三角形的重心公式
三角形重心的推论

三角形重心的推论三角形是平面几何中重要的基本图形,它有许多有趣的性质和定理,其中之一就是重心定理。
在三角形中,三条中线的交点称为三角形的重心,也是三角形的一个重要重心。
在本文中,我们将讨论一些关于三角形重心的推论。
三角形重心定理回顾首先,我们回顾一下三角形重心定理:三角形的三条中线交于一点,即重心,重心距离三角形三个顶点的距离相等,即重心是距离三个顶点的平均值的那个点。
通过重心定理,我们可以得到三角形重心的黄线段公式。
设三角形ABC 的重心为G,D、E、F分别为BC、AC、AB的中点。
则有:AG:GD = BG:GE = CG:CF = 2:1这个公式通常被称为三角形重心黄线段公式。
使用这个公式,我们可以计算出三角形重心到三个顶点的距离,从而确定重心的位置。
接下来,我们将讨论一些关于三角形重心的性质:1. 在等边三角形中,重心、垂心和外心三点重合。
等边三角形的三个中线和三个高线重合,所以三角形的重心和垂心重合。
另外,等边三角形的外心也恰好位于重心/垂心的位置,因此三点重合。
2. 重心到顶点线段的长度与与三条中线的长度成反比例关系。
3. 若以三角形的重心为一组相应顶点的中点,分别划分成三个小三角形,则相似于原三角形且比例系数为1:2。
结论综上所述,我们讨论了三角形重心的一些推论,包括三角形重心黄线段公式、重心到顶点线段长度与三条中线长度的反比例关系、在等边三角形中重心与垂心和外心三点重合,以及三角形重心将原三角形分为三个相似的小三角形。
这些推论不仅能够加深我们对三角形的理解,还可以拓展我们的数学思维。
2020中考数学知识点:三角形的重心公式证明

2020中考数学知识点:三角形的重心公式证明重心是三角形三边中线的交点,三线交一点可用燕尾定理来证明。
三角形的重心已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。
求证:F为AB 中点。
证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。
重心的几条性质:1.重心到顶点的距离与重心到对边中点的距离之比为2:1。
2.重心和三角形3个顶点组成的3个三角形面积相等。
3.重心到三角形3个顶点距离的平方和最小。
4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/35.重心是三角形内到三边距离之积最大的点。
如果用塞瓦定理证,则极易证三条中线交于一点。
如图,在△ABC中,AD、BE、CF是中线则AF=FB,BD=DC,CE=EA∵(AF/FB)*(BD/DC)*(CE/EA)=1∴AD、BE、CF交于一点即三角形的三条中线交于一点其实考试中不会单独的出现关于三角形的重心问题,而是综合图形知识要领,这就需要大家准确的分析了。
2019-2020学年数学中考模拟试卷一、选择题1.如图,一次函数y=-x 与二次函数y=ax 2+bx+c 的图象相交于点M 、N ,则关于x 的一元二次方程ax 2+(b+1)x+c=0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.以上结论都正确 2.刘主任乘公共汽车从昆明到相距千米的晋宁区办事,然后乘出租车返回,出租车的平均速度比公共汽车快千米/时,回来时路上所花时间比去时节省了小时,设公共汽车的平均速度为千米时,则下面列出的方程中正确的是( )A.B.C. D.3.已知二次函数y =ax 2+bx 的图象经过点A (﹣1,1),则ab 有( )A.最小值0B.最大值1C.最大值2D.有最小值﹣4.统计局信息显示,2018年嘉兴市农家乐旅游营业收入达到27.49亿元,若2020年全市农家乐旅游营业收入要达到38亿元,设平均每年比上一年增长的百分率是x ,则下列方程正确的是( )A .27.49+27.49x 2=38B .27.49(1+2x )=38C .38(1﹣x )2=27.49D .27.49(1+x )2=385.某工厂接到加工 600 件衣服的订单,预计每天做 25 件,正好按时完成,后因客户要求提前 3 天交货,工人则需要提高每天的工作效率,设工人每天应多做件,依题意列方程正确的是( )A.B.C. D.6.64的立方根是( )A .8B .2C .3D .47.如图,在ABC ∆中,90C ∠=︒,按以下步骤作图:①:以点B 为圆心,以小于BC 的长为半径画弧,分别交AB 、BC 于点E 、F ;②:分别以点E 、F 为圆心,以大于12EF 的长为半径画弧,两弧相交于点G ; ③:作射线BG ,交AC 边于点D ,若4BC =,5AB =,则ABD S ∆=( )A .3B .103C .6D .2038.已知点A (a ,b )是一次函数y=-x+4和反比例函数y=1x 的一个交点,则代数式a 2+b 2的值为( ) A .8 B .10 C .12 D .149.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )A .68°B .58°C .72°D .56°10.在半径为8cm 的圆中,垂直平分半径的弦长为( )A .4cmB .43cmC .8cmD .83cm11.休闲广场的边缘是一个坡度为i =1:2.5的缓坡CD ,靠近广场边缘有一架秋千.秋千静止时,底端A 到地面的距离AB =0.5m ,B 到缓坡底端C 的距离BC =0.7m .若秋千的长OA =2m ,则当秋千摆动到与静止位置成37°时,底端A′到坡面的竖直方向的距离A′E 约为( )(参考数据:sin37°=0.60,cos37°=0.80,tan37°=0.75)A .0.4mB .0.5mC .0.6mD .0.7m12.如图菱形OABC 中,∠A =120°,OA =1,将菱形OABC 绕点O 顺时针方向旋转90°,则图中阴影部分的面积是( )A.23πB.2332π-C.113122π-D.23π﹣1 二、填空题13.如图,在△ABC 中,点D 在BC 边上,△ABC ∽△DBA .若BD =4,DC =5,则AB 的长为_____.14.﹣19的倒数是_____. 15.某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,则要安排_____名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套.16.抛物线y =x 2﹣2x+m 与x 轴只有一个交点,则m 的值为_____.17.如图,⊙O 的直径AB=8,点C 在⊙O 上,∠CAB=22.5°,过点C 作CD ⊥AB 交⊙O 于点D ,则弧CD 的长为______.18.抛物线22(5)3y x =-+-的顶点坐标是__________.三、解答题19.如图,等边△ABC 中,P 是AB 上一点,过点P 作PD ⊥AC 于点D ,作PE ⊥BC 于点E ,M 是AB 的中点,连接ME ,MD .(1)依题意补全图形;(2)用等式表示线段BE ,AD 与AB 的数量关系,并加以证明;(3)求证:MD =ME .20.如图,一次函数y =kx+3的图象分别交x 轴、y 轴于点B 、点C ,与反比例函数y x n =的图象在第四象限的相交于点P ,并且PA ⊥y 轴于点A ,已知A (0,﹣6),且S △CAP =18.(1)求上述一次函数与反比例函数的表达式; (2)设Q 是一次函数y =kx+3图象上的一点,且满足△OCQ 的面积是△BCO 面积的2倍,求出点Q 的坐标.21.如图,在平行四边形ABCD 中,点E 、F 分别是AB 、BC 上的点,且AE CF =,AED CFD ∠=∠,求证:(1)DE DF =;(2)四边形ABCD 是菱形.22.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程式是重要的数学成就。
三角形重心的向量公式推导

三角形重心的向量公式推导三角形是平面几何中最基本的图形之一,而三角形的重心则是三角形中的一个重要概念。
重心是三角形内所有点到三角形三边距离的平均值所在的点,也是三角形内所有线段的中点所在的点。
在三角形的许多性质中,重心有着重要的作用,本文将介绍三角形重心的向量公式推导。
一、三角形的定义先来回顾一下三角形的定义。
三角形是由三条边和三个顶点组成的平面图形,其中每两条边的交点称为顶点,三条边所夹的角称为内角。
三角形有三个内角,它们的和为180度。
根据三角形内角和定理,三角形的内角和恒为180度。
二、重心的定义重心是三角形内所有点到三角形三边距离的平均值所在的点,也是三角形内所有线段的中点所在的点。
重心是三角形内心的一种,是三角形内心的一种特殊情况。
在三角形的许多性质中,重心有着重要的作用。
三、向量的定义向量是数学中的一种概念,用来表示大小和方向的量。
向量在几何学和物理学中有着广泛的应用,例如在描述物体的运动、力学等方面。
四、三角形重心的向量公式三角形重心的向量公式可以通过向量的线性组合来推导,具体的推导过程如下:假设三角形ABC的三个顶点分别为A(x1, y1, z1)、B(x2, y2, z2)和C(x3, y3, z3),则三角形的重心G(x, y, z)可以表示为:G = (A + B + C)/3其中,A + B + C表示三个向量之和,/3表示向量的平均值。
将向量A、B和C表示成列向量的形式,得到:A = (x1, y1, z1)TB = (x2, y2, z2)TC = (x3, y3, z3)T其中,T表示转置。
将A、B和C代入重心公式,得到:G = (A + B + C)/3= [(x1 + x2 + x3)/3, (y1 + y2 + y3)/3, (z1 + z2 + z3)/3]T 这就是三角形重心的向量公式。
可以看出,重心的坐标分别为三个顶点的坐标分量之和的1/3。
五、三角形重心的性质三角形重心的性质有很多,其中一些比较重要的性质如下:1. 重心是三角形内心的一种特殊情况,是三角形内所有点到三边距离平均值所在的点。
三角形的重心

三角形的重心三角形的重心是指连接三角形的三条中线的交点。
中线是连接三角形的一个顶点与对应边中点的线段。
三角形重心的坐标可通过计算三个顶点坐标的平均值得出。
重心在三角形内部,距离三个顶点的距离相等。
三角形的重心在数学和几何学中有很重要的应用。
它是很多定理的基础,也是许多几何问题的解决方案。
在本文中,我们将更深入地了解三角形的重心,并探讨一些与它相关的性质和定理。
首先,让我们考虑一个普通三角形ABC。
我们可以通过连接顶点A 与边BC的中点D,顶点B与边AC的中点E,以及顶点C与边AB的中点F,得到三条中线AD,BE,CF。
我们可以使用以下公式来计算重心的坐标:重心的x坐标 = (顶点A的x坐标 + 顶点B的x坐标 + 顶点C的x 坐标) / 3重心的y坐标 = (顶点A的y坐标 + 顶点B的y坐标 + 顶点C的y 坐标) / 3例如,对于一个三角形ABC,假设A(1,2),B(3,4),C(5,6),我们可以通过代入这些坐标计算重心的坐标。
重心的x坐标 = (1 + 3 + 5) / 3 = 3重心的y坐标 = (2 + 4 + 6) / 3 = 4因此,重心的坐标为(3,4)。
三角形的重心有一些非常有趣的性质。
其中一个性质是,重心将每条中线按两个比例分割。
具体来说,重心将AD分割成2:1,BE分割成2:1,CF分割成2:1。
这意味着重心到顶点的距离是重心到对应中点距离的二倍。
另一个重要的性质是,三角形的内心、重心和垂心共线。
内心是三角形内切圆的圆心,垂心是通过连接三角形的顶点与对应边垂直平分线的交点。
这个性质被称为Euler定理。
此外,重心还有其他一些性质。
例如,重心和对边的中点连线垂直。
重心还将每个顶点与重心的连线分割成1:2比例。
在许多三角形问题中,重心是求解问题的关键。
例如,通过重心可以确定一个三角形是否是等边三角形或等腰三角形。
如果一个三角形的三个顶点在同一直线上,那么这个三角形的重心就是这条直线的同一点。
重心法的公式

重心法的公式
重心法公式包括:
1. 在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
2. 空间直角坐标系中,横坐标:(X1+X2+X3)/3,纵坐标:(Y1+Y2+Y3)/3,竖坐标:(Z1+Z2+Z3)/3。
3. 重心是三角形内到三边距离之积最大的点。
4. (莱布尼兹公式)三角形ABC的重心为G,点P为其内部任意一点,则
3PG^2=(AP^2+BP^2+CP^2)-1/3(AB^2+BC^2+CA^2)。
5. 在三角形ABC中,过重心G的直线交AB、AC所在直线分别于P、Q,
则 AB/AP+AC/AQ=3。
6. 从三角形ABC的三个顶点分别向以他们的对边为直径的圆作切线,所得
的6个切点为Pi,则Pi均在以重心G为圆心,
r=1/18(AB^2+BC^2+CA^2)为半径的圆周上。
如需了解更多重心法的公式,建议查阅数学书籍或咨询数学专家。
2020中考数学知识点:三角形的重心公式证明

2020中考数学知识点:三角形的重心公式证明重心是三角形三边中线的交点,三线交一点可用燕尾定理来证明。
三角形的重心已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。
求证:F为AB 中点。
证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。
重心的几条性质:1.重心到顶点的距离与重心到对边中点的距离之比为2:1。
2.重心和三角形3个顶点组成的3个三角形面积相等。
3.重心到三角形3个顶点距离的平方和最小。
4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/35.重心是三角形内到三边距离之积最大的点。
如果用塞瓦定理证,则极易证三条中线交于一点。
如图,在△ABC中,AD、BE、CF是中线则AF=FB,BD=DC,CE=EA∵(AF/FB)*(BD/DC)*(CE/EA)=1∴AD、BE、CF交于一点即三角形的三条中线交于一点其实考试中不会单独的出现关于三角形的重心问题,而是综合图形知识要领,这就需要大家准确的分析了。
2019-2020学年数学中考模拟试卷一、选择题1.下列说法:①平方等于其本身的数有0,±1;②32xy 3是4次单项式;③将方程121.20.30.5x x -+-=中的分母化为整数,得1010102035x x -+-=12;④平面内有4个点,过每两点画直线,可画6条、4条或1条.其中正确的有( ) A .1个B .2个C .3个D .4个2.某公司2018年获利润1000万元,计划到2020年年利润达到1210万元设该公司的年利润平均增长率为x ,下列方程正确的是( ) A .1000(1+x )2=1210 B .1210(1+x )2=1000 C .1000(1+2x )=1210D .1000+10001+x )+1000(1+x )2=12103.13的倒数是( ) A.13B.3C.3-D.13-4.如图,已知正方形ABCD ,E 为AB 的中点,F 是AD 边上的一个动点,连接EF 将△AEF 沿EF 折叠得△HEF ,延长FH 交BC 于M ,现在有如下5个结论:①△EFM 定是直角三角形;②△BEM ≌△HEM ;③当M 与C 重合时,有DF =3AF ;④MF 平分正方形ABCD 的面积;⑤FH•MH=214AB ,在以上5个结论中,正确的有( )A .2B .3C .4D .55.如图,从A 点出发的光线,经C 点反射后垂直地射到B 点,然后按原路返回A 点.若∠AOC =33°,OC =1,则光线所走的总路线约为( )A .3.8B .2.4C .1.9D .1.26.多项式4x-x 3分解因式的结果是( ) A .()2x 4x-B .()()x 2x 2x -+C .()()x x 2x 2-+D .2x(2x)-7.若2是关于x 的方程()2120x m x m --++=的一个实数根,并且这个方程的两个实数根恰好是等腰ABC ∆的两条边的长,则ABC ∆的周长为A .7或10B .9或12C .12D .98.某种病菌的直径为0.00000471cm ,把数据0.00000471用科学记数法表示为( ) A .47.1×10﹣4 B .4.71×10﹣5C .4.71×10﹣7D .4.71×10﹣69.若反比例函数2k y x-=的图象经过点(1,2),则k 的值为( ) A.2-B.0C.2D.410.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( ) A .12B .14C .16D .11611.如图,在矩形ABCD 中,AB=3,BC=4,P 是对角线AC 上的动点,连接DP ,将直线DP 绕点P 顺时针旋转使∠DPG=∠DAC ,且过D 作DG ⊥PG ,连接CG ,则CG 最小值为( )A .65B .75C .3225D .362512.下列运算正确的是( ) A .(y+1)(y ﹣1)=y 2﹣1 B .x 3+x 5=x 8 C .a 10÷a 2=a 5D .(﹣a 2b )3=a 6b 3二、填空题13.如图,在矩形ABCD 中,AB=8,AD=6,点E 为AB 上一点,AE=23,点F 在AD 上,将△AEF 沿EF 折叠,当折叠后点A 的对应点A′恰好落在BC 的垂直平分线上时,折痕EF 的长为_____.14.已知x 1,x 2是一元二次方程x 2﹣2x ﹣5=0的两个实数根,则x 12+x 22+3x 1x 2=_____. 15.购买1个单价为a 元的面包和3瓶单价为b 元的饮料,所需钱数为 元.16.如图,在Rt △ABC 中,∠ACB=90°,AB=2,点D 为线段AB 的中点,将线段BC 绕点B 顺时针旋转90°,得到线段BE ,连接DE ,则DE 最大值是______.\17.不等式﹣2x>﹣4的正整数解为_____.18.同时掷两枚质地均匀的骰子,观察向上一面的点数,用两枚骰子的点数作为点的坐标,则点在第一象限角平分线上的概率是_____.三、解答题19.等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,两边分别交BC、CD于M、N.(1)如图①,作AE⊥AN交CB的延长线于E,求证:△ABE≌△AND;(2)如图②,若M、N分别在边CB、DC所在的直线上时.①求证:BM+MN=DN;②如图③,作直线BD交直线AM、AN于P、Q两点,若MN=10,CM=8,求AP的长.20.如图,在正方形ABCD中,E是CD上一点,连接AE.过点D作DM⊥AE,垂足为M,⊙O经过点A,B,M,与AD相交于点F.(1)求证:△ABM∽△DFM;(2)若正方形ABCD的边长为5,⊙O的直径为29,求DE的长.21.为了深入培养学生交通安全意识,加强实践活动,新华中学八年级(1)班和交警队联合举行了“我当一日小交警”活动,利用星期天到交通路口值勤,协助交通警察对行人、车辆及非机动车辆进行纠章.在这次实践活动中,若每一个路口安排5名学生,那么还剩下4人;若每个路口安排6人,那么最后一个路口不足3人,但不少于1人.(1)求新华中学八年级(1)班有多少名学生?(2)在值勤过程中,学生发现每辆汽车驶出路口后有三种方式前行:左转、直行、右转,而且每种前行方式的可能性相同.请通过画树形图或列表的方法,求连续驶出路口的两辆汽车前行路线相同的概率.22.“五一”期间,小张把容积为60升的油箱加满后自驾出行,行驶一段路程后进入服务区停车休息,休息后,小张离开服务区继续前行,为能顺利到达目的地,小张需在相距S千米的加油站加油.若小张从出发点到服务区休息点行驶的路程为200千米,且这期间平均油耗为每千米0.12升.(1)求小张离开服务区休息点时,油箱内还有多少升汽油?(2)记小张从离开服务区休息点到进入加油站加油期间的平均油耗为每千米a升,请写出S与a的函数关系式;若0.08≤a≤0.1,求S的取值范围.23.如图,反比例函数y 1=k x 与一次函数y 2=ax+b 的图象交于点A (2,2)、B (12,n ). (1)求这两个函数解析式;(2)直接写出不等式y 2>1y 的解集.24.(1)计算:201(5)3tan 30|13|π︒-+-+--.(2)解不等式组:3(2)42113x x x x -->⎧⎪+⎨>-⎪⎩.25.为了庆祝“五四”青年节,我市某中学举行了书法比赛,赛后随机抽查部分参赛同学成绩(满分为100分),并制作成图表如下分数段 频数 频率 60≤x<70 30 0.15 70≤x<80 m 0.45 80≤x<90 60 n 90≤x≤100200.1请根据以上图表提供的信息,解答下列问题:(1)这次随机抽查了 名学生;表中的数m = ,n = ; (2)请在图中补全频数分布直方图;(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是 ; (4)全校共有600名学生参加比赛,估计该校成绩不低于80分的学生有多少人?【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B A B C A B C D D B D A 二、填空题13.4或43.14.﹣115.(a+3b).16.21+17.x=1.18.1 6三、解答题19.(1)见解析;(2)①见解析;②AP=310.【解析】【分析】(1)利用互余判断出∠EAB=∠NAD,即可得出结论;(2)先构造出△ADG≌△ABM,进而判断出,△AMG为等腰直角三角形,即可得出NM=NG,即可得出结论;(3)由(2)得出MN+BM=DN,进而得出CN=18-2BC,再利用勾股定理得求出CN=6,在判断出△ABP∽△ACN,得出AP AB1AN AC2==,再利用勾股定理求出AN,代入即可得出结论.【详解】解:(1)如图①,∵AE垂直于AN,∴∠EAB+∠BAN=90°,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠NAD+∠BAN=90°,∴∠EAB=∠NAD,又∵∠ABE=∠D=90°,AB=AD,∴△ABE≌△AND;………………(2)如图②,在ND上截取DG=BM,连接AG、MG,∵AD=AB,∠ADG=∠ABM=90°,∴△ADG≌△ABM,∴AG=AM,∠MAB=∠GAD,∵∠BAD=∠BAG+∠GAD=90°,∴∠MAG=∠BAG+∠MAB=90°,∴△AMG为等腰直角三角形,∴AN⊥MG,∴AN为MG的垂直平分线,∴NM=NG,∴DN﹣BM=MN,即MN+BM=DN;(3)如图③,连接AC,同(2),证得MN+BM=DN,∴MN+CM﹣BC=DC+CN,∴CM﹣CN+MN=DC+BC=2BC,即8﹣CN+10=2BC,即CN=18﹣2BC,在Rt△MNC中,根据勾股定理得MN2=CM2+CN2,即102=82+CN2,∴CN=6,∴BC=6, ∴AC=62,∵∠BAP+∠BAQ=45°,∠NAC+∠BAQ=45°, ∴∠BAP=∠NAC , 又∵∠ABP=∠ACN=135°, ∴△ABP ∽△ACN , ∴AP AB 1AN AC 2== 在Rt △AND 中,根据勾股定理得AN 2=AD 2+DN 2=36+144, 解得AN=65,∴AP 1652=, ∴AP=310. 【点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰直角三角形的判定和性质,解(1)的关键是判断出∠EAB=∠NAD ,解(2)的关键是判断出△AMG 为等腰直角三角形,解(3)的关键是判断出△ABP ∽△ACN . 20.(1)见解析;(2) 253【解析】 【分析】(1)由四边形ABCD 为正方形,可得∠BAM =∠ADM ,再由四边形BAFM 为圆内接四边形,可得∠ABM =∠MFD ,可以求证;(2)连接BF ,得BF 为直径,由勾股定理可得到AF 的长,从而得FD =3,因为△ABM ∽△DFM ,所以有53AB AM DF DM ==,而易证△ADM ∽△DEM ,可得DE AMAD DM=,即可得DE 的长度. 【详解】(1)证明:∵四边形ABCD 为正方形, ∴∠BAD =90°, ∴∠BAM+∠MAF =90°, ∵DM ⊥AE ,∴∠MAD+∠ADM =90°, ∴∠BAM =∠ADM ,∵四边形BAFM 为圆内接四边形 ∴∠ABM+∠AFM =180° ∴∠ABM =∠MFD∴△ABM∽△DFM(2)如图,连接BF,∵∠BAF=90°,BF为直径∴在Rt△ABF中,由勾股定理得AF=22(29)5-=2,∴FD=3,∵△ABM∽△DFM,∴53 AB AMDF DM==,∵∠DEM=∠ADM,∠AMD=∠DME=90°,∴△ADM∽△DEM,∴DE AM AD DM=,∴DE=53•AD=553⨯=253【点睛】此题主要考查相似三角形的判定及性质,本题关键是要懂得找相似三角形,利用相似三角形的性质求解.21.(1)新华中学八年级(1)班有44或49名学;(2)1 3【解析】【分析】(1)设有x个交通路口,则八年级(1)班人数为(5x+4)名,根据题意列不等式组求解可得;(2)由树状图求得所有等可能的结果与两辆汽车前行路线相同的情况,继而利用概率公式即可求得答案.【详解】解:(1)设有x个交通路口,则八年级(1)班人数为(5x+4)名,根据题意得546(1)1 546(1)3 x xx x+--≥⎧⎨+--⎩<,解得:7<x≤9,∵x为正整数,∴x=8或9,所以5x+4=44或49.答:新华中学八年级(1)班有44或49名学;(2)列表可得:第一辆第二辆左转直行右转左转(左转,左转)(直行,左转)(右转,左转)直行(左转,直行)(直行,直行)(右转,直行)右转(左转,右转)(直行,右转)(右转,右转)由上表可知,所有可能发生的结果共有9种,并且它们发生的可能性都相等,连续驶出路口的两辆汽车前行路线相同的有3种,分别为(左转,左转),(直行,直行),(右转,右转),∴连续驶出路口的两辆汽车前行路线相同的概率为31 =93,答:连续驶出路口的两辆汽车前行路线相同的概率是13.【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法或列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.(1) 36升; (2)S=36a. 360≤S≤450【解析】【分析】(1)根据剩下的油=原来油箱里的油-消耗的油,列出算式计算即可.(2)根据从离开服务区休息点到进入加油站加油期间的平均油耗=总油量÷总路程即可得到关系式,根据反比例函数的性质即可求解.【详解】(1)60-200×0.12=36(升)(2)S=36a.∵36>0,当0.08≤a≤0.1时,随增大而减小,∴360≤S≤450【点睛】本题考查的是反比例函数的应用,把握题目中的数量关系及掌握反比例函数的性质是解题关键.23.(1)y1=4x;y 2=﹣4x+10;(2)12<x<2或x<0.【解析】【分析】(1)将A坐标代入反比例解析式求出m的值,确定出反比例解析式,将B坐标代入反比例解析式求n的值,确定出B坐标,将A与B坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;(2)根据图象和交点坐标找出一次函数图象位于反比例函数图象上方时x的范围即可.【详解】解:(1)将A(2,2)代入反比例解析式得:k=2×2=4,则反比例解析式为y1=4x;将B(12,n)代入反比例解析式得:n=8,即B(12,8),将A与B坐标代y2=ax+b中,得2218 2a ba b+=⎧⎪⎨+=⎪⎩,解得:410ab=-⎧⎨=⎩.2y=﹣4x+10;则一次函数解析式为(2)由图象得:不等式y2>y1的解集为12<x<2或x<0.【点睛】此题考查了一次函数与反比例函数的交点问题,待定系数法确定函数解析式,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.24.(1)1;(2) 1<x<4.【解析】【分析】(1)先根据零指数幂、有理数乘方的法则、绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.(2)分别求出不等式的解集,即可解答【详解】解:(1)原式=﹣1+1+3×33﹣3 +1=1;(2)3(2)42113x xxx-->⎧⎪⎨+>-⎪⎩①②,由①得:x>1,由②得:x<4,则不等式组的解集为1<x<4.【点睛】此题考查负整数指数幂,零指数幂,实数的运算,特殊角的三角函数值,解一元一次不等式组,掌握运算法则是解题关键25.(1)200;90,0.3;(2)补图见解析;(3)54°;(4)240人【解析】【分析】(1)根据60≤x<70的频数及其频率求得总人数,进而计算可得m、n的值;(2)根据(1)的结果,可以补全直方图;(3)用360°乘以样本中分数段60≤x<70的频率即可得;(4)总人数乘以样本中成绩80≤x<100范围内的学生人数所占比例.【详解】解:(1)本次调查的总人数为30÷0.15=200人,则m=200×0.45=90,n=60÷200=0.3,故答案为:200、90、0.3;(2)补全频数分布直方图如下:(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是360°×0.15=54°,故答案为:54°;(4)600×6020200=240,答:估计该校成绩不低于80分的学生有240人.【点睛】本题考查条形统计图、图表等知识.结合生活实际,绘制条形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.2019-2020学年数学中考模拟试卷一、选择题1.在一次数学课上,张老师出示了一个题目:“如图,▱ABCD 的对角线相交于点O ,过点O 作EF 垂直于BD 交AB ,CD 分别于点F ,E ,连接DF ,BE .请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:小青:OE=OF ;小何:四边形DFBE 是正方形; 小夏:S 四边形AFED =S 四边形FBCE ;小雨:∠ACE=∠CAF . 这四位同学写出的结论中不正确的是( )A.小青B.小何C.小夏D.小雨2.二次根式:①29a -;②()()a b a b +-;③221a a -+;④1x;⑤0.75中最简二次根式是( ) A .①②B .③④⑤C .②③D .只有④3.如图,是小明作线段AB 的垂直平分线的作法及作图痕迹,则四边形ADBC 一定是( )A.矩形B.菱形C.正方形D.无法确定4.6月15日“父亲节”,小明准备送给父亲一个礼盒(如图所示),该礼盒的俯视图是( )A. B. C. D.5.北京气象部门测得冬季某周内七天的气温如下:3,5,5,4,6,5,7(单位:℃),则这组数据的平均数和众数分别是( ) A .6,5B .5.5,5C .5,5D .5,46.弹簧原长(不挂重物)15cm ,弹簧总长L (cm )与重物质量x (kg )的关系如下表所示: 弹簧总长L (cm ) 16 17 18 19 20 重物重量x (kg ) 0.51.01.52.02.5当重物质量为5kg (在弹性限度内)时,弹簧总长L (cm )是( ) A.22.5B.25C.27.5D.307.某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm ,则根据题意可得方程( )A .240024008(120%)x x-=+ B .240024008(120%)x x-=+ C .240024008(120%)x x -=-D .240024008(120%)x x-=- 8.如图,已知▱ABCD 中,E 是边AD 的中点,BE 交对角线AC 于点F ,那么S △AFE :S 四边形FCDE 为( )A .1:3B .1:4C .1:5D .1:69.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下( )元 A .8B .16C .24D .3210.据报道,截至2018年12月,天津轨道交通运营线路共有6条,线网覆盖10个市辖区,运营里程215000米,共设车站154座.将215000用科学计数法表示应为( ) A .321510⨯B .421.510⨯C .52.1510⨯D .60.21510⨯11.如图,点E 在BC 的延长线上,则下列条件中,能判定AD 平行于BC 的是( )A .∠1=∠2B .∠3=∠4C .∠D+∠DAB =180°D .∠B =∠DCE12.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有( )个〇.A .6055B .6056C .6057D .6058二、填空题13.如图,在每个小正方形的边长为1的网格中,OAB ∆的顶点,,O A B 均在格点上,点E 在OA 上,且点E 也在格点上. (Ⅰ)OEOB的值为_____________; (Ⅱ)DE 是以点O 为圆心,2为半径的一段圆弧.在如图所示的网格中,将线段OE 绕点O 逆时针旋转得到OE ',旋转角为,连接E A ',E B ',当23E A E B +''的值最小时,请用无刻度的直尺画出点E ',并简要说明点E '的位置是如何找到的(不要求证明)______.14.如图,∠A=22°,∠E=30°,AC ∥EF ,则∠1的度数为______.15.把多项式a 3b-ab 分解因式的结果为______.16.如图,点A 1,A 2在射线OA 上,B 1在射线OB 上,依次作A 2B 2∥A 1B 1 ,A 3B 2∥A 2B 1 , A 3B 3∥A 2B 2 , A 4B 3∥A 3B 2 , ….若△A 2B 1B 2和△A 3B 2B 3的面积分别为1、9,则△A 1007B 1007A 1008的面积是________.17.如图,九宫格中横向、纵向、对角线上的三个数之和均相等,请用含x的代数式表示y,y=____.18.已知32xy=,则x yx y-+=_____.三、解答题19.如图,A、B两点在反比例函数kyx=(k>0,x>0)的图象上,AC⊥y轴于点C,BD⊥x轴于点D,点A的横坐标为a,点B的横坐标为b,且a<b.(1)若△AOC的面积为4,求k值;(2)若a=1,b=k,当AO=AB时,试说明△AOB是等边三角形;(3)若OA=OB,证明:OC=OD.20.如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点.平行于直线l的直线m 从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,设运动时间为t秒(0<t≤4).(1)求A、B两点的坐标;(2)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S1,在直线m的运动过程中,当t为何值时,S1为△OAB面积的5 16?21.如图,四边形ABCD内接于⊙O,点O在AB上,BC=CD,过点C作⊙O的切线,分别交AB,AD的延长线于点E,F.(1)求证:AF⊥EF;(2)若cosA=45,BE=1,求AD的长.22.解不等组533(1)131922x xx x->+⎧⎪⎨-<-⎪⎩并求出其整数解.23.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若cos∠BAE=45,AB=5,求OE的长.24.如图,反比例函数y=kx(x<0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个三角形(不写画法),要求每个三角形均需满足下列两个条件:①三个顶点均在格点上,且其中两个顶点分别是点O,点P;②三角形的面积等于|k|的值.25.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连结DE、OE.(1)判断DE与⊙O的位置关系,并说明理由.(2)求证:BC2=2CD•OE.【参考答案】*** 一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B A B C C B A C D C BD二、填空题 13.(Ⅰ)23(Ⅱ)取格点,M N ,连接MN ,交OB 于点F ;连接AF ,交DE 于点'E ,点'E 即为所求. 14.52°. 15.ab(a+1)(a-1) 16.20113 17.2x ﹣7 18.15三、解答题19.(1)8(2)△AOB 是等边三角形(3)见解析 【解析】 【分析】(1)由反比例函数系数k 的几何意义解答;(2)根据全等三角形△ACO ≌△BDO (SAS )的性质推知AO =BO ,结合已知条件AO =AB 得到:AO =BO =AB ,故△AOB 是等边三角形;(3)证明:在Rt △ACO 和Rt △BDO 中,根据勾股定理得:AO 2=AC 2+OC 2,BO 2=BD 2+OD 2,结合已知条件OA=OB ,得到:AC 2+OC 2=BD 2+OD 2,由坐标与图形性质知:2222()()k k a b ab+=+,整理得到:2222()()k k a b b a -=- ,2222222(k a b a b a b --=),易得k b a =,故OC =OD .【详解】解:(1)∵AC ⊥y 轴于点C ,点A 在反比例函数ky x=(k >0,x >0)的图象上,且△AOC 的面积为4,∴12|k|=4, ∴k =8;(2)由a =1,b =k ,可得A (1,k ),B (k ,1), ∴AC =1,OC =k ,OD =k ,BD =1, ∴AC =BD ,OC =OD .又∵AC ⊥y 轴于点C ,BD ⊥x 轴于点D , ∴∠ACO =∠BDO =90°, ∴△ACO ≌△BDO (SAS ). ∴AO =BO . 又AO =AB , ∴AO =BO =AB , ∴△AOB 是等边三角形;(3)证明:在Rt △ACO 和Rt △BDO 中,根据勾股定理得:AO 2=AC 2+OC 2,BO 2=BD 2+OD 2, ∵OA =OB ,∴AC 2+OC 2=BD 2+OD 2,即有:2222()()kk a b ab+=+,∴2222()()k k a b b a -=-,2222222(k a b a b a b--=), 因为0<a <b ,所以a 2﹣b 2≠0,∴2221=k a b,∴1k ab =±,负值舍去,得:1k ab=, ∴kb a=, ∴OC =OD .【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数系数k 的几何意义以及全等三角形的判定与性质,利用数形结合解决此类问题,是非常有效的方法.20.(1)A(4,0),B(0,4);(2)t=73或t=3.【解析】【分析】(1)由直线的解析式,分别让x、y为0,可求得A、B的坐标;(2)由已知易求得三角形ABO的面积,然后用t表示出重合部分的面积,根据题意列出方程即可得到答案.【详解】(1)y=﹣x+4,令y=0,得x=4,令x=0,得y=4,故A(4,0),B(0,4);(2)S△ABO=12×4×4=8,当0<t≤2时,S△MNP=12t2,如图1由题意得12t2=8×516,解得此时t=5(不合题意舍去),如图2,当2<t≤4时,S1=S△ABO﹣S△OMN﹣2S△MAF,即S1=8﹣12t2﹣2×12(4﹣t)2=516×8,解得t=73或t=3.【点睛】本题考查了一次函数的应用;在求解第二问时,要思考全面,分类讨论的应用是正确解答本题的关键.21.(1)略;(2)325.【解析】【分析】(1)连接AC,OC,如图,先证明OC∥AF,再根据切线的性质得OC⊥EF,从而得到AF⊥EF;(2)先利用OC∥AF得到∠COE=∠DAB,在Rt△OCE中,设OC=r,利用余弦的定义得到415rr=+,解得r=4,连接BD,如图,根据圆周角定理得到∠ADB=90°,然后根据余弦的定义可计算出AD的长.【详解】解:(1)连接AC,OC,如图,∵CD=BC,∴CD BC=,∴∠1=∠2,∵OA=OC,∴∠2=∠OCA,∴∠1=∠OCA,∴OC∥AF,∵EF为切线,∴OC⊥EF,∴AF⊥EF;(2)∵OC∥AF,∴∠COE=∠DAB,在Rt△OCE中,设OC=r,∵cos∠COE=cos∠DAB=45OCOE=,即415rr=+,解得r=4,连接BD,如图,∵AB为直径,∴∠ADB=90°,在Rt△ADB中,cos∠DAB=45 ADAB=,∴AD=45×8=325.【点睛】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理和解直角三角形.22.4【解析】【分析】先分别求出各不等式的解集,再找到他们的公共解集.【详解】解:533(1)131922x xx x->+⎧⎪⎨-<-⎪⎩①②,由①得:x>3,由②得:x<5,∴不等式的解集为:3<x<5,∴整数解是:4.【点睛】此题主要考查不等式组的解集,解题的关键是熟知不等式的性质.23.(1)证明见解析;(2)25.【解析】【分析】(1)根据菱形的性质得到AD ∥BC ,推出四边形AECF 是平行四边形,根据矩形的判定定理即可得到结论;(2)根据三角函数的定义得到AE =4,BE =3,根据勾股定理得到AC =45,再根据直角三角形斜边中线的性质即可得到结论.【详解】(1)∵四边形ABCD 是菱形,∴AD ∥BC ,∵CF ∥AE ,∴四边形AECF 是平行四边形,∵AE ⊥BC ,∴四边形AECF 是矩形;(2)在Rt △ABE 中,∠E=90°,∵cos ∠BAE =AE AB =45,AB =5, ∴AE =4,∴BE =22AB AE -=3,∵AB =BC =5,∴CE =8,∴AC =22AE EC +=45,∵四边形ABCD 是菱形,AC 、BD 交于点O ,∴AO =CO ,∵∠AEC=90°,∴OE =12AC=25.【点睛】本题考查了矩形的判定和性质,菱形的性质,解直角三角形,正确的识别图形是解题的关键.24.(1)2y x=-;(2)详见解析【解析】【分析】(1)利用待定系数法即可求得;(2)根据三角形满足的两个条件画出符合要求的两个三角形即可.【详解】解:(1)∵反比例函数y=kx(x<0)的图象过格点P,由图象易知P点坐标是(﹣2,1),∴将P(﹣2,1)代入y=kx得,k=﹣2×1=﹣2,∴反比例函数的解析式为2yx =-;(2)如图所示:△APO、△BPO即为所求作的图形;第三个点可以是(﹣4,0),(﹣2,﹣1),(4,0),(﹣2,3),(﹣6,1),(2,1),(0,2),(0,﹣2).【点睛】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,三角形的判定与性质,正确求出反比例函数的解析式是解题的关键.25.(1)证明见解析(2)证明见解析【解析】【分析】(1)连接OD,根据直角三角形中线性质和圆周角定理可得∠ODE=90°;(2)连接OE,根据三角形中位线性质证△ABC∽△BDC,BC2=2CD•OE.【详解】(1)证明:连接OD,∵AB为圆O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE= BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,即∠C+∠A=90°,∴∠ADO+∠CDE=90°,即∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为圆O的切线;(2)证明:连接OE,∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE∵∠C=∠C,∠ABC=∠BDC=90°,∴△ABC∽△BDC,.BC2=2CD•OE.;【点睛】考核知识点:三角形中位线,相似三角形判定和性质.。
三角形中的重心与外心定理

三角形中的重心与外心定理三角形是几何学中最基本的形状之一,研究三角形的性质和特点对于深入了解几何学具有重要意义。
在三角形中,重心和外心是两个重要的概念,通过重心与外心定理,我们可以揭示它们的关系和性质。
重心是指三角形三条中线的交点,记作G。
在一个三角形ABC中,连接顶点A与边BC的中点M,连接顶点B与边AC的中点N,连接顶点C与边AB的中点P,这三条线段分别称为三角形ABC的中线。
重心G是中线的交点,即G=MN∩NP∩PM。
外心是指三角形外接圆的圆心,记作O。
在一个三角形ABC中,若存在一个圆可以同时与三条边AB、BC、CA相切,称这个圆为三角形ABC的外接圆。
外心O则为外接圆的圆心。
重心与外心定理是指,三角形的重心、外心和三边中点构成一个等腰三角形。
换句话说,连接重心和外心的线段与连接三边中点的线段长度相等,且它们之间的夹角等于π/2。
证明这个定理的方法有很多,这里我们可以采用向量的方法。
考虑一个三角形ABC,其三个顶点的向量表示分别为a、b、c。
重心G可以表示为G=(a+b+c)/3,外心O可以表示为O=(a|b|c)/(|a|+|b|+|c|),其中|a|表示向量a的模。
首先,我们来证明 |G-M|=|O-G|。
注意到中点M的向量表示为M=(b+c)/2,连接线段GM的向量表示为G-M=(a+b+c)/3-(b+c)/2=(a-b/2-c/2)/3。
同理,O-G=(a|b|c)/(|a|+|b|+|c|)-(a+b+c)/3=(a|b|c-|a|(b+c)-|b|(a+c)-|c|(a+b))/(3∗(|a|+|b|+|c|))。
我们将等式两边进行化简,得到:6(G-M)=2(a-b/2-c/2)=(2a-b-c)=3(a-b/2-c/2)=|a|∗(a|b|c-|a|(b+c)-|b|(a+c)-|c|(a+b))/(3∗(|a|+|b|+|c|))=|O-G|说明 |G-M|=|O-G| 成立。
三角形重心内心外心

1.重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍。
该点叫做三角形的重心。
2.外心定理:三角形的三边的垂直平分线交于一点。
该点叫做三角形的外心。
设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL.3.垂心定理:三角形的三条高交于一点。
该点叫做三角形的垂心。
4.内心定理:三角形的三内角平分线交于一点。
该点叫做三角形的内心。
内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半。
5.旁心定理:三角形一内角平分线和另外两顶点处的外角平分线交于一点。
该点叫做三角形的旁心。
三角形有三个旁心。
每一题中三角形均为ABC一.中垂线交点(外心)分别作AB,BC的中垂线,交于点O,则OA=OB,OB=OC,所以OA=OC,所以点O在AC中垂线上,所以三角形三条中垂线交于一点。
二.三高所在直线交点(垂心)分别过A,B,C作对边的平行线,交于3点,与A,B,C三点所对应的三点记作D,E,F,则三条高线所在直线为三角形DEF的三条中垂线,由“一”知,三角形三条中垂线交于一点,,所以三角形三条高线所在直线交于一点。
三.三条内角平分线交点(内心)设∠A平分线与∠B平分线交于O点,则O点到AB,AC的距离相等;O点到BC,BA距离相等,所以O点到AC,BC距离相等,所以点O在∠C的角平分线上,所以三角形三条角平分线交于一点。
四.三角形其中两条外角平分线与另一个角的内角平分线交于一点(旁心)(有3点)证明方法与“三”内心相似(略)五.三角形三条中线交于一点(重心)找AB中点F,AC中点E,连接这两条中线交于点O,连接AO并延长,交BC于点D,可得S三角形ABE=S三角形ACF=1/2×S三角形ABC,得S三角形BOF=S三角形COE(两三角形同减S四边形AEOF),得S三角形AOB=S三角形AOC(都为上面两三角形面积的两倍),得B到AD和C到AD的距离相等(面积相等,底相等),所以S三角形BOD=S三角形COD(同底等高),所以BD=CD(面积相等,高相等),即D为BC中点,所以三角形三条中线交于一点。
三维三角形的重心公式

三维三角形的重心公式三维空间中的三角形是由三个非共线的点组成的,其中有一个特殊的点,被称为三维三角形的重心。
重心是三角形的一个重要特征,可以帮助我们计算出三角形的性质和进行相关的运算。
G=(P1+P2+P3)/3其中,G是三角形的重心的坐标,P1、P2、P3分别是三角形的三个顶点的坐标。
这个公式的推导过程如下:首先我们知道,任意三维空间中的点都可以表示为(x,y,z)的形式。
对于三角形的三个顶点P1(x1,y1,z1)、P2(x2,y2,z2)和P3(x3,y3,z3),我们可以用向量的形式表示:P1=(x1,y1,z1)P2=(x2,y2,z2)P3=(x3,y3,z3)然后我们计算三角形的重心G(x,y,z)。
根据重心的定义,重心G是由三个顶点的坐标的平均值得出的,即:x=(x1+x2+x3)/3y=(y1+y2+y3)/3z=(z1+z2+z3)/3可以看出,重心的坐标是三个顶点坐标的平均值。
重心不仅可以用于表示三维三角形的位置,还可以帮助我们计算三角形的面积、重心到各个顶点的距离以及重心到三条边的距离等。
下面我们来具体计算三维三角形的面积。
s=(a+b+c)/2其中,a、b、c分别是三角形的三条边的长度,s为三角形的半周长。
d=√[(x2-x1)²+(y2-y1)²+(z2-z1)²]通过对三个边的长度进行计算后,我们可以得到三角形的半周长s。
然后再用海伦公式来计算三维三角形的面积:area = √[s(s-a)(s-b)(s-c)]d=√[(x-x1)²+(y-y1)²+(z-z1)²]其中,(x,y,z)为重心的坐标,(x1,y1,z1)为顶点P1的坐标。
同样地,三维三角形的重心到三条边的距离也可以使用欧氏距离公式来计算。
需要注意的是,三维三角形的边不能为负数或者为0,且重心的坐标、顶点的坐标必须是实数。
总结起来,三维三角形的重心公式是一个简单而重要的公式,可以方便地计算三角形的重心坐标、面积以及重心到各个顶点和边的距离。
三角形“四心”向量形式的结论及证明

三角形“四心”向量形式的结论及证明三角形的“四心”是指三角形的重心、外心、内心和垂心。
它们的位置可以用向量的形式来描述。
本文将分别介绍三角形“四心”的向量形式以及其证明。
1.重心:重心是指三角形三个顶点的中线交点所在的点,用G表示。
假设三角形的三个顶点分别为A(x1,y1)、B(x2,y2)和C(x3,y3),则重心G的坐标可以通过以下公式得到:G=(A+B+C)/3其向量形式为:OG=(OA+OB+OC)/3其中O为坐标原点。
证明:由定义可知,重心是三角形三个顶点的中线交点所在的点。
而中线的坐标可以通过两个顶点的坐标的平均值得到。
因此,重心的坐标是三个顶点坐标的平均值。
根据向量加法的性质,可以得到上述结论。
2.外心:外心是指可以通过三角形的三个顶点作为圆心,找到一个圆使得三条边都是这个圆的切线。
用O表示外心。
假设三角形的三个顶点分别为A(x1,y1)、B(x2,y2)和C(x3,y3),则外心O的坐标可以通过以下公式得到:O=(a^2*A+b^2*B+c^2*C)/(a^2+b^2+c^2)其中a、b、c分别表示三角形的边长BC、AC和AB的长度。
其向量形式为:OO=(a^2*OA+b^2*OB+c^2*OC)/(a^2+b^2+c^2)其中O为坐标原点。
证明:设外心为O,连接OA、OB、OC,并设AO的长度为R,BO的长度为R',CO的长度为R''。
根据定义可知,OA,OB,OC都是截圆半径,可以得到以下关系:OA⊥BC,OB⊥AC,OC⊥AB由于OA、OB、OC是向量,因此上述关系可以写为:OA·BC=0,OB·AC=0,OC·AB=0其中“·”表示点乘。
根据向量的点乘性质可知:OA·(B-C)=0,OB·(C-A)=0,OC·(A-B)=0将向量差展开得:OA·B-OA·C=0,OB·C-OB·A=0,OC·A-OC·B=0进一步展开可得:R^2-R'^2=0,R'^2-R''^2=0,R''^2-R^2=0整理得:R^2-R'^2=R''^2-R^2移项得:2R^2=R'^2+R''^2根据圆的定义可知,外心到三角形的每个顶点的距离都相等,因此R=R'=R''。
微积分求三角形重心

微积分可以用来求三角形的重心,但通常我们不需要微积分来求三角形的重心,因为三角形的重心是一个几何概念,其位置可以通过简单的几何方法确定。
三角形的重心是三条中线的交点,也是将三角形分为面积相等的六个小三角形的点。
如果三角形的三个顶点分别是(A(x_1, y_1)), (B(x_2, y_2)), 和(C(x_3, y_3)),那么重心的坐标(G(x, y)) 可以通过以下公式计算:[ x = \frac{x_1 + x_2 + x_3}{3} ]
[ y = \frac{y_1 + y_2 + y_3}{3} ]
然而,如果你想要用微积分的方法来解决这个问题,你可以考虑三角形作为平面区域,并使用二重积分来计算面积。
然后,你可以找到使这个面积最大的点,这个点就是三角形的重心。
假设三角形由函数(y = f(x)) 和直线(x = a), (x = b), 和(y = 0) 围成。
三角形的面积(S) 可以通过以下二重积分计算:
[ S = \int_a^b \int_0^{f(x)} dy , dx ]
要找到使面积最大的点,即重心,你可以对(S) 关于(x) 和(y) 求偏导数,并令它们等于零。
然后解这个方程组来找到(x) 和(y) 的值。
但是,这种方法通常比简单的几何方法更复杂,而且不必要。
在实际应用中,我们通常会使用几何方法来找到三角形的重心。
三角形重心的向量表达

三角形重心的向量表达
三角形重心的向量表达可以通过两个不共线的向量相乘来计算,即把三角形的三条边向量相乘再除以三,得到的就是重心向量。
用向量法具体地解释,将三角形的三个顶点分别命名为A、B、C,将三角形的三条边分别命名为a、b、c,三角形的重心坐标可由以下公式得出:(x,y,z) = ( - (a+b+c)/3, - (a+b+c)/3, - (a+b+c)/3),其中(x,y,z)为重心向量的坐标。
此外,这个重心向量还可以用向量的基本定理和三角形重心定理来证明。
需要注意的是,重心向量定理是几何学中的一个重要定理,用于计算物体的重心位置。
三角形的重心性质

三角形的重心性质在我们学习几何知识的过程中,三角形是一个非常基础且重要的图形。
而三角形的重心,作为三角形的一个重要特性,有着许多有趣且实用的性质。
首先,我们来了解一下什么是三角形的重心。
三角形的重心是三角形三条中线的交点。
中线是连接三角形顶点和它对边中点的线段。
三角形重心的一个重要性质是,重心到三角形顶点的距离与重心到对边中点的距离之比为 2:1 。
这意味着,如果我们设重心为 G ,顶点为 A 、 B 、 C ,对边中点分别为 D 、 E 、 F ,那么 AG:GD =BG:GE = CG:GF = 2:1 。
为了更好地理解这个性质,我们可以通过做一些简单的实验或者画图来直观感受。
比如说,我们可以画一个任意的三角形,然后分别画出三条中线,通过测量线段的长度,就能验证这个比例关系。
这个性质在解决很多与三角形相关的几何问题时非常有用。
三角形的重心还有一个特点,那就是它把三角形的每条中线都分成了长度比为 1:2 的两段。
这进一步说明了重心在三角形中的特殊位置和作用。
另外,从物理学的角度来看,三角形的重心还有着特殊的意义。
如果我们把一个质地均匀的三角形薄板看成一个物理实体,那么它的重心就是这个薄板在平面上能够平衡的点。
比如说,如果我们要让这个三角形薄板在一个支点上保持平衡,那么这个支点就应该在重心的位置上。
这种将几何与物理相结合的理解方式,能够帮助我们更深入地认识三角形重心的性质。
重心的这一性质在实际生活中也有不少应用。
比如在建筑设计中,工程师们需要考虑建筑物结构的重心,以确保建筑物的稳定性。
在机械制造中,零件的重心位置也会影响到其工作性能和稳定性。
再从数学计算的角度来看,假设三角形的三个顶点坐标分别为(x₁, y₁) 、(x₂, y₂) 、(x₃, y₃) ,那么三角形重心的坐标可以通过以下公式计算得出:重心坐标为((x₁+ x₂+ x₃) / 3, (y₁+y₂+ y₃) / 3) 。
这个公式的推导其实并不复杂。
三角形四心的向量公式及证明

三角形四心的向量公式及证明在我们的数学世界里,三角形可是个相当重要的角色。
而三角形的“四心”——重心、外心、内心和垂心,更是藏着许多有趣的秘密,特别是它们与向量公式之间的奇妙关系。
先来说说重心。
重心是三角形三条中线的交点。
假设三角形的三个顶点分别是 A(x₁,y₁) 、B(x₂,y₂) 、C(x₃,y₃) ,那么重心 G 的坐标就是 ((x₁ + x₂ + x₃) / 3, (y₁ + y₂ + y₃) / 3) 。
这背后的向量公式是这样的:若有向量 \(\overrightarrow{GA} + \overrightarrow{GB} +\overrightarrow{GC} = \overrightarrow{0}\) ,则点 G 就是重心。
给大家举个小例子吧,我曾经在课堂上给学生们讲这个知识点的时候,有个学生就特别好奇地问我:“老师,这重心在生活中有啥用啊?”我笑着回答他:“你想想看啊,假如我们要做一个三角形的风筝,要让它飞得稳,重心的位置就得找好,不然它可就歪歪扭扭飞不起来啦!”这一下,同学们都恍然大悟,对重心的理解也更深刻了。
再聊聊外心。
外心是三角形三边中垂线的交点,也就是三角形外接圆的圆心。
若点 O 是外心,那么 \(|\overrightarrow{OA}| =|\overrightarrow{OB}| = |\overrightarrow{OC}|\) 。
说到外心,我想起有一次带学生们在操场上做数学实践活动。
我们用绳子和标杆模拟画出三角形,然后一起找它的外心。
同学们兴致勃勃,七嘴八舌地讨论着,那场面别提多热闹了。
接着是内心。
内心是三角形三条内角平分线的交点,也就是内切圆的圆心。
若点 I 是内心,\(\overrightarrow{a}\overrightarrow{IA} +\overrightarrow{b}\overrightarrow{IB} +\overrightarrow{c}\overrightarrow{IC} = \overrightarrow{0}\) (其中 a、b、c 是三角形三边的长度)。
2020中考数学知识点:三角形的重心公式证明

2020中考数学知识点:三角形的重心公式证明重心是三角形三边中线的交点,三线交一点可用燕尾定理来证明。
三角形的重心已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。
求证:F为AB 中点。
证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。
重心的几条性质:1.重心到顶点的距离与重心到对边中点的距离之比为2:1。
2.重心和三角形3个顶点组成的3个三角形面积相等。
3.重心到三角形3个顶点距离的平方和最小。
4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/35.重心是三角形内到三边距离之积最大的点。
如果用塞瓦定理证,则极易证三条中线交于一点。
如图,在△ABC中,AD、BE、CF是中线则AF=FB,BD=DC,CE=EA∵(AF/FB)*(BD/DC)*(CE/EA)=1∴AD、BE、CF交于一点即三角形的三条中线交于一点其实考试中不会单独的出现关于三角形的重心问题,而是综合图形知识要领,这就需要大家准确的分析了。
2019-2020学年数学中考模拟试卷一、选择题1.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是( )A .217B .25C .42D .72.下列运算正确的是( )A.236a a a ⋅=B.336a a a +=C.22a a -=-D.326()a a -= 3.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .10033100x y x y +=⎧⎨+=⎩B .1003100x y x y +=⎧⎨+=⎩C .100131003x y x y +=⎧⎪⎨+=⎪⎩D .1003100x y x y +=⎧⎨+=⎩ 4.若4<k <5,则k 的可能值是( )A .23B .8C .23D .45+5.如图,在平面直角坐标系中,菱形ABCD 的顶点A 、B 在反比例函数y =k x(k >0,x >0)的图象上,点A 、B 横坐标分别为2和6,对角线BD ∥x 轴,若菱形ABCD 的面积为40,则k 的值为( )A.15B.10C.152D.56.已知在四边形ABCD 中,AD ∥BC ,对角线AC 与BD 相交于点O ,AO =CO ,如果添加下列一个条件后,就能判定这个四边形是菱形的是( )A.BO =DOB.AB =BCC.AB =CDD.AB ∥CD 7.如图,已知二次函数的图象与轴交于点,顶点坐标为,与轴的交点在和之间(不包括端点).有下列结论:①当时,;②;③;④.其中正确的结论有( )A.1个B.2个C.3个D.4个8.近日,海南省旅游委通报了2019年春节黄金周假日旅游工作情况,该省共接待游客5670万人次.数据5670万用科学记数法表示为( )A .556.710⨯B .65.6710⨯C .656.710⨯D .75.6710⨯9.如图,点A (﹣2,0),B (0,1),以线段AB 为边在第二象限作矩形ABCD ,双曲线y =k x(k <0)过点D ,连接BD ,若四边形OADB 的面积为6,则k 的值是( )A .﹣9B .﹣12C .﹣16D .﹣1810.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A.20°B.35°C.40°D.70°11.如图所示,90,,E F B C AE AF ∠=∠=∠=∠=,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM ∆≅∆,其中正确的是有( )A .1个B .2个C .3个D .4个12.下列计算正确的是( )A .(b ﹣a )(a+b )=a 2﹣b 2B .2212255x xy x y ⎛⎫⋅-=- ⎪⎝⎭C .(﹣2x 2)3=﹣6x 3y 6D .(6x 3y 2)÷(3x )=2x 2y 2二、填空题 13.如图,在平面直角坐标系xOy 中,已知(23,0)A ,B(0,6),M(0,2),点Q 在直线AB 上,把BMQ 沿着直线MQ 翻折,点B 落在点P 处,联结PQ ,如果直线PQ 与直线AB 所构成的夹角为60°,那么点P 的坐标是____________14.如图,AD 为ABC △的角平分线,AC BC = ,E 在AC 延长线上,且AD DE =,若6,2AB CE ==,则BD 的长为______.15.2016年鄂尔多斯市实现生产总值4417.9亿元,按可比价格计算,比上年增长7.3%,在内蒙古自治区排名第一,将数据“4417.9亿元”精确到十亿位表示为______元.16.把抛物线y=2(x-1)2+1向左平移1个单位长度,得到的抛物线的解析式为______.17.如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为8m ,两侧蹑地面4m 高处各有一盏灯,两灯间的水平距离为6m ,则这个门洞的高度为_______m .(精确到0.1m )18.n 个数据2、4、6、8、….、2n ,这组数据的中位数是_____.(用含n 的代数式表示)三、解答题19.在平面直角坐标系中,反比例函数y =k x (x >0,k >0图象上的两点(n ,3n )、(n+1,2n ). (1)求n 的值;(2)如图,直线l 为正比例函数y =x 的图象,点A 在反比例函数y =k x(x >0,k >0)的图象上,过点A作AB⊥l于点B,过点B作BC⊥x轴于点C,过点A作AD⊥BC于点D,记△BOC的面积为S1,△ABD 的面积为S2,求S1﹣S2的值.20.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连结AP、OP、OA.(1)求证:△OCP∽△PDA;(2)若tan∠PAO=12,求边AB的长.21.已知点E、F分别是▱ABCD的边BC、AD的中点.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,求▱AECF的周长.22.已知关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0.(1)当t=3时,解这个方程;(2)若m,n是方程的两个实数根,设Q=(m﹣2)(n﹣2),试求Q的最小值.23.如图,在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若BF=8,DF=4,求CD的长.24.如图,在△ABD中,AB=AD,AB是⊙O的直径,DA、DB分别交⊙O于点E、C,连接EC,OE,OC.(1)当∠BAD是锐角时,求证:△OBC≌△OEC;(2)填空:①若AB=2,则△AOE的最大面积为;②当DA 与⊙O 相切时,若AB =2,则AC 的长为 .25.如图,工人师傅用一块长为10分米,宽为6分米的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形;(厚度不计)(1)当长方体底面面积为12平方分米时,裁掉的正方形边长为______分米;(2)若要求制作的长方体的底面长不大于底面宽的5倍,且将容器的外表面进行防锈处理,其侧面处理费用为0.5元/平方分米,底面处理费用为2元/平方分米;求:裁掉的正方形边长为多大时,防锈处理总费用最低,最低为多少?【参考答案】***一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12答案 A D C D A B C D C BC D二、填空题13.(23,0)-或(0,2)-或(23,4)14.272-15.42×101116.y=2x 2+117.118.n+1三、解答题19.(1)2(2)6【解析】【分析】(1)利用反比例函数图象上点的坐标特征得到n•3n=(n+1)•2n,然后解方程可得n 的值;(2)设B (m ,m ),利用△OBC 为等腰直角三角形得到∠OBC =45°,再证明△ABD 为等腰直角三角形,则可设BD =AD =t ,所以A (m+t ,m ﹣t ),把A (m+t ,m ﹣t )代入y =12x 中得到m 2﹣t 2=12,然后利用整体代入的方法计算S 1﹣S 2.【详解】解:(1)∵反比例函数y =k x(x >0,k >0图象上的两点(n ,3n )、(n+1,2n ). ∴n•3n=(n+1)•2n,解得n =2或n =0(舍去),∴n 的值为2;(2)反比例函数解析式为y =12x , 设B (m ,m ),∵OC =BC =m ,∴△OBC 为等腰直角三角形,∴∠OBC =45°,∵AB ⊥OB ,∴∠ABO =90°,∴∠ABC =45°,∴△ABD 为等腰直角三角形,设BD =AD =t ,则A (m+t ,m ﹣t ),∵A (m+t ,m ﹣t )在反比例函数解析式为y =12x 上, ∴(m+t )(m ﹣t )=12,∴m 2﹣t 2=12,∴S 1﹣S 2=2211112222m t -=⨯=6. 【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y =k x(k≠0)图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.20.(1)见解析;(2)AB =10.【解析】【分析】(1)只需要证明两对对应角分别相等即可证明相似(2)根据题①可知CP =4,设BO =x ,则CO =8﹣x ,PD =2(8﹣x ),即可解答【详解】(1)证明:∵四边形ABCD 为矩形,∴∠B =∠C =∠D =90°.由折叠,可知:∠APO =∠B =90°,∴∠APD+∠CPO =90°.∵∠APD+∠DAP =90°,∴∠DAP =∠CPO ,∴△OCP∽△PDA;(2)解:由折叠,可知:∠APO=∠B=90°,AP=AB,PO=BO,tan∠PAO=POAP=BOAB=12.∵△OCP∽△PDA,∴12 PO OC CPAP PD DA===∵AD=8,∴CP=4.设BO=x,则CO=8﹣x,PD=2(8﹣x),∴AB=2x=CD=PD+CP=2(8﹣x)+4,解得:x=5,∴AB=10.【点睛】此题考查相似三角形的判定与性质和折叠问题,解题关键在于证明全等21.(1)证明见解析;(2)20.【解析】【分析】(1)根据平行四边形的判定和性质即可得到结论;(2)根据直角三角形的性质得到AE=CE=12BC=5,推出四边形AECF是菱形,于是得到结论.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E、F分别是▱ABCD的边BC、AD的中点,∴AF=12AD,CE=12BC,∴AF=CE,AF∥CE,∴四边形AECF是平行四边形;(2)∵BC=10,∠BAC=90°,E是BC的中点.∴AE=CE=12BC=5,∴四边形AECF是菱形,∴▱AECF的周长=4×5=20.【点睛】此题主要考查了平行四边形的性质和菱形的判定,关键是掌握平行四边形对边相等,对角相等;邻边相等的平行四边形是菱形.22.(1)x 1=3﹣2,x 2=3+2;(2)Q 的最小值是﹣1.【解析】【分析】(1)把t =3代入x 2﹣2tx+t 2﹣2t+4=0,再利用公式法即可求出答案;(2)由根与系数的关系可得出m+n =2t 、mn =t 2﹣2t+4,将其代入(m ﹣2)(n ﹣2)=mn ﹣2(m+n )+4中可得出(m ﹣2)(n ﹣2)=(t ﹣3)2﹣1,由方程有两个实数根结合根的判别式可求出t 的取值范围,再根据二次函数的性质即可得出(m ﹣2)(n ﹣2)的最小值.【详解】(1)当t =3时,原方程即为x 2﹣6x+7=0, 63628322x ±-==±, 解得132x =-,232x =+;(2)∵m ,n 是关于x 的一元二次方程x 2﹣2tx+t 2﹣2t+4=0的两实数根,∴m+n =2t ,mn =t 2﹣2t+4,∴(m ﹣2)(n ﹣2)=mn ﹣2(m+n )+4=t 2﹣6t+8=(t ﹣3)2﹣1.∵方程有两个实数根,∴△=(﹣2t )2﹣4(t 2﹣2t+4)=8t ﹣16≥0,∴t≥2,∴(t ﹣3)2﹣1≥(3﹣3)2﹣1=﹣1.故Q 的最小值是﹣1.【点睛】本题考查了根的判别式,一元二次方程ax 2+bx+c =0(a≠0)的根与△=b 2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.也考查了一元二次方程的解法.23.(1)见解析;(2)CD =5.【解析】【分析】(1)根据菱形的性质得到AD ∥BC 且AD =BC ,等量代换得到BC =EF ,推出四边形AEFD 是平行四边形,根据矩形的判定定理即可得到结论,(2)设BC =CD =x ,则CF =8﹣x 根据勾股定理即可得到结论.【详解】(1)证明:∵在菱形ABCD 中,∴AD ∥BC 且AD =BC ,∵BE =CF ,∴BC =EF ,∴AD =EF ,∵AD∥EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD是矩形.(2)解:设BC=CD=x,则CF=8﹣x,在Rt△DCF中,∵x2=(8﹣x)2+42 ,∴x=5,∴CD=5.【点睛】本题考查了矩形的判定和性质,菱形的性质,勾股定理,正确的识别图形是解题的关键.24.(1)见解析;(2)①S△AOE最大=12;②AC=1.【解析】【分析】(1)利用垂直平分线,判断出∠BAC=∠DAC,得出EC=BC,用SSS判断出结论;(2)①先判断出三角形AOE面积最大,只有点E到直径AB的距离最大,即是圆的半径即可;②根据切线的性质和等腰直角三角形的性质解答即可.【详解】(1)连接AC,如图1,∵AB是⊙O的直径,∴AC⊥BD,∵AD=AB,∴∠BAC=∠DAC,∴BC EC=,∴BC=EC,在△OBC和△OEC中BC EC OB E OC COO=⎧⎪=⎨⎪=⎩,∴△OBC≌△OEC(SSS),(2)①∵AB是⊙O的直径,且AB=2,∴OA=1,设△AOE的边OA上的高为h,∴S△AOE=12OA×h=12×1×h=12h,∴要使S△AOE最大,只有h最大,∵点E在⊙O上,∴h最大是半径,即h最大=1∴S△AOE最大=12,故答案为12;②如图2:当DA与⊙O相切时,∴∠DAB=90°,∵AD=AB=2,∴∠ABD=45°,∵AB是直径,∴∠ADB=90°,∴AC=BC=2221 22AB=⨯=,故答案为:1【点睛】此题是圆的综合题,主要考查了圆的性质,全等三角形的判定和性质,解本题的关键是确定面积最大时,点E到AB的距离最大是半径.25.(1)裁掉的正方形的边长为2dm;(2)裁掉的正方形边长为3.5分米时,总费用最低,最低费用为31元.【解析】【分析】(1)由设裁掉的正方形的边长为xdm,用x的代数式表示长方体底面的长与宽,再根据矩形的面积公式列出方程,可求得答案;(2)由条件“制作的长方体的底面长不大于底面宽的5倍“列出不等式,可求得x的取值范围,用x可表示出总费用,利用二次函数的性质可求得其最小值,可求得答案.【详解】(1)设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm;(2)设总费用为y元,则y=2(10-2x)(6-2x)+0.5×[2x(10-2x)+2x(6-2x)]=4x2-60x+192=4(x-7.5)2-33,又∵12-2x≤5(8-2x),∴x≤3.5,∵a=4>0,∴当x<7.5时,y随x的增大而减小,∴当x=3.5时,y取得最小值,最小值为31,答:裁掉的正方形边长为3.5分米时,总费用最低,最低费用为31元.【点睛】本题主要考查了二次函数的应用,一元二次方程的应用,矩形的面积计算,列代数式.正确列代数式和找出等量关系列方程,求二次函数的最值的方法是本题的关键.2019-2020学年数学中考模拟试卷一、选择题1.一个几何体由一些小正方体摆成,其主视图与左视图如左图所示.其俯视图不可能是( )A. B. C. D.2.若实数a ,b ,c 满足a+b+c=0,且a <b <c ,则函数y=cx+a 的图象可能是( )A .B .C .D .3.地球上的海洋面积约三亿六千一百万平方千米,用科学记数法表示为( )平方千米.A .361×106B .36.1×107C .3.61×108D .0.361×1094.下列计算正确的是( )A .2a+b =2abB .a 3÷a=a 2C .(a ﹣1)2=a 2﹣1D .(2a )3=6a 35.如图,在▱ABCD 中,对角线AC 、BD 交于点O ,并且∠DAC =60°,∠ADB =15°.点E 是AD 边上一动点,延长EO 交BC 于点F .当点E 从D 点向A 点移动过程中(点E 与点D ,A 不重合),则四边形AFCE 的变化是( )A.平行四边形→矩形→平行四边形→菱形→平行四边形B.平行四边形→菱形→平行四边形→矩形→平行四边形C.平行四边形→矩形→平行四边形→正方形→平行四边形D.平行四边形→矩形→菱形→正方形→平行四边形6.如图,AD 是ABC ∆的中线,点O 是AC 的中点,过点A 作AE BC ∥交DO 的延长线于点E ,连接CE ,添加下列条件仍不能判断四边形ADCE 是菱形的是( )A .ABC ⊥ B .AB AC = C .AC 平分DAE∠D .72171()01230.9244040120E X =⨯+⨯+⨯+⨯= 7.关于x 的一元二次方程(k-1)x 2+4x+1=0有实数根,则k 的取值范围是( ) A .k 5< B .k 5<且k 1≠ C .k 5≤ D .k 5≤且k 1≠8.如图,I 是△ABC 的内心,AI 的延长线和△ABC 的外接圆相交于点D ,连接BI 、BD 、DC .下列说法中错误的一项是( )A.线段DB 绕点D 顺时针旋转一定能与线段DC 重合B.线段DB 绕点D 顺时针旋转一定能与线段DI 重合C.∠CAD 绕点A 顺时针旋转一定能与∠DAB 重合D.线段ID 绕点I 顺时针旋转一定能与线段IB 重合9.下列运算正确的是( )A .a 3+a 3=a 6B .(﹣a 2)3=a 6C .a 5÷a ﹣2=a 7D .(a+1)0=1 10.计算:11x x x+-=( ) A .1 B .2 C .1+2x D .2x x- 11.如图,在△ABC 中,AB =AC =5,BC =6,将△ABC 绕点B 逆时针旋转60°得到△A'BC’,连接A'C ,则A'C 的长为( )A .6B .4+23C .4+33D .2+3312.如图,下列条件中,不能判定//AD BC 的是( )A.12∠=∠B.180BAD ADC ︒∠+∠=C.34∠=∠D.180ADC DCB ︒∠+∠=二、填空题 13.在△ABC 中,AB =AC ,过点A 作AD ⊥AC 交射线CB 于点D ,若△ABD 是等腰三角形,则∠C 的大小为_____度.14.若关于x 的一元二次方程(k ﹣1)x 2+4x+1=0有实数根,则k 的取值范围是_____.15.如图所示,四边形ABCD 中,60BAD ∠=︒,对角线AC 、BD 交于点E ,且BD BC =,30ACD ∠=︒,若19AB =,7AC =,则CE 的长为_____.16.平面直角坐标系中,点P(﹣2,4)关于x 轴对称的点的坐标为_____.17.掷一枚材质均匀的骰子,掷得的点数为素数的概率是______.18.不等式5﹣2x >﹣3的解集是_____.三、解答题19.如图,在△ACD 中,DA =DC ,点B 是AC 边上一点,以AB 为直径的⊙O 经过点D ,点F 是直径AB 上一点(不与A 、B 重合),延长DF 交圆于点E ,连结EB .(1)求证:∠C =∠E ;(2)若弧AE =弧BE ,∠C =30°,DF =2,求AD 的长.20.(1)计算:(﹣2)2﹣(π﹣3.14)0+8;(2)化简:(x ﹣3)(x+3)+x (2﹣x ).21.甲骑电动车、乙骑摩托车都从M 地出发,沿一条笔直的公路匀速前往N 地,甲先出发一段时间后乙再出发.甲,乙两人到达N 地后均停止骑行,已知M ,N 两地相距1753km ,设甲行驶的时间为x (h ),甲、乙两人之同的距离为y (km ),表示y 与x 函数关系的图象如图所示.请你解决以下问题:(1)求线段BC 所在直线的函数表达式;(2)分别求甲,乙的速度;(3)填空:点A 的坐标是 .22.如图,抛物线y=-x2+4x-1与y轴交于点C,CD∥x轴交抛物线于另一点D,AB∥x轴交抛物线于点A,B,点A在点B的左侧,且两点均在第一象限,BH⊥CD于点H.设点A的横坐标为m.(1)当m=1时,求AB的长.(2)若AH=2(CH-DH),求m的值.23.已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.24.在一次数学考试中,小明有一道选择题(只能在四个选项A、B、C、D中选一个)不会做,便随机选了一个答案;小亮有两道选择题都不会做,他也随机选了两个答案.(1)小明随机选的这个答案,答对的概率是;(2)通过画树状图或列表法求小亮两题都答对概率是多少?(3)这个班数学老师参加集体阅卷,在阅卷的过程中,发现学生的错误率较高.他想:若这10道选择题都是靠随机选择答案,则这10道选择题全对的概率是.25.某公司要购买一种笔记本供员工学习时使用.在甲文具店不管一次购买多少本,每本价格为2元.在乙文具店购买同样的笔记本,一次购买数量不超过20时,每本价格为2.4元;一次购买数量超过20时,超过部分每本价格为1.8元.设在同一家文具店一次购买这种笔记本的数量为x(x为非负整数).(Ⅰ)根据题意,填写下表:一次购买数量(本) 10 20 30 40 …甲文具店付款金额(元) 20 60 …乙文具店付款金额(元) 24 66 …(Ⅱ)设在甲文具店购买这种笔记本的付款金额为1y元,在乙文具店购买这种笔记本的付款金额为2y元,分别写出1y ,2y 关于x 的函数关系式;(Ⅲ)当50x 时,在哪家文具店购买这种笔记本的花费少?请说明理由.【参考答案】***一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C C C B B B D D C AC B 二、填空题13.30或60.14.k≤5且k≠1.15.16516.(﹣2,﹣4) 17.12 18.x <4三、解答题19.(1)见解析;(2)AD =3+1.【解析】【分析】(1)证明∠A =∠C ,∠A =∠E 即可.(2)作FH ⊥AD 于H ,连接OE .只要证明△DFH 是等腰直角三角形即可解决问题.【详解】(1)证明:∵DA =DC ,∴∠A =∠C ,∵∠A =∠E ,∴∠C =∠E .(2)解:作FH ⊥AD 于H ,连接OE .∵弧AE =弧BE ,∴OE ⊥AB ,∴∠AOB =90°,∴∠ADF =45°,∵∠FHD =90°,DF =2,∴HF =HD =1,∵∠A =∠C =30°,FH =1,∠AHF =90°,∴AH =3FH =3,∴AD =AH+DH =3+1.【点睛】本题考查圆周角定理,等腰直角三角形的判定和性质,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.20.(1)3+22;(2)2x ﹣9.【解析】【分析】(1)先计算负整数指数幂,零指数幂,化简二次根式,然后计算加减法;(2)先利用平方差公式和单项式乘多项式去括号,然后计算加减法.【详解】(1)原式=4﹣1+22=3+22.(2)原式=x 2﹣9+2x ﹣x 2=2x ﹣9.【点睛】考查了平方差公式,实数的运算,单项式乘多项式,零指数幂等知识点,熟记计算法则即可解答,属于基础题.21.(1)y =20x ﹣503;(2)甲的速度为30 km/h ,乙的速度为50km/h ;(3)(13,10). 【解析】【分析】(1)根据函数图象中的数据可以求得线段BC 所在直线的函数表达式;(2)根据题意和函数图象中的数据可以求得甲和乙的速度;(3)由(2)的结论可以求得点A 的坐标并写出点A 表示的实际意义【详解】解:(1)设线段BC 所在直线的函数表达式为y =kx+b (k≠0), ∵5,06B ⎛⎫ ⎪⎝⎭,340,23C ⎛⎫ ⎪⎝⎭在直线BC 上, 50634023k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩,得k 2050b 3=⎧⎪⎨=-⎪⎩,即线段BC 所在直线的函数表达式为y =20x ﹣503; (2)设甲的速度为m km/h ,乙的速度为n km/h ,51563631340m 2323n m n ⎧⎛⎫-= ⎪⎪⎪⎝⎭⎨⎛⎫⎪-=+ ⎪⎪⎝⎭⎩,得3050m n =⎧⎨=⎩, 故甲的速度为30 km/h ,乙的速度为50km/h ,(3)点A 的纵坐标是:130103⨯=, 即点A 的坐标为(13,10). 故答案为:(13,10) 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.(1)2;(2)35m =-【解析】【分析】(1)因为A 在抛物线上,则把m=1代入二次函数解析式y=-x 2+4x-1解得y=2,令-x 2+4x-1=2解得的两个根分别是A 、B 两点的横坐标.由于B 点在A 点右边,用B 点横坐标减去A 点横坐标所得的数值就是AB 线段的长度.(2)根据题意以及抛物线的对称性分析可得AB=CH-DH ,若AH=2(CH-DH ),实际上AH=2AB ,此时△ABH 应为等腰直角三角形,∠B 为直角,AB=BH ,用待定系数法设点A 的坐标为(m ,-m 2+4m-1),再利用等腰三角形边比数量关系设出B 点坐标,由于A 、B 两点关于对称轴直线x=2对称,建立方程求解即可得m 的值.【详解】(1)∵m=1,∴A 的横坐标为1,代入y=-x 2+4x-1得,y=2,∴A (1,2),把y=2代入y=-x 2+4x-1得,2=-x 2+4x-1,解得x 1=1,x 2=3,∴B (3,2),∴AB=3-1=2.(2)∵AB ∥x 轴交抛物线于点A ,B ,∴A 、B 两点关于对称轴对称,∴CH-DH=AB ,∵AH=2(CH-DH ),∴AH=2AB,∴22 ABAH=,∴∠BAH=45°,∴AB=BH,由A在抛物线上,则设A(m,-m2+4m-1),则B(-m2+5m,-m2+4m-1).∴对称轴h=()2542(1)2m m m+-+-=⨯-∴整理得,m2-6m+4=0解得,m=3+5或m=3-5又∵A点在对称轴左边∴m<2∴m=3-5【点睛】本题考查了数形结合的思想以及用待定系数法设点的坐标并建立方程求解的能力.23.(1)m≥﹣112;(2)m=2.【解析】【分析】(1)利用判别式的意义得到(2m+3)2﹣4(m2+2)≥0,然后解不等式即可;(2)根据题意x1+x2=2m+3,x1x2=m2+2,由条件得x12+x22=31+x1x2,再利用完全平方公式得(x1+x2)2﹣3x1x2﹣31=0,所以2m+3)2﹣3(m2+2)﹣31=0,然后解关于m的方程,最后利用m的范围确定满足条件的m的值.【详解】(1)根据题意得(2m+3)2﹣4(m2+2)≥0,解得m≥﹣1 12;(2)根据题意x1+x2=2m+3,x1x2=m2+2,因为x1x2=m2+2>0,所以x12+x22=31+x1x2,即(x1+x2)2﹣3x1x2﹣31=0,所以(2m+3)2﹣3(m2+2)﹣31=0,整理得m2+12m﹣28=0,解得m1=﹣14,m2=2,而m≥﹣1 12;所以m =2.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c =0(a≠0)的两根时,1212,b c x x x x a a+=-=.灵活应用整体代入的方法计算. 24.(1)14;(2)116;(3)1014. 【解析】【分析】(1)错误答有3个,除以答案总数4即可(2)根据题意画出树状图即可知道一共有16种情况,选出两题都错的情况,即可解答(3)由(2)可知两题都对的概率为(14)2,10道选择题全对的概率是10个14的乘积 【详解】(1)∵只有四个选项A 、B 、C 、D ,对的只有一项, ∴答对的概率是14 ; 故答案为:14; (2)根据题意画图如下:共有16种等情况数,两题都答对的情况有1种, 则小亮两题都答对概率是116; (3)由(2)得2道题都答对的概率是(14)2,则这10道选择题全对的概率是(14)10=1014. 故答案为:1014. 【点睛】 此题考查概率公式和列表法与树状图法,解题关键在于看懂题中数据25.(Ⅰ)40,80;48,84;(Ⅱ)12y x =;当020x ≤≤时,2 2.4y x =;当20x >时,2 1.812y x =+.(Ⅲ)当5060x ≤<时,有0y <,在甲文具店购买这种笔记本的花费少;当60x >时,有0y >,在乙文具店购买这种笔记本的花费少.【解析】【分析】(Ⅰ)根据题意分别求出付款金额即可;(Ⅱ)根据题意可得y 1的解析式,分别讨论0x 20≤≤时和x>20时,根据题意可得y 2的解析式;(Ⅲ) 记12y y y =-,得出x>50时y 关于x 的解析式,根据一次函数的性质解答即可.【详解】(Ⅰ)20×2=40(元),40×2=80(元),2,4×20=48(元)2,4×20+1.8×(40-20)=84(元)故答案为:40,80;48,84.(Ⅱ)根据题意,得1y 2x =.当0x 20≤≤时,2y 2.4x =;当x 20>时,()2y 2.420 1.8x 20 1.8x 12=⨯+⨯-=+.(Ⅲ)当x 50≥时,记()12y y y 2x 1.8x 120.2x 12=-=-+=-. 当y 0=时,即0.2x 120-=,得x 60=.∴当x 60=时,在这两家文具店购买这种笔记本的花费相同. ∵0.20>,∴y 随x 的增大而增大.∴当50x 60≤<时,有y 0<,在甲文具店购买这种笔记本的花费少; 当x 60>时,有y 0>,在乙文具店购买这种笔记本的花费少.【点睛】本题考查一次函数的实际应用,熟练掌握一次函数的性质是解题关键.。
三角形的重心与内心的关系

三角形的重心与内心的关系在几何学中,三角形是最基本的图形之一。
三角形的三个顶点可以决定其形状和性质。
在研究三角形的性质时,人们发现了三角形的重心和内心之间的关系。
本文将介绍三角形的重心和内心,并探讨它们之间的联系。
一、三角形的重心三角形的重心是三条中线的交点,记为G。
中线是连接一个顶点和对边中点的线段。
三角形有三条中线,它们都会相交于同一点,即重心。
我们用坐标系来简化讨论。
假设三角形的三个顶点分别为A(x1, y1),B(x2, y2),C(x3, y3)。
那么重心G的坐标可以通过以下公式得到:G(xg, yg) = [(x1 + x2 + x3) / 3, (y1 + y2 + y3) / 3]重心的重要性在于它是三角形各个部分的平衡点。
我们可以将三角形看作由无数个质点组成的物体。
这些质点在无外力作用下,会保持平衡。
重心处于三角形中线的交点,所以重心相当于整个三角形的中心位置。
二、三角形的内心三角形的内心是三条角平分线的交点,记为I。
角平分线是连接一个角的顶点和对边的平分线段。
三角形有三条角平分线,它们都会相交于同一点,即内心。
同样地,我们用坐标系来简化讨论。
假设三角形的三个顶点分别为A(x1, y1),B(x2, y2),C(x3, y3)。
那么内心I的坐标可以通过以下公式得到:I(xi, yi) = [(ax1 + bx2 + cx3) / (a + b + c), (ay1 + by2 + cy3) / (a + b + c)]其中,a、b、c分别为三角形的三边长。
内心的重要性在于它与三角形的内角有关。
内角是指三角形的内部角度大小。
内心是三角形内角平分线的交点,所以内心相当于整个三角形内角的中心位置。
三、重心与内心的关系重心和内心是三角形的两个重要点,它们之间有着密切的关系。
具体来说,重心到内心的距离是三角形中线长度的2/3倍。
设GI为重心G到内心I的距离,GM为重心G到中点M的距离(M为三角形任意一边的中点)。
三角形重心的向量公式推导

三角形重心的向量公式推导假设三角形的顶点分别为A、B、C,对应的向量分别为→A、→B、→C。
我们需要推导重心G的向量公式,即→G。
首先,我们要找到三角形三边的中线。
三角形ABG的中线就是通过B 和中点D的线段,其中D是AC边(A和C的中点)。
我们可以使用向量中点公式来表示中点D的向量:→D=(→A+→C)/2同样地,三角形ACG的中线就是通过A和中点E的线段,其中E是BC边(B和C的中点)。
我们可以使用向量中点公式来表示中点E的向量:→E=(→B+→C)/2现在,让我们考虑重心G的位置。
我们知道重心G将中线BD划分成两段,其中一段的长度是另一段的两倍。
让重心G到点B的向量是→GB,那么重心G到点D的向量就是2倍的→GB,即2→GB。
根据重心的定义,重心G到点D的向量→GD和重心G到点E的向量→GE是相等的。
所以,我们可以得到以下的等式:→GD=→GE→GD=→D-→G(向量减法)→GE=→E-→G(向量减法)将向量→D和→E的表达式代入上述等式中,我们得到:→D-→G=→E-→G移项得到:→D-→E=→G-→G根据向量减法和合并同类项,我们得到:→D-→E=→0由于→D-→E=(→A+→C)/2-(→B+→C)/2,这个向量等于0向量,我们可以继续推导:(→A+→C)/2-(→B+→C)/2=→0对上式两边同时乘以2,得到:→A+→C-→B-→C=→0合并同类项,我们得到:→A-→B+→C-→C=→0简化表达式,我们得到:→A-→B=→0即:→A=→B这意味着顶点A和顶点B的向量相等,即两个向量的起点和终点都是相同的顶点。
这个结论意味着三角形的三个顶点A、B、C共线。
这与我们的假设矛盾,因为三角形的定义要求三个顶点不共线。
因此,我们可以得出结论,在一个非共线三角形中,重心的向量公式是:→G=(→A+→B+→C)/3这个公式表示重心的位置是三角形三个顶点向量的和的1/3、例子:点A(1,2),点B(3,5),点C(-2,7)根据公式,我们可以计算重心G的向量:→G=(→A+→B+→C)/3=(1,2)+(3,5)+(-2,7)/3=(2,14)/3=(2/3,14/3)所以,根据我们的计算,给定三角形ABC的顶点坐标为A(1,2),B (3,5),C(-2,7),重心的向量是→G=(2/3,14/3)。
初中数学 如何计算三角形的重心到顶点的距离

初中数学如何计算三角形的重心到顶点的距离
要计算三角形的重心到顶点的距离,我们可以使用以下方法:
1. 确定三角形的顶点坐标:需要明确给定三角形的三个顶点的坐标。
2. 计算三角形的重心坐标:根据三角形的顶点坐标,可以计算出三角形的重心坐标。
重心是三角形的三条中线的交点,可以使用以下公式计算重心坐标:
重心的x坐标= (x1 + x2 + x3) / 3
重心的y坐标= (y1 + y2 + y3) / 3
其中(x1, y1)、(x2, y2)、(x3, y3)为三角形的顶点坐标。
3. 计算重心到顶点的距离:根据重心坐标和顶点坐标,可以计算出重心到顶点的距离。
假设重心的坐标为(Gx, Gy),顶点的坐标为(Px, Py),则重心到顶点的距离可以使用以下公式计算:
距离= √((Gx - Px)² + (Gy - Py)²)
需要注意的是,计算重心到顶点的距离需要先求出三角形的重心坐标。
重心是三角形的中线的交点,可以通过计算顶点坐标来求得。
总结起来,计算三角形的重心到顶点的距离可以通过计算三角形的重心坐标和顶点坐标,然后使用距离公式计算出距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的重心公式
三角形的重心公式是指在一个三角形中,连接三角形的三个顶点与其对边中点的线段交于一点,这个点被称为三角形的重心。
重心公式可以用来求解三角形的重心坐标,它是三角形的一个重要性质。
三角形的重心公式可以表示为:
重心坐标:G = (xg, yg)
其中,xg = (x1 + x2 + x3) / 3,yg = (y1 + y2 + y3) / 3
其中,(x1, y1),(x2, y2),(x3, y3)为三角形的三个顶点坐标。
三角形的重心公式可以通过几何推导来证明。
假设三角形的三个顶点坐标依次为A(x1, y1),B(x2, y2),C(x3, y3)。
连接三角形的三个顶点与其对边中点的线段,分别为AM、BN和CP。
根据中点定理可知,AM = 1/2 * BC,BN = 1/2 * AC,CP = 1/2 * AB。
根据向量的加法和数量积的性质,可以得到向量AM、BN和CP的坐标分别为:
AM = (x2 + x3)/2 - x1, (y2 + y3)/2 - y1
BN = (x3 + x1)/2 - x2, (y3 + y1)/2 - y2
CP = (x1 + x2)/2 - x3, (y1 + y2)/2 - y3
由于AM、BN和CP分别是向量AC、AB和BC的一半,因此它们的方向与AC、AB和BC相同。
根据向量的性质,可以得到三角形重心G
的坐标为:
G = A + AM + BN + CP
= (x1, y1) + (x2 + x3)/2 - x1, (y2 + y3)/2 - y1 + (x3 + x1)/2 - x2, (y3 + y1)/2 - y2 + (x1 + x2)/2 - x3, (y1 + y2)/2 - y3
= ((x1 + x2 + x3)/3, (y1 + y2 + y3)/3)
由此可得,三角形的重心坐标为G = ((x1 + x2 + x3)/3, (y1 + y2 + y3)/3)。
三角形的重心公式在几何学中有着广泛的应用。
重心是一个三角形的重要性质,它可以帮助我们确定三角形的中心位置。
在计算机图形学中,重心公式可以用来对三角形进行变换和渲染。
在工程学中,重心公式可以用来计算三角形的质心,从而确定物体的平衡和稳定性。
在地理学中,重心公式可以用来计算地理区域的中心位置。
三角形的重心公式是一个重要的几何性质,它可以帮助我们确定三角形的重心坐标。
通过重心公式,我们可以更好地理解和应用三角形的性质,从而解决各种实际问题。