经过两年后,这种放射性元素的质量为2500(10.1)(10.1)5000.9⨯-⨯-=⨯,即两年后,这种放射性元素的质量为405g【小问2详解】由于经过一年后,这种放射性元素的质量为1500(10.1)5000.9⨯-=⨯,经过两年后,这种放射性元素的质量为2500(10.1)(10.1)5000.9⨯-⨯-=⨯,……所以经过t 年后,这种放射性元素的质量5000.9t w =⨯.【小问3详解】由题可知5000.9250t ⨯=,即0.9lg 0.5lg 2log 0.5 6.6lg 0.92lg 31t -===≈-年.21.已知函数()()3312log ,log x x f x g x =-=.(1)求函数()()263y f x g x ⎡⎤=-+⎣⎦的零点;(2)讨论函数()()()2h x g x f x k ⎡⎤=---⎣⎦在[]1,27上的零点个数.【正确答案】(1)9(2)答案见解析.【分析】(1)由题知()2332log 5log 20x x -+=,进而解方程即可得答案;(2)根据题意,将问题转化为函数()2 21F t t t =-+-在[]0,3上的图像与直线y k =的交点个数,进而数形结合求解即可.【小问1详解】解:由()()2 630f x g x ⎡⎤-+=⎣⎦,得()233 12log 6log 30x x --+=,化简为()2332log 5log 20x x -+=,解得3 log 2x =或31 log 2x =,所以,9x =或x =所以,()()2 63y f x g x ⎡⎤=-+⎣⎦的零点为9.【小问2详解】解:由题意得()()233 log 2log 1h x x x k =-+--,令()0h x =,得()233 log 2log 1x x k -+-=,令3log t x =,[]1,27x ∈,则[]2 0,3,21t t t k ∈-+-=,所以()h x 在[]1,27上的零点个数等于函数()221F t t t =-+-在[]0,3上的图像与直线y k =的交点个数.()2 21F t t t =-+-在[]0,3上的图像如图所示.所以,当0k >或4k <-时,()F t 在[]0,3上的图像与直线y k =无交点,所以,()h x 在[]1,27上的零点个数为0;当0k =或41k -≤<-时()F t 在[]0,3上的图像与直线y k =有1个交点,所以,()h x 在[]1,27上的零点个数为1;当10k -≤<时,()F t 在[]0,3上的图像与直线y k =有2个交点,所以,()h x 在[]1,27上的零点个数为2.综上,当0k >或4k <-时,()h x 在[]1,27上的零点个数为0;当0k =或41k -≤<-时,()h x 在[]1,27上的零点个数为1;当10k -≤<时,()h x 在[]1,27上的零点个数为2.22.已知函数()ln()()f x x a a R =+∈的图象过点()1,0,2()()2f x g x x e =-.(1)求函数()f x 的解析式;(2)若函数()ln(2)y f x x k =+-在区间()1,2上有零点,求整数k 的值;(3)设0m >,若对于任意1,x m m ⎡⎤∈⎢⎥⎣⎦,都有()ln(1)g x m <--,求m 的取值范围.【正确答案】(1)()ln f x x =;(2)k 的取值为2或3;(3)()1,2.【分析】(1)根据题意,得到ln(1)0a +=,求得a 的值,即可求解;(2)由(1)可得()2ln 2y x kx =-,得到2210x kx --=,设2()21h x x kx =--,根据题意转化为函数()y h x =在()1,2上有零点,列出不等式组,即可求解;(3)求得()g x 的最大值()g m ,得出max ()ln(1)g x m <--,得到22ln(1)m m m -<--,设2()2ln(1)(1)h m m m m m =-+->,结合()h m 单调性和最值,即可求解.【详解】(1)函数()ln()()f x x a a R =+∈的图像过点()1,0,所以ln(1)0a +=,解得0a =,所以函数()f x 的解析式为()ln f x x =.(2)由(1)可知()2ln ln(2)ln 2y x x k x kx =+-=-,(1,2)x ∈,令()2ln 20x kx -=,得2210x kx --=,设2()21h x x kx =--,则函数()ln(2)y f x x k =+-在区间()1,2上有零点,等价于函数()y h x =在()1,2上有零点,所以(1)10(2)720h k h k =-<⎧⎨=->⎩,解得712k <<,因为Z k ∈,所以k 的取值为2或3.(3)因为0m >且1m m >,所以1m >且101m<<,因为2()22()22(1)1f x g x x e x x x =-=-=--,所以()g x 的最大值可能是()g m 或1g m ⎛⎫ ⎪⎝⎭,因为22112()2g m g m m m m m ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭22122m m m m ⎛⎫=--- ⎪⎝⎭112m m m m ⎛⎫⎛⎫=-+- ⎪⎪⎝⎭⎝⎭21(1)0m m m m -⎛⎫=-⋅> ⎪⎝⎭所以2max ()()2g x g m m m ==-,只需max ()ln(1)g x m <--,即22ln(1)m m m -<--,设2()2ln(1)(1)h m m m m m =-+->,()h m 在(1,)+∞上单调递增,又(2)0h =,∴22ln(1)0m m m -+-<,即()(2)h m h <,所以12m <<,所以m 的取值范围是()1,2.已知函数的零点个数求解参数的取值范围问题的常用方法:1、分离参数法:一般命题的情境为给出区间,求满足函数零点个数的参数范围,通常解法为从()f x中分离出参数,构造新的函数,求得新函数的最值,根据题设条件构建关于参数的不等式,从而确定参数的取值范围;2、分类讨论法:一般命题的情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类的标准,在每个小区间内研究函数零点的个数是否符合题意,将满足题意的参数的各校范围并在一起,即为所求的范围.。

2024-2025学年四川省成都市高一上学期期中考试数学检测试题(含解析)

2024-2025学年四川省成都市高一上学期期中考试数学检测试题(含解析)

一、2024-2025学年四川省成都市高一上学期期中考试数学检测试题单选题1. 已知集合A ={1 ,2,3,4,5},{},|15B x x =<<,则A ∩B 的元素个数为( )A. 2B. 3C. 4D. 5【答案】B【解析】【分析】直接根据集合的交集运算求解即可.【详解】因为集合A ={1 ,2,3,4,5},{}|15B x x =<<所以{}2,3,4A B =I ,即A ∩B 的元素个数为3个.故选:B2. 函数221y x mx =++在[2,+∞)单调递增,则实数m 的取值范围是( )A. [2,)-+¥B. [2,+∞)C. (,2)-¥D. (,2]-¥【答案】A【解析】【分析】直接由抛物线对称轴和区间端点比较大小即可.【详解】函数221y x mx =++为开口向上的抛物线,对称轴为x m=-函数221y x mx =++在[2,+∞)单调递增,则2m -£,解得2m ³-.故选:A.3. 若函数的定义域为{}22M x x =-££,值域为{}02N y y =££,则函数的图像可能是()A. B.的C. D.【答案】B【解析】【分析】根据函数的定义域与值域,结合函数的性质判断即可.【详解】对A,该函数的定义域为{}20x x-££,故A错误;对B,该函数的定义域为{}22M x x=-££,值域为{}02N y y=££,故B正确;对C,当()2,2xÎ-时,每一个x值都有两个y值与之对应,故该图像不是函数的图像,故C错误;对D,该函数的值域不是为{}02N y y=££,故D错误.故选:B.4. 已知函数()af x x=,则“1a>”是“()f x在()0,¥+上单调递增”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】由幂函数的单调性结合充分必要条件的定义判断.【详解】当0a>时,函数()af x x=在()0,¥+上单调递增,则1a>时,一定有()f x在()0,¥+上单调递增;()f x在()0,¥+上单调递增,不一定满足1a>,故“1a>”是“()f x在()0,¥+上单调递增”的充分不必要条件.故选:A.5. 已知0,0x y>>,且121yx+=,则12xy+的最小值为()A. 2B. 4C. 6D. 8【答案】D【解析】【分析】利用不等式的乘“1”法即可求解.【详解】由于0,0x y >>,故11112224448x y x xy y x y xy æöæö+=++=++³+=ç÷ç÷èøèø,当且仅当14,121,xy xy y xì=ïïíï+=ïî即2,14x y =ìïí=ïî时,等号成立,故12x y +的最小值为8.故选:D6. 已知定义域为R 的函数()f x 不是偶函数,则( )A. ()(),0x f x f x "Î-+¹R B. ()(),0x f x f x "Î--¹R C. ()()000,0x f x f x $Î-+¹R D. ()()000,0x f x f x $Î--¹R 【答案】D【解析】【分析】根据偶函数的概念得()(),0x f x f x "Î--=R 是假命题,再写其否定形式即可得答案.【详解】定义域为R 的函数()f x 是偶函数()(),0x f x f x Û"Î--=R ,所以()f x 不是偶函数()()000,0x f x f x Û$Î--¹R .故选:D .7. 若函数()22f x ax bx c=++的部分图象如图所示,则()1f =( ) A. 23- B. 112- C. 16- D. 13-【答案】D【解析】【分析】利用函数图象求得函数定义域,利用函数值可得出其解析式,代入计算即求得函数值.【详解】根据函数图象可知2x =和4x =不在函数()f x的定义域内,因此2x =和4x =是方程20ax bx c ++=的两根,因此可得()()()224f x a x x =--,又易知()31f =,所以可得2a =-;即()()()124f x x x =---,所以()113f =-.故选:D8. 奇函数()f x 在(),0-¥上单调递增,若()10f -=,则不等式()0xf x <的解集是( ).A. ()()101,∪,-¥- B. ()()11,∪,-¥-+¥C. ()()1001,∪,- D. ()()101,∪,-+¥【答案】C【解析】【分析】由()f x 奇偶性,单调性结合题意可得答案.【详解】因奇函数()f x 在(),0¥-上单调递增,()10f -=则()f x 在()0,¥+上单调递增,f (1)=0.得()()()01,01,f x x È¥>ÞÎ-+;()()()0,10,1f x x ¥È<ÞÎ--.则()()000x xf x f x <ì<Þí>î或()()()01,00,10x x f x È>ìÞÎ-í<î.故选:C二、多选题9. 下列关于集合的说法不正确的有( )A. {0}=ÆB. 任何集合都是它自身的真子集C. 若{1,}{2,}a b =(其中,a b ÎR ),则3a b +=D. 集合{}2y y x =∣与{}2(,)x y y x =∣是同一个集合【答案】ABD【解析】【分析】根据集合的定义,真子集的定义,集合相等的定义判断各选项.【详解】{0}中含有一个元素,不是空集,A 错;任何集合都是它自身的子集,不是真子集,B 错;由集合相等的定义得2,1a b ==,3a b +=,C 正确;集合{}2yy x =∣中元素是实数,集合{}2(,)x y y x =∣中元素是有序实数对,不是同一集合,D 错,故选:ABD .10. 已知二次函数()2223y m x mx m =-++-的图象与x 轴有两个交点()()12,0,,0x x ,则下面说法正确的是( )A. 该二次函数的图象一定过定点()1,5--;B. 若该函数图象开口向下,则m 的取值范围为:625m <<;C. 当2m >,且12x ££时,y 的最大值为45m -;D. 当2m >,且该函数图象与x 轴两交点的横坐标12,x x 满足1232,10x x -<<--<<时,m 的取值范围为:21114m <<【答案】ABD【解析】【分析】代入1x =-,解得5y =-,即可求解A ,根据判别式即可求解B ,利用二次函数的单调性即可求解C ,利用二次函数的图象性质即可列不等式求解.【详解】由()2223y m x mx m =-++-可得()22123y m x x =+--,当1x =-时,5y =-,故二次函数的图象一定过定点()1,5--,A 正确,若该函数图象开口向下,且与x 轴有两个不同交点,则()()220Δ44230m m m m -<ìí=--->î,解得:625m <<,故B 正确,当2m >,函数开口向上,对称轴为02m x m =-<-,故函数在12x ££时,单调递增,当2x =时,911y m =-,故y 的最大值为911m -;C 错误,当2m >,则开口向上,又1232,10x x -<<--<<时,则3,4210x y m =-=->,且2,110x y m =-=-<,且1,50x y =-=-<,且0,30x y m ==->,解得21114m <<,m 的取值范围为:21114m <<,D 正确,故选:ABD 11. 已知幂函数()()293m f x m x =-的图象过点1,n m æö-ç÷èø,则( )A. 23m =-B. ()f x 为偶函数C. n =D. 不等式()()13f a f a +>-的解集为(),1-¥【答案】AB【解析】【分析】利用幂函数的定义结合过点1,n m æö-ç÷èø,可求,m n 判断AC ;进而可得函数的奇偶性判断B ;解不等式可求解集判断D.【详解】因为函数()()293m f x m x =-为幂函数,所以2931m -=,解得23m =±,当23m =时,幂函数()23f x x =的图象不可能过点3,2n æö-ç÷èø,故23m ¹,当23m =-,幂函数()23f x x -=的图象过点3,2n æöç÷èø,则2332n -=,解得3232n -æö=±=ç÷èøA 正确,C 错误;()23f x x -=的定义域为{|0}x x ¹,且()2233()()f x x x f x ---=-==,故()f x 为偶函数,故B 正确;函数()23f x x -=在(0,)+¥上单调递减,由()()13f a f a +>-,可得()()13f a f a +>-,所以1310a a a ì+<-ïí+¹ïî,解得1a <且1a ¹-,故D 错误.故选:AB.三、填空题12. 满足关系{2}{2,4,6}A ÍÍ的集合A 有____________个.【答案】4【解析】【分析】由题意可得集合A 为{}2,4,6的子集,且A 中必包含元素2,写出满足条件的集合,即可得答案.【详解】即集合A 为{}2,4,6的子集,且A 中必包含元素2,又因为{2,4,6}的含元素2的子集为:{}2,{}2,4,{}2,6,{2,4,6}共4个.故答案为:4.13. 已知()f x 满足()()()2f x y f x f y +=++,且()22f =,则()3f =______.【答案】4【解析】【分析】令1x y ==得()10f =,再令1x =,2y = 即可求解.【详解】令1x y ==得()()()21122f f f =++=,所以()10f =,令1x =,2y =得()()()31224f f f =++=.故答案为:4.14. 已知函数()()()22223124,,4f x x ax ag x x x a a =-+-=-+-ÎR ,若[]10,1x "Î,[]20,1x $Î,使得不等式()()12f x g x >成立,实数a 的取值范围是__________.【答案】(),6-¥【解析】【分析】由题意将问题转化为()(),min max f x g x >[]0,1x Î,成立,利用二次函数的性质求解即可.【详解】若对任意[]10,1x Î,存在[]20,1x Î,使得不等式()()12f x g x >成立,即只需满足[]min min ()(),0,1f x g x x >Î,()22314g x x x a =-+-,对称轴()1,2x g x =在10,2éö÷êëø递减,在,1,12æùçúèû递增,()2min 18,2g x g a æö==-ç÷èø()[]2224,0,1f x x ax a x =-+-Î,对称轴4a x =,①04a £即0a £时,()f x 在[0,1]递增,()22min min ()04()8f x f a g x a ==->=-恒成立;②014a <<即04a <<时,()f x 在0,4a éö÷êëø递减,在,14a æùçúèû递增,22min min 7()4,()848a f x f a g x a æö==-=-ç÷èø,所以227488a a ->-,故04a <<;③14a ³即4a ³时,()f x 在[0,1]递减,()22min min ()12,()8f x f a a g x a ==--=-,所以2228a a a -->-,解得46a £<,综上(),6a ¥Î-.故答案为:(),6¥-【点睛】方法点睛:本题首先需要读懂题意,进行转化;其次需要分类讨论,结合二次函数的性质最后进行总结,即可求出结果.四、解答题15. 设全集R U =,集合{|23}P x x =-<<,{|31}.Q x a x a =<£+(1)若1a =-,求集合()U P Q I ð;(2)若P Q =ÆI ,求实数a 的取值范围.【答案】(1){|03}x x <<(2)][132,,æö-¥-+¥ç÷èøU 【解析】【分析】(1)先求出U Q ð,再求()U P Q Çð即可;(2)分Q =Æ和Q ¹Æ两种情况求解即可【小问1详解】解:当1a =-时,{|31}{|30}Q x a x a x x =<£+=-<£;{|3U C Q x x =£-或0}x >,又因为{}23P x x =-<<,所以(){|03}.U P Q x x Ç=<<ð【小问2详解】解:由题意知,需分为Q =Æ和Q ¹Æ两种情形进行讨论:当Q =Æ时,即31a a ³+,解得12a ³,此时符合P Q =ÆI ,所以12a ³;当Q ¹Æ时,因为P Q =ÆI ,所以1231a a a +£-ìí<+î或3331a a a ³ìí<+î,解之得3a £-.综上所述, a 的取值范围为][1,3,.2¥¥æö--È+ç÷èø16 已知二次函数()()20f x ax bx c a =++¹满足()()14f x f x x -+=,且()0 1.f =(1)求函数()f x 的解析式;(2)解关于x 的不等式()()2641f x t x t £-+-+.【答案】(1)()2221f x x x =-+(2)答案见解析.【解析】【分析】(1)利用待定系数法计算即可求解析式;(2)根据(1)的结论含参讨论解一元二次不等式即可.【小问1详解】因为()01f =,1c =,所以()21f x ax bx =++,又因为()()14f x f x x -+=,所以()(()22[1)1114a x b x ax bx x ù++++-++=û,所以24ax a b x ++=,所以240a a b =ìí+=î,所以22a b =ìí=-î,即()222 1.f x x x =-+.【小问2详解】由()()2641f x t x t £-+-+,可得不等式()222440x t x t +++£,即()2220x t x t +++£,所以()()20x x t ++£,当2-=-t ,即2t =时,不等式的解集为{|2}x x =-,当2t -<-,即2t >时,不等式的解集为{|2}x t x -££-,当2t ->-,即2t <时,不等式的解集为{|2}x x t -££-,综上所述,当2t =时,不等式的解集为{|2}x x =-,当2t >时,不等式的解集为{|2}x t x -££-,当2t <时,不等式的解集为{|2}.x x t -££-17. 已知函数()221x f x x-=.(1)用单调性的定义证明函数()f x 在()0,¥+上为增函数;(2)是否存在实数l ,使得当()f x 的定义域为11,m n éùêúëû(0m >,0n >)时,函数()f x 的值域为[]2,2m n l l --.若存在.求出l 的取值范围;若不存在说明理由.【答案】(1)证明见详解;(2)存在,()2,+¥.【解析】分析】(1)设()12,0,x x ¥Î+,且12x x <,然后作差、通分、因式分解即可判断()()12f x f x <,得证;(2)根据单调性列不等式组,将问题转化为210x x l -+=存在两个不相等的正根,利用判别式和韦达定理列不等式组求解可得.【小问1详解】()222111x f x x x-==-,设()12,0,x x ¥Î+,且12x x <,【则()()()()22121212122222222212211212111111x x x x x x f x f x x x x x x x x x -+æö--=---=-==ç÷èø,因为120x x <<,所以221212120,0,0x x x x x x <-+>>,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在(0,+∞)上为增函数.【小问2详解】由(1)可知,()f x 在11,m n éùêúëû上单调递增,若存在l 使得()f x 的值域为[]2,2m n l l --,则22112112f m m m f n n n l l ìæö=-=-ç÷ïïèøíæöï=-=-ç÷ïèøî,即221010m m n n l l ì-+=í-+=î,因为0m >,0n >,所以210x x l -+=存在两个不相等的正根,所以21212Δ40100x x x x l l ì=->ï=>íï+=>î,解得2l >,所以存在()2,l ¥Î+使得()f x 的定义域为11,m n éùêúëû时,值域为[]2,2m n l l --.18. 习总书记指出:“绿水青山就是金山银山”.淮安市一乡镇响应号召,因地制宜的将该镇打造成“生态水果特色小镇”.调研过程中发现:某珍稀水果树的单株产量W (单位:千克)与肥料费10x (单位:元)满足如下关系:()252,02()48,251x x W x x x x ì+££ï=í<£ï+î其它成本投入(如培育管理等人工费)为20x (单位:元).已知这种水果的市场售价大约为10元/千克,且供不应求.记该单株水果树获得的利润为()f x (单位:元).(1)求()f x 函数关系式;(2)当投入的肥料费用为多少时,该单株水果树获得的利润最大?最大利润是多少?的【答案】(1)25030100,02()48030,251x x x f x x x x xì-+££ï=í-<£ï+î; (2)当投入肥料费用为30元时,获得的利润最大,最大利润是270元.【解析】【分析】(1)由单株产量W 乘以售价减去肥料费和其它成本投入可得出的函数关系式;(2)利用二次函数的单调性求出当02x ££时,()f x 的最大值,由基本不等式求出当25x <£时,()f x 的最大值,即可得出答案.【小问1详解】(1)由题意可得()()()1020101030f x W x x x W x x=--=-()22105230,025030100,024804830,251030,2511x x x x x x x x x x x x x x ì´+-££ì-+££ïï==íí-<£´-<£ïï+î+î.故()f x 的函数关系式为25030100,02()48030,251x x x f x x x x xì-+££ï=í-<£ï+î.【小问2详解】(2)由(1)22319150,025030100,02102()48030,251651030(1),2511x x x x x f x x x x x x x x ììæö-+££ï-+££ïç÷ïïèø==íí-<£éùïï-++<£+êúïï+ëûîî,当02x ££时,()f x 在30,10éùêúëû上单调递减,在3,210æùçúèû上单调递增,且(0)100(2)240f f =<=,max ()(2)240f x f \==;当25x <£时,16()51030(1)1f x x x éù=-++êú+ëû,16181x x ++³=+Q 当且仅当1611x x=++时,即3x =时等号成立. max ()510308270f x \=-´=.的因为240270<,所以当3x =时,max ()270f x =.当投入的肥料费用为30元时,该单株水果树获得的利润最大,最大利润是270元.19. 已知集合,A B 中的元素均为正整数,且,A B 满足:①对于任意,i j a a A Î,若i j a a ¹,都有i j a a B Î;②对于任意,m k b b B Î,若m k b b <,都有k mb A b Î.(1)已知集合{}1,2,4A =,求B ;(2)已知集合{}()2,4,8,8A t t =>,求t ;(3)若A 中有4个元素,证明:B 中恰有5个元素.【答案】(1){}2,48B =,(2)16t =(3)证明见解析【解析】【分析】(1)根据①可得2,4,8都是B 中的元素,进而证明B 中除2,4,8外没有其他元素即可求解,(2)根据条件①②,即可求解,(3)根据题意可得41a a ,3324421123,,,,a a a a a a a a a a ,4321a a a a 是A 中的元素,进而根据11a =和12a ³可得{}2341111,,,A a a a a =,进而{}3456711111,,,,a a a a a B Í,接下来假设B 中还有其他元素,且该元素为k ,利用k 与31a 的关系得矛盾求解.【小问1详解】由①可得2,4,8都是B 中的元素.下面证明B 中除2,4,8外没有其他元素:假设B 中还有其他元素,分两种情况:第一种情况,B 中最小的元素为1,显然81不是A 中的元素,不符合题意;第二种情况,B 中最小的元素为2,设B 中除2,4,8外的元素为()2k k b b >,因为2k b 是A 中的元素,所以k b 为4或8,而4,8也是B 中的元素,所以B 中除2,4,8外没有其他元素.综上,{}2,4,8B =.【小问2详解】由①可得,8,16,32,2,4,8t t t 都是B 中的元素.显然84,82,162t t t <<<,由(2)可得,422,,8816t t t 是A 中的元素,即,,248t t t 是A 中的元素.因为842t t t t <<<,所以2,4,8842t t t ===,解得16t =.【小问3详解】证明:设{}12341234,,,,A a a a a a a a a =<<<.由①可得,1224,a a a a 都是B 中的元素.显然1224a a a a <,由②可得,2412a a a a 是A 中的元素,即41a a 是A 中的元素.同理可得3324421123,,,,a a a a a a a a a a ,4321a a a a 是A 中的元素.若11a =,则34344122a a a a a a a a =>,所以3412a a a a 不可能是A 中的元素,不符合题意.若12a ³,则32311a a a a a <<,所以321211,a a a a a a ==,即23213121,a a a a a a ===.又因为44443211a a a a a a a <<<<,所以444123321,,a a a a a a a a a ===,即441a a =,所以{}2341111,,,A a a a a =,此时{}3456711111,,,,a a a a a B Í.假设B 中还有其他元素,且该元素为k ,若31k a <,由(2)可得71a A k Î,而7411a a k>,与{}2341111,,,A a a a a =矛盾.若31k a >,因为31k A a Î,所以131,1,2,3,4i k a i a ==,则31,1,2,3,4i k a i +==,即{}45671111,,,k a a a a Î,所以B 中除3456711111,,,,a a a a a 外,没有其他元素.所以{}3456711111,,,,B a a a a a =,即B 中恰有5个元素.【点睛】方法点睛:对于以集合为背景的新定义问题的求解策略:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.3、涉及有交叉集合的元素个数问题往往可采用维恩图法,基于课标要求的,对于集合问题,要熟练基本的概念,数学阅读技能、推理能力,以及数学抽象和逻辑推理能力.。

四川省成都市2022-2023学年高一下学期期末数学试题(教师版)

四川省成都市2022-2023学年高一下学期期末数学试题(教师版)

2022~2023学年度下期高中2022级期末考试数学考试时间120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的姓名、座位号、准考证号用0.5毫米的黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“贴条形码区”.2.选择题使用2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米的黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效.3.考试结束后由监考老师将答题卡收回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面有四个命题:①{}{}33x x ⊆≥;②若{R 2a B x x ==∈≥+,则a B ∈;③若a -不属于N *,则a 属于N *;④若{{,A x y B y y ====,则A B=其中真命题的个数为()A.0个 B.1个C.2个D.3个【答案】B 【解析】【分析】根据子集概念判断①,由元素与集合关系判断②③,化简集合A ,B 判断④.【详解】①由子集概念知{}{}33x x ⊆≥正确;②因为2<+,所以a B ∉,故错误;③当0a =时,0N *-∉,0N *∉,故错误;④因为{[]{[]1,1,0,1A x y B y y ===-===,所以A B ≠,故错误.故选:B2.已知正实数x ,y 满足2x y xy +=,则22xy x y --的最小值为()A.2B.4C.8D.9【答案】C 【解析】【分析】由已知可得121x y+=,再利用基本不等式求最值可得答案.【详解】因为正实数x ,y 满足2x y xy +=,所以121x y+=,则()1242222448y x xy x y x y x y x y x y ⎛⎫--=+=++=++≥+=⎪⎝⎭,当且仅当2y x =且121x y+=,即2x =,4y =时取等号.故选:C.3.幂函数()()233mf x m m x =--在区间()0,∞+上单调递减,则下列说法正确的是()A.4m =B.()f x 是减函数C.()f x 是奇函数D.()f x 是偶函数【答案】C 【解析】【分析】根据幂函数的定义及单调性可判断AB ,再由奇函数的定义判断CD.【详解】函数()()233mf x m m x =--为幂函数,则2331m m --=,解得4m =或1m =-.当4m =时,()4f x x =在区间()0,∞+上单调递增,不满足条件,排除A ;当1m =-时,()1f x x -=在区间()0,∞+上单调递减,满足题意.函数()1f x x -=在(),0∞-和()0,∞+上单调递减,但不是减函数,排除B ;因为函数定义域关于原点对称,且1()()f x f x x-==--,所以函数()f x 是奇函数,不是偶函数,故C 正确,D 错误.故选:C.4.标准的围棋共19行19列,361个格点,每个点上可能出现“黑”“白”“空”三种情况,因此有3613种不同的情况,而我国北宋学者括在他的著作《梦溪笔谈》中,也论过这个问题,他分析得出一局围棋不同的变化大约有“连书万字五十二”,即5210000,下列数据最接近36152310000的()lg30.477»是()A.3710-B.3610-C.3510-D.3410-【答案】B 【解析】【分析】根据题意,结合对数的运算,即可得到结果.【详解】由题意,对于36152310000,有36136152523lg lg3lg10000361lg352410000=-=⨯-⨯3610.47752435.803=⨯-⨯=-,所以36135.8035231010000-≈,分析选项B 中3610-与其最接近.故选:B. 5.已知π5sin 45x ⎛⎫-= ⎪⎝⎭,则πcos 23x ⎛⎫-= ⎪⎝⎭()A.23310- B.23310C.33410+ D.33410【答案】D 【解析】【分析】利用两角差的正弦公式展开再平方得到sin 235x =,从而求出cos 2x ,再由两角差的余弦公式计算可得.【详解】因为π5sin 45x ⎛⎫-= ⎪⎝⎭,所以ππ5sin cos cos sin 445x x -=,所以()25sin cos 25x x -=,即()2211sin cos 2sin cos 25x x x x +-=,所以sin 235x =,则4cos 25x ==±,所以πππcos 2cos 2cos sin 2sin 333x x x ⎛⎫-=+ ⎪⎝⎭413525412=+=±±⨯⨯.故选:D6.已知ABC 中,角,,A B C 对应的边分别为,,a b c ,D 是AB 上的三等分点(靠近点A )且1CD =,()sin ()(sin sin )a b A c b C B -=+-,则2+a b 的最大值是()A.B. C.2D.4【答案】A 【解析】【分析】先利用正弦定理的边角变换与余弦定理可求得ACB ∠,再设ACD θ∠=,利用正弦定理与正弦函数的和差角公式得到π2)3a b θ+=+,从而得解.【详解】因为()sin ()(sin sin )a b A c b C B -=+-,由正弦定理得()()()a a b c b c b -=+-,则222a ab c b -=-,即222a b c ab +-=,所以2221cos 22a b c ACB ab +-∠==,(0,π)ACB ∠∈,则π3ACB ∠=,设ACD θ∠=,则π3BCD θ∠=-,且π03θ<<,在ACD 中,sin sin AD CDAθ=,则sin sin AD A θ⋅=,在BCD △中,πsin sin()3BD CDB θ=-,则πsin sin()3BD B θ⋅=-,又223c BD AD ==,即π(sin 2sin )sin sin()33c A B θθ+=+-,又由正弦定理知2sin c R ACB =∠=(R 为ABC 的外接圆半径),所以3113π(sin 2sin )sin sin sin cos sin()3223223A B θθθθθ+=+-=+=+,则π(2sin 4sin )sin()63R A R B θ+=+,即π2)3a b θ+=+,又ππ2π333θ<+<,故当ππ32θ+=,π6θ=时,max (2)a b +=故选:A7.已知O 为ABC 的外心,A 为锐角且22sin 3A =,若AO AB AC αβ=+ ,则αβ+的最大值为()A.13B.12C.23D.34【答案】D 【解析】【分析】依题意建立直角坐标系,设ABC 外接圆的半径3R =,从而求得所需各点坐标,进而利用向量相等求得A 点坐标,代入ABC 外接圆的方程得到()18932αβαβ+=+,由此利用基本不等式即可得解.【详解】以BC 边所在的直线为x 轴,BC 边的垂直平分线为y轴建立直角坐标系,如图,(D 为BC 边的中点),由外接圆的性质得BOD COD BAC ∠=∠=∠,因为BAC ∠为锐角且sin 3BAC ∠=,所以1cos 3BAC ∠==,设外接圆的半径3R =,则OA OB OC 3===,因为1cos cos 3OD A COD OC =∠==,所以1OD =,DC ==,所以()B -,()C ,()0,1O ,设(),A m n ,则ABC 外接圆的方程为:()2219x y +-=,因为AO AB AC αβ=+,所以()()(),1,,m n m n m n αβ--=--+-.则()()1m m m n n nαβαβ⎧-=--+⎪⎨-=--⎪⎩,解得)111m n βααβαβ⎧-=⎪⎪+-⎨-⎪=⎪+-⎩,则)1,11A βααβαβ⎛⎫-- ⎪ ⎪+-+-⎝⎭,代入外接圆方程得:()()()()22228911βαβααβαβ---+=+-+-,整理得:()18932αβαβ+=+,由基本不等式得:()2189322αβαβ+⎛⎫+≤+ ⎪⎝⎭,当且仅当αβ=取等号.化简得:()()281890αβαβ+-++≥,解得34αβ+≤或32αβ+≥,由图知:1αβ+<,所以34αβ+≤,故αβ+的最大值为34.故选:D.8.如图,在棱长为3的正方体1111ABCD A B C D -中,点P 是平面11ABC内一个动点,且满足12DP PB +=+,则直线1B P 与直线1AD 所成角的余弦值的取值范围为()A.10,2⎡⎤⎢⎥⎣⎦ B.10,3⎡⎤⎢⎥⎣⎦ C.1222⎡⎢⎣⎦D.13,22⎡⎢⎣⎦【答案】A 【解析】【分析】求得点P 的轨迹是平面11A BC 内以点O 为圆心,半径为1的圆,可得111////AD BC B M ,进而可得出题中所求角等于直线1B M 与直线1B P 的夹角,然后过点O 作OH ⊥平面ABCD 于点H ,过点H 作HN BC ⊥于点N ,连接ON ,找出使得1PB M ∠最大和最小时的位置,进而可求得所求角的余弦值的取值范围.【详解】连接1B D 交平面11A BC 于点O ,延长线段CB 至点M ,使得CB BM =,连接1B M 、OM 、PM ,如下图所示:已知在正方体1111ABCD A B C D -中,1DD ⊥底面1111D C B A ,11AC ⊂平面1111D C B A ,111DD AC ∴⊥,又 四边形1111D C B A 为正方形,所以,1111AC B D ⊥,1111DD B D D ⋂= ,11A C ∴⊥平面11B DD ,1B D ⊂ 平面11B DD ,111B D A C ∴⊥,同理11B D A B ⊥,1111A C A B A = ,1B D ∴⊥平面11A BC ,三棱锥111B A B C -的体积为11131193322B A BC V -=⨯⨯=,(11123933242A B C S =⨯=△,111111933393222B A BC V B O O -=⨯⨯==,可得11133B O B D ==,所以,线段1B D 的长被平面11A BC 与平面1AD C 三等分,且与两平面分别垂直,而正方体1111ABCD A B C D -的棱长为3,所以13OB =,3OD =其中1PO B D ⊥,不妨设OP x =,由题意可1213PB PD +=+,22123213x x +++=1x =,所以,点P 在平面11A BC 内以点O 为圆心,半径为1的圆上.因为111////AD BC B M ,所以,直线1B M 与直线1B P 的夹角即为直线1B P 与直线1AD 所成角.接下来要求出线段1B M 与PM 的长,然后在1B PM △中利用余弦定理求解.如图,过点O 作OH ⊥平面ABCD 于点H ,过点H 作HN BC ⊥于点N ,连接ON ,根据题意可知2OH =,1HN BN ==,且ON MN ⊥,所以,5ON =,24521OM =+=如图所示,121OP OP ==,当点P 在1P处时,1PB M ∠最大,当点P 在2P 处时,1PB M ∠最小.这两种情况下直线1B P 与直线1B M 夹角的余弦值最大,为111cos sin 2PB M PB O ∠=∠=;当点P 在点O 处时,1PB M ∠为直角,此时余弦值最小为0.综上所述,直线1B P 与直线1AD 所成角的余弦值的取值范围是10,2⎡⎤⎢⎥⎣⎦.故选:A.【点睛】本题考查异面直线所成角的取值范围的求解,解题的关键就是确定点P 的轨迹,考查推理能力与计算能力,属于难题.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求;全部选对的得5分,选对但不全的得2分,有选错的得0分.9.已知i 是虚数单位,复数()()()2111i z m m m =-++∈R ,()2cos isin z θθθ=+∈R ,则()A.任意m ∈R ,均有12z z >B.任意1m ≥,均有10z ≥C.存在m ∈R ,使得12z z = D.存在m ∈R ,使得1221z z -=-【答案】AD 【解析】【分析】利用复数的概念、相等的条件、模长公式一一判定即可.【详解】根据复数的概念可知()()()2111i 1z m m m =-++≥不能与实数比大小,故B 错误;由复数的模长公式可得121z z ===,易知()()2221011m m ⎧-≥⎪⎨+≥⎪⎩,且不能同时取得等号,故121z z >=,即A 正确;12z z -即动点E ()21,1m m -+到动点F ()cos ,sin θθ的距离,显然E 在抛物线()211yx =++上,F 在单位圆上,如图所示,当0,45m θ==- 时,12z z -1=,故D 正确;若存在m ∈R ,使得12z z =,则21cos 1sin m m θθ-=⎧⎨+=⎩,由上知()()22222111cos sin m m θθ-++>=+,即上述方程组无解,故C 错误;故选:AD10.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,下列命题是真命题的是()A.若cos cos a B b A =,则ABC 为等腰三角形B.若π4B =,c =65b =,则ABC 只有一解C.若()cos 2cos 0b A a c B +-=,则π3B =D.若ABC 为锐角三角形,则()()222222sin cos a b c A ab c B+->+-【答案】ACD 【解析】【分析】对于A 、C :根据题意结合正弦定理运算分析即可;对于B :根据三角形解得个数的结论分析判断;对于D :根据题意结合正弦函数单调性分析判断.【详解】对于选项A :由cos cos a B b A =,由正弦定理可得sin cos sin cos A B B A =,则()sin 0A B -=,因为0,πA B <<,则ππA B -<-<,可得0A B -=,即A B =,所以ABC 为等腰三角形,故A 正确;对于选项B :若π4B =,c =65b =,则6sin 15c B c =<<=所以ABC 有两解,故B 错误;对于选项C :若()cos 2cos 0b A a c B +-=,有正弦定理可得()sin cos sin 2sin cos 0B A A C B +-=,则()sin 2sin cos B A C B +=,即sin 2sin cos C C B =,因为(),0,πB C ∈,则sin 0C >,可得1cos 2B =,所以π3B =,故C 正确;对于选项D :若ABC 为锐角三角形,则π2A B π<+<,可得π2A B >-,且π0,2A ⎛⎫∈ ⎪⎝⎭,ππ0,22B ⎛⎫-∈ ⎪⎝⎭,则sin y x =在π0,2⎛⎫⎪⎝⎭上单调递增,所以πsin sin cos 2A B B ⎛⎫>-=⎪⎝⎭,又因为π0,2A ⎛⎫∈ ⎪⎝⎭,则222cos 02a b cA ab+-=>,可得2220a b c +->,所以()()222222sin cos a b c A ab c B +->+-,故D 正确.故选:ACD.11.已知函数()sin cos sin cos f x x x x x =+-,则下列说法正确的是()A.()f x 是以π2为周期的周期函数B.()f x 在5π,π4⎡⎤⎢⎥⎣⎦上单调递减C.()f x 的值域为[]0,1D.存在两个不同的实数()0,3a ∈,使得()f x a +为偶函数【答案】BD 【解析】【分析】A 选项,验证()π2f x f x ⎛⎫+≠ ⎪⎝⎭,得到A 错误B 选项,根据5π,π4x ⎡⎤∈⎢⎥⎣⎦时,sin 0,cos 0x x <<,得到()()sin cos sin cos f x x x x x =-+-,换元后得到()()221111222t g t t t =--+=-++,利用复合函数单调性求出答案;C 选项,令πsin cos 0,4m x x x ⎛⎫⎡=+=+∈ ⎪⎣⎝⎭,此时得到21sin cos 2m x x -=,换元后得到()()221111222m u m m m =-++=--+,由m ⎡∈⎣求出值域;D选项,由()()f x a f x a -+=+得到只需ππsin sin 44x a x a ⎛⎫⎛⎫-++=++ ⎪ ⎝⎭⎝⎭且()()sin 22sin 22x a x a +=-+,从而得到22ππ,Z 24k a k =-∈且33π,Z 4k a k =∈,结合()0,3a ∈,解不等式,得到相应的:2113,22k ⎛⎫∈⎪⎝⎭且2k Z ∈,且31,2,3k =,验证后得到答案.【详解】πππππsin cos sin cos 22222f x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+++-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()cos sin sin cos x x x x f x =-+≠,所以函数()f x 的周期不为π2,故选项A 错误;5π,π4x ⎡⎤∈⎢⎥⎣⎦时,sin 0,cos 0x x <<,故()()sin cos sin cos f x x x x x =-+-,令sin cos x x t +=,则πsin cos 4t x x x ⎛⎫=+=+ ⎪⎝⎭,因为5π,π4x ⎡⎤∈⎢⎥⎣⎦,所以π53π,π442x ⎡⎤+∈⎢⎥⎣⎦,故1t ⎡⎤∈-⎣⎦,且t 在5π,π4x ⎡⎤∈⎢⎥⎣⎦单调递减,又21sin cos 2t x x -=,故()()221111222t g t t t =--+=-++,开口向下,对称轴为1t =-,故()2122t g t t =--+在1⎡⎤-⎣⎦单调递增,由复合函数满足同增异减可知:()f x 在5π,π4x ⎡⎤∈⎢⎥⎣⎦单调递减,B 正确;令πsin cos 0,4m x x x ⎛⎫⎡=+=+∈ ⎪⎣⎝⎭,若[]π2π,2ππ4x k k +∈+,Z k ∈,即π3π2π,2π44x k k ⎡⎤∈-+⎢⎥⎣⎦,Z k ∈时,sin cos m x x =+,两边平方得:222sin 2sin cos cos 12sin cos m x x x x x x =++=+,故21sin cos 2m x x -=,若(]π2ππ,2π2π4x k k +∈++,Z k ∈,即3π7π2π,2π44x k k ⎛⎤∈++ ⎥⎝⎦,Z k ∈时,此时()sin cos m x x =-+,两边平方得:222sin 2sin cos cos 12sin cos m x x x x x x=++=+此时21sin cos 2m x x -=,综上:对于x ∈R ,均有21sin cos 2m x x -=,所以()sin cos sin cos f x x x x x =+-变形为()()221111222m u m m m =-++=--+,因为m ⎡∈⎣,所以当1m =时,()u m 取得最大值,最大值为1,其中()110122u =-+=,11122u =-+=-,因为1122<-,故()u m 最小值为12,综上:()f x 的值域为1,12⎡⎤⎢⎥⎣⎦,C 错;()π1sin cos sin cos sin 242f x x x x x x x ⎛⎫=+-=+- ⎪⎝⎭,则()()π1sin 2242f x a x a x a ⎛⎫+=++-+ ⎪⎝⎭,假设()f x a +为偶函数,则()()f x a f x a -+=+,()()π1π1sin 22sin 224242x a x a x a x a ⎛⎫⎛⎫-++--+=++-+ ⎪ ⎪⎝⎭⎝⎭,只需ππsin sin 44x a x a ⎛⎫⎛⎫-++=++ ⎪ ⎝⎭⎝⎭且()()sin 22sin 22x a x a +=-+,由ππ44x a x a ⎛⎫⎛⎫-++=++⎪ ⎝⎭⎝⎭可得:1πππ44x a x a k -++=+++,1k Z ∈①,或22πππ,Z 44x a x a k k -+++++=∈②,其中由①得:1π2k x =-,1k Z ∈,不能对所有x 恒成立,舍去;由②得:22ππ,Z 24k a k =-∈,由()()sin 22sin 22x a x a +=-+可得:332222π,Z x a x a k k +-+=∈③,由③得:33π,Z 4k a k =∈,故需要保证22ππ,Z 24k a k =-∈与33π,Z 4k a k =∈同时成立,令()2ππ0,324k -∈,解得:2113,22k ⎛⎫∈ ⎪⎝⎭且2k Z ∈,令()3π0,34k ∈,解得:3120,πk ⎛⎫∈ ⎪⎝⎭且3Z k ∈,故31,2,3k =,取31k =,此时3ππ44k a ==,此时令2πππ244k a =-=,解得:21131,22k ⎛⎫=∈ ⎪⎝⎭,符合要求,取32k =,此时3ππ42k a ==,此时令2πππ242k a =-=,解得:23N 2k =∉,舍去,取33k =,此时3π3π44k a ==,此时令2ππ3π244k a =-=,解得:21132,22k ⎛⎫=∈ ⎪⎝⎭,符合要求,综上:存在两个不同的实数()0,3a ∈,使得()f x a +为偶函数,π4a =,3π4就是这两个实数,D 正确.故选:BD .【点睛】sin cos ,sin cos ,sin cos x x x x x x +-三者的关系如下:()2sin cos 12sin cos x x x x +=+,()2sin cos 12sin cos x x x x -=-,()()22sin cos sin cos 4sin cos x x x x x x +--=,当题目中同时出现三者或三者中的两者时,通常用换元思想来解决.12.勒洛四面体是一个非常神奇的“四面体”,它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是()A.勒洛四面体能够容纳的最大球的半径为622-B.勒洛四面体被平面ABC 截得的截面面积是(2π-C.勒洛四面体表面上交线AC 的长度为2π3D.勒洛四面体表面上任意两点间的距离可能大于2【答案】ABD 【解析】【分析】A 选项:求出正四面体ABCD 的外接球半径,进而得到勒洛四面体的内切球半径,得到答案;B 选项,作出截面图形,求出截面面积;C 选项,根据对称性得到交线AC 所在圆的圆心和半径,求出长度;D 选项,作出正四面体对棱中点连线,在C 选项的基础上求出长度.【详解】A 选项,先求解出正四面体ABCD 的外接球,如图所示:取CD 的中点G ,连接,BG AG ,过点A 作AF BG ⊥于点F ,则F 为等边ABC 的中心,外接球球心为O ,连接OB ,则,OA OB 为外接球半径,设OA OB R ==,由正四面体的棱长为2,则1CG DG ==,3BG AG ==1333FG BG ==,22333BF BG ==22126333AF AG FG =-=-=,63OF AF R R =-=-,由勾股定理得:222OF BF OB +=,即222262333R R ⎛⎫⎛-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:62R =,此时我们再次完整的抽取部分勒洛四面体,如图所示:图中取正四面体ABCD 中心为O ,连接BO 交平面ACD 于点E ,交 AD 于点F ,其中 AD 与ABD △共面,其中BO 即为正四面体外接球半径62R =,设勒洛四面体内切球半径为r ,则622r OF BF BO ==-=-,故A 正确;B 选项,勒洛四面体截面面积的最大值为经过正四面体某三个顶点的截面,如图所示:面积为(2221π333322222344⎛⎫⨯⨯⨯-⨯+⨯= ⎪ ⎪⎭⎝,B 正确;C 选项,由对称性可知:勒洛四面体表面上交线AC 所在圆的圆心为BD 的中点M ,故MA MC ==2AC =,由余弦定理得:2221cos23AM MC AC AMC AM MC +-∠===⋅,故1arccos3AMC ∠=,故交线AC 13,C 错误;D 选项,将正四面体对棱所在的弧中点连接,此时连线长度最大,如图所示:连接GH ,交AB 于中点S ,交CD 于中点T ,连接AT ,则ST ===则由C 选项的分析知:TG SH ==,所以2GH =+=,故勒洛四面体表面上两点间的距离可能大于2,D 正确.故选:ABD.【点睛】结论点睛:勒洛四面体考试中经常考查,下面是一些它的性质:①勒洛四面体上两点间的最大距离比四面体的棱长大,是对棱弧中点连线,最大长度为22a a ⎫->⎪⎪⎭,②表面6个弧长之和不是6个圆心角为60︒的扇形弧长之和,其圆心角为1arccos 3,半径为32a .三、填空题:本题共4小题,每小题5分,共20分.13.已知函数()()22cos 2R f x x x a a =+∈,当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()f x 的最大值是4,则=a _____.【答案】1【解析】【分析】化简()f x ,根据π0,2x ⎡⎤∈⎢⎥⎣⎦,结合三角函数的性质得到当ππ262x +=时,()f x 取得最大值为34a +=,即可得出答案.【详解】()2π2cos 21cos 222sin 216f x x x a x x a x a ⎛⎫=++=+++=+++ ⎪⎝⎭因为π0,2x ⎡⎤∈⎢⎥⎣⎦,ππ7π2,666x ⎡⎤+∈⎢⎥⎣⎦,当ππ262x +=时,()f x 取得最大值为34a +=,则1a =.故答案为:114.对任意两个非零的平面向量α 和β,定义αβαβββ⋅=⋅,若平面向量a 、b 满足0≥> a b ,a 与b 的夹角π0,4θ⎛⎫∈ ⎪⎝⎭,且a b 和b a 都在集合2n n ⎧⎫∈⎨⎬⎩⎭Z 中,则a b = ___________【答案】32【解析】【分析】由题意可设m ∈Z ,Z t ∈,2m a b = ,2t b a = ,得21cos ,142mt θ⎛⎫=∈ ⎪⎝⎭,对m ,t 进行赋值即可得出m ,t 的值,进而得出结论.【详解】因为cos |Z 2a a b n a b n b b b θ⋅⎧⎫==∈∈⎨⎬⋅⎩⎭ ,故cos |Z 2b n b a n a θ⎧⎫=∈∈⎨⎬⎩⎭.又由0a b ≥> ,则1a b ≥,01b a<≤ ,可设m ∈Z ,Z t ∈,令2m a b = ,2t b a = ,且0m t ≥>,又夹角π0,4θ⎛⎫∈ ⎪⎝⎭,所以21cos ,142mt θ⎛⎫=∈ ⎪⎝⎭,对m ,t 进行赋值即可得出31m t =⎧⎨=⎩,所以322m a b == .故答案为:32.15.在ABC中,60,2,BAC AB BC ∠=︒==,BAC ∠的角平分线交BC 于D ,则AD =_________.【答案】2【解析】【分析】方法一:利用余弦定理求出AC ,再根据等面积法求出AD ;方法二:利用余弦定理求出AC ,再根据正弦定理求出,B C ,即可根据三角形的特征求出.【详解】如图所示:记,,AB c AC b BC a ===,方法一:由余弦定理可得,22222cos 606b b +-⨯⨯⨯= ,因为0b >,解得:1b =+由ABC ABD ACD S S S =+ 可得,1112sin 602sin 30sin 30222b AD AD b ⨯⨯⨯=⨯⨯⨯+⨯⨯⨯ ,解得:13212AD b +==+.故答案为:2.方法二:由余弦定理可得,22222cos 606b b +-⨯⨯⨯= ,因为0b >,解得:1b =+由正弦定理可得,62sin 60sin sin b B C==,解得:62sin 4B =,2sin 2C =,因为1+>>45C = ,180604575B =--= ,又30BAD ∠=o ,所以75ADB ∠= ,即2AD AB ==.故答案为:2.【点睛】本题压轴相对比较简单,既可以利用三角形的面积公式解决角平分线问题,也可以用角平分定义结合正弦定理、余弦定理求解,知识技能考查常规.16.如图,直四棱柱1111ABCD A B C D -中,底面ABCD 为平行四边形,11,2,2,60AB AD AA BAD ===∠=︒,点P 是半圆弧 11A D 上的动点(不包括端点),点Q 是半圆弧 BC上的动点(不包括端点),若三棱锥P BCQ -的外接球表面积为S ,则S 的取值范围是__.【答案】25π,13π4⎡⎫⎪⎢⎣⎭【解析】【分析】先由余弦定理求出3BD =,从而得到AB BD ⊥,确定BC 的中点E 为三棱锥P BCQ -的外接球球心O 在平面BCQ 的投影,再证明出M 为AD 的中点,N 为11B C 的中点,即EN ⊥平面ABCD ,故球心在线段EN 上,从而确定当点P 与点N 重合时,三棱锥P BCQ -的外接球半径最小,点P 与1A 或1D 重合,此时PN 最长,故三棱锥P BCQ -的外接球半径最大,画出图形,求出相应的外接球半径和表面积,最后结合点P 是半圆弧 11A D 上的动点(不包括端点),故最大值取不到,求出表面积的取值范围.【详解】因为1,2,60AB AD BAD ==∠=︒,由余弦定理得:2212cos 14432BD AB AD AB AD BAD =+-⋅∠=+-⨯=因为222AB BD AD +=,由勾股定理逆定理得:AB BD ⊥,直四棱柱1111ABCD A B C D -中,底面为平行四边形,故BD ⊥CD ,点Q 是半圆弧 BC上的动点(不包括端点),故BC 为直径,取BC 的中点E ,则E 为三棱锥P BCQ -的外接球球心O 在平面BCQ 的投影,设 BC 与AD 相交于点M , 11A D 与11B C 相交于点N ,连接EM ,ED ,则EM =ED因为60BCD ∠=︒,故30CBD ∠=︒,260DEM DBC ∠=∠=︒,故三角形DEM 为等边三角形,1122DM DE BC AD ===,即M 为AD 的中点,同理可得:N 为11B C 的中点,连接EN ,则EN ⊥平面ABCD ,故球心在线段EN 上,显然,当点P 与点N 重合时,三棱锥P BCQ -的外接球半径最小,假如点P 与1A 或1D 重合,此时PN 最长,故三棱锥P BCQ -的外接球半径最大,如图1,点P 与点N 重合,连接OC ,设ON R =,则OE =2-R ,OC R =,由勾股定理得:222OE EC OC +=,即()2221R R -+=,解得:54R =,此时外接球表面积为2254ππ4R =;如图2,当点P 与1A 或1D 重合时,连接11,,A O A N OC ,其中1A N ==,设OE h =,则2ON h =-,由勾股定理得:1AO ==OC ===,解得:32h =,此时外接球半径为2OC ==,故外接球表面积为134π13π4⨯=,但因为点P 是半圆弧 11A D 上的动点(不包括端点),故最大值取不到,综上:S 的取值范围是25π,13π4⎡⎫⎪⎢⎣⎭.故答案为:25π,13π4⎡⎫⎪⎢⎣⎭【点睛】几何体外接球问题,通常要找到几何体的一个特殊平面,利用正弦定理或几何性质找到其外心,求出外接圆的半径,进而找到球心的位置,根据半径相等列出方程,求出半径,再求解外接球表面积或体积.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知复数1i z m =+(i 是虚数单位,R m ∈),且(3i)z ⋅+为纯虚数(z 是z 的共轭复数)(1)求实数m 及z ;(2)设复数20231i a z z-=,且复数1z 对应的点在第二象限,求实数a 的取值范围.【答案】(1)3m =-,z =(2)1,33⎛⎫- ⎪⎝⎭【解析】【分析】(1)根据复数代数形式的乘法运算化简(3i)z ⋅+,再根据复数的概念得到方程(不等式)组,求出m 的值,即可求出z ,从而求出其模;(2)根据复数的乘方及代数形式的除法运算化简1z ,再根据复数的几何意义得到不等式组,解得即可.【小问1详解】∵1i z m =+,∴1i z m =-,∴i)(1i)(3i)(3)(13)i z m m m +=-+=++-,(3+i)z ⋅为纯虚数,∴30130m m +=⎧⎨-≠⎩,解得3m =-,故13i z =-,则z ==【小问2详解】2023450533i i i i ⨯+===- ,()()()()20231i 1+3i i i 331=i 13i 13i 1+3i 1010a a a a a z z ∴+-+-+===+--,复数1z 所对应的点在第二象限,∴301031010a a -⎧<⎪⎪⎨+⎪>⎪⎩,解得133a -<<,故实数a 的取值范围为1,33⎛⎫- ⎪⎝⎭.18.如图所示,在ABC 中,D 为BC 边上一点,且2BD DC =,过D 的直线EF 与直线AB 相交于E 点,与直线AC 相交于F 点(E ,F 两点不重合).(1)用AB ,AC表示AD ;(2)若AE AB λ= ,AF AC μ=,求2λμ+的最小值.【答案】(1)1233AD AB AC =+ (2)83【解析】【分析】(1)根据平面向量线性运算法则计算可得;(2)根据(1)的结论,转化用AE ,AF 表示AD,根据D 、E 、F 三点共线找出等量关系,再利用基本不等式计算可得;【小问1详解】因为2BD DC = ,所以22AD AB AC AD -=- ,化简得1233AD AB AC =+ ;【小问2详解】因为AE AB λ= ,AF AC μ=,1233AD AB AC =+ ,所以3231A E D A A F μλ=+,由图可知0λ>,0μ>又因为D 、E 、F 三点共线,所以12133λμ+=,所以()124448223333333μλλμλμλμλμ⎛⎫+=+⋅+=++≥+=⎪⎝⎭,当433μλλμ=,即423μλ==时,2λμ+取最小值83.19.设()()sin cos R f x x x x =+∈.(1)判断函数2π2y fx ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的奇偶性,并写出最小正周期;(2)求函数()π4y f x f x ⎛⎫=-⎪⎝⎭在π[0,]2上的最大值.【答案】(1)非奇非偶函数,π(2)12+【解析】【分析】(1)根据三角函数恒等变换化简2π2y f x ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦,结合函数奇偶性的定义以及正弦函数的周期,即可求得答案;(2)化简()π4y f x f x ⎛⎫=- ⎪⎝⎭,结合π[0,]2x ∈,求得ππ3π2[,]444x -∈-,结合正弦函数的性质,即可求得答案.【小问1详解】由题意得()πsin cos )4f x x x x =+=+,故222ππ3π)]2sin ()4422πx x x y f⎡⎤⎛⎫==+ ⎪⎢⎥⎝⎣=+⎦++⎭3π1cos(2)1sin 22x x =-+=-,令()1sin 2g x x =-,x ∈R ,由于()1sin 2()1sin 2g x x x -=--=+不恒等于()g x ,也不等于()g x -,故2π2y fx ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦为非奇非偶函数,其最小正周期为2ππ2=;【小问2详解】由题意可得()π)]()π44y f x x x f x ⎛⎫=-= ⎭+⎪⎝22(1cos 2)2cos sin 222x x x x x-=+=+πsin(2422x =-+,因为π[0,]2x ∈,所以ππ3π2[,444x -∈-,故π2)2sin(142[,]x -∈-,故πsin(2)42x -+的最大值为212+,即函数()π4y f x f x ⎛⎫=-⎪⎝⎭在π[0,]2上的最大值为12+.20.某游戏厂商对新出品的一款游戏设定了“防沉迷系统”,规则如下:①3小时内(含3小时)为健康时间,玩家在这段时间内获得的积累经验值E (单位:EXP )与游玩时间t (单位:小时)满足关系式:22020E t t a=++()0t >;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累计经验值不变);③超过5小时的时间为不健康时间,累积经验值开始损失,损失的经验值与不健康时间成正比例关系,正比例系数为50.(1)当2a =时,写出累计经验值E 与游玩时间t 的函数关系式()E f t =,并求出游玩6小时的累积经验值;(2)该游戏厂商把累计经验值E 与游玩时间t 的比值称为“玩家愉悦指数”,记为()H t ,若0a >,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数a 的取值范围.【答案】(1)22040,03()109,3535950,5t t t f t t t t ⎧++<≤⎪=<≤⎨⎪->⎩,(6)59f =(EXP ).(2)1,5⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)根据题意结合分段函数分析运算;(2)根据题意可得当03t <≤时,20()2024aH t t t=++≥恒成立,利用参变分离结合二次函数分析运算.【小问1详解】由题意可得:当03t <≤时,则2()2020f t t t a =++,且2(3)3203206920f a a =+⨯+=+;当35t <≤时,则()6920f t a =+;当5t >时,则()()69205055020319f t a t t a =+--=-++;综上所述:22020,03()2069,355020319,5t t a t f t a t t a t ⎧++<≤⎪=+<≤⎨⎪-++>⎩.若2a =,则22040,03()109,3535950,5t t t f t t t t ⎧++<≤⎪=<≤⎨⎪->⎩,所以(6)35950659f =-⨯=(EXP ).【小问2详解】由(1)可得:22020,03()2069,355020319,5t t a t f t a t t a t ⎧++<≤⎪=+<≤⎨⎪-++>⎩,则()2020,032069(),352031950,5at t t f t a H t t t t a t t ⎧++<≤⎪⎪+⎪==<≤⎨⎪+⎪->⎪⎩,由题意可得:当03t <≤时,20()2024aH t t t=++≥恒成立,整理得24200t t a -+≥对任意03t <≤恒成立,因为2420y t t a =-+的开口向上,对称轴(]20,3t =∈,则2t =时,2420y t t a =-+取到最小值204a -,可得2040a -≥,解得15a ≥,所以实数a 的取值范围为1,5⎡⎫+∞⎪⎢⎣⎭.21.如图,在我校即将投入使用的新校门旁修建了一条专门用于跑步的红色跑道,这条跑道一共由三个部分组成,其中第一部分为曲线段ABCD ,该曲线段可近似看作函数()()sin 0,0,0πy A x A ωϕωϕ=+>><<,[]4,0x ∈-的图象,图象的最高点坐标为()1,2C -.第二部分是长为1千米的直线段DE ,//DE x 轴.跑道的最后一部分是以O 为圆心的一段圆弧 EF.(1)若新校门位于图中的B 点,其离AF 的距离为1千米,一学生准备从新校门笔直前往位于O 点的万象楼,求该学生走过的路BO 的长;(2)若点P 在弧 EF上,点M 和点N 分别在线段OF 和线段OE 上,若平行四边形OMPN 区域为学生的休息区域,记POF θ∠=,请写出学生的休息区域OMPN 的面积S 关于θ的函数关系式,并求当θ为何值时,S 取得最大值.【答案】(1千米(2)43π23πsin 203633S θθ⎛⎫⎛⎫=+-<< ⎪ ⎪⎝⎭⎝⎭;π6θ=【解析】【分析】(1)由图可知2A =,34T =,利用2πT ω=求出ω,再代入点()1,2C -求出解析式,即可求出B 点的坐标,进而可求BO 的长;(2)由已知可求出E 点坐标,进而得到圆O 的半径OE 的长和π6EOD ∠=,利用正弦定理和三角形面积公式即可求出PNO S ,进而得到平行四边形OMPN 的面积S 关于θ的函数关系式,利用正弦函数的性质即可求出最大值.【小问1详解】解:由条件知,2A =,又因为()()1434T =---=,则2π12T ω==,所以π6ω=.又因为当1x =-时,有π2sin 26y ϕ⎛⎫=-+= ⎪⎝⎭,且()0,πϕ∈,所以2π3ϕ=.所以曲线段ABCD 的解析式为π2π2sin 63y x ⎛⎫=+⎪⎝⎭,[]4,0x ∈-.由π2π2sin 163y x ⎛⎫=+= ⎪⎝⎭,即()π2ππ2π636x k k +=+∈Z ,或()π2π5π2π636x k k +=+∈Z 解得()1312x k k =-+∈Z ,又因为[]4,0x ∈-,所以0k =,13x =-,所以()3,1B -;或()2112x k k =+∈Z ,无论k 为何值都不符合[]4,0x ∈-,舍去,所以OB ==BO 的长为千米.【小问2详解】由题可知,当0x =时,π2π2sin 063y ⎛⎫=⨯+= ⎪⎝⎭(D 则(E,2OE ==,π6EOD ∠=,所以3πEOF ∠=.在PNO 中,2OP OE ==,π2ππ33PNO ∠=-=,NPO θ∠=,2πππ33NOP θθ∠=--=-,则由正弦定理sin sin sin OP ON PNPNO NPO NOP==∠∠∠πsin sin 3ON PNθθ==⎛⎫- ⎪⎝⎭,故可得4343π333ON PN θθ⎛⎫==- ⎪⎝⎭,,故134343πsin 24333PNO S NP NO PNO θθ⎛⎫=⋅⋅⋅∠=⨯⨯- ⎪⎝⎭△2π1sin cos sin 32θθθθθ⎫⎛⎫=-=-⎪ ⎪⎪⎝⎭⎝⎭11ππ2cos 22034443633θθθθ⎫⎛⎫⎫=⨯+-=+-<<⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,即ππ22063PNO S S θθ⎛⎫⎫==+<< ⎪⎪⎝⎭⎝⎭△,当π6θ=时,πsin 216θ⎛⎫+= ⎪⎝⎭,此时S 取得最大值.【点睛】已知()()()0,0f x Asin x A ωϕω+=>>的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和ϕ,常用如下两种方法:(1)由2πT ω=即可求出ω;确定ϕ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标0x ,则令00x ωϕ+=(或0πx ωϕ+=),即可求出ϕ.(2)代入点的坐标,利用一些已知点(最高点、最低点或零点)坐标代入解析式,再结合图形解出ω和ϕ,若对A ,ω的符号或对ϕ的范围有要求,则可用诱导公式变换使其符合要求.22.如图,斜三棱柱111ABC A B C -中,AC BC =,D 为AB 的中点,1D 为11A B 的中点,平面ABC ⊥平面11ABB A .(1)求证:直线1//A D 平面11BC D ;(2)设直线1AB 与直线1BD 的交点为点E ,若三角形ABC 是等边三角形且边长为2,侧棱12AA =,且异面直线1BC 与1AB 互相垂直,求异面直线1A D 与1BC 所成角;(3)若12,2AB AC BC A AB ===∠=,在三棱柱111ABC A B C -内放置两个半径相等的球,使这两个球相切,且每个球都与三棱柱的三个侧面及一个底面相切.求三棱柱111ABC A B C -的高.【答案】(1)证明见解析(2)23arctan3(3)2369+【解析】【分析】(1)证明出四边形11A D BD 为平行四边形,从而11//A D BD ,得到线面平行;(2)先证明出E 为三等分点,然后运用余弦定理求出1AB 可得;(3)因为在三棱柱111ABC A B C -内放置两个半径相等的球,使这两个球相切,且每个球都与三棱柱的三个侧面及一个底面相切,故小球的半径即为三棱柱直截面的内切圆的半径,利用面积公式得到内切圆半径,画出立体几何图形,结合相关关系求出三棱柱的高.【小问1详解】斜三棱柱111ABC A B C -中,1D 为11A B 的中点,D 为AB 的中点,所以11111122A D AB AB BD ===,且11A D BD //,所以四边形11A D BD 为平行四边形,所以11//A D BD ,因为1BD ⊂平面11BC D ,1A D ⊄平面11BC D ,所以1//A D 平面11BC D ;【小问2详解】因为AC =BC ,D 为AB 的中点,所以CD ⊥AB ,因为平面ABC ⊥平面11ABB A ,交线为AB ,CD ⊂平面ABC ,所以CD ⊥平面11ABB A ,故11C D ⊥平面11ABB A ,所以111C D AB ⊥,又1BC 与1AB 互相垂直,1111BC C D C ⋂=,111,BC C D ⊂面11BC D 故1AB ⊥面11BC D ,得11⊥AB BD .即11B D E 为直角三角形,在11ABB A 中,1,D D 为中点,11//A D BD ,所以E 为1AB 的三等分点,设1B E t =,由余弦定理可得:()2222221111111111117322cos 21232t B E AB A B AA t A B A B D AB A B t ⎛⎫+- ⎪+-⎝⎭∠====⋅⨯⨯解之:2t =,所以11π,6A B A ∠=故112D E =11111113//,,.22D E B D A B AB BD EB AB ∴==∴=11C D ⊥平面11ABB A ,111,C D BD ∴⊥在11BD C △中,11tan 3D BC ∠=.1A D 与1BC 所成的角为23arctan .3【小问3详解】过B 作1BP AA ⊥于P ,过P 作1FP CC ⊥于F ,连BFBPF ∴ 为直截面,小球半径为BPF △的内切圆半径因为2,2AB AC BC ===,所以222AC BC AB +=,故AC ⊥BC ,则112CD AB ==设2,BP t =所以2AP t =,由222AB BP AP =+解得63t =,2326,33BP AP ==;由最小角定理112cos cos cos 263A AC A AB BAC ∠=∠∠=⨯1sin 3PF AC A AC =∠=由CD ⊥面11ABB A ,易知1BP CC ⊥,23BF PF BP ∴===内切圆半径为:13r =则12362sin .9h r r r A AB +=++∠=解该角的余弦值,或根据直角三角形锐角三角函数求出该角的正弦,余弦或正切值,得到答案.。

高一下学期数学期末试卷含答案(共5套)

高一下学期数学期末试卷含答案(共5套)

高一下学期期末考试数学试题第Ⅰ卷 选择题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}A |2,x x x R =≤∈,集合B 为函数y lg(1)x =-的定义域,则B A I ( ) A .(1,2) B .[1,2] C .[1,2) D .(1,2]2.已知20.5log a =,0.52b =,20.5c =,则a ,b ,c 的大小关系为( )A .a b c <<B .c b a <<C .a c b <<D .c b a <<3.一个单位有职工800人,其中高级职称160人,中级职称300人,初级职称240人,其余人员100人,为了解职工收入情况,现采取分层抽样的方法抽取容量为40的样本,则从上述各层中依次抽取的人数分别为( )A .15,24,15,19B .9,12,12,7C .8,15,12,5D .8,16,10,6 4.已知某程序框图如图所示,若输入实数x 为3,则输出的实数x 为( )A .15B .31 C.42 D .63 5.为了得到函数4sin(2)5y x π=+,x R ∈的图像,只需把函数2sin()5y x π=+,x R ∈的图像上所有的点( )A .横坐标伸长到原来的2倍,纵坐标伸长到原来的2倍.B .纵坐标缩短到原来的12倍,横坐标伸长到原来的2倍.C .纵坐标缩短到原来的12倍,横坐标缩短到原来的12倍. D .横坐标缩短到原来的12倍,纵坐标伸长到原来的2倍.6.函数()1ln f x x x=-的零点所在的区间是( )A .(0,1)B .(1,2) C.(2,3) D .(3,4)7.下面茎叶图记录了在某项体育比赛中,九位裁判为一名选手打出的分数情况,则去掉一个最高分和最低分后,所剩数据的方差为( )A .327 B .5 C.307D .4 8.已知函数()222cos 2sin 1f x x x =-+,则( )A .()f x 的最正周期为2π,最大值为3.B .()f x 的最正周期为2π,最大值为1. C.()f x 的最正周期为π,最大值为3. D .()f x 的最正周期为π,最大值为1.9.平面向量a r 与b r 的夹角为23π,(3,0)a =r ,||2b =r ,则|2|a b +=r r ( )A C.7 D .3 10.已知函数2log (),0()(5),0x x f x f x x -<⎧=⎨-≥⎩,则()2018f 等于( )A .1-B .2 C.()f x D .111.设点E 、F 分别为直角ABC ∆的斜边BC 上的三等分点,已知3AB =,6AC =,则AE AF ⋅u u u r u u u r( )A .10B .9 C. 8 D .712.气象学院用32万元买了一台天文观测仪,已知这台观测仪从启动的第一天连续使用,第n 天的维修保养费为446(n )n N *+∈元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( )A .300天B .400天 C.600天 D .800天第Ⅱ卷 非选择题二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上) 13.已知θ为锐角且4tan 3θ=,则sin()2πθ-= . 14.A 是圆上固定的一点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,它的长度不小于半径的概率为 .15.若变量x ,y 满足2425()00x y x y f x x y +≤⎧⎪+≤⎪=⎨≥⎪⎪≥⎩,则32z x y =+的最大值是 .16.关于x 的不等式232x ax >+(a为实数)的解集为,则乘积ab 的值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在ABC ∆中,角A ,B C ,所对应的边分别为a ,b ,c ,且5a =,3A π=,cos B =(1)求b 的值; (2)求sin C 的值.18. 已知数列{}n a 中,前n 项和和n S 满足22n S n n =+,n N *∈.(1)求数列{}n a 的通项公式; (2)设12n n n b a a +=,求数列{}n b 的前n 项和n T . 19. 如图,在ABC ∆中,点P 在BC 边上,AC AP >,60PAC ∠=︒,PC =10AP AC +=.(1)求sin ACP ∠的值;(2)若APB ∆的面积是,求AB 的长.20. 已知等差数列{}n a 的首项13a =,公差0d >.且1a 、2a 、3a 分别是等比数列{}n b 的第2、3、4项. (1)求数列{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足2 (n 1)(n 2)n n na c ab =⎧=⎨⋅≥⎩,求122018c c c +++L 的值(结果保留指数形式).21.为响应党中央“扶贫攻坚”的号召,某单位知道一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡株数:经计算:615705i i i x y ==∑,6214140ii x ==∑,62110464i i y ==∑≈0.00174.其中i x ,i y 分别为试验数据中的温度和死亡株数,1,2,3,4,5,6.i =(1)y 与x 是否有较强的线性相关性?请计算相关系数r (精确到0.01)说明.(2)求y 与x 的回归方程ˆˆˆ+a y bx =(ˆb 和ˆa 都精确到0.01);(3)用(2)中的线性回归模型预测温度为35C ︒时该批紫甘薯死亡株数(结果取整数). 附:对于一组数据11(,v )u ,22(,v )u ,L L ,(,v )n n u ,①线性相关系数ni i u v nu vr -=∑,通常情况下当|r |大于0.8时,认为两个变量具有很强的线性相关性.②其回归直线ˆˆv u αβ=+的斜率和截距的最小二乘估计分别为: 1221ˆni i i nii u v nu vunu β==-=-∑∑,ˆˆˆav u β=-;22.已知函数()2lg(a)1f x x =+-,a R ∈. (1)若函数()f x 是奇函数,求实数a 的值;(2)在在(1)的条件下,判断函数()y f x =与函数lg(2)xy =的图像公共点各数,并说明理由;(3)当[1,2)x ∈时,函数lg(2)x y =的图像始终在函数lg(42)xy =-的图象上方,求实数a 的取值范围.答案一、选择题答案9. 【解析】方法1: (1,b =-,2(1,a b +=±,|2|13a b +=。

2022-2023学年四川省成都市高一下学期期末数学试题【含答案】

2022-2023学年四川省成都市高一下学期期末数学试题【含答案】

2022-2023学年四川省成都市高一下学期期末数学试题一、单选题1.若点(),0a 是函数πsin 6y x ⎛⎫=+ ⎪⎝⎭图象的一个对称中心,则a 的值可以是()A .π3B .π2C .π6-D .π3-【答案】C【分析】根据正弦函数的对称中心可求出结果.【详解】依题意可得ππ6a k +=,Z k ∈,所以ππ6a k =-,Z k ∈,当0k =时,π6a =-.故选:C 2.复数31()1z i i-=+(i 为虚数单位),则其共轭复数z 的虚部为()A .1-B .i -C .1D .i【答案】A【分析】根据复数的乘法及除法运算求出z ,得到z ,即可求解.【详解】∵()()()2i 11i 2111i i i i i 2---===-++-,()3i iz ∴=-=∴i z =-∴z 的虚部为1-故选:A3.已知,a b →→为单位向量,且(2)a b b →→→-⊥,则2a b →→-=()A .1B .3C .2D .5【答案】B【解析】先根据(2)a b b →→→-⊥得221a b b →→→⋅==,再根据向量模的公式计算即可得答案.【详解】因为,a b →→为单位向量,且(2)a b b →→→-⊥,所以20a b b →→→⎛⎫-⋅= ⎪⎝⎭,所以221a b b →→→⋅==,所以22222443a b a b a a b b →→→→→→→→-=-=-⋅+=.故选:B .【点睛】本题考查向量垂直关系的向量表示,向量的模的计算,考查运算能力,是基础题.4.若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin2α=()A .725B .15C .15-D .725-【答案】D【分析】利用诱导公式和二倍角的余弦公式即可得到答案.【详解】ππ3cos cos 445αα⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,22ππ37cos 22cos 12144525αα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⨯-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,且ππcos 2cos 2sin 242ααα⎡⎤⎛⎫⎛⎫-=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选:D.5.设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列说法错误的是()A .若m n ⊥,m α⊥,n β⊥,则αβ⊥B .若m n ∥,m α⊥,n β∥,则αβ⊥C .若m n ⊥,m α∥,n β∥,则αβ∥D .若m n ∥,m α⊥,n β⊥,则αβ∥【答案】C【分析】根据平行线的性质,结合垂直的性质、平面平行的性质逐一判断即可.【详解】因为m α⊥,n β⊥,若m ,n分别在直线,m n 上为平面α,β的法向量,且m n ⊥ ,故αβ⊥,所以选项A 说法正确;因为//m n ,m α⊥,所以n α⊥,而//n β,因此αβ⊥,所以选项B 说法正确;当αβ⋂时,如下图所示:也可以满足m n ⊥,//m α,//n β,所以选项C 说法不正确;因为//m n ,m α⊥,所以n α⊥,而n β⊥,所以//αβ,因此选项D 说法正确,故选:C6.记函数()()πsin 06f x x ωω⎛⎫=+> ⎪⎝⎭的最小正周期为T ,若ππ42T <<,且()π3f x f ⎛⎫≤ ⎪⎝⎭,则ω=()A .4B .5C .6D .7【答案】D【分析】分析可知函数()f x 的图象关于直线π3x =对称,可得出()31k k ω=+∈Z ,再利用函数()f x 的最小正周期求出ω的取值范围,即可得出ω的值.【详解】对任意的x ∈R ,()π3f x f ⎛⎫≤ ⎪⎝⎭,则π3f ⎛⎫⎪⎝⎭为函数()f x 的最大值或最小值,故函数()f x 的图象关于直线π3x =对称,故()ππππ362k k ω+=+∈Z ,解得()31k k ω=+∈Z ,又因为0ω>且函数()f x 的最小正周期T 满足ππ42T <<,即π2ππ42ω<<,解得48ω<<,故7ω=.故选:D.7.科技是一个国家强盛之根,创新是一个民族进步之魂,科技创新铸就国之重器,极目一号(如图1)是中国科学院空天信息研究院自主研发的系留浮空器,2022年5月,“极目一号”Ⅲ型浮空艇成功完成10次升空大气科学观测,最高升空至9050米,超过珠穆朗玛峰,创造了浮空艇大气科学观测海拔最高的世界纪录,彰显了中国的实力“极目一号”Ⅲ型浮空艇长53米,高18米,若将它近似看作一个半球,一个圆柱和一个圆台的组合体,轴截面图如图2所示,则“极目一号”Ⅲ型浮空艇的体积约为()A .2530πB .3016πC .3824πD .4350π【答案】A【分析】根据球、圆柱、圆台的体积公式可求出结果.【详解】根据题意,该组合体的直观图如图所示:半球的半径为9米,圆柱的底面半径为9米,母线长为14米,圆台的两底面半径分别为9米和1米,高为30米.则()3314π9486πm 23V =⨯⨯⨯=半球,()239141134m V ππ=⨯⨯=圆柱,()()22319911π30910πm 3V =⨯+⨯+⨯=圆台,所以()3486π1134π910π2530πm V V V V =++=++=半球圆柱圆台.故选:A.8.如图,在Rt ABC △中,90A ∠=︒,2AB =,4AC =,点P 在以A 为圆心且与边BC 相切的圆上,则PB PC ⋅的最小值为()A .0B .165-C .245-D .565-【答案】C【分析】由几何关系分解向量,根据数量积的定义与运算法则求解【详解】设AD 为斜边BC 上的高,则圆A 的半径222445,24255416r AD BC ⨯====+=+,设E 为斜边BC 的中点,,PA AE θ=,则[]0,πθ∈,因为455PA = ,5AE = ,则()()()21625PB PC PA AB PA AC PA PA AB AC PA AE ⋅=+⋅+=+⋅+=+⋅ 16451625cos 8cos 555θθ=+⨯⨯=+,故当πθ=时,PB PC⋅ 的最小值为1624855-=-.故选:C.二、多选题9.下列说法中错误的是()A .已知()1,3a =- ,()2,6b =- ,则a 与b可以作为平面内所有向量的一组基底B .已知()()1,3,0,1a b =-=,则a 在b 上的投影向量的坐标是()0,3-C .若两非零向量a ,b满足a b a b +=- ,则a b⊥ D .平面直角坐标系中,()1,1A ,()3,2B ,()4,0C ,则ABC 为锐角三角形【答案】AD【分析】利用基底定义判断选项A ;利用向量数量积定义判断选项B ;利用向量垂直充要条件判断选项C ;利用向量夹角定义判断选项D.【详解】选项A :已知()1,3a =- ,()2,6b =- ,则2a b = ,则//a b ,则a 与b不可以作为平面内所有向量的一组基底,故A 错误;选项B :a 在b 上的投影向量为()()2210310,1031a b b b ⋅⨯-⨯==- ,,故B 正确;选项C :若两非零向量a ,b满足a b a b +=- ,则22a b a b+=- 即()()22a ba b +=-,整理得0a b ⋅=,则a b ⊥ ,故C 正确;选项D :平面直角坐标系中,()1,1A ,()3,2B ,()4,0C ,则(2,1)BA =--,(1,2)BC =- ,则220BA BC ⋅=-+=,则BA BC ⊥ ,则ABC 为直角三角形,故D 错误;故选:AD.10.复数z 在复平面内对应的点为Z ,原点为O ,i 为虚数单位,下列说法正确的是()A .若12z z >,则2212z z >B .若20z ≠,则1122z z z z =C .若32i z =-+是关于x 的方程()20,x px q p q ++=∈R 的一个根,则19p q +=D .若12i 2z ≤-≤,则点Z 的集合所构成的图形的面积为π【答案】BCD【分析】根据复数的概念、几何意义及其性质,对各个选项进行逐个检验即可得出结论.【详解】对于A ,令122i,1z z ==,满足12z z >,但2212z z <,,故A 错误;对于B,设1i,(,z a b a b =+∈R 且不同时为0),()2i ,z c d c d =+∈R 12i i z a b z c d +=+()()()()i i i i a b c d c d c d +-=+-()22i ac bd bc ad c d ++-=+22221()()ac bd bc ad c d=++-+()()2222221a bc dc d =+++2222a b c d+=+12z z =,故B 正确;对于C ,32i z =-+,且z 是关于x 的方程()20,x px q p q ++=∈R 的一个根,32i z ∴=--也是关于x 的方程20x px q ++=的另一个根,()()()32i 32i ,32i 32i p q ⎧-++--=-⎪∴⎨-+--=⎪⎩解得6,13p q ==,故19p q +=,故C 正确,对于D,设i,,z a b a b =+∈R ,则()()222i 2i 2z a b a b -=+-=+-,故221(2)2a b ≤+-≤,圆22(2)2x y +-=的面积为2π,圆22(2)1x y +-=的面积为π,故点Z 的集合所构成的图形的面积为2πππ-=,故D 正确.故选:BCD.11.ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,S 为ABC 的面积,且23a =,233AB AC S ⋅= ,下列选项正确的是()A .π3A =B .若ABC 有两解,则b 取值范围是()23,4C .若ABC 为锐角三角形,则b 取值范围是[]2,4D .若D 为BC 边上的中点,则AD 的最大值为3【答案】ABD【分析】根据向量运算结合面积公式得到π3A =,A 正确;根据sin b A a b <<,代入数据则可判断B 正确;确定ππ62B <<,计算()4sin 2,4b B =∈,C 错误;利用均值不等式结合余弦定理得到D 正确,得到答案.【详解】对选项A :233AB AC S ⋅= ,故231cos sin 32cb A bc A =⨯,故tan 3A =,()0,πA ∈,所以π3A =,故A 正确;对选项B :若△ABC 有两解,则sin b A a b <<,即3232b b <<,则()23,4b ∈,故B 正确;对选项C :ABC 为锐角三角形,则π02B <<,ππ32A B B +=+>,故ππ62B <<,则1sin 12B <<,sin sin b a B A=,故()sin 4sin 2,4sin a B b B A ==∈,故C 错误;对选项D :若D 为BC 边上的中点,则()12AD AB AC =+ ,故()()()2222221112cos 444AD AB AC c bc A b b c bc =+=++=++ ,又222222cos 12a b c bc A b c bc =+-=+-=,2212b c bc +=+,由基本不等式得22122b c bc bc +=+≥,当且仅当23b c ==时等号成立,故12bc ≤,所以()21112336942AD bc bc bc ⎡⎤=++=+≤+=⎣⎦ ,故3AD ≤ ,正确;故选:ABD.12.如图,在棱长为2的正方体1111ABCD A B C D -中,,E F 分别为棱11B C ,1BB 的中点,G 为面对角线1A D 上的一个动点,则()A .三棱锥1B EFG -的体积为定值B .线段1A D 上存在点G ,使1AC ⊥平面EFG C .线段1AD 上存在点G ,使平面//EFG 平面1ACD D .设直线FG 与平面11ADD A 所成角为θ,则sin θ的最大值为223【答案】ABD【分析】对于A 选项,利用等体积法判断;对于B 、C 、D 三个选项可以建立空间直角坐标系,利用空间向量求解【详解】易得平面11//ADD A 平面11BCC B ,所以G 到平面11BCC B 的距离为定值,又1B EF S △为定值,所以三棱锥1G B EF -即三棱锥1B EFG -的体积为定值,故A 正确.对于B,如图所示,以D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,则()2,0,0A ,()()2,2,0,0,0,0B D ,()0,2,0C ,()12,0,2A ,()10,0,2D ()()()10,2,2,1,2,2,2,2,1C E F ,所以()12,2,2A C =- ,()2,2,0AC =- ,()12,0,2AD =-,()1,0,1EF =- 设1DG DA λ=(01λ≤≤),则()2,0,2G λλ所以()21,2,22EG λλ=--- ,()22,2,21FG λλ=---1A C ⊥平面EFG 11A C EG A C FG ⎧⊥⎪⇔⎨⊥⎪⎩即()()()()()()()()221222220222222210λλλλ⎧--+⨯-+-⨯-=⎪⎨--+⨯-+-⨯-=⎪⎩解之得14λ=当G 为线段1A D 上靠近D 的四等分点时,1A C ⊥平面EFG .故B 正确对于C ,设平面1ACD 的法向量()1111,,n x y z =则1111111220220n AC x y n AD x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取11x =得()11,1,1n =设平面EFG 的法向量()2222,,n x y z =,则()()22222220212220n EF x z n EG x y z λλ⎧⋅=-=⎪⎨⋅=--+-=⎪⎩取21x =,得21,,1243n λ⎛⎫= ⎪⎝-⎭ ,平面1ACD //平面EFG ⇔12//n n设12n kn = ,即()431,1,11,,12k λ-⎛⎫= ⎪⎝⎭,解得451,k λ==,01λ≤≤ ,不合题意∴线段1B C 上不存在点G ,使平面EFG //平面1BDC ,故C 错误.对于D ,平面11ADD A 的法向量为()0,1,0n =则22sin 8129FG n FG n θλλ⋅==-+ 因为22398129842λλλ⎛⎫-+=-+ ⎪⎝⎭92≥所以22222sin 3981292θλλ=≤=-+所以sin θ的最大值为223.故D 正确.故选:ABD三、填空题13.若角α的终边上有一点()1,4P -,则tan 2α=.【答案】815【分析】先根据定义求出角α的正切,再利用二倍角公式求解.【详解】由题意得4tan 41α-==-,故()()22242tan 88tan 21tan 1161514ααα⨯--====----.故答案为:81514.记ABC 面积为3,60B =︒,223a c ac +=,则b =.【答案】22【分析】由三角形面积公式可得4ac =,再结合余弦定理即可得解.【详解】由题意,13sin 324ABC S ac B ac === ,所以224,12ac a c =+=,所以22212cos 122482b ac ac B =+-=-⨯⨯=,解得22b =(负值舍去).故答案为:22.15.如图,在三棱锥A BCD -中,1AB AC ==,AB AC ⊥,2AD =,AD ⊥平面ABC ,E 为CD 的中点,则直线BE 与AD 所成角的余弦值为.【答案】23【分析】利用线面垂直的性质定理,给合题设条件推得,,AD AB AC 两两垂直,从而将三棱锥A BCD -置于一个长方体中,再利用异面直线所成角的定义,结合勾股定理及余弦定理即可求解.【详解】因为AD ⊥平面ABC ,AB ⊂平面ABC ,,AC ⊂平面ABC ,所以AD AB ⊥,AD AC ⊥,又AB AC ⊥,所以,,AD AB AC 两两垂直,将三棱锥A BCD -置于一个长方体中,如图所示,易知//BF AD ,所以直线BE 与AD 所成角即为BF 与BE 所成角为FBE ∠(或其补角),由题意可知,2221321122BF BE FE ⎛⎫===++= ⎪⎝⎭,,在FBE 中,由余弦定理,得222222332222cos 323222BF BE FE FBE BF BE ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭∠===⋅⋅⨯⨯,所以直线BE 与AD 所成角的余弦值为23.故答案为:23.16.在平面四边形ABCD 中,AB AC ⊥,3AC AB =,1AD CD ==,则BD 的最大值为.【答案】3【分析】设CAD α∠=,利用三角函数函数得2cos AC α=,再利用余弦定理结合三角恒等变换即可得到最值.【详解】设CAD α∠=,π0,2α⎛⎫∈ ⎪⎝⎭,则12cos ACADα=,代入数据得2cos AC α=,3AC AB = ,2cos 23cos 33AB αα∴==,在ABD △中运用余弦定理得222π2cos 2BD AB AD AB AD α⎛⎫=+-⋅+ ⎪⎝⎭,即2224cos 2312cos 1sin 33BD ααα=++⨯⨯⨯224cos 2312cos 1sin 33ααα=++⨯⨯⨯41cos 223sin 21323αα+=⨯++223545cos 2sin 2sin 2333363πααα⎛⎫=++=++ ⎪⎝⎭π0,2α⎛⎫∈ ⎪⎝⎭,ππ7π2,666α⎛⎫∴+∈ ⎪⎝⎭,所以当ππ262α+=,即π6α=时,2BD 的最大值为3,则BD 的最大值为3.故答案为:3.【点睛】关键点睛:本题的关键在于引角,设CAD α∠=,再利用三角函数和余弦定理得到222π2cos 2BD AB AD AB AD α⎛⎫=+-⋅+ ⎪⎝⎭,最后结合诱导公式和三角恒等变换即可求出最值.四、解答题17.已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.(1)求()f x 的解析式;(2)将()f x 的图像向右平移π6个单位长度,再保持纵坐标不变,将横坐标缩短为原来的12倍,得到()g x 的图像,求()g x 在区间π0,4⎡⎤⎢⎥⎣⎦上的值域.【答案】(1)()πsin 26f x x ⎛⎫=+ ⎪⎝⎭(2)1,12⎡⎤-⎢⎥⎣⎦【分析】(1)根据给定的函数图像,利用“五点法”作图求解即可;(2)利用函数图像变换求出函数()g x 的解析式,再利用正弦函数的性质即可得解.【详解】(1)依题意,由图像得1A =,12πππ2362T =-=,解得πT =,又0ω>,则2π2πω==,所以()()sin 2f x x ϕ=+,因为点π,16⎛⎫ ⎪⎝⎭在()f x 的图像上,则πsin 13ϕ⎛⎫+= ⎪⎝⎭,所以ππ2π32k ϕ+=+,Z k ∈,即π2π6k ϕ=+,Z k ∈,而π2ϕ<,则π6ϕ=,所以()πsin 26f x x ⎛⎫=+ ⎪⎝⎭.(2)依题意,()ππππ2sin 22sin 46666g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,因π0,4x ⎡⎤∈⎢⎥⎣⎦,则ππ5π4666x -≤-≤,而函数sin y x =在ππ,62⎡⎤-⎢⎥⎣⎦上单调递增,在π5π,26⎡⎤⎢⎥⎣⎦上单调递减,因此有π1sin 4,162x ⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,故()g x 在π0,4⎡⎤⎢⎥⎣⎦上的值域为1,12⎡⎤-⎢⎥⎣⎦.18.已知()1f x m n =⋅- ,其中()3,2cos m x = ,()()sin2,cos R n x x x =∈ .(1)求()f x 的单调递增区间;(2)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若()2f A =,2a bc =,求11tan tan B C+的值.【答案】(1)πππ,π36k k ⎡⎤-+⎢⎥⎣⎦,Zk ∈(2)233【分析】(1)先用二倍角公式和辅助角公式化简,再由正弦函数的单调性可解;(2)根据已知先求角A ,再将目标式化弦整理,然后利用正弦定理和已知可得.【详解】(1)()1(3,2cos )(sin 2,cos )1f x a b x x x =⋅-=⋅- 2π3sin 22cos 13sin 2cos 22sin 26x x x x x ⎛⎫=+-=+=+ ⎪⎝⎭令πππ2π22π,Z 262k x k k -≤+≤+∈,得ππππ36k x k -≤≤+,Z k ∈所以()f x 的单调增区间为πππ,π36k k ⎡⎤-+⎢⎥⎣⎦,Z k ∈.(2)∵()π2sin 26f A A ⎛⎫=+= ⎪⎝⎭,∴πsin 16A ⎛⎫+= ⎪⎝⎭,又()0,πA ∈,ππ7π,666A ⎛⎫+∈ ⎪⎝⎭,∴ππ62A +=,∴π3A =,∵2a bc =,则由正弦定理得2sin sin sin A B C =⋅.∴11cos cos sin cos cos sin tan tan sin sin sin sin B C C B C BB C B C B C ++=+=()2sin sin sin 1123πsin sin sin sin sin sin 3sin 3B C A A B CB C A A +======.19.如图,多面体ABCDEF 中,四边形ABCD 为平行四边形,2AD =,22DC =,四边形DCFE 为梯形,//DE CF ,CD DE ⊥,3DE =,6CF =,45ADE ︒∠=,平面ADE ⊥平面DCFE.(1)求证://AE 平面BCF ;(2)求直线AC 与平面CDEF 所成角的正弦值;(3)求点F 到平面ABCD 的距离.【答案】(1)证明见解析(2)66(3)32【分析】(1)由线面平行的判定定理可得//AD 平面BCF ,//DE 平面BCF ,再由面面平行的判定定理和性质定理可得答案;(2)作AO DE ⊥于O ,由线面垂直的判定定理可得CD ⊥平面ADE ,AO ⊥平面CDEF ,连结CO ,直线AC 与平面CDEF 所成角为ACO ∠,求出正弦值即可;(3)由(2)得AO ⊥平面CDEF ,又F ACD A CDF V V --=,可得答案.【详解】(1)∵四边形ABCD 是平行四边形,∴//BC AD ,BC ⊂平面BCF ,AD ⊄平面BCF ,所以//AD 平面BCF ,∵//DE CF ,CF ⊂平面BCF ,DE ⊄平面BCF ,所以//DE 平面BCF ,AD DE D ⋂=,,AD DE ⊂平面ADE ,∴平面//BCF 平面ADE ,∵AE ⊂平面BCF ,∴//AE 平面BCF.(2)∵平面ADE ⊥平面DCFE ,平面ADE 平面DCFE DE =,CD DE ⊥ ,CD ⊂平面DCFE ,CD \^平面ADE ,AD ⊂ 平面ADE ,CD AD ∴⊥,()222222223AC AD CD ∴=+=+=,作AO DE ⊥于O ,分别连接,,AC AO CO ,因为平面ADE ⊥平面DCFE ,平面ADE 平面DCFE DE =,AO ⊂平面ADE ,所以AO ⊥平面CDEF ,连结CO ,所以直线AC 与平面CDEF 所成角为ACO ∠,45ADE ∠= ,∴22ADAO ==,所以26sin 623AO ACO AC ∠===.直线AC 与平面CDEF 所成角的正弦值为66;(3)连接DF 由(2)得AO ⊥平面CDEF ,又F ACD A CDF V V --=,所以距离CDF ACDS AOd S ⋅=,又由已知可得116226222CDF S CF CD =⋅=⨯⨯=,1222222ACD S =⨯⨯=,2AO =,所以6223222d ⨯==.20.为了丰富同学们的课外实践活动,石室中学拟对生物实践基地(ABC 区域)进行分区改造.BNC 区域为蔬菜种植区,CMA 区域规划为水果种植区,蔬菜和水果种植区由专人统一管理,MNC 区域规划为学生自主栽培区.MNC 的周围将筑起护栏.已知20m AC =,40m AB =,60BAC ∠=︒,30MCN ∠=︒.(1)若10m AM =,求护栏的长度(MNC 的周长);(2)学生自主栽培区MNC 的面积是否有最小值?若有,请求出其最小值;若没有,请说明理由.【答案】(1)()30103m +(2)有,()230023m-【分析】(1)利用余弦定理证得AM CM ⊥,从而判断得ANC 是正三角形,由此得解;(2)在ANC 与ACM △中,利用正弦定理求得CN 与CM 关于θ的表达式,从而利用三角形的面积公式得到CMN S 关于θ的表达式,再结合三角函数的最值即可得解.【详解】(1)依题意,在AMC 中,20m AC =,10m AM =,60BAC ∠=︒,所以2222cos 300CM AM AC AM AC A =+-⋅=,则03m 1CM =,222AC CM AM =+,即AM CM ⊥,所以30ACM ∠=︒,又30MCN ∠=︒,故60ACN ∠=︒,所以ANC 是正三角形,则20m CN AN AC ===,10m MN AN AM =-=,所以护栏的长度(MNC 的周长)为()30103m CM CN MN ++=+.(2)学生自主栽培区MNC 的面积有最小值()230023m -,理由如下:设ACM θ∠=(060θ︒<<︒),在ANC 中,30MCN ∠=︒,则()180603090ANC θθ∠=︒-︒-+︒=︒-,由正弦定理得()20sin 60sin 90cos CN AC θθ==︒︒-,得103cos CN θ=,在ACM △中,18060120CMA θθ∠=︒-︒-=︒-,由正弦定理得()sin60sin 120CM AC θ=︒︒-,得()103sin 120CM θ=︒-,所以()1300sin 3024sin 120cos CMN S CM CN θθ=⋅⋅︒=︒- ()23003004sin120cos cos120sin cos 2sin cos 23cos θθθθθθ==︒-︒+()300300sin 23cos 232sin 2603θθθ==+++︒+,所以当且仅当26090θ+︒=︒,即15θ=︒时,CMN 的面积取得最小值为()23300020233m =-+﹒21.如图1,在ABC 中,90C ∠=︒,4AB =,2BC =,D 是AC 中点,作DE AB ⊥于E ,将ADE V 沿直线DE 折起到PDE △所处的位置,连接PB ,PC ,如图2.(1)若342PB =,求证:PE BC ⊥;(2)若二面角P DE A --为锐角,且二面角P BC E --的正切值为269,求PB 的长.【答案】(1)证明见解析(2)11【分析】(1)利用勾股定理推得BE PE ⊥,从而利用线面垂直的判定定理证得PE ⊥平面BCDE ,由此得证;(2)利用线面与面面垂直的判定定理求得二面角P DE A --与二面角P BC E --的平面角,从而利用勾股定理得到关于CG x =的方程,解之即可得解.【详解】(1)在图1中,90C ∠=︒,4AB =,2BC =,D 是AC 中点,所以30A =︒,23AC =,则3AD =,3322AE AD ==,52BE =,则32PE AE ==,又342PB =,所以222PE BE PB +=,则BE PE ⊥,因为DE AB ⊥,则PE DE ⊥,又,,DE BE E DE BE ⋂=⊂平面BCDE ,所以PE ⊥平面BCDE ,因为BC ⊂平面BCDE ,所以PE BC ⊥.(2)由题意知,DE BE DE PE ⊥⊥,,PE EB E PE ⋂=⊂平面,PEB EB ⊂平面PEB ,因而ED ⊥平面PEB ,则PEA ∠为二面角P DE A --的平面角(或补角),即PEA ∠为锐角,又ED ⊂平面BCDE ,因而平面PBE ⊥平面BCDE .作PH BE ⊥所在的直线于点H ,如图,又平面PBE ⋂平面BCDE BE =,PH ⊂平面PBE ,所以PH ⊥平面BCDE ,因为BC ⊂平面BCDE ,所以PH BC ⊥,作HG BC ⊥于点G ,连接PG ,又,,PH HG H PH HG =⊂ 面PHG ,故BC ⊥面PHG ,因为PG ⊂面PHG ,则BC PG ⊥,所以PGH ∠为二面角P BC E --的平面角(或补角),设PGH θ∠=,则26tan 9θ=,在ABC 中,30A =︒,设304CG x x ⎛⎫=<< ⎪⎝⎭,则32,2,422AH x HE x HB x ==-=-,因而22933264,3(2)422PH x x x HG HB x ⎛⎫=--=-==- ⎪⎝⎭,在直角三角形PHG 中,26tan 9PH HG θ==,即2642693(2)x x x -=-,解得12x =或1611x =(舍去),此时2,3PHH B ==,从而2211PBPHH B =+=.22.在ABC 中,a ,b ,c ,分别是角A ,B ,C 的对边,请在①sin sin sin A C b c B a c--=+;②sin sin 2B Cc a C +=两个条件中任选一个,解决以下问题:(1)求角A 的大小;(2)如图,若ABC 为锐角三角形,且其面积为32,且12AM AC = ,2AN NB = ,线段BM 与线段CN相交于点P ,点G 为ABC 重心,求线段GP 的取值范围.【答案】(1)π3A =(2)113,612⎛⎫⎪ ⎪⎝⎭【分析】(1)若选①,先由正弦定理的边角互化,然后结合余弦定理即可得到结果;若选②,先由正弦定理的边角互化,再结合二倍角公式,即可得到结果.(2)用AB、AC 作为平面内的一组基底表示出AG ,再根据平面向量共线定理及推论表示出AP ,即可表示GP,利用面积公式求出2bc =,再由三角形为锐角三角形求出b 的取值范围,最后根据数量积的运算律及对勾函数的性质计算可得.【详解】(1)若选①,因为sin sin sin A C b cB a c --=+,由正弦定理可得,a c b c b a c--=+,化简可得222a b c bc =+-,又因为2222cos a b c bc A =+-,则1cos 2A =,()0,πA ∈,故π3A =.若选②,因为sinsin 2B C c a C +=,由正弦定理可得,sin sin sin sin 2A C A C π-⎛⎫= ⎪⎝⎭,且sin 0C ≠,则cos2sin cos 222A A A =,且cos 02A≠,所以1sin 22A =,其中π0,22A ⎛⎫∈ ⎪⎝⎭,所以π26A =,则π3A =.(2)由题意可得23AN AB = ,12AM AC =,所以()222111333233AG AB BG AB BM AB AM AB AB AC AB AB AC⎛⎫=+=+=+-=+-=+ ⎪⎝⎭ ,因为C 、N 、P 三点共线,故设()()2113AP AN AC AB AC λλλλ=+-=+-,同理M 、B 、P 三点共线,故设()()1112AP AB AM AB AC μμμμ=+-=+- ,则()231112λμλμ⎧=⎪⎪⎨⎪-=-⎪⎩,解得3412λμ⎧=⎪⎪⎨⎪=⎪⎩,所以1124A AB A PC =+ ,则()11111112243361212GP AP AG AB AC AB AC AB AC AB AC ⎛⎫=-=+-+=-=-⎪⎝⎭,因为13sin 22ABC S bc A == ,所以2bc =,又因为ABC 为锐角三角形,当C 为锐角,则0AC BC ⋅> ,即()22102A AC AC A C AC AB B b bc -⋅⋅==>--uuu r uuu r uuu r uuu r uuu r uuu r ,即22b c b>=,所以1b >;当B 为锐角,则0AB CB ⋅> ,即()22102A AB AB A B AC AB C c bc -⋅=⋅=>--uuu r uuu r uuu r uuu r uuu r uuu r ,则2c b >,即22b b⋅>,所以02b <<;综上可得12b <<,又因为1212GP AB AC =⋅-,则()222222222216144|2444|4||424GP AB ACAB AB AC AC AB AB AC AC c bc b b b=-=-⋅+=-⋅+=-+=-+ ,因为12b <<,则214b <<,且()164f x x x=-+在(1,4)上单调递减,()()113,44f f ==,所以()()4,13f x ∈,即()22216144||44,13GP b b=-+∈uuu r ,所以113,612GP ⎛⎫∈ ⎪ ⎪⎝⎭.。

四川省成都市蓉城名校联盟2023-2024学年高一上学期期末联考数学试题

四川省成都市蓉城名校联盟2023-2024学年高一上学期期末联考数学试题

8.已知函数 f x log2 mx2 4x 3 , m R ,若 f x 在区间1, 上单调递增,则 m
的取值范围为( )
A. , 2
B.2,
C.
5 4
,
2
D. 1, 2
二、多选题 9.下列论述中,正确的有( )
A.集合a,b,c 的非空子集的个数有 7 个
B.第一象限角一定是锐角
C.若 f x 为定义在区间 a,b 上的连续函数,且有零点,则 f a f b 0
D. x 2 是 x 1的充分不必要条件
10.下列函数中,既是奇函数,又在定义域内是增函数的有( )
A. y x 1 x
B. y 2x 2 x
C. y 2x 2x
D. y 2x3 x
11.已知
(1)
64 27
13 31 2 Nhomakorabea6
π 30 ;
(2) 31log32 lg5 log 32 log 23 lg2 .
18.已知
sin 3cos
cos 2sin
1 7
.
(1)求 tan ;
(2)求 2sin2 sin cos 的值.
六、问答题
19.已知函数 f x ax 2 x a (a 0) .
A. f x 的图象关于直线 x= 1 轴对称
B. f x 的图象关于点 2, 0 中心对称
C. f x 4 f x
D. f 1 f 2 f 3 f 17 10
试卷第 2页,共 4页
三、单空题
13.若扇形的弧长为 8,圆心角为 4rad ,则扇形的面积为
.
14.已知 a 0,b 0 ,且 a b 2 ,则 1 2 的最小值为
A. 3

2020-2021成都市高一数学下期末试卷含答案

2020-2021成都市高一数学下期末试卷含答案

2020-2021成都市高一数学下期末试卷含答案一、选择题1.已知向量()cos ,sin a θθ=,()1,2b =,若a 与b 的夹角为6π,则a b +=( ) A .2B .7C .2D .12.ABC 中,已知sin cos cos a b cA B C==,则ABC 为( ) A .等边三角形B .等腰直角三角形C .有一个内角为30°的直角三角形D .有一个内角为30°的等腰三角形3.若,则( )A .B .C .D .4.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为( ) A .3B .2C .1D .05.已知01a b <<<,则下列不等式不成立...的是 A .11()()22ab>B .ln ln a b >C .11a b> D .11ln ln a b> 6.阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为A .1B .2C .3D .47.设函数f (x )=cos (x +3π),则下列结论错误的是 A .f(x)的一个周期为−2π B .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6π D .f(x)在(2π,π)单调递减 8.已知()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在三个不同实数a ,b ,c 使得()()()f a f b f c ==,则abc 的取值范围是( ) A .(0,1)B .[-2,0)C .(]2,0-D .(0,1)9.函数()lg ||f x x x =的图象可能是( )A .B .C .D .10.(2018年天津卷文)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为 A .6B .19C .21D .4511.将直线2x -y +λ=0沿x 轴向左平移1个单位,所得直线与圆x 2+y 2+2x -4y =0相切,则实数λ的值为( ) A .-3或7 B .-2或8 C .0或10D .1或1112.在正三棱柱111ABC A B C -中,侧棱长为2,底面三角形的边长为1,则1BC 与侧面1ACC A 所成角的大小为( )A .30B .45C .60D .90二、填空题13.已知数列{}n a 前n 项和为n S ,若22nn n S a =-,则n S =__________.14.设a >0,b >03a 与3b 的等比中项,则11a b+的最小值是__. 15.奇函数()f x 对任意实数x 都有(2)()f x f x +=-成立,且01x 时,()21x f x =-,则()2log 11f =______.16.若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________. 17.若函数()6,23log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[)4,+∞,则实数a 的取值范围是__________.18.△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.19.已知点()M a b ,在直线3415x y +=_______. 20.设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为__________.三、解答题21.解关于x 的不等式2(1)10()ax a x a R -++>∈.22.已知圆O :x 2+y 2=2,直线.l :y=kx-2. (1)若直线l 与圆O 相切,求k 的值;(2)若直线l 与圆O 交于不同的两点A ,B ,当∠AOB 为锐角时,求k 的取值范围; (3)若1k 2=,P 是直线l 上的动点,过P 作圆O 的两条切线PC ,PD ,切点为C ,D ,探究:直线CD 是否过定点.23.某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组[)13,14,第二组[)14,15,⋅⋅⋅,第五组[]17,18.下图是按上述分组方法得到的频率分布直方图.按上述分组方法得到的频率分布直方图.(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;(2)设m,n 表示该班某两位同学的百米测试成绩,且已知[)[],13,1417,18.m n ∈⋃求事件“1m n ->”发生的概率.24.已知圆22:8120C x y y +-+=,直线:20l ax y a ++=. (1)当a 为何值时,直线与圆C 相切.(2)当直线与圆C 相交于A 、B 两点,且22AB =时,求直线的方程.25.已知数列{}n a 的前n 项和n S ,且23n s n n =+;(1)求它的通项n a .(2)若12n n n b a -=,求数列{}n b 的前n 项和n T .26.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨)、一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[)[)0,0.5,0.5,1,...,[)4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由; (3)若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】先计算a 与b 的模,再根据向量数量积的性质22()a b a b +=+即可计算求值. 【详解】因为()cos ,sin a θθ=,()1,2b =, 所以||1a =,||3b =.又222222()2||2||||cos||6a b a b a a b b a a b b +=+=+⋅+=+π+137=++=, 所以7a b +=,故选B. 【点睛】本题主要考查了向量的坐标运算,向量的数量积,向量的模的计算,属于中档题.2.B解析:B 【解析】 【分析】 【详解】因为sin cos cos a b c A B C==,所以sin sin sin sin cos cos 4A B C B C A B C π==∴== , 即ABC 为等腰直角三角形.故选:B .3.D解析:D 【解析】试题分析:,且,故选D.【考点】三角恒等变换【名师点睛】对于三角函数的给值求值问题,关键是把待求角用已知角表示: (1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余、互补”关系.4.B解析:B 【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点22,22⎛ ⎝⎭,2222⎛⎫-- ⎪ ⎪⎝⎭,则A B 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.5.B解析:B 【解析】 【分析】根据指数函数、对数函数的单调性,以及不等式的性质,对选项逐一分析,由此得出不等式不成立的选项. 【详解】依题意01a b <<<,由于12xy ⎛⎫= ⎪⎝⎭为定义域上的减函数,故11()()22a b >,故A 选项不等式成立.由于ln y x =为定义域上的增函数,故ln ln 0a b <<,则11ln ln a b>,所以B 选项不等式不成立,D 选项不等式成立.由于01a b <<<,故11a b>,所以C 选项不等式成立.综上所述,本小题选B. 【点睛】本小题主要考查指数函数和对数函数的单调性,考查不等式的性质,属于基础题.6.B解析:B【解析】分析:由题意结合流程图运行程序即可求得输出的数值. 详解:结合流程图运行程序如下: 首先初始化数据:20,2,0N i T ===,20102N i ==,结果为整数,执行11T T =+=,13i i =+=,此时不满足5i ≥; 203N i =,结果不为整数,执行14i i =+=,此时不满足5i ≥; 2054N i ==,结果为整数,执行12T T =+=,15i i =+=,此时满足5i ≥; 跳出循环,输出2T =. 本题选择B 选项.点睛:识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.7.D解析:D 【解析】f (x )的最小正周期为2π,易知A 正确; f 8π3⎛⎫⎪⎝⎭=cos 8ππ33⎛⎫+ ⎪⎝⎭=cos3π=-1,为f (x )的最小值,故B 正确; ∵f (x +π)=cos ππ3x ⎛⎫++ ⎪⎝⎭=-cos π3x ⎛⎫+ ⎪⎝⎭,∴f ππ6⎛⎫+ ⎪⎝⎭=-cos ππ63⎛⎫+ ⎪⎝⎭=-cos 2π=0,故C 正确; 由于f 2π3⎛⎫⎪⎝⎭=cos 2ππ33⎛⎫+ ⎪⎝⎭=cosπ=-1,为f (x )的最小值,故f (x )在,2ππ⎛⎫ ⎪⎝⎭上不单调,故D 错误. 故选D.8.C解析:C 【解析】 【分析】画出函数图像,根据图像得到20a -<≤,1bc =,得到答案. 【详解】()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,画出函数图像,如图所示:根据图像知:20a -<≤,20192019log log b c -=,故1bc =,故20abc -<≤. 故选:C .【点睛】本题考查了分段函数的零点问题,画出函数图像是解题的关键.9.D解析:D 【解析】 【分析】分析函数()y f x =的定义域、奇偶性及其在()0,1上的函数值符号,可得出结论. 【详解】函数()lg f x x x =的定义域为{}0x x ≠,定义域关于原点对称,()()lg lg f x x x x x f x -=--=-=-,函数()y f x =为奇函数,排除A 、C 选项;当01x <<时,lg 0x <,此时()lg 0f x x x =<,排除B 选项. 故选:D. 【点睛】本题考查由函数的解析式选择函数图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查推理能力,属于中等题.10.C解析:C 【解析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:51x y x y +=⎧⎨-+=⎩,可得点A 的坐标为:()2,3A ,据此可知目标函数的最大值为:max 35325321z x y =+=⨯+⨯=.本题选择C 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.11.A解析:A 【解析】试题分析:根据直线平移的规律,由直线2x ﹣y+λ=0沿x 轴向左平移1个单位得到平移后直线的方程,然后因为此直线与圆相切得到圆心到直线的距离等于半径,利用点到直线的距离公式列出关于λ的方程,求出方程的解即可得到λ的值.解:把圆的方程化为标准式方程得(x+1)2+(y ﹣2)2=5,圆心坐标为(﹣1,2),半径为,直线2x ﹣y+λ=0沿x 轴向左平移1个单位后所得的直线方程为2(x+1)﹣y+λ=0, 因为该直线与圆相切,则圆心(﹣1,2)到直线的距离d==r=,化简得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5, 解得λ=﹣3或7 故选A考点:直线与圆的位置关系.12.A解析:A 【解析】 【分析】由题意,取AC 的中点O ,连结1,BO C O ,求得1BC O ∠是1BC 与侧面11ACC A 所成的角,在1BC O ∆中,即可求解. 【详解】由题意,取AC 的中点O ,连结1,BO C O ,因为正三棱柱111ABC A B C -中,侧棱长为2,底面三角形的边长为1, 所以1,BO AC BO AA ⊥⊥,因为1AC AA A ⋂=,所以BO ⊥平面11ACC A , 所以1BC O ∠是1BC 与侧面11ACC A 所成的角, 因为222113131(),(2)()2222BO C O =-==+=, 所以11332tan 332BO BC O OC ∠===, 所以0130BC O ∠=,1BC 与侧面11ACC A 所成的角030.【点睛】本题主要考查了直线与平面所成的角的求解,其中解答中空间几何体的线面位置关系,得到1BC O ∠是1BC 与侧面11ACC A 所成的角是解答的关键,着重考查了推理与运算能力,以及转化与化归思想,属于中档试题.二、填空题13.【解析】分析:令得当时由此推导出数列是首项为1公差为的等差数列从而得到从而得到详解:令得解得当时由)得两式相减得整理得且∴数列是首项为1公差为的等差数列可得所以点睛:本题考查数列的通项公式的求法是中解析:*2()n n S n n N =∈【解析】分析:令1n =,得12a =,当2n ≥ 时,11122n n n S a ---=-,由此推导出数列{}2n na 是首项为1公差为12的等差数列,从而得到()112n n a n -+=,从而得到n S . 详解:令1n =,得11122a a =-,解得12a = ,当2n ≥ 时,由22n n n S a =-),得11122n n n S a ---=-,两式相减得()()1112222,nn n n n n n a S S a a---=-=--- 整理得111222n n n n a a ---=,且111,2a = ∴数列{}2n n a是首项为1公差为12的等差数列, ()111,22n n a n ∴=+- 可得()112,n n a n -=+ 所以()12221222.nn n nn n S a n n -⎡⎤=-=+-=⋅⎣⎦点睛:本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意构造法的合理运用.14.【解析】由已知是与的等比中项则则当且仅当时等号成立故答案为2【点睛】本题考查基本不等式的性质等比数列的性质其中熟练应用乘1法是解题的关键 解析:【解析】由已知0,0a b >>33a 与b 的等比中项,则233,1a b ab =⋅∴=则111111122ab a b ab a b a b a b ⎛⎫⎛⎫+=+⨯=+⨯=+≥= ⎪ ⎪⎝⎭⎝⎭,当且仅当1a b ==时等号成立 故答案为2【点睛】本题考查基本不等式的性质、等比数列的性质,其中熟练应用“乘1法”是解题的关键.15.【解析】【分析】易得函数周期为4则结合函数为奇函数可得再由时即可求解【详解】则又则故答案为:【点睛】本题考查函数奇偶性与周期性的综合应用具体函数值的求法属于中档题 解析:511-【解析】 【分析】易得函数周期为4,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭,结合函数为奇函数可得222111616log log log 161111f f f⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再由01x 时,()21xf x =-即可求解 【详解】()()(2)()4(2)4f x f x f x f x f x T +=-⇒+=-+=⇒=,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭, 又222111616log log log 161111f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,[]216log 0,111∈,则216log 112165log 211111f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭故答案为:511- 【点睛】本题考查函数奇偶性与周期性的综合应用,具体函数值的求法,属于中档题16.9【解析】【分析】由一元二次方程根与系数的关系得到a+b=pab=q 再由ab ﹣2这三个数可适当排序后成等差数列也可适当排序后成等比数列列关于ab 的方程组求得ab 后得答案【详解】由题意可得:a+b=p解析:9 【解析】 【分析】由一元二次方程根与系数的关系得到a+b=p ,ab=q ,再由a ,b ,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列列关于a ,b 的方程组,求得a ,b 后得答案. 【详解】由题意可得:a+b=p ,ab=q , ∵p>0,q >0, 可得a >0,b >0,又a ,b ,﹣2这三个数可适当排序后成等差数列, 也可适当排序后成等比数列, 可得①或②. 解①得:;解②得:.∴p=a+b=5,q=1×4=4, 则p+q=9. 故答案为9.点评:本题考查了一元二次方程根与系数的关系,考查了等差数列和等比数列的性质,是基础题. 【思路点睛】解本题首先要能根据韦达定理判断出a ,b 均为正值,当他们与-2成等差数列时,共有6种可能,当-2为等差中项时,因为,所以不可取,则-2只能作为首项或者末项,这两种数列的公差互为相反数;又a,b 与-2可排序成等比数列,由等比中项公式可知-2必为等比中项,两数列搞清楚以后,便可列方程组求解p ,q .17.【解析】试题分析:由于函数的值域是故当时满足当时由所以所以所以实数的取值范围考点:对数函数的性质及函数的值域【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题解答时要牢记对数函数 解析:(]1,2【解析】试题分析:由于函数()()6,2{0,13log ,2a x x f x a a x x -+≤=>≠+>的值域是[)4,+∞,故当2x ≤时,满足()64f x x =-≥,当2x >时,由()3log 4a f x x =+≥,所以log 1a x ≥,所以log 2112a a ≥⇒<<,所以实数a 的取值范围12a <≤. 考点:对数函数的性质及函数的值域.【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题,解答时要牢记对数函数的单调性及对数函数的特殊点的应用是解答的关键,属于基础题,着重考查了分类讨论的思想方法的应用,本题的解答中,当2x >时,由()4f x ≥,得log 1a x ≥,即log 21a ≥,即可求解实数a 的取值范围.18.【解析】【分析】首先利用正弦定理将题中的式子化为化简求得利用余弦定理结合题中的条件可以得到可以断定为锐角从而求得进一步求得利用三角形面积公式求得结果【详解】因为结合正弦定理可得可得因为结合余弦定理可解析:3. 【解析】【分析】首先利用正弦定理将题中的式子化为sin sin sin sin 4sin sin sin B C C B A B C +=,化简求得1sin 2A =,利用余弦定理,结合题中的条件,可以得到2cos 8bc A =,可以断定A 为锐角,从而求得cos A =,进一步求得bc =,利用三角形面积公式求得结果. 【详解】因为sin sin 4sin sin b C c B a B C +=,结合正弦定理可得sin sin sin sin 4sin sin sin B C C B A B C +=, 可得1sin 2A =,因为2228b c a +-=, 结合余弦定理2222a b c bccosA =+-,可得2cos 8bc A =, 所以A为锐角,且cos 2A =,从而求得3bc =, 所以ABC ∆的面积为111sin 222S bc A ===.【点睛】本题主要考查余弦定理及正弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30、45、60等特殊角的三角函数值,以便在解题中直接应用.19.3【解析】【分析】由题意可知表示点到点的距离再由点到直线距离公式即可得出结果【详解】可以理解为点到点的距离又∵点在直线上∴的最小值等于点到直线的距离且【点睛】本题主要考查点到直线的距离公式的应用属于解析:3 【解析】 【分析】()0,0到点(),a b 的距离,再由点到直线距离公式即可得出结果. 【详解】()0,0到点(),a b 的距离,又∵点(),M a b 在直线:3425l x y +=()0,0到直线34150x y +-=的距离,且3d ==.【点睛】本题主要考查点到直线的距离公式的应用,属于基础题型.20.【解析】【分析】把分子展开化为再利用基本不等式求最值【详解】由得得等号当且仅当即时成立故所求的最小值为【点睛】使用基本不等式求最值时一定要验证等号是否能够成立解析:92. 【解析】 【分析】把分子展开化为(1)(21)2212552x y xy x y xy xy xy xy xy++++++===+,再利用基本不等式求最值. 【详解】由24x y +=,得24x y +=≥,得2xy ≤(1)(21)221255592222x y xy x y xy xy xy xy xy ++++++===+≥+=,等号当且仅当2x y =,即2,1x y ==时成立.故所求的最小值为92. 【点睛】使用基本不等式求最值时一定要验证等号是否能够成立.三、解答题21.a <0时,不等式的解集是(1a,1); a =0时,不等式的解集是(﹣∞,1); 1a =时,不等式的解集为{|1}x x ≠.01a <<时,不等式的解集是(﹣∞,1)∪(1a,+∞);a >1时,不等式的解集是(﹣∞,1a)∪(1,+∞).【解析】 【分析】讨论a 与0的大小,将不等式进行因式分解,然后讨论两根的大小,即可求出不等式的解集. 【详解】当0a =时,原不等式可化为10x -+>,所以原不等式的解集为{|1}x x <. 当0a ≠时,判别式()()22141a a a ∆=+-=-.(1)当1a =时,判别式0∆=,原不等式可化为2210x x -+>, 即()210x ->,所以原不等式的解集为{|1}x x ≠. (2)当0a <时,原不等式可化为()110x x a ⎛⎫--< ⎪⎝⎭,此时11a<,所以原不等式的解集为1{|1}x x a <<.(3)当01a <<时,原不等式可化为()110x x a ⎛⎫--> ⎪⎝⎭,此时11a >,所以原不等式的解集为1{|1}x x x a或. (4)当1a >时,原不等式可化为()110x x a ⎛⎫--> ⎪⎝⎭,此时11a<, 所以原不等式的解集为1{|1}x xx a或. 综上,a <0时,不等式的解集是(1a,1); a =0时,不等式的解集是(﹣∞,1); 1a =时,不等式的解集为{|1}x x ≠.01a <<时,不等式的解集是(﹣∞,1)∪(1a,+∞);a >1时,不等式的解集是(﹣∞,1a)∪(1,+∞).【点睛】本题主要考查了含有字母系数的不等式求解问题,解题的关键是确定讨论的标准,属于中档题.22.(1)k=±1;(2)(1-)∪(13)直线CD 过定点(112-,). 【解析】 【分析】(1)由直线l 与圆O 相切,得圆心O (0,0)到直线l 的距离等于半径,由此能求出k .(2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),将直线l :y=kx-2代入x 2+y 2=2,得(1+k 2)x 2-4kx+2=0,由此利用根的判断式、向量的数量积公式能求出k 的取值范围.(3)由题意知O ,P ,C ,D 四点共圆且在以OP 为直径的圆上,设P (t ,122t -),其方程为221202x tx y t y ⎛⎫-+--= ⎪⎝⎭,C ,D 在圆O :x 2+y 2=2上,求出直线CD :(x+y 2)t-2y-2=0,联立方程组能求出直线CD 过定点(1,12-). 【详解】解:(1)∵圆O :x 2+y 2=2,直线l :y=kx-2.直线l 与圆O 相切, ∴圆心O (0,0)到直线l 的距离等于半径, 即=,解得k=±1.(2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),将直线l :y=kx-2代入x 2+y 2=2,整理,得(1+k 2)x 2-4kx+2=0, ∴1224k x x 1k +=+,1222x x 1k =+, △=(-4k )2-8(1+k 2)>0,即k 2>1, 当∠AOB 为锐角时,OA OB ⋅=x 1x 2+y 1y 2=x 1x 2+(kx 1-2)(kx 2-2)=()()212121kx x2k x x 4+-++=2262k 1k-+>0,解得k 2<3,又k 2>1,∴k 1-<或1<k. 故k 的取值范围为(1-)∪(1(3)由题意知O ,P ,C ,D 四点共圆且在以OP 为直径的圆上, 设P (t ,1t 22-),其方程为x (x-t )+y (y 1t 22-+)=0, ∴221x tx y t 2y 02⎛⎫-+--=⎪⎝⎭, 又C ,D 在圆O :x 2+y 2=2上, 两圆作差得l CD :tx+1t 2y 202⎛⎫--=⎪⎝⎭,即(x+y 2)t-2y-2=0,由y 0{?2220x y +=+=,得1{?21x y ==-,∴直线CD 过定点(112-,). 【点睛】本题考查实数的取值范围的求法,考查直线是否过定点的判断与求法,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题. 23.(1)29人;(2)35. 【解析】 【分析】(1)根据频率分布直方图,良好即第二三两组,计算出第二三两组的频率即可算出人数;(2)结合频率分布直方图,计算出[)[]13,1417,18,两组的人数,1m n ->即两位同学来自不同的两组,利用古典概型求解概率即可. 【详解】(1)由直方图知,成绩在[14,16)内的人数为:500.20500.3829⨯+⨯=(人), 所以该班成绩良好的人数为29人;(2)由直方图知,成绩在[13,14)的人数为500.063⨯=人; 成绩在[17,18]的人数为500.042⨯=人;.事件“1m n ->”发生即这两位同学来自不同的两组, 此题相当于从这五人中任取2人,求这两人来自不同组的概率其概率为11232563105C C P C ===. 3(1)5P m n ->=【点睛】此题考查用样本的频率分布估计总体分布;利用频率直方图求相关数据;古典概型及其概率的计算. 24.(1)34a =-;(2)20x y -+=或7140x y -+=. 【解析】 【分析】(1)将圆C 的方程化为标准形式,得出圆C 的圆心坐标和半径长,利用圆心到直线的距离等于半径,可计算出实数a 的值;(2)利用弦长的一半、半径长和弦心距满足勾股定理可求得弦心距,利用点到直线的距离公式可求得实数a 的值,进而可得出直线l 的方程. 【详解】(1)圆C 的标准方程为()2244x y +-=,圆心C 的坐标为()0,4,半径长为2,当直线l 与圆C2=,解得34a =-;(2)由题意知,圆心C 到直线l的距离为d ==由点到直线的距离公式可得d ==2870a a ++=,解得1a =-或7-.因此,直线l 的方程为20x y -+=或7140x y -+=. 【点睛】本题考查直线与圆的位置关系,考查利用直线与圆相切求参数以及根据弦长求直线方程,解答的核心就是圆心到直线的距离的计算,考查计算能力,属于中等题.25.(1)22n a n =+(2)12n n T n +=•【解析】 【分析】(1)由2S 3n n n =+,利用n a 与n S 的关系式,即可求得数列的通项公式;(2)由(1)可得2(1)nn b n =+,利用乘公比错位相减法,即可求得数列{}n b 的前n 项和.【详解】(1)由2S 3n n n =+,当1n =时,11S 4a ==;当1n >时,2213(1)3(1)n n n a S S n n n n -=-=+----22n =+,当1n =也成立, 所以则通项22n a n =+;(2)由(1)可得2(1)nn b n =+,-123223242(1)2n n T n =•+•+•+++•,231222322(1)2n n n T n n +=•+•++•++•,两式相减得2314(222)(1)2n n n T n +-=++++-+21112(12)4(1)2212n n n n n -++-=+-+=--所以数列{}n b 的前n 项和为12n n T n +=•.【点睛】本题主要考查了数列n a 和n S 的关系、以及“错位相减法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数,着重考查了的逻辑思维能力及基本计算能力等. 26.(1)0.3;(2)3.6万;(3)2.9. 【解析】 【分析】 【详解】试题分析:本题主要考查频率分布直方图、频率、频数的计算等基础知识,考查学生的分析问题、解决问题的能力. 第(1)问,由高×组距=频率,计算每组的频率,根据所有频率之和为1,计算出a 的值;第(2)问,利用高×组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率×样本容量=频数,计算所求人数;第(3)问,将前6组的频率之和与前5组的频率之和进行比较,得出2.5≤x<3,再估计x 的值.试题解析:(1)由频率分布直方图知,月均用水量在[0,0.5)中的频率为0.08×0.5=0.04, 同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)中的频率分别为0.08,0.20,0.26,0.06,0.04,0.02.由0.04+0.08+0.5×a+0.20+0.26+0.5×a+0.06+0.04+0.02=1, 解得a=0.30.(2)由(1),100位居民每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12. 由以上样本的频率分布,可以估计全市30万居民中月均用水量不低于3吨的人数为 300 000×0.12="36" 000.(3)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85, 而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85, 所以2.5≤x<3.由0.3×(x –2.5)=0.85–0.73, 解得x=2.9.所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准. 【考点】 频率分布直方图 【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题、解决问题的能力.在频率分布直方图中,第n个小矩形的面积就是相应组的频率,所有小矩形的面积之和为1,这是解题的关键,也是识图的基础.。

四川省成都高一下学期末考试试卷-数学-word版含答案 (优选.)

四川省成都高一下学期末考试试卷-数学-word版含答案 (优选.)

wo 最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改rd成都九中2015—2016学年度下期期末考试高一数学试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)2.本堂考试120分钟,满分150分.3.答题前, 考生务必将自己的姓名、学号、填写在答题卡上,并使用2 B 铅笔填涂.4.考试结束后,将答题卡交回.第Ⅰ卷 选择题一、选择题:(本大题共12小题,每小题5分,共60分)1.()()()240x f x x x+=>函数的最小值为.2A .3B .C .4D2.{}()1181,3,n n n a a a a a +=-=-在数列中,则等于.7A - .8B - .22C - .27D3.()5sin ABABC C∆=若外接圆的半经为,则.5A .10B .15C .20D21.2A a 21.2B a - 2.C a 2.D a -5.{}()()412155,cos n a a a π+=若等差数列的前项和为则1.2A -3.2B 1.2C 3.2D ±6.()1cos()sin244παα-==已知,则31.32A 31.32B - 7.8C - 7.8D7.O ABC k R ∆∈已知是所在平面内一点,若对任意,恒有....A B C D 直角三角形钝角三角形锐角三角形不确定8.在三视图如图的多面体中,最大的一()个面的面积为.22A .5B.3C .25D()32x y+则的最小值是5.3A 8.3B .16C .8D 10.P ABCD PAD ABCD -如图,在四棱锥中,侧面为正三角形,底面是边2,PAD ABCD M ⊥长为的为正方形,侧面底面为 ,ABCD MP MC =底面内的一个动点,且满足则点()M ABCD 在正方形内的轨迹的长度为.A.B .C π 2.3D π11.,,,,,,,,,,,p q a b c p q p a q p b c q ≠给定正数其中若是等比数列,是等差 ()220bx ax c -+=数列,则一元二次方程.A 有两个相等实根 .B 无实根.C 有两个同号相异实根 .D 有两个异号实根12.11111111,ABCD A B C D M N Q D C A D BC -正方体中,,,分别是棱,的 1P BD 中点,点在对角线上,给出以下命题: 1//;P BD MN APC ①当在上运动时,恒有面12,,;3BP A P M BD =②若三点共线,则112//;3BP C Q APC BD =③若,则面 D 1C 1B 1A 1P Q N MD CBA111603P AB A C ④过点且与直线和所成的角都为的直线有且只有条.()其中正确命题的个数为.A 1 .B 2 .C 3 .D 4第Ⅱ卷 非选择题二、填空题:(本大题5个小题,每小题5分,共20分) 13.0cos1402sin130sin10+=____________14.如图,动物园要围成四间相同面积的长方形虎笼,一面可利用原有的墙,其他各面用钢筋网围成,设 m m 36 m x y 每间虎笼的长为,宽为,现有长的钢筋xy=网材料,为使每间虎笼面积最大,则____ 15.2,P ABCD -如图,正四棱锥的体积为底面积6,E PC PA 为为侧棱的中点,则异面直线与 ___________BE 所成的角为16.,,a b c 已知为正实数,给出以下结论:2230,3;b a b c ac-+=①若则的最小值为228,24;a b ab a b ++=+②若则的最小值为()4,2a a b c bc a b c +++=++③若则的最小为2224,a b c ab bc ++=+④若则的最大值为其中正确结论的序号是________________三、解答题(本大题共6个小题,共70分)y y yy y xxx yx17.(10分),,,,,ABC A B C a b c ∆在中,角的对边分别为已知向量()(),,.m a c b n a c b a =+=--与向量互相垂直()()1;2sin sin C A B +求角求的取值范围.18.(12分)ABCD PQMN 如图,在四面体中,截面是平行四边形,()1://;PN BCD 求证平面()2PQMN 若截面是正方形,求异PM BD 面直线与所成的角.19.(12分){}()11.1,342n n n n a S a a S n -==+≥已知数列的前项和为若.(){}1n a 求数列的通项公式;(){}2212log ,,,72n n n n n n n a bb c n N c T +++==∈令其中记数列的前项和为. 2.2n nn T ++求的值 NMQPDCBA20.(12分),4,3,P ABCD PA ABCD AB BC -⊥==如图,在四棱锥中,平面05,90,AD DAB ABC E CD =∠=∠=是的中点.()1CD PAE ⊥证明:平面;()2PB PAE 若直线与平面所成的角和PB ABCD 直线与平面所成的角相等, P CD A --求二面角的正切值.21.(12分)()2.f x ax bx c =++已知二次函数()(){}10|34f x x x x >-<<若的解集为,解关于的不等式()2230bx ax c b +-+<.()()2,2x R f x ax b ∈≥+若对任意不等式恒成立,()224a c a a c -+求的最大值.22.(12分)()()()(),,,f x R ff f αβαβαββα∈⋅=⋅+⋅函数满足:对任意都有(){}()()22,2.n n n f a a f n N +==∈且数列满足(){}1n a 求数列的通项公式;()()()121121.n n n n nn n n a a b b c T c c c n N n n b n ++⎛⎫=-==+++∈ ⎪⎝⎭令,,记 ,584n MM n N T +∈<问:是否存在正整数使得当时,不等式恒成立? ;M 若存在,求出的最小值若不存在,请说明理由.成都外国语学校2015—2016学年度下期期末考试高一数学试卷命题人:注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)2.本堂考试120分钟,满分150分.3.答题前, 考生务必将自己的姓名、学号、填写在答题卡上,并使用2 B 铅笔填涂.4.考试结束后,将答题卡交回.第Ⅰ卷 选择题一、选择题:(本大题共12小题,每小题5分,共60分)1.()()()240x f x x x+=>函数的最小值为D.2A .3B .22C .4D2.{}()1181,3,n n n a a a a a +=-=-在数列中,则等于C.7A - .8B - .22C - .27D3.()5sin ABABC C∆=若外接圆的半经为,则B.5A .10B .15C .20DB21.2A a 21.2B a - 2.C a 2.D a -5.{}()()412155,cos n a a a π+=若等差数列的前项和为则A1.2A -3.2B 1.2C 3.2D ±6.()1cos()sin244παα-==已知,则C31.32A 31.32B - 7.8C - 7.8D7.O ABC k R ∆∈已知是所在平面内一点,若对任意,恒有A....A B C D 直角三角形钝角三角形锐角三角形不确定8.在三视图如图的多面体中,最大的一()个面的面积为C.22A .5B.3C .25D()32x y+则的最小值是D5.3A 8.3B .16C .8D 10.P ABCD PAD ABCD -如图,在四棱锥中,侧面为正三角形,底面是边2,PAD ABCD M ⊥长为的为正方形,侧面底面为 ,ABCD MP MC =底面内的一个动点,且满足则点()M ABCD 在正方形内的轨迹的长度为A.A.B .C π 2.3D π11.,,,,,,,,,,,p q a b c p q p a q p b c q ≠给定正数其中若是等比数列,是等差 ()220bx ax c -+=数列,则一元二次方程B.A 有两个相等实根 .B 无实根.C 有两个同号相异实根 .D 有两个异号实根12.11111111,ABCD A B C D M N Q D C A D BC -正方体中,,,分别是棱,的 1P BD 中点,点在对角线上,给出以下命题: 1//;P BD MN APC ①当在上运动时,恒有面12,,;3BP A P M BD =②若三点共线,则112//;3BP C Q APC BD =③若,则面 0111603P AB A C ④过点且与直线和所成的角都为的直线有且只有条.D 1C 1B 1A 1P Q N MD CBA()其中正确命题的个数为C.A 1 .B 2 .C 3 .D 4第Ⅱ卷 非选择题二、填空题:(本大题5个小题,每小题5分,共20分) 13.0cos1402sin130sin10+=____________12-14.如图,动物园要围成四间相同面积的长方形虎笼,一面可利用原有的墙,其他各面用钢筋网围成,设 m m 36 m x y 每间虎笼的长为,宽为,现有长的钢筋x y =网材料,为使每间虎笼面积最大,则____3215.2,P ABCD -如图,正四棱锥的体积为底面积6,E PC PA 为为侧棱的中点,则异面直线与 ___________BE 所成的角为06016.,,a b c 已知为正实数,给出以下结论:2230,3;b a b c ac-+=①若则的最小值为228,24;a b ab a b ++=+②若则的最小值为()4,2a a b c bc a b c +++=++③若则的最小为2224,a b c ab bc ++=+④若则的最大值为其中正确结论的序号是________________①②④三、解答题(本大题共6个小题,共70分)y y yy yx x xyx17.(10分),,,,,ABC A B C a b c ∆在中,角的对边分别为已知向量()(),,.m a c b n a c b a =+=--与向量互相垂直()()1;2sin sin C A B +求角求的取值范围.解:()()()()22210,a c a c b b a a b c ab ⇒+-+-=⇒+-=已知2221cos ,0,.223a b c C C C ab ππ+-∴==<<∴= ()22,,33C A B ππ=∴+=222sin sin sin sin sin sin cos cos sin 333A B A A A A A πππ⎛⎫+=+-=+- ⎪⎝⎭31sin cos 226A A A A A π⎫⎛⎫=+=+=+⎪ ⎪⎪⎝⎭⎭ 2510,sin 1366626A A A πππππ⎛⎫<<∴<+<⇒<+≤ ⎪⎝⎭ sin sin .A B ∴+⎝的取值范围是18.(12分)ABCD PQMN 如图,在四面体中,截面是平行四边形,()1://;PN BCD 求证平面()2PQMN 若截面是正方形,求异PM BD 面直线与所成的角.解:()1//,PQMN PN QM ∴证明:截面是平行四边形,,//.PN BCD QM BCD PN BCD ⊄⊂⇒又平面平面平面N MQPDCBA()()21//,PN BCD 由知平面,,//.PN ABD ABD BCD BD PN BD ⊂=∴平面平面平面()NPM PM BD ∴∠或其补角是异面直线与所成的角.045.PQMN NPM ∴∠=截面是正方形, 045.PM BD ∴异面直线与所成的角是19.(12分){}()11.1,342n n n n a S a a S n -==+≥已知数列的前项和为若.(){}1n a 求数列的通项公式;(){}2212log ,,,72n n n n n n n a bb c n N c T +++==∈令其中记数列的前项和为. 2.2n nn T ++求的值 解:()21111347,34(2),3 4.n n n n a S a S n a S -+=+==+≥∴=+()221242474,n n n n n a a n a a --+=≥⇒=⨯=⨯两式相减得:21,(1)174,(2)n n n n a n -⎧=⎪=∴=⎨⨯≥⎪⎩此式对不成立,()22212log log 42,,722n n n n n n n a b nb nc ++===∴== 231232222n nnT ∴=++++①231112122222n n n n nT +-=++++②22111111121.2222222n n n n n n T +++-=+++-=-①②得,222 2.22n n n n n n T T ++∴=-⇒+=20.(12分),4,3,P ABCD PA ABCD AB BC -⊥==如图,在四棱锥中,平面05,90,AD DAB ABC E CD =∠=∠=是的中点.()1CD PAE ⊥证明:平面;()2PB PAE 若直线与平面所成的角和PB ABCD 直线与平面所成的角相等,P CD A --求二面角的正切值.解:()014,3,90 5.AC AB BC ABC AC ==∠==连接,由,得5,.AD E CD CD AE =∴⊥又是的中点,,,.PA ABCD CD ABCD PA CD ⊥⊂∴⊥平面平面,.PAAE A CD PAE =∴⊥而平面()2CD PAE PEA P CD A ⊥∴∠--平面;是二面角的平面角.,,,,.B BG CD AE AD F G PF //过点作分别与相交于连接 ()1.BG PAE ⊥由知,平面.BPF PB PAE BG AE ∴∠⊥为直线与平面所成的角.且PA ABCD PBA PB ABCD ⊥∠由平面知,为直线与平面所成的角. ,.PBA BPF Rt PBA Rt BPF PA BF ∠=∠∴∆≅∆⇒=由题意知090//,//.DAB ABC AD BC BG CD ∠=∠=知,又3, 2.BCDG GD BC AG ∴==∴=是平行四边形.4,,,AB BG AF BG =⊥∴==255AB BF PA BG ===∴=于是FGCD BG CE AE==∴===又21.(12分)()2.f x ax bx c=++已知二次函数()(){}10|34f x x x x>-<<若的解集为,解关于的不等式()2230bx ax c b+-+<.()()2,2x R f x ax b∈≥+若对任意不等式恒成立,()224a c aa c-+求的最大值.解:(){}210|34ax bx c x x++>-<<的解集为()0,34,34,120.b ca b a c a aa a∴<-+=--⨯=⇒=-=-<()()2223021500bx ax c b ax ax a a∴+-+<⇔-++<<()221503,5.x x⇔--<∴-,解集为()()()22220f x ax b ax b a x c b≥+⇔+-+-≥恒成立()()22200440240a ab a acb a ac b>⎧>⎧⎪∴⇔⎨⎨+-≤∆=---≤⎪⎩⎩()()222241404,1ca c a ab ac aa c ca⎛⎫-⎪-⎝⎭∴≤≤-=+⎛⎫+ ⎪⎝⎭()21,40,010.c ct a c a b c a ta a=--≥≥∴≥>⇒≥⇒≥令()()()()222224444,0222211a c a t t tg t ta c t t t tt-===≥+++++++令()()4000;0222t g t g ttt==>=≤=++当时,当时,44 tan..55PAPEA P CD AAE∴∠==--即二面角的正切值是()224 2.a c a a c -∴+的最大值为22.(12分)()()()(),,,f x R ff f αβαβαββα∈⋅=⋅+⋅函数满足:对任意都有(){}()()22,2.n n n f a a f n N +==∈且数列满足(){}1n a 求数列的通项公式;()()()121121.n n n n nn n n a a b b c T c c c n N n n b n ++⎛⎫=-==+++∈ ⎪⎝⎭令,,记,584n MM n N T +∈<问:是否存在正整数使得当时,不等式恒成立? ;M 若存在,求出的最小值若不存在,请说明理由.解:()()()1112,22,n n a f a f =∴==()()()()112222222,n n n n n a f f f f ++==⋅=⋅+⋅11111221,1,2222n n n n n n n n n a a a a a a ++++⎧⎫∴=⋅+⇒-=∴=⎨⎬⎩⎭为等差数列,首项为 1.2.2nn n n a n a n ∴=⇒=⋅公差为 ()()22,2221,n n n n nn n a a n b n=⋅∴=⇒=- ()()()()1111112212211144221421421n n n n n n n n n n b c b ++++++--∴====-<--- ()121211.44n n n n c c c T c c c n ∴+++<⇒=+++<1146.5845844n M M T M ∴<⇔≥⇔≥不等式恒成立 ,146.M ∴存在满足条件的正整数其最小值为最新文件---------------- 仅供参考--------------------已改成-----------word文本--------------------- 方便更改赠人玫瑰,手留余香。

2023_2024学年四川省成都市高一下册期末考试数学模拟测试卷(附答案)

2023_2024学年四川省成都市高一下册期末考试数学模拟测试卷(附答案)

2023_2024学年四川省成都市高一下册期末考试数学模拟测试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数为实数是“”成立的( )ii a b z +=a b ∈R 0a =A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【正确答案】C【分析】根据充分条件和必要条件的定义结合复数为实数的条件分析判断【详解】,22i i i i i i a b a b z b a ++===-当复数为实数时,,ii a b z +=a b ∈R 0a =当时,为实数,0a =(R)z b b =∈所以复数为实数是“”成立的充要条件,ii a b z +=a b ∈R 0a =故选:C2. 若将一个棱长为的正方体铁块磨制成一个球体零件,则可能制作的最大零件的体积2cm 为()A. B.C. D. 38cm 3cm 332πcm 3343πcm 【正确答案】D【分析】由题意可知制成的最大的球体恰好正方体的内切球,求出球的半径,从而可求出球的体积【详解】由题意可知制成的最大的球体恰好正方体的内切球,因为正方体的棱长为,所以其内切球的半径为,2cm 1cm所以制作的最大零件的体积为,2344π1πcm 33⨯=故选:D3. 设,是两个不共线的向量,且向量与是平行向量,则实数的a b2a b λ+ (31)a b λ-+ λ值为()A. B. 1C. 1或D. 或23-23-1-23-【正确答案】C【分析】由共线向量定理结合题意求解即可.【详解】因为向量与是平行向量,2a b λ+(31)a b λ-+ 所以存在唯一实数,使,k ()(31)22a b k a b ka k bλλλ-+=+=+因为,是两个不共线的向量,a b所以,则,,3121k k λλ-=⎧⎨=⎩()312λλ-=2320λλ--=解得或,1λ=23λ=-故选:C4. 函数取得最小值时,的值为( )ππcostan (11)22y θθθ=-<<θA. B. 0C. D. 12-1223【正确答案】B【分析】根据正切函数的性质将函数转化为分段函数,分别确定各段的单调性,即可得函数取最小值时,的值.θ【详解】函数ππcostan (11)22y θθθ=-<<则当时,,10θ-<≤πππcostan sin 222y θθθ⎛⎫=-=-⎪⎝⎭又,所以函数在上单调递减;ππ,022θ⎛⎤∈- ⎥⎝⎦πsin2y θ=-(]1,0θ∈-当时,,所以函数在上单调递增;01θ<<πππcostan sin 222y θθθ==πsin 2y θ=()0,1θ∈所以当时,函数取得最小值.0θ=ππcostan (11)22y θθθ=-<<故选:B .5. 《九章算术商功》中提及的“鳖臑”现意为四个面均为直角三角形的三棱锥,则“鳖臑”中相互垂直的平面有( )对A. 4B. 3C. 2D. 1【正确答案】B【分析】利用线面垂直和面面垂直的判定定理判断.【详解】如果三棱锥有一个顶点处有3个直角,设,,,PA PB PA PC PB PC ⊥⊥⊥设,故,,PA a PB b PC c ===222222222,,,AB a b AC a c CB c b =+=+=+故,,,222AB AC CB +>222AB CB AC +>222CB AC AB +>从而为锐角三角形,与题设矛盾;ABC 若每个顶点处有均有一个直角,不妨设,,,,PA AB AB BC BCCP CP AP ⊥⊥⊥⊥将三棱锥沿展开,则展开后的四边形内角为凸四边形且其内角和大于,PB π42π2⨯=矛盾,综上,“鳖臑”对应的三棱锥必有一个顶点处有两个直角,如图所示:设,,,,PA AB PA AC AB BC PB BC ⊥⊥⊥⊥由,且,,PA AB PA AC ⊥⊥AB AC A ⋂=得平面ABC ,又平面PAB ,平面PAC ,PA ⊥PA ⊂PA ⊂所以平面平面ABC ,平面平面ABC ,PAB ⊥PAC ⊥由,且,,BC AB BC PB ⊥⊥AB PB B ⋂=得平面PAB ,又平面PBC ,BC⊥PA ⊂所以平面平面PAB ,PBC ⊥所以“鳖臑”中相互垂直的平面有3对,故选:B6. 已知点,,在所在平面内,且,N O P ABC 3PA PB PC PN ++=,,则点,,依次是的(222OA OB OC == PA PB PB PC PC PA ⋅=⋅=⋅N O P ABC )A. 重心、外心、垂心B. 重心、外心、内心C. 外心、重心、垂心D. 外心、重心、内心【正确答案】A【分析】根据向量的运算逐个分析判断即可【详解】由,得,3PA PB PC PN ++= ()()()PA PN PB PN PC PN -+-+-= 所以,设的中点为,连接,则,0NA NB NC ++= AB D ND 2+= NA NB ND 所以,所以点在边上的中线上,同理可得也在的中线上,2NC DN =N AB N ,AC BC 所以点是的重心,N ABC由,得,所以到的三个顶点的距离相等,所以222OA OB OC == OA OB OC ==O ABC 为的外心,O ABC 由,得,所以,PA PB PB PC PC PA ⋅=⋅=⋅ ()0PB PA PC ⋅-= 0PB CA ⋅= 所以,所以,同理得,所以为的垂心,PB CA ⊥PB AC ⊥PC AB ⊥P ABC 故选:A7. 已知钝角的角,,所对的边分别为,,,,,则最大边ABC A BC a b c 2b =3c =的取值范围为( )a A. B.C.D.(1,5)()()⋃【正确答案】C【分析】根据给定条件利用余弦定理建立不等关系即可计算作答.【详解】因是钝角三角形,,,且是最大边,则由余弦定理得:ABC 2b =3c =a ,222cos 02b c a A bc +-=<于是得,,解得,即222222313a b c >+=+=0a >a >5a b c <+=,5a <<所以最大边的取值范围是.a )故选:C8. 已知对任意平面向量,把绕其起点沿逆时针方向旋转角得到向(,)AB x y = (,)AB x y =θ量,叫做把点绕点沿逆时针方向旋转角得到(cos sin ,sin cos )AP x y x y θθθθ=-+B A θ点.已知平面内点,把点绕点沿顺时针方向旋转后得到点P (1,2)A B A π3,则点的坐标为()12,2P -B A.B.52,2-512⎛-+⎝C.D. 2,2-(12+-【正确答案】D 【分析】根据题意,设,由条件可得的坐标,然后列出方程,即可得到结果.(),B x y AP【详解】设,则,将点绕点沿顺时针方向旋转,(),B x y ()1,2AB x y =--B A π3即将点绕点沿逆时针方向旋转,B A 5π3可得,()()()()5π5π5π5π1cos 2sin ,1sin 2cos 3333AP x y x y ⎡⎤=----+-⎢⎥⎣⎦化简可得,,111,1222AP x y x y ⎡⎤⎛⎛⎫=+-+⎢⎥⎪ ⎪⎢⎥⎝⎝⎭⎣⎦ 又因为,33,2AP=--所以,解得,所以.1132213122x y x y ⎧+-=⎪⎪⎨⎪+=--⎪⎩12x y ⎧=+⎪⎨=-⎪⎩(12B -故选:D二、选择题;本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知的角,,所对的边分别为,,,,则ABC A B C a b c 2b ca =cos bB =下列说法正确的是()A. B. 60B =︒0AB CB AC AB CB⎛⎫ ⎪+⋅= ⎪⎝⎭C. 为等腰非等边三角形D. 为等边三角形ABC ABC 【正确答案】ABD【分析】A,利用正弦定理化简得到求解判断;BCD ,由cos b B =tan B =,,利用余弦定理求解判断.2b ca =60B =︒【详解】A.,则,cos b B =cos sin B B =tan B =60B =︒故正确;B. 因为,,所以,即,则,2b ca =60B =︒2221cos 22a c b B ac +-==2220+-=a c ac a c =所以是正三角形,所以,故正确;ABC 0AB CB AC AB CB⎛⎫ ⎪+⋅=⎪⎝⎭ C. 由B 知:为等边三角形,故错误;ABC D. 由B 知:为等边三角形,故正确.ABC 故选:ABD10. 已知三条不同的直线,,和三个不同的平面,,,下列说法正确的是( l m n αβγ)A. 若,,则l α⊥m l ⊥//m αB. 若,为异面直线,且,,,,则m n n ⊂αm β⊂//m α//n β//αβC. 若,,则m l ⊥m βγ= l β⊥D .若,,,,,两两垂直,则,,也两两垂直l αβ= m βγ= n γα=I αβγl m n 【正确答案】BD【分析】对于A ,或;由线面平行的性质定理和面面平行的判定定理可判断//m αm α⊂B ;对于C ,不一定成立;用反证法可判断D.l β⊥【详解】若,,则或,故A 错误;l α⊥m l ⊥//m αm α⊂设,,因为,所以,m γ⊂m αγ'= //m α//m m '又,,所以,m β⊂m β'⊄//m β'又因为,为异面直线,,,,则直线与必相交,m n n ⊂α//n βm α'⊂n m '所以,故B 正确;//αβ若,,则不一定成立,故C 错误;m l ⊥m βγ= l β⊥若,,,,,两两垂直,l αβ= m βγ= n γα=I αβγ则,,必相交于同一点,l m n P 假设与不垂直,则存在直线,使得,,l m l 'l m '⊥l m P '= 所以直线与可确定平面,且,l 'm γ'γβ'⊥这说明过内的直线可作两个平面与垂直,而这是不可能的,βm β所以假设不成立,即,l m ⊥同理可证,,即,,两两垂直,故D 正确.l n ⊥m n ⊥l m n 故选:BD11. 正弦最初的定义(称为古典正弦定义)为:在如图所示的单位圆中,当圆心角的范围为时,其所对的“古典正弦”为(为的中点).根据以上信息,BOC ∠(0,π)BC D BC 当圆心角时,的“古典正弦”除以的可能取值为( )π0,2θ⎛⎫∈ ⎪⎝⎭θtanθA. 1B. C. D. 02312【正确答案】BC【分析】根据古典正弦定义,的“古典正弦”除以为,利用倍角正弦、余弦θtan θ2sin2tan θθ公式,根据余弦函数的性质及函数单调性求最值即可.【详解】由题可得的“古典正弦”除以为:θtan θ22sin2sincos 2sin cos 2cos 1122222costan sin 22sincoscoscos2222θθθθθθθθθθθθθ-====-由于,所以,则π0,2θ⎛⎫∈ ⎪⎝⎭π0,24θ⎛⎫∈ ⎪⎝⎭cos 2θ⎫∈⎪⎪⎭令,则,所以设,cos 2t θ=t ⎫∈⎪⎪⎭2sin122tan y t t θθ==-t ⎫∈⎪⎪⎭由基本初等函数的单调性可知函数在上是增函数,函数在2y t =t ⎫∈⎪⎪⎭1y t =-上是增函数,t ⎫∈⎪⎪⎭则函数在上单调递增,12y t t =-t ⎫∈⎪⎪⎭所以,则的“古典正弦”除以为的取值范围为.()120,1y t t =-∈θtan θ2sin2tan θθ()0,1故选:BC.12. 在棱长为4的正方体中,,,,,分别是,,1111ABCD A B C D -E F G R S 11A B BD ,,的中点,点是线段上靠近的三等分点,点是线段上靠近11B D 1AC 11B C H 1C G G I CF 的三等分点,为底面上的动点,且面,则( )F P 1111D C B A //DP ACE A. //RI CHB. 三棱锥的外接球的球心到面的距离为H ABC -ABC 43C. 多面体为三棱台1EB S ABC -D. 在底面上的轨迹的长度是P 1111D C B A 【正确答案】ACD 【分析】在平面中,由中位线定理、平行直线判断定理,以及平行的传递性可得11AA C C ,可判断选项A 正确;确定三棱锥的外接球的球心在直线上位置,//RI CH H ABC -O FG 即可求出球心到面的距离,可判断选项B 错误;根据棱台的定义判断多面体ABC 为三棱台,可判断选项C 正确;找到过点与面平行的平面,即可找到1EB S ABC -D ACE 点的轨迹,可判断选项D 正确.D 【详解】根据题意,可知平面,RI CH ⊂、11AA C C 如图画出平面,取的中点,连接,11AA C C IC Q GQ FG 、在中,由中位线定理可知,1ACC △112RF CC =所以为中点,则在中,由中位线定理得,,R FG GFQ //RI GQ 由,得,1Rt GFQ Rt CC H @ 1GQF CHC Ð=Ð由平行线性质,1HCQ CHC Ð=Ð所以,可得HCQ GQF Ð=Ð//GQ CH 所以,选项A 正确;//RI CH依题意,由于为直角三角形,则其外心为点,ABC F 又因为平面,FG ⊥ABC 可知三棱锥的外接球的球心在直线上(如图),H ABC -O FG 设,由中,FO x =Rt OGH Rt OFC 、OH OC R ==得,即,()22224x FC x GH +=-+(()22224x x +=-+解得,,则球心到面的距离为,选项B 错误;109x =ABC 109由题意,可知平面平面,1//EB S ABC 延长,与交于点,与交于点,1BB CS AE 、、1BB CS K 1BB AE K '由于,且,1B S BC ∥112B S BC =所以为的中点,同理为的中点,1B BK 1B BK ¢所以与重合,即多面体三条侧棱交于一点,K K '1EB S ABC -故多面体为三棱台,选项C 则正确;1EB S ABC -取的中点,连接,1111A D C D 、N M 、MN DM DN 、、由题意易知,平面,平面,MN ES ∥ES ⊂ACE MN ⊄ACE 所以平面,同理平面,MN ACE DM ∥ACE 平面,平面,,MN ⊂DMN DM ⊂DMN MN DM M ⋂=所以平面平面,//DMN ACE 当点时,平面,所以平面,P MN ∈DP ⊂DMN DP ∥ACE则在底面上的轨迹为,且D 正确.P 1111D C B A MN MN =故选:ACD方法点睛:多面体与球切、接问题的求解方法(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P 、A 、B 、C 构成的三条线段PA 、PB 、PC 两两垂直,且PA =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,根据4R 2=a 2+b 2+c 2求解.(3)正方体的内切球的直径为正方体的棱长.(4)球和正方体的棱相切时,球的直径为正方体的面对角线长.(5)利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡上.13. 在正三棱柱中,为棱的中点,,则异面直线与ABC A B C '''-D AC 2AB BB '==BD所成角的为__________.B C ''【正确答案】π6【分析】根据异面直线的定义结合正三棱柱的几何性质即可得为异面直线与DBC ∠BD 所成角,从而可得答案.B C ''【详解】正三棱柱中,ABC A B C '''-//BC B C''所以为异面直线与所成角DBC ∠BD B C ''又为正三角形,为棱的中点,所以ABC D AC π6DBC ∠=则异面直线与所成角的为.BD B C ''π6故答案为.π614. 已知两个粒子,从同一发射源发射出来,在某一时刻,它们的位移分别为A B ,,则在上的投影向量为__________.(1,0)AS = (B S = A S B S【正确答案】14⎛ ⎝【分析】先求得与夹角的余弦值,再根据投影向量的定义求出在上的投影向量A SB S A S B S 即可.【详解】设与的夹角为,A SB S θ则,101cos 122A B A B S S S S θ⋅+===⨯⋅ 所以在上的投影向量为.A SB S11cos 1(24B A B S S S θ⋅=⨯= 故答案为.14⎛ ⎝15. 如图,在四棱锥中,底面为矩形;为的中点.若,P ABCD -ABCD E PD 1AP =,,当三棱锥的体积取到最大值时,点到平面的距离AD =34=AB P ABCD -E PBC 为__________.【正确答案】##0.3310【分析】根据几何体性质结合体积分割求解三棱锥的体积,在根据等体积法可求解P ABE -点到平面的距离.E PBC 【详解】由题可得,当底面时,三棱锥的体积取到最大值PA ⊥ABCD P ABCD -如图,取中点,取中点,连接PA M AD N ,,EM EN AE因为底面,为的中点.为的中点,所以,PA ⊥ABCD E PD N AD //PA EN1122EN AP ==所以底面,则EN ⊥ABCD 11313342E ABCD ABCD V S EN -=⋅=⨯= 又由底面,底面,所以PA ⊥ABCD AD ⊂ABCD PA AD⊥因为矩形,则,又平面,所以平面ABCD AB AD ⊥,,PA AB A PA AB ⋂=⊂PAB AD ⊥PAB又为的中点.为的中点,所以,,则平E PD M PA //EMAD 12EM AD ==EM ⊥面PAB则111313324P ABE E PAB PAB V V S EM --==⋅=⨯⨯⨯=又1131334P ABCD ABCD V S PA -=⋅=⨯=所以P BCE P ABCD E ABCD P ABE V V V V ----=--=-=又,因为平面,,所以平面,又54PB ==AD ⊥PAB //AD BC BC ⊥PAB 平面,所以,PB ⊂PAB BC PB ⊥设点到平面的距离为,E PBCh 所以,则.11153324P BCE E PBC PBC V V S h --==⋅=⨯⨯= 310h =故点到平面的距离为.E PBC 310故答案为.31016. 在中,若,,的内角平分线交边于点,ABC 12AB AC AB AC ⋅=- BD DC = BAC ∠BC E若,外接圆的直径为__________.6AD =AE =ABC【正确答案】【分析】根据可得,从而得,利用三角12AB AC AB AC ⋅=-2π3BAC ∠=π3BAE CAE ∠=∠=形面积公式可得,再利用,结合数量积的运算可得)bc b c =+6AD =,从而可得,利用余弦定理得,最后应用正弦定理即可得221440b c bc +--=bc a 外接圆的直径.ABC 【详解】又,所以,1cos 2AB AC AB AC BAC AB AC AB AC ⋅=⋅⋅∠=- 1cos 2BAC ∠=-因为,所以,则()0,πBAC ∠∈2π3BAC ∠=π3BAE CAE ∠=∠=又,所以ABE AEC ABC S S S =+ ,111sin sin sin 222AB AC BAC AB AEBAE AB AE CAE ⋅⋅∠=⋅⋅∠+⋅⋅∠则,整理得:①,111222bc b c =⨯+⨯)bc b c =+又,所以1122AD AB AC =+,1122AD AB AC =+==则,整理得②,6=221440b c bc +--=联立①②可得:,解得或(舍)()22411520bc bc --=48bc =24bc =-在中,由余弦定理可得ABC ,所以,222222cos 2144240a b c bc BAC b c bc bc =+-∠=++=+=a =设外接圆的半径为,由正弦定理可得ABCR 2sin a R BAC ===∠所以外接圆的直径为.ABC故答案为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知,,,.(0,0)O (1,2)A (4,5)B ()OP OA t AB t R =+∈ (1)为何值时,点在轴上?t P y (2)若与的夹角是钝角,求的取值范围.OP AB t 【正确答案】(1)13t =-(2)21t <-【分析】(1)由,得到点P 的坐标,再根据点在轴上求解;OP OA t AB =+ P y (2)由,得到与不共线,再根据与的夹角是钝角,由3(31)3(32)t t +≠+OP AB OPAB 求解.0OP AB ⋅< 【小问1详解】解:由题意知:,,(1,2)OA = (4,5)(1,2)(3,3)AB =-= 所以,(1,2)(3,3)(31,32)OP OA t AB t t t =+=+=++ .(31,32)P t t ∴++因为点在轴上,P y 所以,解得.310t +=13t =-【小问2详解】因为,3(31)3(32)t t +≠+所以与不共线.OP AB又与的夹角是钝角,OP AB 所以只需,0OP AB ⋅< 即,3(31)3(32)0t t +++<解得.21t <-18. 已知函数的最小值为.()ππsin sin cos 66f x x x x a ⎛⎫⎛⎫=-++++ ⎪ ⎪⎝⎭⎝⎭3-(1)求函数的单调递减区间;()f x (2)英国数学家泰勒(B .Taylor ,1685-1731)发现了如下公式:,其中,该公式被编入246cos 12!4!6!x x x x =-+-+ !(1)(2)321n n n n =⨯-⨯-⨯⨯⨯⨯ 计算工具,计算工具计算足够多的项就可以确保显示值的准确性.运用上述思想,计算的值:(结果精确到小数点后4位,参考数据:π13f ⎛⎫- ⎪⎝⎭,)51 2.5108!-≈⨯71 2.81010!-≈⨯【正确答案】(1), π4π2π,2π33k k ⎡⎤++⎢⎥⎣⎦Z k ∈(2)0.0806【分析】(1)根据三角恒等变换公式化简函数,进而根据正弦函数的性质即可求解;(2)结合诱导公式化简,进而结合泰勒公式求解即可.π12cos113f ⎛⎫-=- ⎪⎝⎭【小问1详解】()ππππππsin sin cos sin cos cos sin sin cos cos sin cos 666666f x x x x a x x x x x a ⎛⎫⎛⎫=-++++=-++++⎪ ⎪⎝⎭⎝⎭,πcos 2sin 6x x a x a ⎛⎫=++=++ ⎪⎝⎭所以,即,()min 23f x a =-+=-1a =-所以,()π2sin 16f x x ⎛⎫=+- ⎪⎝⎭令,,ππ3π2π2π262k x k +≤+≤+Z k ∈即,,π4π2π2π33k x k +≤≤+Z k ∈所以函数的单调递减区间,.()f x π4π2π,2π33k k ⎡⎤++⎢⎥⎣⎦Z k ∈【小问2详解】由(1)知,()π2sin 16f x x ⎛⎫=+- ⎪⎝⎭所以,ππππ12sin 112sin 112cos113362f ⎛⎫⎛⎫⎛⎫-=-+-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由泰勒公式得:11111cos1110.50.041670.001390.0000250.000000280.540304722!4!6!8!10!=-+-+-+≈-+-+-+≈ ,所以.π12cos1120.5403047210.08063f ⎛⎫-=-≈⨯-≈ ⎪⎝⎭19. 如图,在四棱锥中,底面为菱形,底面,P ABCD -ABCD PA ⊥ABCD ,为线段的中点,为线段上的动点,平面平2PA AB ==E PB F BC ADE 面.PBC l =(1)证明:;//l BC(2)若到平面的距离为1,求与平面所成角的最小值.l PAD AF PBC 【正确答案】(1)证明见解析 (2)π6【分析】(1)由已知得,再利用线面平行的判定定理和性质定理可证得结论;//BC AD (2)由到平面的距离为1,根据线面垂直的性质结合已知可得,再由线面l PAD BC AB ⊥垂直的判定可得平面,则,由等腰三角形的性质可得,则BC ⊥PAB BC AE ⊥AE PB ⊥平面,从而得为与平面所成角,然后在中求解即可.⊥AE PBC AFE ∠AF PBC AEF △【小问1详解】证明:因为底面为菱形,所以ABCD //BC AD因为平面,平面,BC ⊄ADE AD ⊂ADE 所以平面.//BC ADE 又平面,平面平面,所以.BC ⊂PBC ADE PBC l =//BC l 【小问2详解】因为,,所以,//BC l //BC AD //l AD l 不在面PAD 内,AD 在面PAD 内,所以平面,//l PAD 又到平面的距离为1,所以点到平面的距离为2.l PAD B PAD 因为底面,平面,所以平面底面,PA ⊥ABCD PA ⊂PAD PAD ⊥ABCD 又平面底面,PAD ⋂ABCD AD =所以点到平面的距离等于点到的距离,为2.B PAD B AD 又,所以.2AB =BC AB ⊥又因为,,平面,所以平面.BC PA ⊥AB PA A = ,AB PA ⊂PAB BC ⊥PAB 因为平面,所以.AE ⊂PAB BC AE ⊥又,为线段的中点,所以.2PA AB ==E PB AE PB ⊥又,平面,平面,所以平面.PB BC B ⋂=PB ⊂PBC BC ⊂PBC ⊥AE PBC所以为与平面所成角.AFE ∠AF PBC 又.tan AE AFE EF ∠==EF≤≤所以当.EF =tan AFE ∠所以与平面所成角的最小值为.AF PEC π620. 已知的角,,所对的边分别为,,,且,.ABC A B C a b c 8b =5c =(1)若,求;cos sin 0aC C b c+--=A (2)再从条件①、条件②这两个条件中选择一个作为已知,求函数的值域.2π()cos 212f A A A ⎛⎫=++-+ ⎪⎝⎭条件①:;2220AC AB BC ≤+-≤ 条件②:.0cos sin A A ≤≤注:如果选择条件①和条件②分别解答,按第一个解答计分.【正确答案】(1)π3A =(2)0,1⎡⎣【分析】(1)由及正弦定理得cos sin 0a C C b c +--=,利用诱导公式及三角恒等变换可得sin cos sin sin sin 0A C A C B C +--=,结合角的范围即可求解;π1sin 62A ⎛⎫-= ⎪⎝⎭(2)利用三角恒等变换化简为,选择①由()π12sin 23f x A ⎛⎫=-+ ⎪⎝⎭,可得,结合余弦定理可得2220AC AB BC ≤+-≤ 2220b c a ≤+-≤,再利用正弦函数的性质即可求解;选择②,由,可得ππ42A ≤≤0cos sin A A ≤≤,再利用正弦函数的性质即可求解.ππ42A ≤≤【小问1详解】由及正弦定理得cos sin 0a C C b c --=.sin cos sin sin sin 0A C A C B C +--=因为,sin sin(π)sin()sin cos cos sin B A C A C A C A C =--=+=+.sin cos sin sin 0A C A C C --=由于,,所以.sin 0C >cos 10A A --=π1sin 62A ⎛⎫-= ⎪⎝⎭又,,故,即.0πA <<π5π66A ∴-<<ππ66A -=π3A =【小问2详解】2π()cos 21cos 2)sin 212fA A A A A ⎛⎫=++-+=---+ ⎪⎝⎭.π12sin 212sin23A A A ⎛⎫=--=-+ ⎪⎝⎭选择条件①:因为,所以,2220AC AB BC ≤+-≤ 2220b c a ≤+-≤根据余弦定理可得,.2222cos 80cos b c a bc A A +-==所以,又,所以.0cos A ≤≤0πA <<ππ42A≤≤所以,即,5ππ4π2633A ≤+≤π1sin 232A ⎛⎫≤+≤ ⎪⎝⎭故.()0,1f A ⎡∈⎣选择条件②:因为,又,所以,0cos sin A A ≤≤0πA <<ππ42A ≤≤所以,即.5ππ4π2633A ≤+≤π1sin 232A ⎛⎫≤+≤ ⎪⎝⎭故.()0,1f A ⎡∈⎣21. 已知的角,,所对的边分别为,,,点是所在平面内的一ABC A B C a b c O ABC 点.(1)若点是的重心,且,求的最小值;O ABC 0OA OB ⋅= cos C (2)若点是的外心,,且,,O ABC BO BA BC λμ=+ λμ∈R 4a =6c =有最小值,求的取值范围.21sin ()2m B m λμ⎛⎫+-∈ ⎪⎝⎭R m 【正确答案】(1)45(2)213,44m ⎛⎫∈- ⎪⎝⎭【分析】(1)根据题意,由余弦定理列出方程,然后再由基本不等式即可得到结果;(2)根据题意,分别表示出,然后代入计算,即可得到结果.,λμ【小问1详解】延长,,分别交边,,于点,,,AO BO CO BC AC AB D E F 依题意有,.1122FO AB c ==32CF c =在和中,由余弦定理有,CAF V CAB △cos cos CAF CAB ∠=∠即,化简有,222222322222c c b b c ac bc b ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭=⋅2225a b c +=.22222222244245cos 2252525a b a b a b c a b ab C ab ab ab ab ++-+-+===⋅≥⋅=当且仅当时,等号成立,a b =所以的最小值为.cos C 45 【小问2详解】由题意可知:,解得,183624cos 824cos 16BO BA B BO BC B λμλμ⎧⋅==+⎪⎨⋅==+⎪⎩ 2232cos 6sin 23cos 4sin B B B B λμ-⎧=⎪⎪⎨-⎪=⎪⎩则221(32cos )23cos sin sin 2642m B B B m B λμ--⎛⎫+-=+- ⎪⎝⎭.26cos (49)cos 612B m B m -++=今,cos ,(1,1)t B t =∈-原式有最小值,所以.26(49)6t m t m =-++49(1,1)12m t +-∈-解得.213,44m ⎛⎫∈- ⎪⎝⎭22. 如图,在五边形中,四边形为矩形,点为边的中点,ABCFD ABCD E BC ,,.沿,将,折起,使得2AB AD ==//DF EC DF FC ⊥EC ED BEC AED △,重合于点,得到四棱锥,为侧棱靠近的三等分点.A B PP ECFD -G PD P(1)求与所成的角;CG ED (2)求平面与平面所成锐二面角的正切值.PED PCF【正确答案】(1)π2(2)【分析】(1)由线面垂直的判定定理可得面,然后由余弦定理可得,再结合PE ⊥PCD CG 勾股定理即可得到,从而可得面,即可得到结果;PD GC ⊥GC ⊥PED (2)根据题意,先由条件找到所求二面角,然后通过计算,即可得到结果.【小问1详解】由题可知,,,,.2ED EC DC ===1PE =PC PD ==PE PC ⊥PE PD ⊥又,面,面,所以面.PC PD P ⋂=PD ⊂PCD PC ⊂PCD PE ⊥PCD 又面,所以.GC ⊂PCD PE GC⊥在中,由余弦定理可得,PCD .2221cos 23DP CP DC DPC DP CP +-∠===⋅在中,PCG13PG PD ==,CG ===所以,即.222PG CG PC +=PD GC ⊥又,面,面,所以面.PE PD P = PD ⊂PED PE ⊂PED GC ⊥PED 又面,所以.故与所成的角为.ED ⊂PED ED GC ⊥CG ED π2【小问2详解】因为,,所以,.//DF EC DF FC ⊥π3CDF ∠=1FD =又,所以延长,必交于一点.FD EC <ED CF H 所以平面平面.PED PCF PH =又面,过点作,连接,则或其补角为所求.GC ⊥PED G GQ PH ⊥CQ GQC ∠又,所以.π6PDE ∠=5π6PDH ∠=又,所以.π3FDH ∠=2DH DC ==在中,由余弦定理可得,PDH △.PH ===设点到的距离为,在中,运用等面积法则有D PH d PDH △sin PD DH PDH d PH ⋅∠==所以,13GQ d ==在中,.Rt CGQtan GC GQC GQ ∠==所以平面与平面所成锐二面角的正切值为.PED PCF。

四川省名校2023-2024学年高一下学期7月期末联考数学试题

四川省名校2023-2024学年高一下学期7月期末联考数学试题

四川省名校2023-2024学年高一下学期7月期末联考数学试题一、单选题1.下列几何体中,不是旋转体的是( )A .B .C .D . 2.若12i 3i z +=+,则z =( )A B C D .3.如图所示,在平行四边形OABC 中,1,2OA OB ==,则它的直观图面积是( )A .B .2C 2D 4.某花农连续8天采摘的栀子花重量依次为7.2,7.4,8.7,8.1,8.9,8.4,8.6,8.9(单位:斤),则这组数据的第75百分位数为( )A .8.9B .8.8C .8.7D .8.65.四边形中ABCD 中,AB DC =u u u r u u u r ,则下列结论中错误的是( )A .AB CD =u u u r u u u r 一定成立 B .AC AB AD =+u u u r u u u r u u u r 一定成立 C .AD BC =u u u r u u u r 一定成立 D .BD AB AD =-u u u r u u u r u u u r 一定成立6.某人抛掷一枚质地均匀的骰子一次,记事件A =“出现的点数为奇数”,B =“出现的点数不大于3”,事件C =“出现点数为3的倍数”,则下列说法正确的是( )A .A 与B 互为对立事件B .()()()P A B P A P B =+UC .()23P C =D .()()P A P C =7.已知,a b r r 是不共线的向量,且2,4,65AB a b BC a b CD a b =-=-=-+r r u u u r u u u r u r r r u ur r ,则( ) A .,,A B C 三点共线 B .,,A B D 三点共线C .,,A CD 三点共线 D .,,B C D 三点共线8.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且12341p p p p +++=,则下面四种情形中,对应样本的标准差最大的一组是( )A .14230.35,0.15p p p p ====B .12340.35,0.3,0.2,0.15p p p p ====C .14230.15,0.35p p p p ====D .12340.15,0.2,0.3,0.35p p p p ====二、多选题9.小刘一周的总开支分布如图①所示,该周的食品开支如图②所示,则以下说法正确的是( )A .娱乐开支金额为100元B .日常开支比食品中的肉类开支多100元C .娱乐开支比通信开支多5元D .肉类开支占储蓄开支的1310.设12,z z 是复数,则下列说法正确的是( )A .若21z ∈R ,则1z ∈RB .设12,z z 互为共轭复数,则.12z z ∈RC .若120z z -=,则12z z =D .复数12z z 在复平面内对应的点位于第四象限11.已知平面αβγ,,,直线,m l ,则下列命题正确的是( )A .若αβ∥,m α⊂,l β⊂,则m l ∥B .若αβ⊥,m αβ=I ,l ⊂α,l m ⊥,则l β⊥C .若αβ⊥,βγ⊥,则αγ⊥D .若l α⊥,l βP ,则αβ⊥12.据统计,从1932年至1990年,历次所测乐山大佛高度均不一样.某校计划开展数学建模活动,打算运用所学知识测量乐山大佛的高度.老师提前准备了三种工具:测角仪、米尺、量角器.下面是四个小组设计的测量方案,其中可能测量出大佛高度的方案有( )A .把两只佛脚底部看作,M N 两点,分别测量佛顶的仰角,αβ和MN 的距离B .在佛脚平台上一点测得佛顶的仰角为α,再面对大佛前行S 米,测得佛顶的仰角为βC .高为h 的同学站在佛脚平台上,在该同学头顶和脚底分别测量佛顶的仰角,αβD .在佛脚平台上寻找两点,A B 分别测量佛顶的仰角,αβ,再测量,A B 两点间距离和两点相对于大佛底部的张角θ三、填空题13.某校围棋社团、舞蹈社团、美术社团和篮球社团的学生人数分别为50,30,40,60,现采用分层抽样的方法从这些学生中选出18人参加一项活动,则美术社团中选出的学生人数为. 14.甲、乙两人进行投篮比赛,甲投篮命中的概率为0.5,乙投篮命中的概率为0.6,且两人投篮是否命中相互没有影响,则两人各投篮一次,至多一人命中的概率是.15.已知向量,a b r r 在正方形网格中的位置如图所示,{}12,e e u r u u r 为单位正交基底,则a b λ-r r 最小值是.四、单选题16.已知直四棱柱1111ABCD A B C D -的棱长均相等,且60BAD ∠=o ,以1B 径的球面与侧面11ADD A 的交线为半圆,且长为π2,则该四棱柱的体积为.五、解答题17.已知平面向量()()()1,1,,1,1,2a b t c =-==r r r .(1)若()c a b +⊥r r r ,求实数t 的值;(2)若c a -r r 与b r 的夹角为π3,求实数t 的值. 18.为了丰富校园文化生活,培养学生的兴趣爱好,提高学生的综合素质,某中学举办了学校社团活动,开设的项目有4个运动类社团(篮球社、足球社、乒乓球社、羽毛球社)和2个艺术类社团(音乐社、美术社),一名学生从中随机抽取2个项目来参加活动.(1)求抽取的2个项目都是运动类社团的概率;(2)若从运动类社团和艺术类社团中各抽取1个,求这2个社团不包括篮球社但包括音乐社的概率.19.已知四棱锥P ABCD -中,,,PD AD CD AD AB ⊥⊥//1,2CD AB CD =,且2,AD CD PD PC M ====是PC 中点.(1)求证://BM 平面PAD ;(2)求三棱锥A BCM -的体积.20.某电力公司需要了解用户的用电情况(单位:度).现随机抽取了该片区100户进行调查,将数据分成6组:(](](](](](]0,100,100,200,200,300,300,400,400,500,500,600,并整理得到如下频率分布直方图(用户的用电量均不超过600度).(1)求a ;(2)若每一组住户的用电量取该组区间中点值代替,估算该片区住户平均用电量;(3)每户用电量不超过m 度的电费是0.5元/度,超出m 度的部分按1元/度收取,若该公司为了保证至少80%的住户电费都不超过0.5元/度,则m 至少应为多少(m 为整数)?21.如图,在四边形ABCD 中,ABD △是边长为2的正三角形,,2BD CD CD ⊥=.现将ABD △沿BD 边折起,使得平面ABD ⊥平面BCD ,点E 是AD 的中点.(1)求证:BE ⊥平面ACD ;(2)求AC 与平面BCE 所成角的正弦值.22.“费马点”是由十七世纪法国数学家费马提出并征解的一个问题.该问题是:“在一个三角形内求作一点,使其与此三角形的三个顶点的距离之和最小."意大利数学家托里拆利给出了解答,当ABC V 的三个内角均小于120o 时,使得120AOB BOC COA ∠=∠=∠=o 的点O 即为费马点;当ABC V 有一个内角大于或等于120o 时,最大内角的顶点为费马点.试用以上知识解决下面问题:已知,,a b c 分别是ABC V 三个内角,,A B C 的对边,点P 为ABC V 的费马点,且()()cos22sin sin 1C A B A B ++-=.(1)求A ;(2)若6bc =,求PA PB PB PC PC PA ⋅+⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r 的值;(3)若PB PC t PA +=,求实数t 的最小值.。

四川省成都市第七中学2023-2024学年高一下学期高2026届期末考试数学试卷答案

四川省成都市第七中学2023-2024学年高一下学期高2026届期末考试数学试卷答案

成都七中高2026届高一下期数学期末考试参考答案一.单项选择题−14:CBDD −58:BCAB8.解析:设D 为BC 边中点,则23A A A AD O G O ⎛⎫= ⎪⎝⎭21()32A AO AC B =+()AB AO AC =+312211AB AC =+66=+b c 6()122, 在∆ABC 中,==︒a A 1,60,由余弦定理得=+−︒a b c bc 2cos 60222,∴+=+b c bc 122, 由均值不等式,+=+≥bc b c bc 1222,所以≤bc 1(当且仅当==b c 1等号成立), 所以1111()(1)(11)6663A AG O c b bc =+=+≤+=22,故选B. 二.多项选择题9.BC 10.BCD 11.AC11.解析:A :当⊥'AP A B 时,线段DP 长度最小,此时=AP =DP ,A 正确;B :将面''A D CB 旋转至面'A AB 同一平面,连接AC ,此时+=AP PC AC 为最小值,=>=AC 不存在这样的点P ,故B 错误; C :如图,取='B E 1,='B F 21,='A G 23,连接FG 交'A B 于P ,易证此时⊥'A C MN ,⊥'A C EN ,且M N E F G ,,,,五点共面.因为MN EN N =,面⊥'A C MNEFG ,所以存在这样的点P 使面⊥'A C MNP ,故C 正确; D :以点B 为球心,617为半径的球面被面'AB C 所截的截面为圆形,记其半径为r ,则=r d 为点B 到平面'AB C 的距离.由=−−''V V B ABC B AB C 易求得B 到平面'AB C 的距离为34,解得=r 25,所以截面面积==ππS r 4252,D 错误.本题选AC 三.填空题12.1030013.π32814.+3214.解析:取AB 中点D ,则2AQ m AB nAC m AD nAC =+=+ ;连接CD 交AQ 于点E ,则()1AE AD AC λλ=+−,且()()1AQAQAQ AE AD AC λλ=⋅=⋅+−AE AE ,故+=AE m n AQ2.17.解:I ()设事件=A i “第i 回合甲胜”,事件=M “甲至少赢一回合”,故=M “甲每回合都输”.A A i i ,为对立事件,=P A i 32(),故=P A i 31)(. ……2分 =−=−P M P M P A A A ()1()1()123⎝⎭ ⎪=−=⎛⎫P A P A P A 3271=12631()()()-123, 故甲至少赢1个回合的概分为2726. ……5分(II)设事件=N “第二回合有人得分”,由题可知1212N A A A A =,且A A 12和A A 12互斥,则=+=⋅+⋅=P N P A A P A A P A P A P A P A 9()512121212)()()()()()(, 故第二回合有人得分的概分为95. ……10分 (III)设事件=Q “甲乙两人平局”,由题可知,只有1:1与0:0两种情况, 因此13123Q A A A A A A =2, 故=+=P Q P A A A P A A A P A P A P A ()221312313)()()()()(+=P A P A P A 274123)()()(, 故甲乙两人平局的概分为274. ……15分18.解:(I)由正弦定理得,+=a c b 2,222解得=b ….…4分又因为+−=−<b c a 20222,故=<+−bcA b c a 2cos 0222,>πA 2,所以△ABC 是钝角三角形. …………6分 (II)由平面向量基本定理,BA ,BC 可作为一组基底向量,且有2BA =,4BC =,cos ,cos BA BC B <>===+−ac a c b 285222.由于1AD AC =3,所以21BD BA BC =+33. …………8分 2222212152()2cos BD BD BD BA BA BC B BC ⎛⎫=⋅=⋅+⋅⋅⋅⋅+⋅== ⎪33339. …………11分 (III) 由题意可设BM xBA = ,BN yBC = .由于M ,D ,N 三点共线,可设(1)BD t BM t BN =−+,∈t 0,1)(.所以21(1)BD t x BA ty BC BA BC =−⋅+⋅=+33, 由平面向量基本定理,解得()−=t x 312 ,=ty 31 ,所以()2BM BA =−t 31 ,1BN BC =t 3 . …………13分因此()212BM BN BA BC BA BC ⎛⎫⎛⎫⋅=⋅=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭−−⋅t t t t 3139(1), …………15分 而cos 50BA BC BA BC B ⋅=⋅⋅=>,因此当=t 21时,40BM BN ⋅=9为最小值. ……17分19.证明:(I)因为面平⊥A D ABC 1,面平⊂BC ABC ,故⊥A D BC 1. ……2分 又由∠=︒ABC 90,即⊥AB BC ,1AB A D D =,因此面平⊥BC ABB A 11.……5分 (II)由于菱形ABB A 11,且A D 1为AB 的垂直平分线,因此可知△A AB 1和△B A B 11均为等边三角形.由面平⊥BC ABB A 1,⊂BB 1面平ABB A 1,可得⊥BC BB 1, 结合斜三棱柱进一步可得B BCC 11是矩形. …………6分此时作⊥A P BB 11,⊥A Q CC 11,连接PQ ,PC ,A C 1.由题知,=A Q 21,面平⊂A P ABB A 111,可得⊥BC A P 1,1BC BB B =,因此⊥A P 1平面BCC B 11,因此由题知,=A P 1,⊂PQ PC 平面BCC B 11,所以也有⊥A P PQ 1,⊥A P PC 1. 因此,角成所为面平与∠A CP A C BB C C 1111. …………8分进一步,在△R A PQ t 1 中,==Q P 1 ,由矩形可知==BC PQ 1 .一一方面,由于=A P 1△B AB 1中,可以解得=BB 21,P 为BB 1中点,=BP 1.所以,在△R BCP t 中,PC △A CP R t 1中,=A C 1∠===A C A CP A P 5sin 111,值弦正的角成所面平与A C BBC C 111. ……11分 (III)延长EF ,C C1交于点M ,连接MB 1,交BC 于N ,连接FN ,如右图,故四边形B EFN 1即为所得截面. ………12分 由上一问可知,菱形ABB A 11的边长为2,矩形B BCC 11中=BC 1,平行四边形ACC A 11中==AA CC 211,===A C A C AC 111.要计算截面B EFN 1的面积,首先研究△B EM 1.在△A B E 11中,由于∠=︒EA B 12011,由余弦定理可得=B E 1,E F 为中点,因此===EM EF A C 21,此时有==MC AE 1,在直角△MB C 11中=MB 1,N 为BC 的三等分点. …………14分因此△B EM 1中,由余弦定理可得⋅⋅∠==+−EM MB EMB EM MB EB 25cos 1121221,所以可以计算得∠=EMB 5sin 1.设截面面积为S ,由于=MF ME 21,=MN MB 311,有△△△=−=⋅⋅∠−⋅⋅∠=S S S ME MB EMB MF MN EMB S B EM NFM B EM 226sin sin 11511111因此,此斜三棱柱被平面B EF 1 ……………17分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省成都市高一下学期期末数学考试试卷(A卷)
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分)三位七进制的数表示的最大的十进制的数是()
A . 322
B . 402
C . 342
D . 365
2. (2分)用秦九韶算法计算函数f(x)=2x4+3x3+5x﹣4,当x=2时的函数值为()
A . 58
B . 60
C . 62
D . 64
3. (2分)某校共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()
A . 24
B . 18
C . 16
D . 12
4. (2分) (2019高二下·海珠期末) 某射手每次射击击中目标的概率为,这名射手进行了10次射击,设为击中目标的次数,,,则 =()
A .
B .
C .
D .
5. (2分)已知一扇形的圆心角的弧度数为2,其弧长也是2,则该扇形的面积为()
A . 1
B . 2
C . sin1
D . 2sin1
6. (2分) (2017高二下·眉山期中) 已知函数f(x)= x3﹣(a﹣1)x2+b2x,其中a∈{1,2,3,4},b∈{1,2,3},则函数f(x)在R上是增函数的概率为()
A .
B .
C .
D .
7. (2分)(2018·郑州模拟) 我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛(河南初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数满足成等差数列且成等比数列,则的最小值为()
A .
B .
C .
D . 9
8. (2分) (2019高三上·临沂期中) 将函数y=2sin(2x﹣)的图象向左平移个单位长度,所得图象的一个对称中心为()
A . (,0)
B . (,0)
C . (,0)
D . (,0)
9. (2分)(2017·贵港模拟) 若3sinα+cosα=0,则的值为()
A .
B .
C .
D . ﹣2
10. (2分)(2019·河北模拟) 已知向量,满足,,且在方向上的投影是,则实数()
A .
B .
C . 2
D .
11. (2分)(2020·奉贤模拟) 如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线,终边为射线,过点P作直线的垂线,垂足为M,将点M到直线的距离表示成x的函数,则在上的图象大致为()
A .
B .
C .
D .
12. (2分)(2014·广东理) 已知向量 =(1,0,﹣1),则下列向量中与成60°夹角的是()
A . (﹣1,1,0)
B . (1,﹣1,0)
C . (0,﹣1,1)
D . (﹣1,0,1)
二、填空题 (共8题;共9分)
13. (1分) (2017高一下·珠海期末) 使用辗转相除法,得到315和168的最大公约数是________.
14. (1分) (2016高二下·宝坻期末) 已知tanα=2,tan(α+β)=﹣1,则tanβ=________.
15. (1分)如图程序框图输出的结果为________ .
16. (1分) (2016高二下·姜堰期中) 如图,边长为2的正方形内有一不规则阴影部分,随机向正方形内投入200粒芝麻,恰好60粒落入阴影部分,则不规则图形的面积为________.
17. (1分) (2016高三上·六合期中) 设函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣<φ<,x∈R)的部分图象如图所示.则A+ω+φ=________.
18. (2分)某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图,每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500)
①根据频率分布直方图算出样本数据的中位数为________
②为了分析居民的收入与年龄、职业等方面的关系,按月收入从这10 000人中用分层抽样方法抽出100人作进一步分析,则应在月收入为[2500,3000)的人中抽取________人.
19. (1分) (2020高一上·合肥期末) 若,,,
,则 ________.
20. (1分) (2017高一上·淮安期末) 如图,在△ABC中,已知 = ,P是BN上一点,若
,则实数m的值是________.
三、解答题 (共5题;共55分)
21. (10分) (2019高一下·吉林期末) 已知向量,,且
.
(1)求及;
(2)求函数的最大值,并求使函数取得最大值时的值
22. (15分) (2019高一下·东莞期末) 东莞市公交公司为了方便广大市民出行,科学规划公交车辆的投放,计划在某个人员密集流动地段增设一个起点站,为了研究车辆发车的间隔时间与乘客等候人数y之间的关系,选取一天中的六个不同的时段进行抽样调查,经过统计得到如下数据:
间隔时间(分钟)81012141618
等候人数(人)161923262933调查小组先从这6组数据中选取其中的4组数据求得线性回归方程,再用剩下的2组数据进行检验,检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数y的差,若两组差值的绝对值均不超过1,则称所求的回归方程是“理想回归方程”.
参考公式:用最小二乘法求线性回归方程的系数公式:

(1)若选取的是前4组数据,求y关于x的线性回归方程;
(2)判断(1)中的方程是否是“理想回归方程”:
(3)为了使等候的乘客不超过38人,试用(1)中方程估计间隔时间最多可以设置为多少分钟?
23. (10分) (2019高二上·南宁期中) 如图,在三角形中,,的角平分线
交于,设,且.
(1)求和的值;
(2)若,求的长.
24. (10分) (2019高二下·盐城期末) 某超市在节日期间进行有奖促销,凡在该超市购物满元的顾客,将获得一次摸奖机会,规则如下:一个袋子装有只形状和大小均相同的玻璃球,其中两只是红色,三只是绿色,顾客从袋子中一次摸出两只球,若两只球都是红色,则奖励元;共两只球都是绿色,则奖励元;若两只球颜色不同,则不奖励.
(1)求一名顾客在一次摸奖活动中获得元的概率;
(2)记为两名顾客参与该摸奖活动获得的奖励总数额,求随机变量的分布列和数学期望.
25. (10分) (2018高一下·山西期中) 已知向量,,设函数
.
(1)求函数的单调递增区间;
(2)若,求的值.
参考答案一、选择题 (共12题;共24分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、
考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、考点:
解析:
答案:12-1、
考点:
解析:
二、填空题 (共8题;共9分)答案:13-1、
解析:
答案:14-1、考点:
解析:
答案:15-1、考点:
解析:
答案:16-1、考点:
解析:
答案:17-1、考点:
解析:
答案:18-1、考点:
解析:
答案:19-1、考点:
解析:
答案:20-1、
考点:
解析:
三、解答题 (共5题;共55分)答案:21-1、
答案:21-2、
考点:
解析:
答案:22-1、
答案:22-2、
答案:22-3、考点:
解析:。

相关文档
最新文档