大学高等数学教材23599
高等数学上下册完整版教材
高等数学上下册完整版教材高等数学是大学数学的一门基础课程,旨在培养学生的数学思维能力和解决实际问题的能力。
下面是《高等数学上下册完整版教材》的内容概述:第一章导数与微分1.1 导数的定义与几何意义1.2 基本求导法则1.3 函数的微分1.4 高阶导数与高阶微分1.5 隐函数与参数方程的导数1.6 微分中值定理与导数的应用第二章不定积分2.1 定积分的概念2.2 不定积分与不定积分的性质2.3 基本不定积分法2.4 特殊函数的不定积分2.5 不定积分的应用第三章定积分3.1 定积分的定义与几何意义3.2 定积分的性质3.3 定积分的计算方法3.4 牛顿-莱布尼茨公式3.5 定积分的应用第四章微分方程4.1 微分方程的概念与分类4.2 一阶微分方程4.3 高阶线性微分方程4.4 变量可分离的方程4.5 齐次线性微分方程4.6 非齐次线性微分方程4.7 常系数线性齐次微分方程4.8 微分方程的应用第五章多元函数的微分学5.1 多元函数的极限5.2 多元函数的偏导数5.3 多元复合函数的偏导数5.4 隐函数与参数方程的偏导数5.5 高阶偏导数5.6 多元函数的全微分5.7 多元函数的极值与最值第六章重积分与曲线积分6.1 二重积分的概念与性质6.2 二重积分的计算方法6.3 极坐标下的二重积分6.4 三重积分的概念与性质6.5 三重积分的计算方法6.6 曲线积分的概念与性质6.7 曲线积分的计算方法6.8 曲线积分在物理学中的应用第七章曲面积分与格林公式7.1 曲面积分的概念与性质7.2 曲面积分的计算方法7.3 散度与无源场7.4 格林公式的推广与应用第八章空间解析几何与向量代数8.1 空间直角坐标系与向量8.2 空间曲线与曲面8.3 向量的运算与坐标表示8.4 点、直线与平面的方程8.5 空间向量的夹角与投影8.6 空间点、直线与平面的位置关系8.7 空间曲线与曲面的位置关系第九章广义与特殊函数9.1 广义积分的概念9.2 常数项一般项相消法9.3 幂函数、指数函数与对数函数9.4 三角函数与反三角函数9.5 常见特殊函数第十章数项级数10.1 级数概念与性质10.2 收敛级数的判定方法10.3 常见级数的和10.4 绝对收敛与条件收敛10.5 幂级数与泰勒展开10.6 常见函数的泰勒展开第十一章函数级数11.1 函数列与函数项级数11.2 函数列极限与函数项级数的一致收敛11.3 函数列极限的性质11.4 一致收敛级数的和函数的性质11.5 函数项级数的逐项积分与逐项求导11.6 Fourier级数以上是《高等数学上下册完整版教材》的内容概述。
高等数学(全2册)
高等数学(全2册)
高等数学是高等学校数学学科的基础课程,也称为大学数学、初等数学和全著
数学,是构建研究和工作的重要基础。
高等数学书由总共2册组成,分别是第一册和第二册,通过对抽象数学概念和
丰富的推理练习,学习者可以理解数学分析基础知识,并能够利用知识解决实际问题。
第一册包括几何、代数学和演绎等深入探讨,学习者学习之后可以了解到一些
关于几何图形变换、空间几何关系、代数表达式的形式解析等知识,它是一些基础的抽象思路和内容的广泛考查,可以综合的归纳出一些有用的技巧和方法。
第二册探讨的是统计、微分和微积分方面的抽象概念,它具有广泛的应用,因
此以理论计算的方式审查知识点,以及推导出一些基本概念,进而了解统计和数学分析的抽象数学原理。
因此,通过高等数学书,学习者可以掌握基础的概念理论,具备必要的知识和
技能,以便能够让知识应用到实践中,从本质上提升对抽象数学理论的理解和应用,为改善校园环境和教育水平做出贡献。
大学高等数学教材目录
大学高等数学教材目录1. 导言2. 函数与极限2.1 实数与数轴2.2 函数的概念2.3 函数的极限2.4 极限的性质2.5 极限的计算2.6 无穷小量与无穷大量2.7 极限存在准则3. 导数与微分3.1 导数的定义3.2 微分的定义3.3 高阶导数及其应用3.4 隐函数与参数方程的导数3.5 微分中值定理3.6 泰勒公式与高阶导数的应用4. 微分中值定理与导数的应用4.1 罗尔中值定理4.2 拉格朗日中值定理4.3 柯西中值定理4.4 极值与最值4.5 函数的单调性与曲线的凹凸性4.6 曲线的渐近线与图形的描绘5. 不定积分5.1 基本积分公式5.2 不定积分的计算方法5.3 定积分的概念5.4 反常积分5.5 积分中值定理与平均值定理6. 定积分6.1 可积性及其判定6.2 定积分的计算方法6.3 定积分的应用7. 微分方程7.1 微分方程的基本概念7.2 一阶微分方程7.3 高阶微分方程7.4 微分方程的解法7.5 应用问题8. 多元函数微积分8.1 二元函数的概念8.2 二元函数的极限8.3 偏导数与全微分8.4 多元函数的极值与条件极值 8.5 多元函数积分8.6 可变上限积分与重积分9. 无穷级数9.1 数项级数的概念与性质9.2 收敛级数的判定方法9.3 幂级数及其收敛域9.4 函数展开成幂级数9.5 泰勒级数与麦克劳林级数10. 向量代数与空间解析几何 10.1 基本概念10.2 向量的运算10.3 空间曲线与曲面10.4 向量值函数及其导数10.5 多元函数积分10.6 曲线积分10.7 曲面积分10.8 可变上限积分与重积分。
大学高等数学教材课本目录
大学高等数学教材课本目录一、导言1. 数学的定义和作用2. 数学的基本概念和符号二、函数与极限1. 函数的定义与性质2. 极限的概念和性质3. 无穷小量与无穷大量4. 极限运算法则5. 常用极限三、导数与微分1. 导数的定义与性质2. 高阶导数与高阶微分3. 微分中值定理与导数的应用4. 隐函数与参数方程的导数5. 函数的凹凸性与极值四、积分与定积分1. 不定积分与积分表2. 定积分的概念与性质3. 定积分的计算方法4. 牛顿—莱布尼茨公式与反常积分五、常微分方程1. 方程与解的概念2. 一阶常微分方程的解法3. 高阶常微分方程的解法4. 常微分方程的应用六、向量代数与空间解析几何1. 向量的基本运算2. 线性相关与线性无关3. 空间直线与平面的方程4. 空间曲线与曲面的方程七、多元函数微分学1. 多元函数的极限与连续性2. 偏导数与全微分3. 方向导数与梯度4. 隐函数与参数方程的偏导数5. 多元函数的极值与最值八、多元函数积分学1. 二重积分的概念与性质2. 二重积分的计算方法3. 三重积分的概念与性质4. 三重积分的计算方法5. 曲线与曲面的曲线积分与曲面积分九、无穷级数1. 级数的概念与性质2. 通项、部分和与级数的收敛性3. 正项级数4. 幂级数与函数展开十、常微分方程初步1. 高阶线性微分方程的解法2. 非齐次线性微分方程的解法3. 常系数线性微分方程的解法4. 欧拉方程和常微分方程的应用十一、数值方法1. 函数插值2. 数值微分与数值积分3. 常微分方程的数值解法以上是《大学高等数学教材》的目录内容。
希望本教材能够对大学生的数学学习提供有力的帮助,引导他们从基本概念和符号入手,系统地学习数学的各个领域和章节,掌握数学的基本理论和方法,为日后的专业学习和实践打下坚实的基础。
大学高等数学基础教材目录
大学高等数学基础教材目录第一章:导论1.1 数学的发展历程1.2 数学思维与数学语言1.3 数学的应用领域第二章:集合论与逻辑2.1 集合的基本概念与运算2.2 集合的性质与关系2.3 逻辑与命题2.4 命题的合取与析取2.5 谓词逻辑与量词第三章:数列与极限3.1 数列的定义与性质3.2 数列的极限概念3.3 极限的性质与运算3.4 数列的收敛与发散3.5 无穷大量与无穷小量第四章:连续性与一元函数4.1 函数的定义与性质4.2 一元函数的极限与连续性 4.3 初等函数与其性质4.4 反函数与复合函数4.5 函数的图像与性质第五章:全微分与微分运算5.1 全微分与偏导数5.2 多元函数的全微分5.3 隐函数与参数方程5.4 微分中值定理5.5 泰勒展开与高阶导数第六章:一元函数的微分学应用 6.1 函数的增减与极值6.2 函数的凹凸性与拐点6.3 泰勒展开的应用6.4 一元函数的曲线图形第七章:不定积分与定积分 7.1 不定积分的定义与性质 7.2 基本积分公式与换元法 7.3 定积分的定义与性质7.4 反常积分与广义积分7.5 积分中值定理与应用第八章:重积分与曲线积分 8.1 二重积分的定义与性质 8.2 二重积分的计算方法8.3 三重积分的定义与性质 8.4 三重积分的计算方法8.5 曲线积分与曲面积分第九章:无穷级数与函数级数 9.1 数项级数的收敛与发散 9.2 正项级数收敛的判定9.3 幂级数与常数项级数9.4 函数项级数的收敛性9.5 泰勒级数与函数逼近第十章:常微分方程10.1 常微分方程的基本概念10.2 一阶常微分方程10.3 高阶常微分方程10.4 欧拉方程与特解10.5 线性微分方程与变换第十一章:多元函数的微分学11.1 多元函数的偏导数11.2 多元函数的全微分11.3 隐函数与参数方程11.4 多元函数的极值与条件极值 11.5 多元函数的曲面图形第十二章:向量代数与线性代数12.1 向量的基本运算与性质12.2 向量的线性相关与线性无关 12.3 向量的内积与投影12.4 矩阵的基本运算与性质12.5 线性方程组与矩阵的秩第十三章:多元函数的积分学13.1 双重积分的定义与性质13.2 双重积分的计算方法13.3 三重积分的定义与性质13.4 三重积分的计算方法13.5 曲线积分与曲面积分的应用第十四章:级数与幂级数14.1 数项级数的审敛与发散14.2 正项级数的审敛法14.3 幂级数的收敛半径14.4 幂级数的求和运算14.5 幂级数的应用与展开第十五章:偏微分方程15.1 偏微分方程的基本概念15.2 一阶偏微分方程15.3 二阶线性偏微分方程15.4 常系数线性偏微分方程15.5 热方程与波动方程以上是《大学高等数学基础教材》目录的简要介绍,旨在为读者提供对该教材内容的整体把握和知识框架。
高等数学本科生教材目录
高等数学本科生教材目录引言高等数学是一门重要的学科,对本科生的数学素养和专业能力的培养具有至关重要的作用。
为了帮助学生系统学习和掌握高等数学知识,我们特别编写了本教材。
以下是教材内容的详细目录。
1. 函数与极限1.1 函数的概念1.2 函数的运算与性质1.3 函数的图像与性质1.4 极限的概念与性质1.5 无穷小与无穷大2. 导数与微分2.1 导数的定义与运算法则2.2 函数的微分2.3 高阶导数与导数的应用2.4 函数的凹凸性与拐点2.5 泰勒公式与函数的近似计算3. 不定积分与定积分3.1 不定积分的定义3.2 基本积分公式与常用方法3.3 定积分的概念与性质3.4 简单曲线下的面积计算3.5 定积分的应用4. 微分方程4.1 微分方程的基本概念4.2 一阶线性微分方程4.3 可降次的高阶线性微分方程4.4 常系数齐次线性微分方程4.5 非齐次线性微分方程5. 多元函数与偏导数5.1 多元函数的概念与性质5.2 偏导数的定义与求法5.3 隐函数与全微分5.4 多元函数的极值和条件极值5.5 多元函数的泰勒公式与误差估计6. 重积分与曲线积分6.1 二重积分的概念与性质6.2 二重积分的计算方法6.3 三重积分的概念与性质6.4 三重积分的计算方法6.5 曲线积分的概念与计算7. 曲面积分与梯度7.1 曲面积分的概念与计算方法7.2 散度与无源场7.3 梯度与有源场7.4 两类重要定理的应用7.5 Green公式与Stokes公式结语通过对高等数学本科生教材的编写,我们力求提供一套系统、全面的教材,帮助学生夯实数学基础,提高数学能力,并为将来的专业学习奠定坚实的基础。
希望本教材能够成为学生们学习高等数学的有力工具,引导他们在数学领域取得更进一步的成就。
高等数学系列教材目录
高等数学系列教材目录第一册:微积分基础1.数集与函数1.1 数集的表示与运算1.2 函数的定义与性质1.3 常用函数及其图像2.极限与连续2.1 数列与极限2.2 函数的极限2.3 连续函数与间断点3.导数与微分3.1 导数的定义与计算3.2 微分的概念与应用3.3 高阶导数与高阶微分4.一元函数的应用4.1 函数的单调性与极值4.2 函数的凹凸性与拐点4.3 泰勒公式及其应用第二册:多元函数微积分1.二元函数与偏导数1.1 二元函数的定义与性质1.2 偏导数与全微分1.3 隐函数与参数方程求导2.多元函数的极值与条件极值2.1 多元函数的极值2.2 隐函数极值与参数方程极值2.3 条件极值与拉格朗日乘子法3.重积分3.1 二重积分的计算3.2 三重积分的计算3.3 积分次序与坐标变换4.曲线与曲面积分4.1 曲线积分的计算4.2 曲面积分的计算4.3 斯托克斯定理与高斯公式第三册:级数与常微分方程1.级数的收敛性与性质1.1 数项级数的概念与性质1.2 正项级数的审敛法1.3 交错级数与绝对收敛2.幂级数与函数展开2.1 幂级数的收敛域与收敛半径 2.2 幂级数的运算与逐项求导2.3 函数的泰勒级数展开3.常微分方程基础3.1 微分方程的基本概念3.2 一阶线性微分方程3.3 高阶线性微分方程4.常微分方程应用4.1 古典物理问题的建模与求解 4.2 生物、经济与工程领域的应用4.3 相图与稳定性分析第四册:向量与解析几何1.向量代数基础1.1 向量的定义与运算1.2 向量的线性相关性与线性无关性1.3 向量的内积与外积2.空间直线与平面2.1 三维空间的点、直线与平面2.2 直线的方向向量与法向量2.3 空间直线与平面的位置关系3.空间曲线与曲面3.1 曲面的参数方程与一阶偏导数 3.2 流形与曲率3.3 空间曲线、曲面与切线法向第五册:数学分析基础1.度量空间与拓扑1.1 度量空间的定义与性质1.2 拓扑空间的概念与特征1.3 开集、闭集与连通性2.泛函分析2.1 功能空间与泛函空间2.2 线性算子与线性泛函2.3 无穷维空间与紧性理论3.微分流形3.1 流形的定义与性质3.2 曲线与曲面的切空间3.3 切向量场与流形上的积分4.测度论基础4.1 测度空间的定义与测度函数4.2 测度的可测性与测度的完备性4.3 测度函数与积分运算这是《高等数学系列教材》的目录,详细介绍了每一册的章节内容。
大学高等数学教材目录
大学高等数学教材目录第一章前言1.1 数学教材的重要性1.2 数学教材的组成要素第二章函数与极限2.1 函数的概念与性质2.1.1 函数的定义2.1.2 函数的图像与性质2.2 极限的概念与性质2.2.1 极限的定义2.2.2 无穷小量与无穷大量2.3 一元函数的极限2.3.1 极限的运算法则2.3.2 连续函数与间断点2.4 多元函数的极限2.4.1 多元函数的定义与性质2.4.2 多元函数的极限计算2.5 极限存在准则与极限运算法则 2.5.1 极限存在准则2.5.2 极限运算法则的应用第三章导数与微分3.1 导数的概念与性质3.1.1 导数的定义与解释3.1.2 导数的几何意义与物理意义 3.2 导数运算法则3.2.1 导数的四则运算3.2.2 链式法则与复合函数的导数 3.3 高阶导数与隐函数求导3.3.1 高阶导数的定义3.3.2 隐函数求导的方法3.4 微分与微分近似3.4.1 微分的定义与计算3.4.2 微分近似与局部线性化第四章积分与定积分4.1 不定积分与反导函数4.1.1 不定积分的概念与性质4.1.2 基本积分公式与换元积分法4.2 定积分的概念与性质4.2.1 定积分的定义与几何意义4.2.2 定积分的计算方法4.3 定积分的应用4.3.1 几何应用:曲线长度与曲面面积 4.3.2 物理应用:质量、质心与弧长 4.4 微积分基本定理及其应用4.4.1 第一型与第二型微积分基本定理 4.4.2 牛顿-莱布尼茨公式的推广第五章一元函数的级数5.1 数项级数5.1.1 数项级数的概念与性质5.1.2 数项级数的敛散性判定5.2 幂级数与函数展开5.2.1 幂级数的收敛半径5.2.2 幂级数的基本性质与展开5.3 函数项级数5.3.1 函数项级数的概念与性质5.3.2 函数项级数的一致收敛性5.4 泰勒级数与傅里叶级数5.4.1 泰勒级数的定义与应用5.4.2 傅里叶级数的定义与计算第六章多元函数与偏导数6.1 多元函数的概念与性质6.1.1 多元函数的定义6.1.2 多元函数的极限与连续性6.2 偏导数与全微分6.2.1 偏导数的定义与计算6.2.2 全微分与多元函数的微分近似 6.3 多元复合函数与隐函数求导6.3.1 多元复合函数的偏导数6.3.2 多元隐函数的求导方法6.4 梯度与方向导数6.4.1 多元函数的梯度6.4.2 方向导数与梯度的应用第七章多元函数的积分学7.1 二重积分的概念与性质7.1.1 二重积分的定义与几何意义 7.1.2 二重积分的计算方法7.2 二重积分的应用7.2.1 几何应用:面积与质心7.2.2 物理应用:质量与矩7.3 三重积分的概念与性质7.3.1 三重积分的定义与几何意义 7.3.2 三重积分的计算方法7.4 三重积分的应用7.4.1 几何应用:体积与质心7.4.2 物理应用:质量与转动惯量7.5 曲线与曲面积分7.5.1 第一型曲线积分7.5.2 第二型曲线积分与曲面积分第八章常微分方程8.1 微分方程的基本概念8.1.1 微分方程的定义与分类8.1.2 初值问题与解的存在唯一性 8.2 一阶常微分方程8.2.1 可分离变量方程8.2.2 一阶线性方程8.3 二阶线性常系数齐次微分方程 8.3.1 特征方程与通解形式8.3.2 边值问题与特解法8.4 高阶线性常系数齐次微分方程 8.4.1 特征方程与通解形式8.4.2 边值问题与特解法8.5 常微分方程的应用8.5.1 骨架曲线与特解的选择8.5.2 物理领域中的应用第九章向量代数与空间解析几何9.1 向量的基本概念与运算9.1.1 向量的定义与性质9.1.2 向量的线性运算与数量积9.2 空间直线与平面9.2.1 空间直线的参数方程9.2.2 空间平面的法向量与标准方程 9.3 空间曲线与曲面9.3.1 曲线的参数方程与切向量9.3.2 曲面的方程与切平面9.4 空间解析几何的应用9.4.1 空间中的曲线运动问题9.4.2 几何体的性质与计算第十章空间向量与向量函数微积分10.1 空间向量的运算10.1.1 空间向量的定义与基本性质10.1.2 空间向量的线性运算与向量积 10.2 空间向量的微积分10.2.1 向量函数的极限与连续性10.2.2 向量函数的导数与曲率10.3 曲线与曲面的向量微积分10.3.1 参数曲线的弧长与切向量10.3.2 向量场与曲面积分第十一章多元函数与多元积分11.1 多元复合函数与链式法则11.1.1 高阶导数的定义与计算11.1.2 链式法则与复合函数的高阶导数 11.2 多元函数的积分11.2.1 多元函数的定积分11.2.2 重积分的计算方法11.3 极坐标与球面坐标系下的积分11.3.1 极坐标系下的二重积分11.3.2 球面坐标系下的三重积分11.4 多元积分的应用11.4.1 几何应用:质心与转动惯量 11.4.2 物理应用:质量、通量与功率第十二章向量场与曲线积分12.1 向量场的基本概念和性质12.1.1 向量场的定义与性质12.1.2 向量场的流线与发散度12.2 曲线积分的概念与性质12.2.1 曲线积分的定义12.2.2 曲线积分的计算方法12.3 格林公式与环量12.3.1 格林公式的表述与应用12.3.2 环量与全微分12.4 曲面积分的概念与性质12.4.1 曲面积分的定义与计算12.4.2 流量与高斯公式12.5 散度与环量12.5.1 散度的定义与计算12.5.2 散度与高斯公式的应用第十三章曲线曲面积分与斯托克斯公式 13.1 曲线积分的类型与计算13.1.1 第一型与第二型曲线积分13.1.2 曲线积分计算方法13.2 曲面积分的类型与计算13.2.1 第一型与第二型曲面积分13.2.2 曲面积分计算方法13.3 散度定理与高斯公式13.3.1 散度定理的表述与应用13.3.2 高斯公式与流量计算13.4 斯托克斯定理与环量13.4.1 斯托克斯定理的表述与应用 13.4.2 环量计算与应用第十四章常微分方程数值解14.1 常微分方程初值问题的数值解法14.1.1 欧拉方法与改进的欧拉方法14.1.2 龙格-库塔方法14.2 常微分方程边值问题的数值解法14.2.1 二点边值问题与分段线性插值14.2.2 有限差分方法与微分方程的离散化14.3 常微分方程数值解的误差估计14.3.1 局部截断误差与全局截断误差14.3.2 稳定性与收敛性的分析结语15.1 数学学科的重要性与发展15.2 高等数学教材的应用与拓展15.3 数学学科对于人类社会的贡献本教材将大学高等数学知识进行系统整理和归纳,以便帮助读者更好地学习和理解数学的基本概念、原理和应用。
大一高等数学教材目录
大一高等数学教材目录1. 函数与极限1.1 实数与数集1.2 映射与函数1.3 数列的极限2. 导数与微分2.1 函数的导数与求导法则2.2 高阶导数与隐函数求导2.3 微分与微分近似计算3. 微分中值定理与应用3.1 微分中值定理与罗尔定理3.2 洛必达法则与泰勒公式3.3 函数的单调性与曲线的凹凸性4. 积分与不定积分4.1 不定积分的定义与基本积分法则4.2 轴对称曲线的面积与弧长4.3 定积分的定义与求积分法则5. 定积分的应用5.1 曲线的长度与曲面的面积5.2 旋转体的体积与质量5.3 牛顿-莱布尼茨公式与积分中值定理6. 微分方程6.1 常微分方程的基本概念与解法6.2 高阶微分方程与欧拉方程6.3 变量可分离方程与齐次方程7. 向量代数与空间解析几何7.1 向量的基本运算与数量积7.2 平面与直线的方程与位置关系7.3 空间曲线的参数方程与曲面的方程8. 多元函数微分学8.1 多元函数与偏导数8.2 隐函数与全微分8.3 多元函数的极值与条件极值9. 重积分9.1 重积分的定义与计算9.2 重积分的性质与换元法9.3 二重积分的应用10. 曲线积分与曲面积分10.1 第一类曲线积分10.2 第二类曲线积分与格林公式10.3 曲面积分与高斯公式11. 矢量场与无散场11.1 矢量场的流与散度11.2 无散场与斯托克斯公式11.3 无旋场与调和场12. 傅里叶级数与傅里叶变换12.1 傅里叶级数的概念与性质12.2 傅里叶级数的收敛与常用函数展开12.3 傅里叶变换与频谱分析以上是大一高等数学教材的目录,涵盖了函数与极限、导数与微分、微分中值定理与应用、积分与不定积分、定积分的应用、微分方程、向量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分、矢量场与无散场、傅里叶级数与傅里叶变换等内容。
希望本教材可以帮助大一的学生对高等数学的各个知识点进行系统的学习与掌握,为今后的学习打下坚实的基础。
大一高等数学教材课本目录
大一高等数学教材课本目录第一章函数与极限1.1 实数与数轴1.2 函数概念和图像1.3 函数的极限1.4 极限的性质1.5 无穷小量与无穷大量1.6 极限存在准则1.7 常用极限1.8 函数连续概念1.9 连续函数性质第二章导数与微分2.1 导数的定义2.2 基本导数公式2.3 高阶导数2.4 微分中值定理2.5 泰勒公式与展开2.6 隐函数导数2.7 弧微分与相对误差2.8 函数的单调性与凹凸性第三章微分中值定理与导数应用 3.1 高阶导数的应用3.2 导数在近似计算中的应用3.3 中值定理的证明3.4 罗尔中值定理与其应用3.5 拉格朗日中值定理与其应用 3.6 卡内尔中值定理与其应用3.7 泰勒中值定理及其应用第四章不定积分4.1 不定积分的定义与符号4.2 基本积分表4.3 定积分与微元法4.4 牛顿-莱布尼兹公式4.5 分部积分法4.6 有理分式的积分4.7 函数积分法4.8 徒手计算的积分第五章定积分5.1 定积分定义与性质5.2 定积分的几何意义5.3 定积分的计算方法5.4 定积分在几何学中的应用5.5 牛顿-莱布尼兹公式的积分形式 5.6 广义积分的定义与判敛5.7 瑕积分的计算方法第六章微分方程6.1 微分方程的基本概念6.2 可分离变量的微分方程6.3 齐次微分方程6.4 一阶线性微分方程6.5 高阶线性微分方程6.6 化简与降阶第七章多元函数及其偏导数7.1 二元函数的概念与图像7.2 二元函数的极限与连续性 7.3 偏导数的定义与几何意义 7.4 偏导数的计算方法7.5 高阶偏导数与混合偏导数 7.6 隐函数偏导数7.7 多元函数的微分学基本定理 7.8 方向导数与梯度第八章多重积分8.1 二重积分概念与性质8.2 二重积分的计算方法8.3 二重积分在几何学中的应用 8.4 三重积分概念与性质8.5 三重积分的计算方法8.6 三重积分在几何学中的应用第九章曲线与曲面积分9.1 曲线积分的概念与性质9.2 第一类曲线积分的计算方法9.3 第二类曲线积分的计算方法9.4 曲面积分的概念与性质9.5 曲面积分的计算方法9.6 格林公式与高斯公式第十章空间曲线与格林公式10.1 空间曲线的参数方程10.2 第一类曲线积分10.3 第二类曲线积分10.4 空间曲面的参数方程10.5 曲面的面积与曲面元10.6 曲面积分10.7 格林公式和高斯公式的空间推广第十一章广义积分11.1 广义积分的概念与性质11.2 广义积分判敛方法11.3 正项级数的判敛11.4 参数积分的连续性条件11.5 瑕积分的计算方法第十二章泰勒展开与无穷级数12.1 函数的泰勒展开12.2 常用函数的泰勒展开式12.3 泰勒展开的应用12.4 函数项级数与定理12.5 幂级数的求和与收敛域12.6 函数项级数的运算与应用以上为大一高等数学教材的目录,各章节主要包括基础概念的介绍,公式的推导及性质的阐述,相关定理的证明,以及典型例题和习题的讲解。
高等数学大学所有教材目录
高等数学大学所有教材目录第一章:微积分- 微积分原理- 函数与极限- 导数与微分- 奇偶函数与对称性- 极值与最值- 微分中值定理- 泰勒展开与近似计算- 不定积分与定积分- 曲线的长度与曲面的面积- 定积分的应用第二章:向量代数与空间解析几何- 向量的概念与运算- 向量的数量积与夹角- 向量的叉积与混合积- 直线与平面的方程与位置关系- 空间曲线与曲面的方程与位置关系- 向量代数与几何应用第三章:多元函数与一元关系- 多元函数的极限与连续性- 偏导数与全微分- 多元函数的极值与最值,凹凸性- 隐函数与显函数及其导数- 多元复合函数的导数- 多元函数的泰勒展开与近似计算- 一元关系与参数方程第四章:多元函数微分学- 多元函数的向量表示与全微分- 多元函数的极值问题- 二元函数的二阶偏导数与极值- 一元函数的高阶导数与极值问题- 隐函数的高阶导数与极值问题- 多元函数的泰勒展开- 多元函数的空间曲线与曲面第五章:重积分- 重积分的概念与性质- 重积分的计算方法- 重积分的应用- 重积分的计算应用- 曲面的面积与曲线的长度- 曲面积分与曲线积分- 重积分的物理应用第六章:曲线积分与曲面积分- 曲线的参数方程- 参数方程下的曲线积分- 向量场与曲线积分- 曲面的参数方程- 参数方程下的曲面积分- 向量场与曲面积分- 曲线积分与曲面积分的物理应用第七章:常微分方程与初值问题- 一阶常微分方程- 高阶常微分方程- 线性常微分方程组- 二阶线性常微分方程的求解- 高阶线性常微分方程的求解- 常微分方程的物理应用第八章:级数与幂级数- 数列与级数的概念- 收敛与发散的判断- 正项级数与比较判别法- 交错级数与绝对收敛- 幂级数的概念与性质- 幂级数的收敛域和展开式- 幂级数的求和与逐项求导第九章:傅里叶级数与傅里叶变换- 周期函数与傅里叶级数- 傅里叶级数的性质- 傅里叶级数的收敛性- 傅里叶级数的展开系数- 傅里叶级数的奇偶性和对称性- 傅里叶变换与傅里叶反变换- 拉普拉斯变换与拉普拉斯反变换第十章:线性代数- 矩阵与向量空间- 线性方程组与矩阵求逆- 特征值与特征向量- 正交矩阵与对角化- 复数域与线性变换- 内积空间与正交变换- 非线性方程组与迭代法总结:高等数学大学所有教材的目录涵盖了微积分、向量代数与空间解析几何、多元函数与一元关系、多元函数微分学、重积分、曲线积分与曲面积分、常微分方程与初值问题、级数与幂级数、傅里叶级数与傅里叶变换、线性代数等重要内容。
高等数学教材第五版目录
高等数学教材第五版目录第一章:极限与连续1.1 定义与性质1.2 重要极限1.3 极限运算法则1.4 函数的连续性第二章:导数与微分2.1 导数的定义与几何意义2.2 导数的计算方法2.3 高阶导数与导数的应用2.4 微分与微分近似第三章:不定积分3.1 不定积分的定义与基本性质3.2 基本积分公式与常见积分法3.3 分部积分与换元积分法3.4 有理函数的积分第四章:定积分4.1 定积分的定义与几何意义4.2 定积分的性质与定积分计算 4.3 定积分的应用4.4 反常积分第五章:多元函数微分学5.1 二元函数的极限与连续5.2 偏导数与全微分5.3 多元函数的极值与条件极值 5.4 隐函数与参数方程第六章:多元函数积分学6.1 二重积分的概念与性质6.2 二重积分的计算方法6.3 三重积分的概念与性质6.4 三重积分的计算方法第七章:向量代数与空间解析几何 7.1 向量的基本运算7.2 空间直线与平面的方程7.3 空间曲线与曲面第八章:无穷级数8.1 数项级数8.2 正项级数的审敛法8.3 幂级数与傅里叶级数第九章:常微分方程9.1 方程的解与解的存在唯一性9.2 一阶线性常微分方程9.3 二阶线性常微分方程9.4 常系数齐次线性常微分方程第十章:数学实验与建模10.1 数学实验的基本思想与方法10.2 常见数学实验10.3 数学建模的基本步骤这是高等数学教材第五版的目录,并按照适当的格式进行呈现。
每一章节的内容简要描述了主要内容,方便读者了解教材的内容结构和重点。
在整个目录中,标题与内容紧密相连,清晰明了。
高等数学教材的目录部分
高等数学教材的目录部分高等数学教材目录:第一章:函数与极限1.1 函数的概念与性质1.2 极限的定义1.2.1 数列极限1.2.2 函数极限1.3 极限的运算法则1.4 连续和间断第二章:导数与微分2.1 导数的概念与性质2.2 基本导数公式2.3 高阶导数2.4 隐函数与参数方程的导数2.5 微分的定义与性质2.6 导数的应用第三章:不定积分与定积分3.1 不定积分的概念与性质3.2 基本积分公式与常用积分法3.3 定积分的概念与性质3.4 定积分的计算方法3.5 牛顿-莱布尼茨公式与定积分的应用第四章:微分方程4.1 微分方程的概念与基本术语4.2 一阶常微分方程4.3 二阶常微分方程4.4 高阶线性微分方程4.5 变量可分离的微分方程4.6 微分方程的应用第五章:无穷级数5.1 数列极限与无穷级数的概念5.2 级数的敛散性5.3 正项级数的审敛法5.4 幂级数的收敛域与常见函数展开第六章:多元函数与偏导数6.1 多元函数的概念与性质6.2 偏导数的定义与计算6.3 高阶偏导数与混合偏导数6.4 隐函数的偏导数6.5 多元函数的极值与条件极值第七章:重积分与曲线积分7.1 重积分的概念与性质7.2 二重积分的计算方法7.3 三重积分的计算方法7.4 曲线积分的概念与计算方法7.5 曲面积分的概念与计算方法7.6 广义积分的概念与收敛性第八章:多元函数的积分学8.1 多元函数的概念与性质回顾8.2 参数方程下的曲线积分8.3 曲面积分的参数化与计算8.4 向量场与格林公式8.5 散度与无源场8.6 旋度与无旋场8.7 斯托克斯公式与高斯公式第九章:常微分方程的数值解法9.1 常微分方程初值问题的数值解法概述9.2 欧拉方法与改进欧拉方法9.3 二阶龙格-库塔法9.4 多步法与预测校正法9.5 常微分方程边值问题的数值解法以上是高等数学教材的目录部分,这些章节覆盖了高等数学的核心内容,从函数与极限到常微分方程的数值解法等方面进行了全面而深入的讲述。
高等数学(第二版)(2019年科学出版社出版的图书)
2019年科学出版社出版的图书
01 成书过程
03 教材目录 05 作者简介
目录
02 内容简介 04 教学资源 06 图书目录
《高等数学(第二版)》是由马少、张好治、李福乐主编,科学出版社于2019年出版的中国科学院规划教材、 大学数学系列教材。该教材可供于高等院校生物类、经贸类和管理类各专业的本、专科学生和高职院校的学生使 用,也可供其他相关专业的学生参考。
教材目录
(注:目录排版顺序为从左列至右列)
教学资源
《高等数学(第二版)》拥有配套教材《高等数学学习指导与习题解答(第二版)》。
作者简介
马少军:男,青岛农业大学副教授,主要从事领域为控制论方面的研究。 张好治:男,青岛农业大学副教授,主要从事研究方向为统计与管理、运筹与优化。 李福乐:男,青岛农业大学副教授,主要从事应用数学研究。
该教材共有十一章,主要介绍了导数与微分、中值定理与导数的应用、不定积分、定积分等高等数学的基础 知识和基础方法。
成书过程
修订情况
出版工作
《高等数学(第二版)》是根据编者的教学实践,按照教材改革的精神,并结合高等数学课程教学基本要求 和考研的需要,在《高等数学》的基础上修订而成的。
《高等数学(第二版)》的修订工作由所有编委共同完成。
图书目录
第二版前言 第一版前言 第一章函数与极限 第二章导数与微分 第三章中值定理与导数的应用 第四章不定积分 第五章定积分 第六章定积分的应用 第七章微分方程 第八章空间解析几何与向量代数 第九章多元函数微分学
谢谢观看
2019年8月1日,《高等数学(第二版)》由科学出版社出版。
内容简介
《高等数学(第二版)》共有十一章,主要内容为函数与极限、导数与微分、中值定理与导数的应用、不定 积分、定积分、定积分的应用、微分方程、空间解析几何与向量代数、多元函数微分学、多元函数积分学、级数。 书后有自测题、习题参考答案、自测题参考答案与提示、积分表。
大学高等数学教材上下册
大学高等数学教材上下册第一章:导数与微分导论本章介绍一、导数的概念与求法1.1 导数的定义1.2 导数的几何意义1.3 函数的微分1.4 导数的四则运算法则二、常用初等函数的导数2.1 幂函数的导数2.2 指数函数的导数2.3 对数函数的导数2.4 三角函数的导数2.5 反三角函数的导数2.6 常数函数、常函数的导数三、隐函数与参数方程求导3.1 隐函数与隐式求导3.2 参数方程与参数方程求导四、高阶导数与高阶微分4.1 高阶导数定义4.2 高阶导数求法4.3 高阶微分及其应用第二章:微分学中值定理导论本章介绍一、罗尔中值定理1.1 罗尔中值定理的形式及证明1.2 罗尔中值定理的应用二、拉格朗日中值定理2.1 拉格朗日中值定理的形式及证明2.2 拉格朗日中值定理的几何意义2.3 拉格朗日中值定理的应用三、柯西中值定理3.1 柯西中值定理的形式及证明3.2 柯西中值定理的应用四、达布中值定理4.1 达布中值定理的形式及证明4.2 达布中值定理的应用第三章:不定积分与定积分导论本章介绍一、不定积分的定义与基本性质1.1 不定积分的定义1.2 不定积分的基本性质二、计算不定积分2.1 凑微分法2.2 换元积分法2.3 分部积分法2.4 有理分式积分法三、定积分的定义与性质3.1 定积分的定义3.2 定积分的性质四、定积分的计算4.1 几何意义与物理意义4.2 表达定积分的基本性质4.3 定积分的计算方法第四章:定积分的应用导论本章介绍一、定积分的几何应用1.1 曲线与曲线长度1.2 旋转体的体积与曲面积二、定积分的物理应用2.1 质量、质心与转动惯量2.2 引力与万有引力定律三、定积分的经济应用3.1 总收入、净利润与平均收入3.2 生产函数、收益函数与边际产量总结通过学习上下册的大学高等数学教材,我们对导数与微分、微分学中值定理、不定积分与定积分以及定积分的应用等知识进行了系统的学习与掌握。
这些内容不仅仅是数学知识的学习,更是应用到实际问题中的重要工具。
高等数学必备教材目录
高等数学必备教材目录1. 高等数学教材介绍1.1 《高等数学》第一册1.2 《高等数学》第二册1.3 《高等数学》第三册2. 基本概念与定理2.1 实数与复数2.2 极限与连续2.3 函数与导数2.4 微分与微分方程2.5 积分与积分应用3. 数列与级数3.1 数列极限的概念3.2 数列极限的性质3.3 数列极限存在准则3.4 常见数列类型3.5 数值级数的概念与性质3.6 收敛级数的判别法4. 一元函数微分学4.1 可导函数与导数4.2 高阶导数与高阶导数的应用4.3 隐函数与相关变化率4.4 微分学基本定理与中值定理4.5 泰勒展开与函数的局部性质5. 一元函数积分学5.1 定积分与不定积分5.2 积分的运算法则5.3 定积分的几何应用5.4 不定积分的基本公式5.5 牛顿-莱布尼茨公式与换元积分法6. 无穷级数6.1 幂级数的性质与收敛域6.2 幂级数的运算法则6.3 函数展开成幂级数的应用6.4 泰勒级数与麦克劳林级数6.5 收敛级数的特殊判定法7. 线性代数基础7.1 行列式与矩阵7.2 矩阵的运算与逆矩阵7.3 向量空间与线性相关性 7.4 线性方程组与解的存在性7.5 特征值与特征向量8. 空间解析几何8.1 空间中的点与向量8.2 平面与直线的方程8.3 空间中的曲面方程8.4 空间中的曲线参数方程8.5 空间解析几何的应用9. 多元函数微分学9.1 多元函数的极限与连续 9.2 偏导数与全微分9.3 隐函数与方向导数9.4 梯度与极值问题9.5 多元函数的泰勒公式10. 多元函数积分学10.1 二重积分的概念与性质 10.2 二重积分的计算方法10.3 三重积分的概念与性质 10.4 三重积分的计算方法10.5 曲线积分与曲面积分11. 常微分方程11.1 常微分方程的基本概念 11.2 一阶线性微分方程11.3 可降阶的高阶微分方程 11.4 常系数齐次线性微分方程11.5 非齐次线性微分方程12. 线性代数进阶12.1 线性空间与线性变换12.2 线性变换与矩阵12.3 特征值与特征向量12.4 正交变换与二次型12.5 特征值的计算方法以上是高等数学必备教材的目录,涵盖了基本概念与定理、数列与级数、一元函数微分学、一元函数积分学、无穷级数、线性代数基础、空间解析几何、多元函数微分学、多元函数积分学、常微分方程、线性代数进阶等内容。
大学高等数学教材一览表
大学高等数学教材一览表高等数学是大学数学课程中的一门专业课程,对于大多数理工类专业的学生来说,高等数学是必修课程之一。
为了帮助学生更好地选择适合自己的数学教材,以下是一份大学高等数学教材的一览表。
请注意,本表仅供参考。
第一册:微积分上本册主要介绍微积分的基本概念和理论,包括函数与极限、连续与间断、导数和微分等内容。
其中,重要的章节有:1. 数列与极限这一章节主要介绍数列的收敛性,极限的定义和性质以及常用的极限运算法则。
2. 函数与极限在这个章节中,学生将学习函数极限的概念和计算方法,掌握无穷小量和无穷大量的运算以及常用的极限定理。
3. 连续学生将在这一章节中学习连续函数的概念和性质,研究分段函数的连续性以及常见函数的连续性。
第二册:微积分下本册主要讲解微积分的进阶内容,包括定积分与不定积分、微分方程等。
以下是该册的重要章节:1. 定积分学生将学习定积分的定义和性质,了解定积分的几何意义和计算方法,掌握利用定积分求曲线图形的面积和曲线长度。
2. 不定积分在这个章节中,学生将学习不定积分的基本概念和计算方法,包括换元积分法和分部积分法等。
3. 微分方程本章讲解常微分方程的基本概念、解法和应用,重点介绍一阶线性微分方程和二阶齐次线性微分方程。
第三册:多元函数微积分本册主要介绍多元函数微积分的基础知识,包括多元函数的极限、偏导数和全微分等。
以下是该册的主要章节:1. 多元函数的极限与连续学生将学习多元函数极限的概念和性质,理解多元函数的连续性以及多元函数连续性与偏导数存在性的关系。
2. 偏导数与全微分在这个章节中,学生将学习多元函数的偏导数与全微分的概念和计算方法,了解多元函数的可微性以及其在实际问题中的应用。
3. 多元函数的极值与条件极值本章介绍多元函数的极值和条件极值的判定方法,涉及到拉格朗日乘数法和参数方程求解等内容。
第四册:无穷级数与功用变换本册主要介绍无穷级数和功用变换等高级数学内容,以下是该册的重要章节:1. 无穷级数学生将学习无穷级数的概念和收敛性的判定方法,掌握常见级数的求和公式和级数的性质。
2023高等数学教材
2023高等数学教材[正文]2023高等数学教材第一章:导数与微分在2023年的高等数学教材中,导数与微分是我们课程的第一章。
这个章节旨在帮助学生理解导数的概念,并掌握求导的方法。
1.1 导数的概念导数是描述函数局部变化率的工具。
我们首先会介绍导数的定义及其几何意义。
通过理解导数的概念,学生将能够更好地把握函数的变化规律。
1.2 导数的计算本节将介绍常见函数的导数计算方法,包括常数函数、幂函数、指数函数、对数函数、三角函数等。
学生需要熟练掌握这些计算方法,并能够运用到实际问题的求解中去。
1.3 高阶导数与隐函数求导在这一小节中,我们将深入讨论高阶导数的计算以及隐函数求导的方法。
通过掌握这些技巧,学生将能够处理更加复杂的导数计算问题。
第二章:积分与定积分积分与定积分是高等数学教材的第二章。
这个章节旨在引导学生了解积分的概念,并掌握定积分的计算方法。
2.1 定积分的概念首先,我们将介绍定积分的概念及其几何意义。
学生需要理解定积分代表的是曲线下面积,同时学会利用图形求解定积分。
2.2 定积分的计算本节将介绍定积分的计算方法,包括基本积分公式、换元积分法、分部积分法等。
这些方法将帮助学生解决各种定积分计算问题。
2.3 定积分的应用在这一小节中,我们将介绍定积分的应用,包括计算曲线长度、求解曲边梯形面积、求解物体的质心等。
学生通过这些应用问题的训练,将能够更好地理解定积分的概念。
第三章:级数级数是高等数学教材的第三章。
这个章节旨在帮助学生理解级数的概念,熟悉级数的求和方法,并学会判断级数的敛散性。
3.1 级数的概念我们首先介绍级数的定义及其基本性质。
学生需要理解级数的含义,并学会求解级数的部分和。
3.2 级数的敛散性在这一小节中,我们将探讨级数敛散性的判定方法,包括比较判别法、正项级数收敛判定法、级数收敛的充分条件等。
学生需要熟练掌握这些方法,并能够判断级数的敛散性。
3.3 幂级数本节将介绍幂级数的概念及其收敛半径。
全国大学高等数学教材
全国大学高等数学教材大学高等数学作为一门综合性的数学课程,对于大部分学生而言,都是必修课程之一。
它涵盖了微积分、线性代数、概率论等内容,为学生打下了扎实的数学基础。
全国大学高等数学教材是在此基础上编写而成,旨在为全国各大高校的学生提供一份系统、全面、易于理解和应用的数学教材。
第一章微积分微积分是大学高等数学的核心内容之一。
在微积分中,我们学习了极限、导数和积分等重要概念。
通过学习微积分,我们可以描述和研究物体的运动、变化和变化率等数学问题。
全国大学高等数学教材的微积分部分详细介绍了这些概念,并给出了相关的例题和习题,帮助学生更好地理解和应用微积分。
第二章线性代数线性代数是大学高等数学的另一个重要分支。
它主要研究向量、矩阵和线性方程组等内容。
线性代数在许多科学领域中都有广泛的应用,包括物理学、计算机科学和经济学等。
在全国大学高等数学教材的线性代数部分,我们将学习如何进行向量运算、矩阵运算、解线性方程组等内容,并通过实际例题来加深理解。
第三章概率论概率论是数学中的一门重要学科,它关注随机事件的发生概率和规律。
在概率论中,我们学习了概率分布、随机变量和统计推断等内容。
全国大学高等数学教材的概率论部分会涵盖这些内容,并提供具体的例题和习题供学生练习。
通过学习全国大学高等数学教材,同学们将获得系统、全面的数学知识,并掌握数学的基本概念和方法。
同时,教材也注重培养学生的数学思维和解决实际问题的能力。
每章都配有大量的习题,帮助同学们巩固所学知识,提高解决问题的能力。
总结全国大学高等数学教材是一本涵盖微积分、线性代数和概率论等内容的综合性教材。
它系统、全面地介绍了数学的基本概念和方法,并通过大量的实例和习题来加深学生对数学的理解和应用能力。
通过学习这本教材,同学们将能够更好地掌握数学知识,培养数学思维和解决问题的能力,为未来的学习和发展打下坚实的数学基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学教材一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
即A A②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。
记作A ∪B。
(在求并集时,它们的公共元素在并集中只能出现一次。
)即A∪B={x|x∈A,或x∈B}。
⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。
记作A ∩B。
即A∩B={x|x∈A,且x∈B}。
⑶、补集:①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。
通常记作U。
②补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U 的补集。
简称为集合A的补集,记作C U A。
即C U A={x|x∈U,且x A}。
集合中元素的个数⑴、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
⑵、用card来表示有限集中元素的个数。
例如A={a,b,c},则card(A)=3。
⑶、一般地,对任意两个集合A、B,有card(A)+card(B)=card(A∪B)+card(A∩B)我的问题:1、学校里开运动会,设A={x|x是参加一百米跑的同学},B={x|x是参加二百米跑的同学},C ={x|x是参加四百米跑的同学}。
学校规定,每个参加上述比赛的同学最多只能参加两项,请你用集合的运算说明这项规定,并解释以下集合运算的含义。
⑴、A∪B;⑵、A∩B。
2、在平面直角坐标系中,集合C={(x,y)|y=x}表示直线y=x,从这个角度看,集合D={(x,y)|方程组:2x-y=1,x+4y=5}表示什么?集合C、D之间有什么关系?请分别用集合语言和几何语言说明这种关系。
3、已知集合A={x|1≤x≤3},B={x|(x-1)(x-a)=0}。
试判断B是不是A的子集?是否存在实数a使A =B成立?4、对于有限集合A、B、C,能不能找出这三个集合中元素个数与交集、并集元素个数之间的关系呢?5、无限集合A={1,2,3,4,…,n,…},B={2,4,6,8,…,2n,…},你能设计一种比较这两个集合中元素个数多少的方法吗?2、常量与变量⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。
注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。
⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。
在数轴上来说,区间是指介于某两点之间的线段上点的全体。
区间的名称区间的满足的不等式区间的记号区间在数轴上的表示闭区间a≤x≤b[a,b]开区间a<x<b (a,b)半开区间a<x≤b或a≤x<b (a,b]或[a,b)以上我们所述的都是有限区间,除此之外,还有无限区间:[a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞;(-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b;(-∞,+∞):表示全体实数,也可记为:-∞<x<+∞注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。
⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。
变量x的变化范围叫做这个函数的定义域。
通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。
这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。
如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。
这里我们只讨论单值函数。
⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。
由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。
⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。
例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。
例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。
c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。
一般用横坐标表示自变量,纵坐标表示因变量。
例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为:3、函数的简单性态⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。
注:一个函数,如果在其整个定义域内有界,则称为有界函数例题:函数cosx在(-∞,+∞)内是有界的.⑵、函数的单调性:如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调增加的。
如果函数在区间(a,b)内随着x增大而减小,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调减小的。
例题:函数=x2在区间(-∞,0)上是单调减小的,在区间(0,+∞)上是单调增加的。
⑶、函数的奇偶性如果函数对于定义域内的任意x都满足=,则叫做偶函数;如果函数对于定义域内的任意x都满足=-,则叫做奇函数。
注:偶函数的图形关于y轴对称,奇函数的图形关于原点对称。
⑷、函数的周期性对于函数,若存在一个不为零的数l,使得关系式对于定义域内任何x值都成立,则叫做周期函数,l是的周期。
注:我们说的周期函数的周期是指最小正周期。
例题:函数是以2π为周期的周期函数;函数tgx是以π为周期的周期函数。
4、反函数⑴、反函数的定义:设有函数,若变量y在函数的值域内任取一值y0时,变量x在函数的定义域内必有一值x0与之对应,即,那末变量x是变量y的函数.这个函数用来表示,称为函数的反函数.注:由此定义可知,函数也是函数的反函数。
⑵、反函数的存在定理:若在(a,b)上严格增(减),其值域为R,则它的反函数必然在R 上确定,且严格增(减).注:严格增(减)即是单调增(减)例题:y=x2,其定义域为(-∞,+∞),值域为[0,+∞).对于y取定的非负值,可求得x=±.若我们不加条件,由y的值就不能唯一确定x的值,也就是在区间(-∞,+∞)上,函数不是严格增(减),故其没有反函数。
如果我们加上条件,要求x≥0,则对y≥0、x=就是y=x2在要求x≥0时的反函数。
即是:函数在此要求下严格增(减).⑶、反函数的性质:在同一坐标平面内,与的图形是关于直线y=x对称的。
例题:函数与函数互为反函数,则它们的图形在同一直角坐标系中是关于直线y=x对称的。
如右图所示:5、复合函数复合函数的定义:若y是u的函数:,而u又是x的函数:,且的函数值的全部或部分在的定义域内,那末,y通过u的联系也是x的函数,我们称后一个函数是由函数及复合而成的函数,简称复合函数,记作,其中u叫做中间变量。
注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。
例题:函数与函数是不能复合成一个函数的。
因为对于的定义域(-∞,+∞)中的任何x值所对应的u值(都大于或等于2),使都没有定义。
6、初等函数⑴、基本初等函数:我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、幂函数、三角函数及反三角函数。
下面我们用表格来把它们总结一下:函数名称函数的记号函数的图形函数的性质指数函数a):不论x为何值,y总为正数;b):当x=0时,y=1.对数函数a):其图形总位于y轴右侧,并过(1,0)点b):当a>1时,在区间(0,1)的值为负;在区间(-,+∞)的值为正;在定义域内单调增.幂函数a为任意实数这里只画出部分函数图形的一部分。
令a=m/na):当m为偶数n为奇数时,y是偶函数;b):当m,n都是奇数时,y是奇函数;c):当m奇n偶时,y在(-∞,0)无意义.三角函数(正弦函数)这里只写出了正弦函数a):正弦函数是以2π为周期的周期函数b):正弦函数是奇函数且反三角函数(反正弦函数)这里只写出了反正弦函数a):由于此函数为多值函数,因此我们此函数值限制在[-π/2,π/2]上,并称其为反正弦函数的主值.⑵、初等函数:由基本初等函数与常数经过有限次的有理运算及有限次的函数复合所产生并且能用一个解析式表出的函数称为初等函数.例题:是初等函数。