高中数学中的三角形面积

合集下载

高中数学人教A版必修第一章《三角形面积的计算》课件

高中数学人教A版必修第一章《三角形面积的计算》课件
(1)求sinC的值;
(2)若 a7, 求 AB的 C面 . 积
(1)在ABC中,因为 A60。 ,c 3a, 7
所以由正弦定理得
sinC csinA 3 3 3 3
a
7 2 14
(2)因为a 7,所以c 37 3 7
由余弦定a理2 b2 c2 2bccosA得
72 b2 32 2b31,b 8或b ( 5 舍.) 2
作业
“课时跟踪检测相关题目”
a=2Rsin A,b=2Rsin B,c=2Rsin C;
思想:特殊到一般的思想理解正弦定理;
考法(一) 求三角形面积
(1)求 cos A; 对于面积公式 S=absin C=acsin B=bcsin A,一般是已知哪一个角就使用哪一个公式.
难点:面积公式的应用. 考法(一) 求三角形面积
考法(一)直接求三角形的面积.解这类题只需求出三角形的两边及其夹角代入公式即可.
三角形面积 的计算(一)
学习目标: 1.掌握三角形面积的计算公式,并会应用;
2.通过利用正、余弦定理及面积计算公式解斜三角形的复习, 提高学生的运算求解能力.
重点:求三角形面积;结合面积公式解三角形;
难点:面积公式的应用.
核心素养:数学运算;逻辑推理
一、“基础知识”掌握牢
1.正、余弦定理的内容及其变形 设 R 为△ABC 的外接圆半径,则
难点:面积公式的应用.
解析:由正弦定理可得 2.通过利用正、余弦定理及面积计算公式解斜三角形的复习,
难点:面积公式的应用.
提高学生的运算求解能力.
运用方程思想解决问题.
a=2Rsin A,b=2Rsin B,c=2Rsin C;
a b a+b+c 运用方程思想解决问题. 2 3 考法(一)直接求三角形的面积.解这类题只需求出三角形的两边及其夹角代入公式即可. sin A=sin B=sin A+sin B+sin C= 3 , 难点:面积公式的应用.

高中数学 第二章 解三角形 2_1_1_2 正弦定理的变形及三角形面积公式课件 北师大版必修5

高中数学 第二章 解三角形 2_1_1_2 正弦定理的变形及三角形面积公式课件 北师大版必修5

课堂探究 互动讲练 类型一 正弦定理的变形应用 [例 1] 在△ABC 中,B=30°,C=45°,c=1,求 b 及△ABC 外接圆的半径 R.
【解析】 已知 B=30°,C=45°,c=1,
由正弦定理,得sibnB=sincC=2R, 所以 b=cssiinnCB=1×sinsi4n53°0°= 22,
a2+b2-2abcosπ3=7, 所以a2+b2-ab=7,即(a+b)2-3ab=7, 所以(a+b)2=25,所以a+b=5.
方法归纳
(1)本题采用了整体代换的思想,把a+b,ab作为整体,求解
过程既方便又灵活.
(2)三角形面积公式有多种形式,根据题中的条件选择最合适
的面积公式.在解三角形中通常选用S=

40 6+
2=10(
6-
2) (km).
即 C 到灯塔 A 的距离为 10( 6- 2) km.
方法归纳
解三角形应用题常见的两种情况 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个 三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及两个(或两个 以上)三角形,这时需作出这些三角形,先解够条件的三角形,然 后逐步求出其他三角形中的解,有时需设出未知量,从几个三角 形中列出方程,解方程得出所要求的解.
(2)若 c= 7,且△ABC 的面积为323,求 a+b 的值.
【解析】
(1)因为
3a=2csinA,所以sianA=
2c 3.
由正弦定理知sianA=sincC,
所以sincC= 2c3,所以sinC=
3 2.
因为△ABC是锐角三角形,所以C=π3.
(2)因为c= 7,C=π3,

高中数学必修5解三角形面积相关精选题目(附答案)

高中数学必修5解三角形面积相关精选题目(附答案)

高中数学必修5解三角形面积相关精选题目(附答案)三角形的面积公式(1)S =12a ·h a (h a 表示a 边上的高).(2)S =12ab sin C =12bc sin A =12ac sin B .题型一:三角形面积的计算1.(2017·北京高考)在△ABC 中,∠A =60°,c =37a .(1)求sin C 的值;(2)若a =7,求△ABC 的面积.2.△ABC 中,若a ,b ,c 的对角分别为A ,B ,C ,且2A =B +C ,a =3,△ABC 的面积S △ABC =32,求边b 的长和B 的大小. 题型二:与三角形有关的综合问题(一):与三角形面积有关的综合问题3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知3cos(B -C )-1=6cos B cos C . (1)求cos A ;(2)若a =3,△ABC 的面积为22,求b ,c . (二):三角形中的最值问题4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设S 为△ABC 的面积,满足S =34(a 2+b 2-c 2). (1)求角C 的大小;(2)求sin A +sin B 的最大值.巩固练习:1.在△ABC 中,A =60°,AB =1,AC =2,则S △ABC 的值为( ) A.12 B.32C.3D .232.如果等腰三角形的周长是底边长的5倍,则它的顶角的余弦值为( ) A .-78B.78C .-87D.873.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的大小为( )A .135°B .45°C .60°D .120°4.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为________.5.如图,在△ABC 中,已知B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,则AB =________.6.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为________.7.△ABC 的周长为20,面积为103,A =60°,则BC 的边长等于( ) A .5B .6C .7D .88.在△ABC 中,若b =2,A =120°,其面积S =3,则△ABC 外接圆的半径为( ) A.3 B .2 C .23 D .49.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝⎛⎭⎫152,+∞ B .(10,+∞) C .(0,10)D.⎝⎛⎦⎤0,403 10.(2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2.(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b .11.如图,在△ABC 中,已知B =π3,AC =43,D 为BC 边上一点.(1)若AD =2,S △DAC =23,求DC 的长; (2)若AB =AD ,试求△ADC 的周长的最大值.参考答案:1.[解] (1)在△ABC 中,因为∠A =60°,c =37a ,所以由正弦定理得sin C =c sin A a =37×32=3314.(2)因为a =7,所以c =37×7=3.由余弦定理a 2=b 2+c 2-2bc cos A , 得72=b 2+32-2b ×3×12,解得b =8或b =-5(舍去). 所以△ABC 的面积S =12bc sin A =12×8×3×32=6 3. 2.解:∵A +B +C =180°,又2A =B +C ,∴A =60°. ∵S △ABC =12bc sin A =32,sin A =32,∴bc =2.①又由余弦定理得3=b 2+c 2-2bc cos A =b 2+c 2-2×2×12,即b 2+c 2=5.② 解①②可得b =1或2.由正弦定理知a sin A =b sin B ,∴sin B =b sin A a =b2.当b =1时,sin B =12,B =30°;当b =2时,sin B =1,B =90°.3.解:(1)由3cos(B -C )-1=6cos B cos C , 得3(cos B cos C -sin B sin C )=-1, 即cos(B +C )=-13,从而cos A =-cos(B +C )=13.(2)由于0<A <π,cos A =13,所以sin A =223.又S △ABC =22,即12bc sin A =22,解得bc =6.由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2+c 2=13,解方程组⎩⎪⎨⎪⎧ bc =6,b 2+c 2=13,得⎩⎪⎨⎪⎧ b =2,c =3或⎩⎪⎨⎪⎧b =3,c =2.4.解:(1)由题意可知 12ab sin C =34×2ab cos C . 所以tan C = 3. 因为0<C <π,所以C =π3.(2)由(1)知sin A +sin B =sin A +sin ⎝⎛⎭⎫π-A -π3 =sin A +sin ⎝⎛⎭⎫2π3-A =sin A +32cos A +12sin A =3sin ⎝⎛⎭⎫A +π6≤3⎝⎛⎭⎫0<A <2π3. 当A =π3时,即△ABC 为等边三角形时取等号,所以sin A +sin B 的最大值为 3. 巩固练习:1.解析:选B S △ABC =12AB ·AC ·sin A =32.2.解析:选B 设等腰三角形的底边长为a ,顶角为θ,则腰长为2a ,由余弦定理得,cos θ=4a 2+4a 2-a 28a 2=78.3.解析:选B ∵S =14(a 2+b 2-c 2)=12ab sin C ,由余弦定理得:sin C =cos C ,∴tan C =1.又0°<C <180°,∴C =45°.4.解析:∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C =12×32×23×223=4 3.5.解析:在△ADC 中,cos C =AC 2+DC 2-AD 22·AC ·DC =72+32-522×7×3=1114.又0°<C <180°,∴sin C =5314. 在△ABC 中,AC sin B =ABsin C,∴AB =sin C sin B ·AC =5314×2×7=562.6.解析:不妨设b =2,c =3,cos A =13,则a 2=b 2+c 2-2bc ·cos A =9,∴a =3. 又∵sin A =1-cos 2 A =223,∴外接圆半径为R =a 2sin A =32·223=928.7.解析:选C 如图,由题意得 ⎩⎪⎨⎪⎧a +b +c =20,12bc sin 60°=103,a 2=b 2+c 2-2bc cos 60°,则bc =40,a 2=b 2+c 2-bc =(b +c )2-3bc =(20-a )2-3×40, ∴a =7.8.解析:选B ∵S =12bc sin A ,∴3=12×2c sin 120°, ∴c =2,∴a =b 2+c 2-2bc cos A =4+4-2×2×2×⎝ ⎛⎭⎪⎫-12=23,设△ABC 外接圆的半径为R ,∴2R =a sin A =2332=4,∴R =2.9.解析:选D ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403.10.解:(1)由题设及A +B +C =π得sin B =8sin 2B 2,即sin B =4(1-cos B ), 故17cos 2B -32cos B +15=0, 解得cos B =1517,cos B =1(舍去).(2)由cos B =1517,得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6得 b 2=a 2+c 2-2ac cos B=(a +c )2-2ac (1+cos B ) =36-2×172×⎝⎛⎭⎫1+1517 =4. 所以b =2.11.解:(1)∵S △DAC =23, ∴12·AD ·AC ·sin ∠DAC =23, ∴sin ∠DAC =12.∵∠DAC <∠BAC <π-π3=2π3,∴∠DAC =π6.在△ADC 中,由余弦定理得 DC 2=AD 2+AC 2-2AD ·AC cos π6,∴DC 2=4+48-2×2×43×32=28, ∴DC =27.(2)∵AB =AD ,B =π3,∴△ABD 为正三角形.在△ADC 中,根据正弦定理,可得 AD sin C =43sin2π3=DCsin ⎝⎛⎭⎫π3-C , ∴AD =8sin C ,DC =8sin ⎝⎛⎭⎫π3-C , ∴△ADC 的周长为AD +DC +AC =8sin C +8sin ⎝⎛⎭⎫π3-C +43 =8⎝⎛⎭⎫sin C +32cos C -12sin C +43 =8⎝⎛⎭⎫12sin C +32cos C +43=8sin ⎝⎛⎭⎫C +π3+43, ∵∠ADC =2π3,∴0<C <π3,∴π3<C +π3<2π3,∴当C +π3=π2,即C =π6时,△ADC 的周长取得最大值,且最大值为8+4 3.。

高中数学新人教A版必修5课件:第一章解三角形1.2应用举例第二课时正、余弦定理在三角形中的应用

高中数学新人教A版必修5课件:第一章解三角形1.2应用举例第二课时正、余弦定理在三角形中的应用

3 ,则∠BDC= π 或 2π .
62
33
3
又由 DA=DC,则 A= π 或 π . 63
(2)若△BCD的面积为 1 ,求边AB的长.
6
解:(2)由于 B= π ,BC=1,△BCD 的面积为 1 ,
4
6
则 1 BC·BD·sin π = 1 ,解得 BD= 2 .
2
46
3
由余弦定理得 CD2=BC2+BD2-2BC·BD·cos π =1+ 2 -2× 2 × 2 = 5 ,故 CD= 5 .
2
2
2
关系,又由正弦值还可求出余弦值,这就可以与余弦定理建立关系,另外面积公式中有两边
的乘积,在余弦定理中也有,所以面积公式、正弦定理和余弦定理之间可以相互变换,关键是
根据题中的条件选择正确的变换方向.
即时训练 1-1:在△ABC 中,已知 AB=2,AC=2 2 ,cos B= 1 . 3
(1)求sin C的值;
3
3
3
所以 sin(B+C)= 2 10 + 2 , 99
所以 sin A= 2 10 + 2 , 99
因为 AB=2,AC=2 2 ,
因为 S= 1 AB·AC·sin A,所以 S= 8 5 4 2 .
2
9
题型二 平面图形中线段长度的计算
【例2】 如图,在平面四边形ABCD中,AD=1,CD=2,AC= 7 . (1)求cos∠CAD的值;
49
3 29
3
又 AB=AD+BD=CD+BD= 5 + 2 = 2 5 ,
33
3
故边 AB 的长为 2 5 . 3

海伦公式求三角形面积推导

海伦公式求三角形面积推导

海伦公式求三角形面积推导面向小学生的文章《神奇的海伦公式,轻松求三角形面积》小朋友们,今天我们来一起探索一个超有趣的数学知识——海伦公式,它能帮我们轻松算出三角形的面积哟!比如说,有一个三角形,它的三条边分别是 3 厘米、4 厘米和 5 厘米。

我们可以用海伦公式来算算它的面积。

那什么是海伦公式呢?其实很简单啦,就是先算出半周长,也就是三条边相加再除以 2。

这个三角形的半周长就是(3 + 4 + 5)÷ 2 = 6 厘米。

然后呢,用这个半周长去乘以半周长分别减去三条边的差,再开平方,就是三角形的面积啦。

是不是很神奇?大家快来试试吧!《小朋友也能懂的海伦公式推导》小朋友们,咱们一起来玩个数学游戏!今天要讲的是海伦公式,它能让我们知道三角形的面积有多大。

比如说,有一个三角形,就像我们的三角板那样。

它的三条边长度都不一样。

那怎么知道它的面积呢?这时候海伦公式就来帮忙啦!我们先把三条边的长度加起来,然后除以 2,这就得到了一个很重要的数。

接着,我们用这个数去做一些有趣的计算,就能算出三角形的面积啦!就像我们做拼图游戏一样,一步一步来,就能拼出漂亮的图案,也就是算出三角形的面积。

大家加油,看看谁能最先学会用海伦公式!《轻松学会海伦公式,计算三角形面积》小朋友们,你们知道吗?有一种神奇的公式可以算出三角形的面积,它叫海伦公式。

假设我们有一个三角形,它的三条边就像三根小木棒,长度分别是 2 厘米、3 厘米和 4 厘米。

我们先用 2 + 3 + 4 = 9 厘米,然后除以 2 得到 4.5 厘米。

这4.5 厘米可重要啦!是不是很像变魔术?大家快来试试,用这个魔法公式算出更多三角形的面积吧!《探索海伦公式,算出三角形面积的秘密》小朋友们,今天咱们要一起去探索一个数学的小秘密,那就是海伦公式怎么算出三角形的面积。

想象一下,我们有一个三角形的花园,三条边的长度不太一样。

我们想要知道这个花园有多大,这时候海伦公式就派上用场啦!先把三条边的长度加起来除以 2,得到一个数。

高中数学知识点总结(第四章 三角函数、解三角形 第七节 正弦定理和余弦定理)

高中数学知识点总结(第四章 三角函数、解三角形 第七节 正弦定理和余弦定理)

第七节 正弦定理和余弦定理一、基础知识 1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ; (4)a +b +c sin A +sin B +sin C =a sin A. 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C . 3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高);(2)S △ABC =12ab sin C =12bc sin A =12ac sin B ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二、常用结论汇总——规律多一点 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)(2019·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B为锐角,∴cos B =1-sin 2B =223. (2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6,又∵C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即3sin 2π3=b sinπ6,解得b =1. [答案] (1)223 (2)1考法(二) 余弦定理解三角形[典例] (1)(2019·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(2018·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b2c -a=sin Asin B +sin C,则角B =________.[解析](1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac=c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b 2c -a =sin A sin B +sin C =ab +c, ∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac ,∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[题组训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24B .-24C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin Aa =2×222=12, 又0<C <π4,所以C =π6.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.解:(1)由正弦定理可得b 2+c 2=a 2+bc ,由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C 得c =a sin C sin A=3×3+2232×6=1+263.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] (1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.[答案] (1)B (2)C[变透练清] 1.变条件若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,所以△ABC 是钝角三角形. 答案:钝角三角形 2.变条件若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形. 答案:等腰或直角三角形 3.变条件若本例(2)条件改为“cos A cos B =ba=2”,那么△ABC 的形状为________.解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又因为A ,B ∈(0,π),所以2A =π-2B ,即A +B =π2,所以C =π2,于是△ABC是直角三角形.答案:直角三角形[课时跟踪检测]A 级1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(2018·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =ac ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D.6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(2019·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C+c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6. 6.(2019·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A.5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =ACsin B ,即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sinB ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16,∴c =4. 答案:49.(2018·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sinB =________,c =________.解析:由正弦定理a sin A =bsin B ,得sin B =b a ·sin A =27×32=217.由余弦定理a 2=b 2+c 2-2bc cos A , 得7=4+c 2-4c ×cos 60°,即c 2-2c -3=0,解得c =3或c =-1(舍去). 答案:2173 10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.解析:因为sin A ,sin B ,sin C 成等差数列,所以2sin B =sin A +sin C .由正弦定理得a +c =2b ,又因为a =2c ,可得b =32c ,所以cos A =b 2+c 2-a 22bc=94c 2+c 2-4c 22×32c 2=-14.答案:-1411.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.解:(1)证明:因为A =2B ,所以由正弦定理a sin A =b sin B ,得a sin 2B =bsin B ,所以a =2b cos B .(2)由余弦定理,a 2=b 2+c 2-2bc cos A , 因为b =2,c =4,A =2B ,所以16c os 2B =4+16-16cos 2B ,所以c os 2B =34,因为A +B =2B +B <π,所以B <π3,所以cos B =32,所以B =π6.12.(2019·绵阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,结合正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 又由余弦定理,得a 2=b 2+c 2-2bc cos A , 所以bc =-2bc cos A ,即cos A =-12.由于A 为△ABC 的内角,所以A =2π3.(2)由已知2a sin A =(2b +c )sin B +(2c +b )sin C ,结合正弦定理,得2sin 2A =(2sin B +sin C )sin B +(2sin C +sin B )sin C , 即sin 2A =sin 2B +sin 2C +sin B sin C =sin 22π3=34.又由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1,所以sin B sin C =14,结合sin B +sin C =1,解得sin B =sin C =12.因为B +C =π-A =π3,所以B =C =π6,所以△ABC 是等腰三角形.B 级1.(2019·郑州质量预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D .6解析:选A 由2c os 2A +B2-cos 2C =1,得1+c os(A +B )-(2c os 2C -1)=2-2c os 2C -cos C =1,即2c os 2C +cos C -1=0,解得cos C =12或cos C =-1(舍去).由4sin B =3sin A及正弦定理,得4b =3a ,结合a -b =1,得a =4,b =3.由余弦定理,知c 2=a 2+b 2-2ab cos C =42+32-2×4×3×12=13,所以c =13.2.(2019·长春模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n Cc,若sin(A -B )+sin C =2sin 2B ,则a +b =________. 解析:∵2sin A a =t a n C c =sin C c cos C ,且由正弦定理可得a =2R sin A ,c =2R sin C (R 为△ABC的外接圆的半径),∴cos C =12.∵C ∈(0,π),∴C =π3.∵sin(A -B )+sin C =2sin 2B ,sin C =sin(A +B ),∴2sin A cos B =4sin B cos B .当cos B =0时,B =π2,则A =π6,∵c =3, ∴a =1,b =2,则a +b =3.当cos B ≠0时,sin A =2sin B ,即a =2b .∵cos C =a 2+b 2-c 22ab =12,∴b 2=1,即b =1,∴a =2,则a +b =3.综上,a +b =3.答案:33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解:(1)2a cos C -c =2b ⇒2sin A cos C -sin C =2sin B ⇒2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C , ∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3.(2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A ,∴sin ∠ADB =AB sin A BD =22.又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,b =c =2,由余弦定理,得a 2=c 2+b 2-2c ·b ·cos A =(2)2+(2)2-2×2×2c os 2π3=6,∴a = 6.第二课时 正弦定理和余弦定理(二) 考点一 有关三角形面积的计算[典例] (1)(2019·广州调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos B =34,则△ABC 的面积等于( )A .37 B.372C .9D.92(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若△ABC 的面积为34(a 2+c 2-b 2),则B =________.[解析] (1)法一:由余弦定理b 2=a 2+c 2-2ac cos B ,代入数据,得a =3,又cos B =34,B ∈(0,π),所以sin B =74,所以S △ABC =12ac sin B =372. 法二:由cos B =34,B ∈(0,π),得sin B =74,由正弦定理b sin B =csin C 及b =7,c =4,可得sin C =1,所以C =π2,所以sin A =cos B =34,所以S △ABC =12bc sin A =372.(2)由余弦定理得cos B =a 2+c 2-b 22ac ,∴a 2+c 2-b 2=2ac cos B . 又∵S =34(a 2+c 2-b 2),∴12ac sin B =34×2ac cos B , ∴t a n B =3,∵B ∈()0,π,∴B =π3.[答案] (1)B (2)π3[变透练清] 1.变条件本例(1)的条件变为:若c =4,sin C =2sin A ,sin B =154,则S △ABC =________. 解析:因为sin C =2sin A ,所以c =2a ,所以a =2,所以S △ABC =12ac sin B =12×2×4×154=15.答案:15 2.变结论本例(2)的条件不变,则C 为钝角时,ca的取值范围是________.解析:∵B =π3且C 为钝角,∴C =2π3-A >π2,∴0<A <π6 .由正弦定理得ca =sin ⎝⎛⎭⎫2π3-A sin A=32cos A +12sin A sin A =12+32·1t a n A.∵0<t a n A <33,∴1t a n A>3, ∴c a >12+32×3=2,即ca >2. 答案:(2,+∞)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.解:(1)由已知及正弦定理得(2sin B -sin A )cos C =sin C cos A , 即2sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sin B , ∵B ∈(0,π),∴sin B >0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由(1)知,C =π3,故S =12ab sin C =12ab sin π3=433,解得ab =163.由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab , 又c =3,∴(a +b )2=c 2+3ab =32+3×163=25,得a +b =5.∴△ABC 的周长为a +b +c =5+3=8.[解题技法]1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 考点二 平面图形中的计算问题[典例] (2018·广东佛山质检)如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1. (1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CAD .[解] (1)在△ABC 中,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·c os ∠ABC , 即5=1+BC 2+2BC ,解得BC =2,所以△ABC 的面积S △ABC =12AB ·BC ·sin ∠ABC =12×1×2×22=12.(2)设∠CAD =θ,在△ACD 中,由正弦定理得AC sin ∠ADC =CDsin ∠CAD ,即AC sin π6=4sin θ, ① 在△ABC 中,∠BAC =π2-θ,∠BCA =π-3π4-⎝⎛⎭⎫π2-θ=θ-π4, 由正弦定理得AC sin ∠ABC =ABsin ∠BCA ,即AC sin 3π4=1sin ⎝⎛⎭⎫θ-π4,② ①②两式相除,得sin 3π4sin π6=4sin ⎝⎛⎭⎫θ-π4sin θ,即4⎝⎛⎭⎫22sin θ-22cos θ=2sin θ,整理得sin θ=2cos θ. 又因为sin 2θ+c os 2θ=1,所以sin θ=255,即sin ∠CAD =255.[解题技法]与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.[题组训练]1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.解析:设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a 3. 在△ABD 中,c os ∠ADB =a 2+4a 23-a22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63. 在△BDC 中,BD sin C =BCsin ∠BDC, ∴sin C =BD ·sin ∠BDC BC =66.答案:662.如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列.(1)求sin ∠CED ; (2)求BE 的长. 解:设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列, 所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·c os ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0, 解得CD =2(CD =-3舍去). 在△CDE 中,由正弦定理得EC sin ∠EDC =CDsin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α,所以c os ∠AEB =c os ⎝⎛⎭⎫2π3-α=c os 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,c os ∠AEB =EA BE =2BE =714,所以BE =47.考点三 三角形中的最值、范围问题[典例] (1)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin 2A ,则角A 的取值范围为( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π4 C.⎣⎡⎦⎤π6,π4D.⎣⎡⎦⎤π6,π3(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A +cos 2B =2cos 2C ,则cos C 的最小值为( )A.32B.22C.12D .-12[解析] (1)在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin 2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b=2a ,所以A 为锐角.又因为sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. (2)因为cos 2A +cos 2B =2cos 2C ,所以1-2sin 2A +1-2sin 2B =2-4sin 2C ,得a 2+b 2=2c 2,cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12,当且仅当a =b 时等号成立,故选C. [答案] (1)B (2)C[解题技法]1.三角形中的最值、范围问题的解题策略解与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角取值范围等求解即可.2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解, 已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.[题组训练]1.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A = b sin A ,则sin A +sin C 的最大值为( )A.2B.98C .1D.78解析:选B ∵a cos A =b sin A ,由正弦定理可得,sin A cos A =sin B sin A ,∵sin A ≠0,∴cos A =sin B ,又B 为钝角,∴B =A +π2,sin A +sin C =sin A +sin(A +B )=sin A +cos 2A =sin A +1-2sin 2A =-2⎝⎛⎭⎫sin A -142+98,∴sin A +sin C 的最大值为98. 2.(2018·哈尔滨三中二模)在△ABC 中,已知c =2,若sin 2A +sin 2B -sin A sin B =sin 2C ,则a +b 的取值范围为________.解析:∵sin 2A +sin 2B -sin A sin B =sin 2C ,∴a 2+b 2-ab =c 2,∴cos C =a 2+b 2-c 22ab =12,又∵C ∈(0,π),∴C =π3.由正弦定理可得a sin A =b sin B =2sin π3=433,∴a =433sin A ,b =433sin B .又∵B =2π3-A ,∴a +b =433sin A +433sin B =433sin A +433sin ⎝⎛⎭⎫2π3-A =4sin ⎝⎛⎭⎫A +π6.又∵A ∈⎝⎛⎭⎫0,2π3,∴A +π6∈⎝⎛⎭⎫π6,5π6,∴sin ⎝⎛⎭⎫A +π6∈⎝⎛⎦⎤12,1,∴a +b ∈(2,4]. 答案:(2,4]3.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos B b +cos C c =sin A 3sin C .(1)求b 的值;(2)若cos B +3sin B =2,求△ABC 面积的最大值.解:(1)由题意及正、余弦定理得a 2+c 2-b 22abc +a 2+b 2-c 22abc =3a 3c ,整理得2a 22abc =3a3c ,所以b = 3.(2)由题意得cos B +3sin B =2sin ⎝⎛⎭⎫B +π6=2, 所以sin ⎝⎛⎭⎫B +π6=1, 因为B ∈(0,π),所以B +π6=π2,所以B =π3.由余弦定理得b 2=a 2+c 2-2ac cos B , 所以3=a 2+c 2-ac ≥2ac -ac =ac , 即ac ≤3,当且仅当a =c =3时等号成立. 所以△ABC 的面积S △ABC =12ac sin B =34ac ≤334,当且仅当a =c =3时等号成立.故△ABC 面积的最大值为334.考点四 解三角形与三角函数的综合应用考法(一) 正、余弦定理与三角恒等变换[典例] (2018·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 b sin A =ac os ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. [解] (1)在△ABC 中,由正弦定理a sin A =b sin B ,可得b sin A =a sin B .又因为b sin A =ac os ⎝⎛⎭⎫B -π6, 所以a sin B =ac os ⎝⎛⎭⎫B -π6, 即sin B =32cos B +12sin B , 所以t a n B = 3.因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =ac os ⎝⎛⎭⎫B -π6,可得sin A =37. 因为a <c ,所以cos A =27. 所以sin 2A =2sin A cos A =437,cos 2A =2c os 2A -1=17.所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314. 考法(二) 正、余弦定理与三角函数的性质[典例] (2018·辽宁五校联考)已知函数f (x )=c os 2x +3sin(π-x )c os(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.[解] (1)f (x )=c os 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,又∵x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π. (2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又∵b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.[对点训练]在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值.解:(1)因为(2a -c )cos B -b cos C =0, 所以2a cos B -c cos B -b cos C =0, 由正弦定理得2sin A cos B -sin C cos B -cos C sin B =0, 即2sin A cos B -sin(C +B )=0,又因为C +B =π-A ,所以sin(C +B )=sin A . 所以sin A (2cos B -1)=0.在△ABC 中,sin A ≠0,所以cos B =12,又因为B ∈(0,π),所以B =π3.(2)因为B =π3,所以f (x )=12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3, 令2x -π3=2k π+π2(k ∈Z),得x =k π+5π12(k ∈Z),即当x =k π+5π12(k ∈Z)时,f (x )取得最大值1.[课时跟踪检测]A 级1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则 △ABC 的面积为( )A.12 B.14C .1D .2解析:选A 由cos 2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC 的面积S =12bc sin A =12×2×12=12.2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若(2a +c )cos B +b cos C =0,则角B 的大小为( )A.π6 B.π3C.2π3D.5π6解析:选C 由已知条件和正弦定理,得(2sin A +sin C )cos B +sin B cos C =0.化简,得2sin A cos B +sin A =0.因为角A 为三角形的内角,所以sin A ≠0,所以cos B =-12,所以B =2π3. 3.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3,S △ABC =22,则b 的值为( )A .6B .3C .2D .2或3解析:选D 因为S △ABC =12bc sin A =22,所以bc =6,又因为sin A =223,A ∈⎝⎛⎭⎫0,π2, 所以cos A =13,因为a =3,所以由余弦定理得9=b 2+c 2-2bc cos A =b 2+c 2-4,b 2+c 2=13,可得b =2或b =3. 4.(2018·昆明检测)在△ABC 中,已知AB =2,AC =5,t a n ∠BAC =-3,则BC 边上的高等于( )A .1 B.2 C.3D .2解析:选A 法一:因为t a n ∠BAC =-3,所以sin ∠BAC =310,c os ∠BAC =-110.由余弦定理,得BC 2=AC 2+AB 2-2AC ·ABc os ∠BAC =5+2-2×5×2×⎝⎛⎭⎫-110=9,所以BC =3,所以S △ABC =12AB ·AC sin ∠BAC =12×2×5×310=32,所以BC 边上的高h =2S △ABCBC =2×323=1.法二:在△ABC 中,因为t a n ∠BAC =-3<0,所以∠BAC 为钝角,因此BC 边上的高小于2,结合选项可知选A.5.(2018·重庆九校联考)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,且a sin B =3b cos A ,当b +c =4时,△ABC 面积的最大值为( )A.33B.32C.3D .23解析:选C 由a sin B =3b cos A ,得sin A sin B =3sin B cos A ,∴t a n A =3,∵0<A <π,∴A =π3,故S △ABC =12bc sin A =34bc ≤34⎝⎛⎭⎫b +c 22=3(当且仅当b =c =2时取等号),故选C.6.(2019·安徽名校联盟联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( )A .2+3B .2+2C .3D .3+2解析:选A 由b +2c cos A =0,得b +2c ·b 2+c 2-a 22bc =0,整理得2b 2=a 2-c 2.由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+3c 24ac ≥23ac 4ac =32,当且仅当a =3c 时等号成立,此时角B 取得最大值,将a =3c 代入2b 2=a 2-c 2可得b =c .又因为bc =1,所以b =c =1,a =3,故△ABC 的周长为2+ 3.7.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:由余弦定理知72=52+BC 2-2×5×BC ×cos 120°, 即49=25+BC 2+5BC ,解得BC =3(负值舍去). 故S △ABC =12AB ·BC sin B =12×5×3×32=1534.答案:15348.(2019·长春质量检测)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若 12b cos A =sin B ,且a =23,b +c =6,则△ABC 的面积为________.解析:由题意可知cos A 2=sin B b =sin Aa ,因为a =23,所以t a n A =3,因为0<A <π,所以A =π3,由余弦定理得12=b 2+c 2-bc =(b +c )2-3bc ,又因为b +c =6,所以bc =8,从而△ABC 的面积为12bc sin A =12×8×sin π3=2 3.答案:239.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠BAC =π2,点D 在边BC上,AD =1,且BD =2DC ,∠BAD =2∠DAC ,则sin Bsin C=________.解析:由∠BAC =π2及∠BAD =2∠DAC ,可得∠BAD =π3,∠DAC =π6.由BD =2DC ,令DC =x ,则BD =2x .因为AD =1,在△ADC 中,由正弦定理得1sin C =x sin π6,所以sin C =12x,在△ABD 中,sin B =sin π32x =34x ,所以sin B sin C =34x 12x=32.答案:3210.(2018·河南新乡二模)如图所示,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,若DE =22,则cos A =________.解析:∵AD =DB ,∴∠A =∠ABD ,∠BDC =2∠A .设AD =DB =x , ∴在△BCD 中,BC sin ∠BDC =DB sin C,可得4sin 2A =xsin π3. ①在△AED 中,DE sin A =AD sin ∠AED ,可得22sin A =x1. ② 联立①②可得42sin A cos A =22sin A 32,解得cos A =64.答案:6411.(2019·南宁摸底联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知 c (1+cos B )=b (2-cos C ).(1)求证:2b =a +c ;(2)若B =π3,△ABC 的面积为43,求b .解:(1)证明:∵c (1+cos B )=b (2-cos C ),∴由正弦定理可得sin C +sin C cos B =2sin B -sin B cos C , 即sin C cos B +sin B cos C +sin C =sin(B +C )+sin C =2sin B , ∴sin A +sin C =2sin B ,∴a +c =2b .(2)∵B =π3,∴△ABC 的面积S =12ac sin B =34ac =43,∴ac =16.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =(a +c )2-3ac . ∵a +c =2b ,∴b 2=4b 2-3×16,解得b =4. 12.在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长; (2)求c os ⎝⎛⎭⎫A -π6的值. 解:(1)因为cos B =45,0<B <π,所以sin B =35.由正弦定理得AC sin B =AB sin C ,所以AB =AC ·sin Csin B =6×2235=5 2.(2)在△ABC 中,因为A +B +C =π,所以A =π-(B +C ), 又因为cos B =45,sin B =35,所以cos A =-c os(B +C )=-c os ⎝⎛⎭⎫B +π4=-cos Bc os π4+sin B sin π4=-45×22+35×22=-210.因为0<A <π,所以sin A =1-c os 2A =7210. 因此,c os ⎝⎛⎭⎫A -π6=cos Ac os π6+sin A sin π6=-210×32+7210×12=72-620. B 级1.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( )A .(2,2)B .(2,6)C .(2,3)D .(6,4)解析:选B ∵B =2A ,∴sin B =sin 2A =2sin A cos A ,∴ba =2cos A .又C =π-3A ,C为锐角,∴0<π-3A <π2⇒π6<A <π3,又B =2A ,B 为锐角,∴0<2A <π2⇒0<A <π4,∴π6<A <π4,22<cosA <32,∴2<b a <3,∴2<2ba< 6. 2.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +bc os 2A =2a ,则角A 的取值范围是________.解析:由已知及正弦定理得sin 2A sin B +sin Bc os 2A =2sin A ,即sin B (sin 2A +c os 2A )=2sin A ,∴sin B =2sin A ,∴b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc =4a 2+c 2-a 24ac =3a 2+c 24ac ≥23ac 4ac =32,当且仅当c =3a 时取等号.∵A 为三角形的内角,且y =cos x 在(0,π)上是减函数,∴0<A ≤π6,则角A 的取值范围是⎝⎛⎦⎤0,π6. 答案:⎝⎛⎦⎤0,π6 3.(2018·昆明质检)如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2.(1)求AD 的长; (2)求△CBD 的面积.解:(1)由已知S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD =255,又∠BCD =2∠ABD ,所以∠ABD ∈⎝⎛⎭⎫0,π2,所以c os ∠ABD =55. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2·AB ·BD ·c os ∠ABD ,可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2,所以sin ∠CBD =c os ∠ABD =55. 又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·c os ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝⎛⎭⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD , 所以△CBD 为等腰三角形,即CB =CD .在△CBD 中,由正弦定理BD sin ∠BCD =CDsin ∠CBD ,得CD =BD ·sin ∠CBDsin ∠BCD=5×5545=54, 所以S △CBD =12CB ·CD ·sin ∠BCD =12×54×54×45=58.。

高中必背88个数学公式

高中必背88个数学公式

高中必背88个数学公式1. 勾股定理:直角三角形的两条直角边的平方和等于斜边平方。

2. 余弦定理:在任意三角形中,一个角的余弦等于与该角相对的边的平方和减去另外两条边的平方的差再除以两倍的另一条边与该角相对的角的正弦的乘积。

3. 正弦定理:在任意三角形中,一个角的正弦等于与该角相对的边长和另外两条边长的比例的乘积。

4. 长方形面积公式:长方形的面积等于长乘以宽。

5. 平行四边形面积公式:平行四边形面积等于底边长乘以高。

6. 梯形面积公式:梯形的面积等于上底加下底乘以高再除以二。

7. 三角形面积公式:三角形面积等于底边长乘以高再除以二。

8. 圆面积公式:圆的面积等于圆周率乘以半径的平方。

9. 圆周长公式:圆的周长等于直径乘以圆周率。

10. 球体表面积公式:球体的表面积等于四倍的圆面积。

11. 球体体积公式:球体的体积等于四分之三的圆面积乘以半径的立方。

12. 一次函数方程: y = kx + b。

13. 二次函数方程: y = ax² + bx + c。

14. 等差数列通项公式: an = a1 + (n - 1)d,其中a1为首项,d为公差,an为第n项。

15. 等差数列前n项和公式: Sn = n(a1 + an)/2,其中a1为首项,an为第n项,n为项数。

16. 等比数列通项公式:an = a1 × qⁿ⁻¹,其中a1为首项,q为公比,n为项数。

17. 等比数列前n项和公式: Sn = a1(1 - qⁿ)/1 - q,其中a1为首项,q为公比,n为项数。

18. 三角函数正弦的定义:在直角三角形中,任意一锐角的正弦是指这个角的对边与这个角所在的斜边的比值。

19. 三角函数余弦的定义:在直角三角形中,任意一锐角的余弦是指这个角的邻边与这个角所在的斜边的比值。

20. 三角函数正切的定义:在直角三角形中,任意一锐角的正切是指这个角的对边与这个角的邻边的比值。

21. 三角函数余切的定义:在直角三角形中,任意一锐角的余切是指这个角的邻边与这个角的对边的比值。

求三角形面积的最值例题

求三角形面积的最值例题

求三角形面积的最值例题三角形面积的最值是数学中一个经典的问题,通常会在高中数学或初级数学学习中出现。

面积的最值,就是在一定范围内,使面积取得最大或最小值的条件。

下面就给大家介绍三角形面积的最值问题的例题及解法。

例题:在平面直角坐标系xoy中,有一条边在x轴上,另外两条边各在y轴和x轴的正方向上,且三边所围三角形的面积为1。

求三角形的最大周长。

解法一:三角形的面积为1,可以求出其中一条腰为y,其中一个点为(x,0),另一个点为(0,xy),则有1=xy/2,可得出xy=2.则三角形的周长为l=x+y+sqrt(x^2+y^2), 重写l=sqrt((x+y)^2+x^2+y^2)定义f(x,y)=l=sqrt((x+y)^2+x^2+y^2),则f(x,y)关于变量x,y都是可导函数。

对其求偏导,有fx=2x/(sqrt((x+y)^2+x^2+y^2))+2(x+y)/(sqrt((x+y)^2+x^2+y^2)),fy=2y/(sqrt((x+y)^2+x^2+y^2))+2(x+y)/(sqrt((x+y)^2+x^2+y^2))令fx=0,fy=0,则有 x=y,y^2+2y-2=0.解得y1=-1+sqrt(3),y2=-1-sqrt(3)当y1=-1+sqrt(3),有x1=y1,则l1=2(1+sqrt(3));当y2=-1-sqrt(3),有x2=y2,则l2=2(1-sqrt(3));故三角形最大周长为2(1+sqrt(3))。

解法二:同样,三角形的一条腰设为y,有另一点(x,0)和(0,y)。

根据海伦公式,可得s=(x+y+y)/2=2y+x/2三角形面积为1,因此y(x/2)=1,即y=2/x代入s=2y+x/2中,可化简为s(x)=(4+x^2)/(2x)对s(x)求导,可得s'(x)=(2x^2-4)/(2x^2),解出s'(x)=0,则有x=sqrt(2),即y=sqrt(2)此时三角形周长可表示为l=sqrt(2)+2(sqrt(3)-sqrt(2))综上,三角形的最大周长为2(1+sqrt(3))。

三角形三边与面积公式

三角形三边与面积公式

三角形三边与面积公式三角形可是咱们数学世界里的常客,从小学到高中,它一直都在跟咱们“打交道”。

咱先来说说三角形的三边关系。

这三边的长度可不能随便瞎来,得遵循一定的规律。

比如说,两条较短边的长度之和一定要大于第三边的长度,不然可就组不成三角形啦。

这就好像三根小木棍,要是两根短的接起来都没那根长的长,那怎么可能围成一个三角形呢?我记得有一次在课堂上,我给学生们出了一道题:有三根小棒,长度分别是 3 厘米、5 厘米和 7 厘米,能不能组成一个三角形?结果有个小调皮鬼不假思索就说能。

我就让他上来摆一摆,结果怎么着?他摆弄了半天,那3 厘米和5 厘米的小棒接起来怎么都够不着7 厘米那根,急得满脸通红,其他同学都哈哈大笑。

通过这么一个小小的实践,大家一下就记住了三角形三边的关系。

接下来再讲讲三角形的面积公式。

咱们最常见的就是“底×高÷2”。

这个公式看起来简单,但是用起来可得小心。

得找准底和对应的高,不然算出来的面积可就错得离谱啦。

比如说一个三角形,底是 6 厘米,对应的高是 4 厘米,那面积就是6×4÷2 = 12 平方厘米。

可要是不小心把不对应的高拿来计算,那可就闹笑话了。

在实际生活中,三角形的面积计算也有大用处呢。

有一回我去朋友家帮忙装修,他家有个三角形的小阳台,想要铺上地砖。

我们就得先算出这个三角形阳台的面积,才能知道需要买多少地砖。

量好了底边和高,用面积公式一算,很快就得出了结果,买地砖的时候心里就有底啦。

总之,三角形的三边关系和面积公式虽然是数学里的基础知识,但在生活和学习中都非常重要。

咱们可得把它们牢牢掌握,这样才能在数学的海洋里畅游无阻,解决更多有趣的问题!不管是在做数学题,还是在实际生活中碰到跟三角形有关的事儿,都能轻松应对,游刃有余。

高中数学-必修二6.3解三角形-知识点

高中数学-必修二6.3解三角形-知识点

1高中数学-必修二6.3解三角形-知识点1、正弦定理:A sin a =B sin b =C sin c =2R (R 是三角形的外接圆半径)。

常见变形:① sinA :sinB :sinC= a :b :c ;② a=2RsinA ,b=2RsinB ,c=2RsinC ;③sinA=R 2a ,sinB=R 2b ,sinC=R 2c。

★在满足等号两边(或是分子与分母)齐次的情况下,可将正弦值和边相互切换。

比如:若b=a cosC ,则可快速切换为sinB = sinA cosC 。

2、余弦定理:a 2 = b 2 + c 2 +2bc cosA ;b 2 = a 2 + c 2 +2ac cosB ;c 2 = a 2 + b 2 +2ab cosC ;cosA =bc 2a c b 222-+,cosB =ac 2b c a 222-+,cosC =b a 2c b a 222-+。

3、三角形面积公式:S=21absinC = 21bcsinA = 21acsinB .4、解斜三角形时,如果已知条件是 SAS , ASA , AAS , SSS ,则有 唯一 解;如果已知条件是 SSA ,则可能 一 解,也可能 两 解,要根据题目条件去判断。

5、在三角形中,大边对大角,小边对小角,等边对等角。

也就是说,非最长边所对的角,一定是锐角,而最长边所对的角,可能是锐角,可能是直角,可能是钝角。

6、在求角时,我们尽量用cos 而不用sin ,因为cos 在锐角和钝角的情况下,值是不一样的,这样就简化了计算,避免了讨论。

7、在三角形角的计算中,要熟练运用sinA = sin (B+C ),cosA = -cos (B+C ),tanA = -tan (B+C )。

8、题型:三角形形状的判断。

主要看是否是等腰三角形,等边三角形,直角三角形,等腰直角三角形,锐角三角形,钝角三角形。

9、反正弦:arcsinx(x ∈[-1 ,1 ])表示一个在[-π/2,π/2]范围中且正弦值为x 的角。

高中数学圆锥曲线系统讲解第18讲《三角形面积公式的坐标形式》练习及答案

高中数学圆锥曲线系统讲解第18讲《三角形面积公式的坐标形式》练习及答案

第18讲 三角形面积公式的坐标形式知识与方法公式1:设点()11,A x y ,()22,B x y ,O 为原点,则122112OABS x y x y =−. 公式2:设点()11,A x y ,()22,B x y ,()33,C x y , 则()()()()2131312112ABCSx x y y x x y y =−−−−−. 典型例题【例题】在平面直角坐标系xOy 中,已知点()2,1A ,()1,3B −,则OAB 的面积为______.【解析】解法1:如图,易求得OA OA 的方程为2 0x y −=,所以点B 到直线OA 的距离d ==,从而1722OABS==解法2:()17231122OABS =⨯−−⨯=. 【答案】72变式1 在平面直角坐标系xOy 中,已知点()2,1A ,()1,3B −,()1,1C −,则ABC 的面积为______.【解析】解法1:直线AC 的斜率()11221k −−==−,所以直线AC 的方程为()122y x −=−,即230x y −−=,从而点B 到直线AC 的距离d =,又AC ==,所以11422ABCSAC d =⋅==.解法2:如图,将A 、B 、C 三点同时向左移1个单位,向上移1个单位,则C 移到原点,A 、B 分别移到()1,2A ',()2,4B '−, 所以()1142242ABCOA B SS''==⨯−−⨯=. 【答案】4 【反思】当三角形的三个顶点都不在原点时,可以通过平移转化为有一个顶点在原点的情形来计算面积.变式2 在平面直角坐标系xOy 中,已知A 、B 为抛物线2:2C y x =上的两点,若OA OB ⊥,则OAB 的面积最小值为______.【解析】解法1:如图,显然直线AB 不与y 轴垂直,故可设其方程为()0x my t t =+≠),设()11,A x y ,()22,B x y ,联立22x my ty x=+⎧⎨=⎩消去x 整理得:2220y my t −−=,判别式()242m t ∆=+, 由韦达定理,122y y t =−,所以222121222y y x x t =⋅=,因为OA OB ⊥,所以121221OA OB y y k k x x t⋅=⋅=−=−,从而2t =,满足0∆>,故直线AB 过定点()2,0D ,所以1211124222OABSOD y y OD =⋅−=⋅=⨯=, 当且仅当0m =时取等号,所以OAB 的面积的最小值为4.解法2:设直线OA 的方程为()0y kx k =≠,则直线OB 的方程为1y x k=−,联立22y kx y x=⎧⎨=⎩解得:00x y =⎧⎨=⎩或222x k y k ⎧=⎪⎪⎨⎪=⎪⎩,所以222,A k k ⎛⎫ ⎪⎝⎭,将k 换成1k −即得()22,2B k k −,所以()2212222222242OABSk k k k k k k k =⋅−−⋅=+=+≥=, 当且仅当22k k=,即1k =±时取等号,故OAB 的面积的最小值为4. 解法3:设()211A y,()222B y ,则由题意,1222121221y y y y ⋅==−,所以122y y =−,212y y =−,从而()2212211212111112242OABSy y y y y y y y ⎫=−=−=+=+≥=⎪⎪⎭ 当且仅当112y y =,即1y =时取等号,故OAB 的面积的最小值为4. 【答案】4强化训练1.(★★)在平面直角坐标系xOy 中,已知点()1,0A ,()2,2B ,()1,3C −,则ABC 的面积为______.【解析】如图,()()()()172130112022ABCS=⨯−⨯−−−−⨯−=.【答案】722.(★★★)设直线:22l y x =−与抛物线2:4C y x =相交于A 、B 两点,若点()0,1D ,则DAB 的面积为______.【解析】解法1:如图,设()11,A x y ,()22,B x y ,联立2224y x y x=−⎧⎨=⎩消去y 整理得:2310x x −+=,不难发现直线l 过抛物线C 的焦点F ,所以1225AB x x =++=, 而点D 到直线l 的距离d ==11522DABSAB d =⋅=⨯=. 解法2:如图,由题意,可设()11,22A x x −,()22,22B x x −, 联立2224y x y x=−⎧⎨=⎩消去y 整理得:2310x x −+=判别式()234115∆=−−⨯⨯=, 所以()()()()12211213302210221222DABSx x x x x x =−−−−−−−=−==.3.(★★★★)在平面直角坐标系xOy 中,已知A 、B 为抛物线2:4C y x =上的两点,若直线OA 、OB 的斜率之积等于2−,则OAB 的面积最小值为______.【解析】解法1:如图,显然直线AB 不与y 轴垂直,故可设其方程为()0x my t t =+≠,设()11,A x y ,()22,B x y ,联立24x my t y x=+⎧⎨=⎩消去x 整理得:2440y my t −−=,判别式()216m t ∆=+,由韦达定理,124y y m +=,124y y t =−,所以222121244y y x x t =⋅=,故直线OA 、OB 的斜率之积为12124y y x x t⋅=−,由题意,42t−=−,故2t =,满足0>,从而直线AB 过定点()2,0D ,故1211122212OABSOD y y OD =⋅−=⋅⋅=⨯= 当且仅当0m =时取等号,所以OAB的面积的最小值为解法2:设直线OA 的方程为()0y kx k =≠,则直线OB 的方程为2y x k=−,联立24y kx y x=⎧⎨=⎩解得:00x y =⎧⎨=⎩或244x k y k ⎧=⎪⎪⎨⎪=⎪⎩,所以244,A k k ⎛⎫ ⎪⎝⎭,将k 换成2k −即得()2,2B k k −,所以()22144442222OABSk k k k k k k k =⋅−−⋅=+=+≥=, 当且仅当42k k=,即k =OAB的面积的最小值为 解法3:设()211,2A y y ,()222,2B y y ,则由题意,122112122242y y y y y y ⋅==−,所以122y y =−,212y y =−,从而 ()22122112121111122222222OABSy y y y y y y y y y y y ⎛⎫=⋅−⋅=−=+=+≥⨯= ⎪ ⎪⎝⎭当且仅当112y y =,即1y =时取等号,故OAB的面积的最小值为【答案】。

高中数学解三角形的知识总结和题型归纳总结

高中数学解三角形的知识总结和题型归纳总结

解三角形的知识总结和题型归纳一、知识讲解1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(1)三边之间的关系:a 2+b 2=c 2。

(勾股定理)(2)锐角之间的关系:A +B =90°;(互余)(3)边角之间的关系:(锐角三角函数定义)sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba 。

2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。

(1)三角形内角和:A +B +C =π。

(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。

3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.主要类型有:(1)正弦定理解三角形的问题:已知两角和任意一边,求其他的两边及一角.已知两角和其中一边的对角,求其他边角.(2)余弦定理解三角形的问题:已知三边求三角.已知两边和他们的夹角,求第三边和其他两角.5.三角形中的三角变换(1)角的变换因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。

高中数学解三角形知识点总结

高中数学解三角形知识点总结

高中数学解三角形知识点总结一、引言解三角形是高中数学中的一个重要内容,它涉及到三角形的边长、角度以及面积等基本元素的计算和应用。

本文旨在总结解三角形的核心知识点,为学生提供一个复习和参考的框架。

二、基本概念1. 三角形的边和角- 三角形的内角和定理:三角形内角和恒为180度。

- 三角形的外角:一个三角形外角等于与其不相邻的两个内角之和。

2. 三角形的分类- 按边分类:等边三角形、等腰三角形、不等边三角形。

- 按角分类:锐角三角形、直角三角形、钝角三角形。

三、三角形的性质1. 边长关系- 三边关系定理:任意两边之和大于第三边,任意两边之差小于第三边。

2. 角度关系- 对应角定理:在直角三角形中,大边对大角,小边对小角。

3. 特殊三角形的性质- 等边三角形:三边相等,三个内角均为60度。

- 等腰三角形:两边相等,底角相等。

- 直角三角形:一个角为90度,勾股定理适用。

四、解三角形的方法1. 边角互解- 利用正弦定理和余弦定理求解未知边长和角度。

2. 正弦定理- 公式:a/sin(A) = b/sin(B) = c/sin(C)- 应用:适用于任意三角形,特别是边角不全知的情况。

3. 余弦定理- 公式:c² = a² + b² - 2ab*cos(C)- 应用:适用于已知两边及夹角的情况。

4. 三角形面积公式- 基本公式:Area = 1/2 * base * height- 海伦公式:Area = √(s*(s-a)*(s-b)*(s-c)),其中s为半周长。

五、解三角形的应用1. 实际问题中的运用- 测量问题:利用三角形知识解决实际测量问题,如高度、距离的估算。

- 建筑设计:在建筑设计中,利用三角形的稳定性和解三角形的方法进行结构计算。

2. 解题技巧- 选择合适的定理:根据已知条件选择使用正弦定理还是余弦定理。

- 转换思想:将问题转化为已知条件可解的形式。

六、结论解三角形是高中数学中的基础内容,掌握其核心知识点对于解决相关数学问题至关重要。

三角形面积的向量坐标表示及其应用

三角形面积的向量坐标表示及其应用

有根号 只有加 减乘 除 四则 运算,初 中学 生都能接 受.证法 2 综合严 紧,用 到 了三 角形面 积公式 、同角三角 函数 间的平方 关 系 、二次根式性质 、平面 向量数量积 的定义 、两点 间的距离
S ̄OAB S ̄OM A SAM NB ——
s△。ⅣB = 1
+ ( z+
推论 1在 AABC 中,若 A百= (z1, 1), = (X2,v2), 则 S ̄OAB=去Ixly2一x2YlI.
证明 设 0 为坐标 原点,作 0户 = 台,0o = A , 则 P( 1,ya),Q(x2,Y2),AOAB 与 AOPQ 全 等,所 以 s△ Be= s△。PQ= IxxY 一z。Yl1.
=  ̄-AC×MB sin + AC×MD sin

= 2Ac ×(M B +M D)sin = AC ×BD sin . 同定理 证法 l可得 AC ×BD sin0: l 1 2一 2 11.故 sAB 。= f 。一 。 f.
评 注 从 推 论 2 的 证 明 过 程
例 3(2009年 高考 陕西 卷 理科 第 21
。)( 。一 )一 1z。 = (z

公 式和数 量积 的坐标 运算 等.证 法 3雅俗共 享,用 向量共线 求 直线方程避免对斜率 存在性 的讨论,用点线距离公式和两 点的距离公式分别 求三角形的底和高,最后用底乘高 的一半
zly2).于是 ,一般地有 S ̄OAB=
图 1
言lxly2一x2yl1.




x2y1)2。= l z— 。 I.
评 注 推 论 1用 三 角 形 两 边 的 向量 坐 标 表 示 三 角 形 面 积,形 式 简洁 结 构 优美,比三 角 形顶 点 坐标 的三 阶行 列 面 积公 式 应 用 更 为 方便 快 捷 .三点 共 线 可 以看 作 是 这 三点 围成 平 面区域 的 面积为 零,在公 式 中当三 角形 面积 为零 时

高中数学三角形面积公式

高中数学三角形面积公式

高中数学三角形面积公式三角形是数学中常见的几何形状之一,通过一些简单的公式,我们可以求解三角形的面积。

在这篇文章中,我们将详细介绍三种常用的三角形面积计算公式。

1. 直角三角形面积公式直角三角形是最简单的三角形之一,其中一个角度为90度。

对于一个直角三角形,我们可以利用公式 S = 1/2 * a * b 来计算其面积。

其中,S代表三角形的面积,a和b分别代表直角三角形的两条直角边的长度。

例如,假设一个直角三角形的两条直角边分别为3cm和4cm,那么根据面积公式,该三角形的面积 S = 1/2 * 3 * 4 = 6 平方厘米。

2. 任意三角形面积公式除了直角三角形外,我们还需要了解如何计算任意三角形的面积。

对于一般的三角形,我们可以使用海伦公式来求解。

海伦公式可以表示为:S = √[s(s-a)(s-b)(s-c)],其中S为三角形的面积,a、b、c分别为三角形的三条边的长度,而s则代表半周长,计算公式为 s = (a + b + c) / 2。

例如,如果一个三角形的三条边长度分别为3cm、4cm和5cm,那么根据海伦公式的计算步骤,首先计算半周长:s = (3 + 4 + 5) / 2 = 6cm。

然后,代入公式计算面积:S = √[6(6-3)(6-4)(6-5)] = √[6 * 3 * 2 * 1] =√[36] = 6 平方厘米。

3. 等边三角形面积公式等边三角形是指三条边的长度都相等的三角形。

对于一个等边三角形,我们可以使用简单的公式S = (√3 * a^2) / 4 来计算其面积。

其中S表示三角形的面积,a代表等边三角形的边长。

举个例子,假设一个等边三角形的边长为6cm,那么根据面积公式,该三角形的面积S = (√3 * 6^2) / 4 = (3√3 * 36)/ 4 = (3√3 * 9) = 27√3 平方厘米。

总结:通过以上三种常用的三角形面积计算公式,我们可以根据三角形的不同特点和已知条件,快速准确地求解其面积。

三角形的面积计算公式

三角形的面积计算公式

三角形的面积计算公式三角形面积的计算公式是广义的数学知识,无论是在初中还是高中数学课本中都常常出现。

三角形是平面几何中最简单的多边形,它由三条边和三个顶点组成。

要计算三角形的面积,需要用到一条基本的公式——海伦公式。

首先,让我们来了解一下海伦公式的背景和推导过程。

公式是由古希腊数学家海伦提出的,他是许多几何问题的奠基人。

在古代,他的贡献对于测量和建筑学有着深远的影响。

海伦公式给出了一种计算任意三角形面积的方法,无论其形状是何种条件。

这个公式表明,只需知道三角形的三条边的长度,就可以计算出它的面积。

公式的形式是:面积= √[s(s-a)(s-b)(s-c)]其中,s是半周长(即三边之和的一半),a、b、c分别是三角形的三条边的长度。

为了更好地理解这个公式,我们可以通过一个具体的例子来计算三角形的面积。

假设我们有一个三角形,它的三边分别是a=5cm,b=6cm,c=7cm。

首先,我们可以计算出半周长s=(a+b+c)/2=(5+6+7)/2=9cm。

接下来,我们将代入公式中,计算三角形的面积:面积= √[9(9-5)(9-6)(9-7)]= √[9*4*3*2]= √[216]≈ 14.7cm²这样,我们就得到了这个三角形的面积。

海伦公式的推导过程相对复杂,需要运用到许多数学知识和技巧,但我们可以通过代入具体的数值来简单计算三角形的面积。

这个公式的优点在于,它适用于任意形状的三角形,而且只需要知道三边的长度就可以计算出面积,无需知道角度。

这在实际问题中具有很大的实用价值。

虽然海伦公式是计算三角形面积的常用公式,但还有其他方法可以求解。

比如,当我们知道一个三角形的底和高时,可以直接使用公式面积 = 1/2 * 底 * 高来计算。

这个方法适用于一些特殊形状的三角形,比如直角三角形,等腰三角形等。

对于那些没有特殊条件的三角形,海伦公式是最常用的方法。

它的应用范围广泛,无论是在几何学还是在实际生活中,都有着重要的地位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学中的三角形面积
三角形是数学中的基本图形之一,研究三角形的面积是数学中的重
要内容。

本文将介绍高中数学中计算三角形面积的方法和公式,并探
讨其中的应用。

一、三角形的面积公式
计算三角形面积的常用公式是“底乘以高的一半”,即S=1/2bh,其
中S表示三角形面积,b表示底边长,h表示高。

除了“底乘以高的一半”公式之外,还有其他计算三角形面积的方法,比如海伦公式和矢量法。

这两种方法在一些特殊情况下比较适用,但
本文主要介绍“底乘以高的一半”公式。

二、直角三角形的面积计算
直角三角形是最简单的三角形之一,其中一个角为直角(90度)。

对于直角三角形,可以使用两条直角边中的一条作为底边,另一条直
角边作为高。

面积公式为S=1/2ab,其中a和b分别代表两条直角边的
长度。

三、等腰三角形的面积计算
等腰三角形是指具有两条边相等的三角形。

对于等腰三角形,可以
使用底边和高计算面积,也可以使用边长和高计算面积。

首先介绍使
用底边和高计算面积的方法。

若底边长度为b,高的长度为h,则等腰三角形的面积为S=1/2bh。

由于等腰三角形的两条边相等,所以底边的长度就是等腰三角形的一条边的长度。

除了使用底边和高计算面积外,还可以使用边长和高计算等腰三角形的面积。

设等腰三角形的边长为a,高的长度为h,则等腰三角形的面积为S=1/2ah。

四、一般三角形的面积计算
对于一般的三角形,没有边相等的特殊情况,可以使用“底乘以高的一半”公式计算面积。

给定三角形的三条边的长度为a、b、c,使用海伦公式可以计算出三角形的面积。

海伦公式为S=sqrt(s(s-a)(s-b)(s-c)),其中s=(a+b+c)/2为半周长。

五、应用举例
1. 问题描述:已知三角形的底边长为5cm,高为8cm,求三角形的面积。

解答:根据面积公式S=1/2bh,代入给定的数值,可得
S=1/2*5*8=20cm²。

所以,这个三角形的面积为20平方厘米。

2. 问题描述:已知等腰三角形的边长为6cm,高为4cm,求三角形的面积。

解答:根据面积公式S=1/2ah,代入给定的数值,可得
S=1/2*6*4=12cm²。

所以,这个等腰三角形的面积为12平方厘米。

3. 问题描述:已知三角形的三边长分别为3cm、4cm、5cm,求三角形的面积。

解答:首先计算半周长s=(3+4+5)/2=6cm,然后使用海伦公式计算面积S=sqrt(6(6-3)(6-4)(6-5))=6cm²。

所以,这个三角形的面积为6平方厘米。

六、总结
通过本文的介绍,我们了解了高中数学中计算三角形面积的方法和公式。

不同类型的三角形有不同的计算方法,从直角三角形到等腰三角形再到一般三角形,我们可以根据给定条件选择合适的公式进行计算。

通过练习和掌握这些方法,我们可以更好地解决和应用三角形面积的问题。

相关文档
最新文档