非参数检验(卡方检验),实验报告

合集下载

卡方检验实验报告doc

卡方检验实验报告doc

卡方检验实验报告篇一:实验报告卡方检验试验报告解:组数:1→对照,2→新措施。

存活与死亡数:1→存活数,2→死亡数。

在SPSS中输入数据后选择选择数据→加权个案,然后再选择分析→描述统计→交叉表。

得到如下表:由表1与表2可以看出有效案例中的 N=300,自由度为1,卡方值为:7.317,P值为:P=0.0073(原文来自:小草范文网:卡方检验实验报告).8415,拒绝假设是合理的。

解:在SPSS中输入数据后选择选择数据→加权个案,然后再选择分析→描述统计→交叉表。

得到如下表:篇二:非参数检验(卡方检验) 实验报告大理大学实验报告课程名称实验名称专业班级姓名学号实验日期XX—XX学年度第学期实验地点第2页共9页第3页共9页第4页共9页第5页共9页篇三:实验报告一:卡方检验本科学生综合性实验报告学号学院生命科学学院专业、班级 09应生A 实验课程名称生物统计学教师及职称张麟(研究生)开课学期填报时间云南师范大学教务处编印例2:放射性物质放射出的质点数是服从泊松分布的有名例子。

1910年Rutherford等人的著名实验揭露了这个事实。

在这个实验中,观察了长为7.5秒的时间间隔里到达某指定区域的质点数,共观察N=2608次描述:Chi-Square=1665.129,df=10,Asymp. Sig.=0.0000 例8 为研究长跑运动对增强普通高校学生的心功能的效果,某学院对随机抽取15名男生,进行5个月的长跑锻炼,5个月前后测得的晨脉数据如表所示,问长跑锻炼后的晨脉次数有否降低?某校15名学生5个月长跑锻炼前后的晨脉次数(单位:次/分钟)结论:计算结果表明,Asymp. Sig. (2-tailed)=0.004 欲对三位运动员的综合技术作出评价,以不同专业层次的8位教师对三位运动员的技术作评分(下表),问不同教师对三位运动员技术水平的评价有无不同?描述:Chi-Square=0.062,df=2,Asymp. Sig.=0.969>0.05,,不同教师对三位运动员技术水平的评价基本一致。

非参数统计第二次实验报告

非参数统计第二次实验报告
三、实验内容及要求
P44T2.6.6
下面是某村1975-2004年,每年收入5000元以上的户数:333246364040
403641394335453942434751454546594751554251496957
请用Cox-Stuart检验来看该村的高于5000元的人群是否有增长趋势。
四、实验材料、工具
数统学院非参数统计课程实验报告(二)
姓名
罗必豪
学号
2015104409
班级
15经统1班
指导教师
钟华
实验地点
402
实验日期
2017- 9- 26
专业
经济统计学
实验组员
一、实验项目名称
单样本的非参数统计方法
二、实验目的
用R软件实现符号检验及Wilconxon符号秩检验等单样本的非参数统计方法并能解决简单的实际问题.
电脑及R软件
五、实验过程
六、实验结果分析
分析:从Cox-Stuart检验来看,P值接近于1,所以该村的高于5000元的人群总的趋势是增长的。
七、教师

非参数检验

非参数检验

结果解释
在结果输出窗口中将看到如下统计数据:
首先显示两变量 va1 和 va2 的例数、均数、 标准差、最大值和最小值;配对符号秩和检验 (Wilcoxon Matched-Pairs Signed-Ranks Test) 结果,其平均秩分别为5.00 和1.00 ,Z = -2.38, 双侧P = 0.017,可认为两组大鼠肝中Vit A含量 有差别,饲料中缺乏 Vit E会使大鼠肝中 Vit A 含量降低;但符号检验(Sign Test)的结果, 双侧P = 0.07,则认为两组大鼠肝中Vit A含量 无差别。在这种情况下,应取配对符号秩和检 验(Wilcoxon )结果,因两法比较之下,配对 符号秩和检验较为敏感,效率较高。
Tests for Several Independent Samples:
实例操作
随机抽样得以下三组人的血桨总皮质醇 测定值(μg / L),试比较有无差异?
数据准备
激活数据管理窗口,定义分组变量为 group (正常人为 1 ,单纯性肥胖为 2 ,皮 质醇增多症为 3 ),总皮质醇测定值为 pzc。按顺序输入数据。
数据准备
激活数据管理窗口,定义正常饲料组变 量名为va1, Vit E 缺乏饲料组变量名为va2, 按顺序输入数据
统计分析
激活Statistics菜单选Nonparametric Tests中 2 Related Samples...项,弹出Two-Related-Samples Tests 对话框。在对话框左侧的变量列表中选 va1,在Current Selections栏的Variable 1处出现 va1 ,选 va2 ,在 Current Selections 栏的 Variable 2 处出现 va2 ,然后点击钮使 va1 -va2 (表明是 配 对 变 量 ) 进 入 Test Pair(s) List 框 。 在 Test Type框中有三种检验方法:

非参数卡方、单样本K-S、两个独立样本检验

非参数卡方、单样本K-S、两个独立样本检验

非参数卡方检验1.理论非参数检验是在总体分布未知或知道甚少的情况下,不依赖于总体布形态,在总体分布情况不明时,用来检验不同样本是否来自同一总体的统计方法进。

由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数”检验。

非参数检验优势:检验条件宽松,适应性强。

针对,非正态、方差不等的已及分布形态未知的数据均适用。

检验方法灵活,用途广泛。

运用符号检验、符号秩检验解决不能直接进行四则运算的定类和定序数据。

非参数检验的计算相对简单,易于理解。

但非参数检验方法对总体分布假定不多,缺乏针对性,且使用的是等级或符号秩,而不是实际数值,容易失去较多信息。

非参数卡方检验:用于检验样本数据的分布是否与某种特定分布情况相同。

非参数卡方检验通过三步检验:1.卡方统计量:X2=B 其中K 是样本分类的个数,0表示实际观测的频数,B 表示理论分布下的频数。

2.拟合优度检验:A.对总体分布建立假设。

B.抽样并编制频率分布表。

C.以原假设为真,导出期望频率。

D.计算统计量。

E.确定自由度,并查x2表,得到临界值。

F.比较x2值与临界值,做出判断。

3.独立性检验A.对总体分布建立假设。

B.抽样并编制r*c 列联表。

C.计算理论频数。

D.计算检验统计量。

E.确定自由度,并查x2表,得到临界值。

F.比较x2值与临界值,做出判断。

2.非参数卡方检验操作步骤第一步:将需检验的数据导入spss中并进行赋值后,点击分析非参数检验、旧对话框、卡方。

图2操作步骤第一步第二步:进入图中对话框后点击,首先将需检验的数据放入检验变量列表中,后在期望值选项中所以类别相等或者值(值:需要手动输入具体的分布情况)。

如果特殊情况需要调整检验置信区间,点击精确,进入图中下方对话框后点击蒙特卡洛法框里收到填入。

点击继续、确定。

图3操作步骤第二步第三步:如果需要看描述统计结果和四分位数值可以点击选项、勾选描述、四分位数。

点击继续、确实。

图4操作步骤第二步3.非参数卡方检验结果然后非参数卡方检验的描述统计、卡方检验频率表、检验统计结果就出来了。

实验报告卡方检验

实验报告卡方检验

实验报告卡方检验1. 引言卡方检验是一种用于判断变量之间是否存在关联性的统计方法。

它可以用于比较观察频数和期望频数之间的差异,并通过计算卡方统计量来判断这种差异是否显著。

本实验旨在介绍卡方检验的基本原理和应用方法,并通过一个具体案例来演示其使用过程。

2. 原理卡方检验是基于卡方统计量进行判断的。

卡方统计量的计算公式如下:X^2 = \sum \frac{(O - E)^2}{E}其中,O 表示观察频数,E 表示期望频数。

卡方统计量的值越大,说明观察频数和期望频数之间的差异越大,即变量之间的关联性越强。

卡方检验的步骤如下:1. 建立假设:设H_0为原假设,H_1为备择假设。

H_0 假设不存在变量间的关联性,H_1 假设存在变量间的关联性。

2. 计算观察频数和期望频数:根据给定的数据计算得到观察频数和期望频数。

3. 计算卡方统计量:根据卡方统计量的计算公式,计算得到卡方统计量的值。

4. 设置显著性水平:根据实验需求和数据量,设置显著性水平,通常取0.05或0.01。

5. 判断显著性:根据卡方统计量的值和显著性水平,判断是否拒绝原假设。

如果卡方统计量的值大于显著性水平对应的临界值,则拒绝原假设;否则,接受原假设。

3. 案例演示假设有一张表格,记录了200名学生在选课时选择了哪个学科,包括科学、文学和艺术。

下面是观察频数的数据:科学文学艺术男生数60 40 30女生数45 25 0现在我们要判断学生的性别和选课学科之间是否存在关联性。

3.1. 建立假设原假设H_0: 学生的性别和选课学科之间不存在关联性。

备择假设H_1: 学生的性别和选课学科之间存在关联性。

3.2. 计算观察频数和期望频数首先,我们需要计算每个单元格的期望频数。

期望频数的计算公式如下:E = \frac{(\text{对应行的总计数}) \times (\text{对应列的总计数})}{\text{总样本数}}根据以上公式,我们可以得到下表的期望频数:科学文学艺术-男生数55.71 34.29 40女生数49.29 30.71 353.3. 计算卡方统计量根据卡方统计量的计算公式,我们可以得到卡方统计量的值:X^2 = \frac{(60-55.71)^2}{55.71} + \frac{(40-34.29)^2}{34.29} +\frac{(30-40)^2}{40} + \frac{(45-49.29)^2}{49.29} +\frac{(25-30.71)^2}{30.71} + \frac{(0-35)^2}{35} = 7.1193.4. 设置显著性水平根据实验需求和数据量,我们设置显著性水平为0.05。

spss实验报告——非参数检验

spss实验报告——非参数检验

实验报告——(非参数检验)实验目的:1、学会使用SPSS软件进行非参数检验。

2、熟悉非参数检验的概念及适用范围,掌握常见的秩和检验计算方法。

实验内容:1、某公司准备推出一个新产品,但产品名称还没有正式确定,决定进行抽样调查,在受访200人中,52人喜欢A名称,61人喜欢B名称,87人喜欢C 名称,请问ABC三种名称受欢迎的程度有无差别?(数据表自建)SPSS计算结果如下:此题为总体分布的卡方检验。

零假设:样本来自总体分布形态和期望分布没有显著差异。

即ABC三种名称受欢迎的程度无差别,分布形态为1:1:1,呈均匀分布。

观察结果,上表为200个观察数据对A、B、C三个名称(分别对应1,2,3)的喜爱的期望频数以及实际观察频数和期望频数的差。

从下表中可以看出相伴概率值为0.007小于显著性水平0.05,因此拒绝零假设,认为样本来自的总体分布与制定的期望分布有显著差异,即A、B、C三种名称受欢迎的程度有差异。

2、某村庄发生了一起集体食物中毒事件,经过调查,发现当地居民是直接饮用河水,研究者怀疑是河水污染所致,县按照可疑污染源的大致范围调查了沿河居民的中毒情况,河边33户有成员中毒(+)和均未中毒(-)的家庭分布如下:(案例数据run.sav)-+++*++++-+++-+++++----++----+----毒源问:中毒与饮水是否有关?SPSS计算结果如下:此题为单样本变量值随机检验零假设:总体某变量的变量值是随机出现的。

即中毒的家庭沿河分布的情况随机分布,与饮水无关。

相伴概率为0.036,小于显著性水平0.05,拒绝零假设,因此中毒与饮水有关。

3、某试验室用小白鼠观察某种抗癌新药的疗效,两组各10只小白鼠,以生存日数作为观察指标,试验结果如下,案例数据集为:npara1.sav,问两组小白鼠生存日数有无差别。

试验组:24 26 27 30 32 34 36 40 60 天以上对照组:4 6 7 9 10 10 12 13 16 16SPSS计算结果如下:此题为两独立样本非参数检验。

实验报告卡方检验

实验报告卡方检验

实验报告卡方检验实验报告:卡方检验1.实验目的本实验旨在通过卡方检验方法,验证两个或多个分类变量之间是否存在显著的关联性。

通过运用卡方检验方法,可以对观察数据与预期数据之间的差异进行分析,进一步判断所研究的因素是否具有统计学上的显著性差异。

2.实验步骤2.1设定假设:零假设(H0):两个或多个分类变量之间不存在显著的关联性。

备择假设(H1):两个或多个分类变量之间存在显著的关联性。

2.2收集数据:根据研究问题的要求,收集并整理相关的实验数据。

2.3计算期望频数:根据总体比例和样本容量,计算预期频数,以便与观察频数进行对比。

2.4计算卡方值:根据公式进行卡方值的计算,公式为:χ²=∑(Oi-Ei)²/Ei,其中Oi为观察频数,Ei为期望频数。

2.5设置显著性水平:根据研究问题的需求,设定显著性水平α,通常为0.05或0.012.6查卡方检验表:在给定的显著性水平下,查找卡方分布表中的临界值。

2.7判断结果:判断计算得到的卡方值是否大于临界值,若卡方值大于临界值,则拒绝零假设,即认为两个或多个分类变量之间存在显著的关联性。

3.实验结果与分析在我们的研究中,我们选择了两个单一的分类变量作为案例进行卡方检验。

我们的研究问题是:“在社区中,男性和女性是否对该社区的环境质量有着不同的看法?”我们统计了500名男性和500名女性对该社区环境质量的看法,并整理了以下数据(表格1)。

表格1:男性和女性对社区环境质量的看法------------------------------------,好,一般-----------------------------------男性,350,100,5------------------------------------女性,100,200,20------------------------------------我们首先计算了期望频数,以便进行卡方值的计算。

非参数统计课程实验报告

非参数统计课程实验报告

非参数统计课程实验报告姓名:樊凡学号:20XX2461成绩:指导老师:徐建文Wilcoxon 秩检验方法及其应用【内容提要】本实验要求掌握Wilcoxon 秩检验方法和步骤:掌握对两独立样本数据的秩和检验方法;理解Wilcoxon 秩检验方法的基本原理;在R软件环境下编写相关程序;用实际例子说明Wilcoxon方法的具体步骤。

【Wilcoxon 秩检验方法定义】威尔科克森符号秩检验是威尔科克森于1945年提出的。

该方法是在成对观测数据的符号检验基础上发展起来的,比传统的单独用正负号的检验更加有效。

它适用于T检验中的成对比较,但并不要求成对数据之差di服从正态分布,只要求对称分布即可。

检验成对观测数据之差是否来自均值为0的总体。

【Wilcoxon 秩检验方法步骤】正负符号检验和威尔科克森符号秩检验,都可看作是就成对观察值而进行的参数方式的T检验的代用品,非参数检验具有无需对总体分布作假定的优点,而就成对观察值作的参数方式的T检验,必须假定有关的差别总体服从正态分布。

该方法具体步骤如下:第一步:求出成对观测数据的差di,并将di的绝对值按大小顺序编上等级。

第二步:等级编号完成以后恢复正负号,分别求出正等级之和T+和负等级之和T-,选择T+和T-中较小的一个作为威尔科克森检验统计量T。

第三步;作出判断。

根据显著性水平α查附表,得到临界值Tα,若T<Tα,则拒绝原假设H0。

当观测值不少于20对时,统计量T的均值和方差分别为:(n为成对观测的个数) (近似服从标准正态分布)若Z<-Zα(单侧)或Z<-Zα/2(双侧),则拒绝H0。

【实验环境】Windows XP;R软件【实验方案设计】为研究我国上市公司公报对股价是否有显著影响。

现从上海证券交易所的上市公司随机抽取10家,观察其20XX 年年终财务报告公布前后三日的平均股价结果如下表:20XX年财务公告公布前后三日平均股价 3 4 5 6 7 8 9 10 上市公司序1 号 2 年报公布前 15 21 18 13 35 10 17 23 14 25 年报公布后 17 18 25 16 40 8 21 31 22 25 设Xi和Yi 分别为公布前后的第i组观察值,对i=1,2...10.计算各观察值对的偏差Di=Xi-Yi; 求偏差的绝对值|Di|=|Xi-Yi|;按偏差绝对值大小顺序排列,考虑各偏差的符号,利用R软件的求出偏差|Di|的秩,如下表所示:Xi Yi Di= Xi-Yi Di的符号 |Di|的秩 15 17 -2 2 21 183 3 18 25 -7 7 13 16 -3 3 35 40 -5 5 10 8 2 2 17 21 -44 23 31 -8 8 14 22 -8 8 25 25 0 0 76 5 令W 为XiYi0的XiYi的秩的和,而W为XiYi0的XiYi的秩的和,则TR(XiYi) ,TRi(XiYi)ii1i1nn。

spss参与非参检验实验报告参考模板

spss参与非参检验实验报告参考模板

第五章 参数检验❶单样本t 检验:(5.2)分析六级考试成绩一般平均得分是否为75;1.录入数据,全部学生的六级考试成绩显而易见服从正态分布,可用Q-Q 图,或非参检验对所抽取的样本进行正态性检验,之后进行单样本t 检验。

2.选择菜单:Analyze---Compare Means---One-Sample T Test ,再出现的窗口中,选择“六级考试成绩”到【Test Variable 】框中,在【Test Vaule 】框中输入检验值75。

单击“OK ”度10,第四列为检验p 值0.668,第五列为样本均值与检验值的差,第六列和第七列为总体均值与原假设值差的95%的置信区间,为(-7.69,5.14)。

若取显著性水平α为0.05,则p 大于α,因此应该接受原假设,认为六级考试成绩一般平均得分为75分。

95%的置信区间告诉我们有95%的把握认为六级考试成绩的均值在67.31~85.14之间。

❷两独立样本t 检验(5.3)分析有促销和无促销情况下商品的日销售额是否存在显著变化;1.录入数据,有促销和无促销情况下的日销售额可以看成两个独立总体,且日销售额可近似认为服从正态分布,可用Q-Q 图或非参检验对其正态性检验。

在以上前提下,进而可对不同情况下的日销售额进行两独立样本t 检验。

2.选择菜单:Analyze---Compare Means---Independent-Samples T Test,再出现的窗口中,选择“日销售额”到【Test Variable 】框中,选择“type ”到【Grouping Variable 】框中,按【Define Groups 】按钮定义两总体的标识值,分别在Group1与Group2中输入1,23.如上表Independent Sample Test 所示,结论分析为两步:第一步,方差齐性检验。

F 统计量的观测值为0.225,对应的p 值为0.638,若取显著性水平α为0.05,则p 大于α,可以认为两总体的方差相等。

spss参数与非参数检验实验报告

spss参数与非参数检验实验报告
基本思路:
(1).将一样本作为控制样本,另一样本作为实验样本。两样本混合后按升序排列;
(2).找出控制样本的跨度(最低秩和最高秩间的样品数)和截头跨度(去掉控制样本的最小值和最大值后的跨度)。若跨度(截头跨度)很小,认为样本存在极端反应。
以上四种检验的基本操作步骤:
(1)【Analyze】--->【Nonparametric Tests】--->【2 Independent Sample】
该检验可用来检验两个独立样本是否取自同一总体,它是最强的非参数检验之一。
基本思路:
1.将样本X和样本Y混合后作升序排列,计算每个数据的秩;
2.分别对两样本的秩求平均,得到两个平均秩,分别用W1=WX/m和W2=WY/n表示。
若W1和W2比较接近,则说明两个样本来自相同分布的总体,若W1和W2差异较大,则说明两个样本来自不同的总体。
(2)选择待检验变量到【Test Variable】框中
(3)指定存放样本标志值的变量到【Grouping Variable】框
(4)选择非参数检验方法
三、多个独立样本的非参数检验包括:中位数检验、Kruskal-Wallis H检验、Jonkheere-Terpstra检验
3.1中位数检验
(一)含义:通过对多组独立样本的分析,检验它们来自的总体的中位数是否存在显著差异。其原假设是:多个独立样本来自的多个总体的中位数无显著差异。
(2)选定待检验的变量到【Test Variable list】框中
(3)在【Cut Point】框中确定计算游程数的分界点
二、两个独立样本的非参数检验包括:Mann-Whitney U检验、K-S双样本检验、Wald-Wolfowitz游程检验、Moses极端反应检验

【VIP专享】统计学实验报告——SPSS软件的参数检验与非参数检验

【VIP专享】统计学实验报告——SPSS软件的参数检验与非参数检验

统计学2——SPSS软件的参数检验与非参数检验班级学号姓名日期实验目的(1)熟悉单样本t检验。

(2)熟悉两独立样本t检验。

(3)熟悉两配对样本t检验。

(4)熟悉总体分布的卡方检验。

实验内容(1)SPSS的单样本t检验操作。

(2)SPSS的两独立样本t检验。

(3)SPSS的两配对样本t检验。

(4)SPSS的总体分布的卡方检验。

实验过程(1)SPSS的单样本t检验操作。

(2)SPSS的两独立样本t检验。

(3)SPSS的两配对样本t检验。

(4)SPSS的总体分布的卡方检验。

DATASET NAME 数据集1 WINDOW=FRONT.T-TEST/TESTVAL=0.8/MISSING=ANALYSIS/VARIABLES=x5678_1/CRITERIA=CI(.95).T检验T-TEST/TESTVAL=0.8/MISSING=ANALYSIS/VARIABLES=x10_1/CRITERIA=CI(.95).T检验GETFILE='C:\Documents and Settings\admin\LocalSettings\Temp\Rar$DI02.829\商品房购买意向调查模拟数据.sav'. DATASET NAME 数据集2 WINDOW=FRONT.T-TEST GROUPS=t2(1 2)/MISSING=ANALYSIS/VARIABLES=t10_1/CRITERIA=CI(.95).T检验独立样本检验DATASET ACTIVATE 数据集1.T-TEST GROUPS=x13(1.5)/MISSING=ANALYSIS/VARIABLES=x5678_1/CRITERIA=CI(.95).T检验DATASET ACTIVATE 数据集2.GETFILE='C:\Documents and Settings\admin\Local Settings\Temp\Rar$DI67.032\减肥茶.sav'. DATASET NAME 数据集3 WINDOW=FRONT.T-TEST PAIRS=hcq WITH hch (PAIRED)/CRITERIA=CI(.9500)/MISSING=ANALYSIS.T检验DATASET ACTIVATE 数据集1.GETFILE='C:\Documents and Settings\admin\Local Settings\Temp\Rar$DI10.7860\心脏病猝死.sav'. DATASET NAME 数据集4 WINDOW=FRONT.NPAR TESTS/CHISQUARE=rq/EXPECTED=2.8 1 1 1 1 1 1/MISSING ANALYSIS.NPar 检验卡方检验频率实验心得。

非参数检验(卡方检验),实验报告

非参数检验(卡方检验),实验报告

非参数检验(卡方检验),实验报告评分大理大学实验报告课程名称生物医学统计分析实验名称非参数检验( 卡方检验)专业班级姓名学号实验日期实验地点20xx—20xx 学年度第2学期一、实验目得对分类资料进行卡方检验。

二、实验环境1 、硬件配置:处理器:Intel(R) Core(TM) i5-4210U CPU 1、7GHz 1、7GHz 安装内存(RAM):4、00GB系统类型:64 位操作系统 2 、软件环境:IBM SPSSStatistics 19、0 软件三、实验内容(包括本实验要完成得实验问题及需要得相关知识简单概述) (1)课本第六章得例6、1-6、5 运行一遍,注意理解结果; (2)然后将实验指导书得例1-4 运行一遍,注意理解结果。

四、实验结果与分析(包括实验原理、数据得准备、运行过程分析、源程序(代码)、图形图象界面等) 例例6 、1 表1 灭螨A A 与灭螨B B 杀灭大蜂螨效果得交叉制表效果合计杀灭未杀灭组别灭螨A 32 12 44 灭螨B 14 22 36 合计46 34 80 分析: 表1就是灭螨A与灭螨B杀灭大蜂螨效果得样本分类得频数分析表,即交叉列联表。

表2 卡方检验X2 值df 渐进Sig、(双侧) 精确Sig、(双侧) 精确Sig、(单侧) Pearson 卡方9、277a1 、002连续校正b7、944 1 、005似然比9、419 1 、002Fisher 得精确检验、003 、002 有效案例中得N 80a、0 单元格(、0%) 得期望计数少于5。

最小期望计数为15、30。

b、仅对2x2 表计算分析: 表2就是卡方检验得结果。

因为两组各自得结果互不影响,即相互独立。

对于这种频数表格式资料,在卡方检验之前必须用“加权个案”命令将频数变量定义为加权变量,才能进行卡方检验。

Pearson 卡方:皮尔逊卡方检验计算得卡方值(用于样本数n≥40且所有理论数E≥5);连续校正b : 连续性校正卡方值(df=1,只用于2*2列联表);似然比:对数似然比法计算得卡方值(类似皮尔逊卡方检验);Fisher 得精确检验:精确概率法计算得卡方值(用于理论数E 不同得资料应选用不同得卡方计算方法。

非参数检验实验报告

非参数检验实验报告

学院: ______________________ 参赛队员: ___________________ 参赛队员: ___________________目录一、实验目的 (1)1.了解假设检验的基本容; (1)2.了解卡方检验; (1)3.了解二项分布检验; (1)4.了解两个独立样本检验; (1)5.学会运用spss软件求解问题; (1)6.加深理论与实践相结合的能力。

(1)二、实验环境 (1)三、实验方法 (1)1.卡方检验; (1)2.二项分布检验; (1)3.两个独立样本检验。

(1)四、实验过程 (1)问題一: (1)1.1实验步骤 (2)1.1.1辙入数据 (2)1.1.2选择:数据加权个案 (2)1.1.3选择:分析今非参数检验今旧对话框今卡方 (2)1.1.4将变量面值放入检验变量列表 (3)1.1.5观察结果 (3)1.2输出结果 (3)1.3结果分析 (3)问題二: (3)2.1问題叙述 (3)2.2提出假设 (4)2.3实验步骤 (4)2.3. 1导入excel文件数据 (4)2.3. 2二项分布检验 (5)2.3.3辙出结果 (6)2.4结果分析 (6)问題三: (6)3.1实验步骤 (6)3.1.1数据的输入 (6)3.1.2 选择 (7)3.1.3检验变量 (7)3.2输出结果 (7)3.3结果分析 (9)五、实验总结 (9)参数检验一、实验目的1.了解假设检验的基本容;2.了解卡方检验;3.了解二项分布检验;4.了解两个独立样本检验;5•学会运用spss软件求解问题;6•加深理论与实践相结合的能力。

二、实验环境Spss、 office三、实验方法1.卡方检验;2.二项分布检验;3.两个独立样本检验。

四、实验过程问题一:掷一个6而骰子300次,用数字1、2、3、4、5、6分别代表6个而,检验骰子是否均匀1.1实验步骤1・1・1输入数据1.1.2选择:数据加权个案1.1.3选择:分析T非参数检验T旧对话框T卡方1・1・4将变量面值放入检验变量列表,期望全距从数据中获取,期望值所有类别相等1.L5观察结果1.2输出结果卡方检验邓羣跋150 0-7.024950 0-1.035650.0 6.0445600•6.060E50 0ie.o6 总数4130050 0・9D面皿七方0 960Jdr5淅近丘谷注1111.3结果分析此处,sig值为0. 111>0. 05,所以接受原假设,认为样本来自的总体分布形态与期望分布不存在显著差异,则认为该骰子均匀问题二2.1问题叙述次数面次数面次数面次数面1 a 9 b 17 b 25 b元5元5单于竿对2.2提出假设H0:硬币不是均匀的vs H1:硬币是均匀的2. 3实验步骤2. 3. 1导入excel文件数据先将数据输入进excel表格中,用SPSS打开;在SPSS页面点击文件T打开T数据Q a^S4 閔矽U] • IBM SPSS $:at 唸超謨匕二,'选择:分析T非参数检验T旧对话框T二项式2.3.3输出结果二顷式捡验2. 4结果分析由输出结果知,結确显著性(双侧)=1・000>0.05,所以接受原假设H0,所以硬币不是均匀的。

卡方检验与非参数检验

卡方检验与非参数检验

卡方检验与非参数检验卡方检验与非参数检验是统计学中常用的两种假设检验方法。

它们在样本数据不满足正态分布或方差齐性等假设条件的情况下,仍可以进行假设检验,因此被称为非参数检验方法。

本文将详细介绍卡方检验与非参数检验的原理、应用以及比较。

一、卡方检验卡方检验是一种用于检验两个或多个分类变量之间是否存在相关性的统计方法。

它将实际观察到的频数与期望的频数进行比较,从而判断两个分类变量是否存在相关性。

卡方检验主要包括卡方拟合度检验、卡方独立性检验和卡方配对检验等。

1.卡方拟合度检验卡方拟合度检验适用于比较观察到的频数与理论上期望的频数是否有显著差异。

例如,我们可以通过卡方拟合度检验来判断一组骰子的点数是否是均匀分布的。

该方法首先根据理论假设计算每个类别的期望频数,然后计算观察频数与期望频数的差异,并根据差异的大小判断是否有显著差异。

2.卡方独立性检验卡方独立性检验适用于比较两个分类变量之间是否存在相关性。

例如,我们可以使用卡方独立性检验来判断性别与喜好类别之间是否存在相关性。

该方法首先根据理论假设计算每个类别的期望频数,然后计算观察频数与期望频数的差异,并根据差异的大小判断是否有显著差异。

3.卡方配对检验卡方配对检验适用于比较同一组体在两个时间点或处理条件下的观测值是否有差异。

例如,我们可以使用卡方配对检验来判断一种药物在服药前后对疾病症状的治疗效果。

该方法通过比较观察值和期望值之间的差异来判断是否有显著差异。

非参数检验是一种不依赖于总体分布的统计方法,它不对总体的分布形态做出任何假设,因此适用于任何类型的数据。

常见的非参数检验方法包括Wilcoxon符号秩检验、Mann-Whitney U检验、Kruskal-Wallis H检验等。

1. Wilcoxon符号秩检验Wilcoxon符号秩检验适用于比较两组配对样本数据是否存在差异。

例如,我们可以使用Wilcoxon符号秩检验来判断一种药物在服药前后对患者血压的影响。

SPSS非参数检验实验报告

SPSS非参数检验实验报告

实验项目非参数检验实验时间2017.10.27实验地点S308 成绩三、实验内容1、将一颗骰子连掷120次,各次所出现的点数顺次如“shai.sav” 所示,试检验掷骰子点数是否服从均匀分布?2、从随机数表中抽得20个数据如下:0.55 0.8 0.15 0.12 0.21 0.4 0.46 0.17 0.62 0.770.63 0.71 0.99 0.88 0.30 0.64 0.51 0.68 0.50 0.60要求:(1)利用单个样本的K–S检验法检验这些数据是否服从正态分布;(2)对结果进行分析,并填写新的实验报告。

1、SPSS单样本K-S检验的基本操作步骤如下:(1)选择菜单:【分析(A)】→【非参数检验(N)】→【旧对话框(L)】→【1样本K-S(1)】出现如图1-1所示的窗口。

图1-1 单样本K-S检验窗口(2)选择待检验的变量到【检验变量列表(T)】框中。

(3)在【检验分布】框中指定理论分布,这里选择【相等】,即代表均匀分布。

至此,SPSS将自动计算K-S检验统计量和对应的概率P-值,并将结果输出到查看器窗口中。

分析结果如图1-2所示。

图1-2掷骰子总体分布的K-S检验结果图1-2表明,数据极小值为1.00,极大值为6.00。

最大绝对差值为0.158,正差极值为0.158,负差极值为-0.142。

SPSS自动计算输出了√nD值(1.734)和概率P-值(0.005)。

如果显著性水平α为0.05,由于概率P-值小于显著性水平,因此拒绝原假设,接受备择假设,即掷骰子点数的总体分布为不是均匀分布。

2、SPSS单样本K-S检验的基本操作步骤如下:(1)选择菜单:【分析(A)】→【非参数检验(N)】→【旧对话框(L)】→【1样本K-S(1)】出现如图2-1所示的窗口。

图2-1单样本K-S检验窗口(2)选择待检验的变量到【检验变量列表(T)】框中。

(3)在【检验分布】框中指定理论分布,这里选择【常规】,即代表正态分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非参数检验(卡方检验),实验报告评分大理大学实验报告课程名称生物医学统计分析实验名称非参数检验(卡方检验)专业班级姓名学号实验日期实验地点2015—2016 学年度第学期一、实验目得对分类资料进行卡方检验。

二、实验环境1、硬件配置:处理器:Intel(R)Core(TM)i5-4210U CPU 1、7GHz 1、7GHz 安装内存(RAM):4、00GB系统类型:64 位操作系统 2、软件环境:IBM SPSS Statistics 19、0 软件三、实验内容(包括本实验要完成得实验问题及需要得相关知识简单概述)(1)课本第六章得例 6、1-6、5 运行一遍,注意理解结果;(2)然后将实验指导书得例 1-4 运行一遍,注意理解结果。

四、实验结果与分析(包括实验原理、数据得准备、运行过程分析、源程序(代码)、图形图象界面等)例例 6、1 表 1 灭螨A A 与灭螨B B 杀灭大蜂螨效果得交叉制表效果合计杀灭未杀灭组别灭螨A 32 12 44 灭螨B 14 22 36 合计 46 34 80 分析: 表1就是灭螨A与灭螨B杀灭大蜂螨效果得样本分类得频数分析表,即交叉列联表。

表 2 卡方检验X2 值df 渐进Sig、(双侧)精确Sig、(双侧)精确Sig、(单侧)Pearson 卡方 9、277a1、002连续校正b7、944 1、005似然比 9、419 1、002Fisher 得精确检验、003、002 有效案例中得 N 80a、0 单元格(、0%)得期望计数少于5。

最小期望计数为15、30。

b、仅对 2x2 表计算分析: 表2就是卡方检验得结果。

因为两组各自得结果互不影响,即相互独立。

对于这种频数表格式资料,在卡方检验之前必须用“加权个案”命令将频数变量定义为加权变量,才能进行卡方检验。

Pearson 卡方:皮尔逊卡方检验计算得卡方值(用于样本数n≥40且所有理论数E≥5);连续校正b : 连续性校正卡方值(df=1,只用于2*2列联表);似然比:对数似然比法计算得卡方值(类似皮尔逊卡方检验);Fisher 得精确检验:精确概率法计算得卡方值(用于理论数E<5)。

不同得资料应选用不同得卡方计算方法。

例6、1为2*2列联表,df=1,须用连续性校正公式,故采用“连续校正”行得统计结果。

X2 = 7、944, P(Sig)=0、005<0、01,表明灭螨剂A组得杀螨率极显著高于灭螨剂B组。

例6 6、2 2表 3治疗方法 * 治疗效果交叉制表计数治疗效果合计 1 2 3 治疗方法 1 19 16 5 40 2 16 12 8 36 3 15 13 7 35 合计 50 41 20 111 分析: 表3就是治疗方法* 治疗效果资料分析得列联表。

表 4卡方检验X2 值 df 渐进 Sig、(双侧)Pearson 卡方 1、428a4、839 似然比1、484 4、830 线性与线性组合、514 1、474 有效案例中得 N 111a、0 单元格(、0%)得期望计数少于 5。

最小期望计数为 6、31。

分析: 表4就是卡方检验得结果。

自由度df=4,表格下方得注解表明理论次数小于5得格子数为0,最小得理论次数为6、13。

各理论次数均大于5,无须进行连续性校正,因此可以采用第一行(Pearson 卡方)得检验结果,即X2 =1、428,P=0、839>0、05,差异不显著,可以认为不同得治疗方法与治疗效果无关,即三种治疗方法对治疗效果得影响差异不显著。

例6 6、3 3表 5灌溉方式 * 稻叶情况交叉制表计数稻叶情况合计 1 2 3 灌溉方式 1 146 7 7 160 2 183 9 13 205 3 152 14 16 182 合计 481 30 36 547 分析: 表5就是灌溉方式* 稻叶情况资料分析得列联表。

表 6卡方检验X2 值 df 渐进 Sig、(双侧)Pearson 卡方 5、622a4、229 似然比5、535 4、237 线性与线性组合 4、510 1、034 有效案例中得 N 547a、0 单元格(、0%)得期望计数少于 5。

最小期望计数为 8、78。

分析: 表6就是卡方检验得结果。

自由度df=4,样本数n=547。

表格下方得注解表明理论次数小于5得格子数为0,最小得理论次数为8、78。

各理论次数均大于5,无须进行连续性校正,因此可以采用第一行(Pearson 卡方)得检验结果,即X2 =5、622,P=0、229>0、05,差异不显著,即不同灌溉方式对稻叶情况得影响差异不显著。

例例 6 6、4 4表 7场地 * 奶牛类型交叉制表计数奶牛类型合计 1 2 3 场地 1 15 24 12 51 2 4 2 7 13 3 20 13 11 44 合计 39 39 30 108 分析: 表5就是场地* 奶牛类型资料分析得列联表。

表 8卡方检验X2 值 df 渐进 Sig、(双侧)精确 Sig、(双侧)精确 Sig、(单侧)点概率 Pearson 卡方 9、199a4、056、056似然比 8、813 4、066、079Fisher 得精确检验 8、463、072线性与线性组合、719b1、397、404、217、036 有效案例中得N 108a、3 单元格(33、3%)得期望计数少于 5。

最小期望计数为 3、61。

b、标准化统计量就是-、848。

分析: 表 8 就是卡方检验得结果。

自由度 df=4,样本数 n=108。

表格下方得注解表明理论次数小于5 得格子数为3,最小得理论次数为3、61。

需采用精确概率法计算,即用第三行(Fisher 得精确检验)得检验结果,即 X2 =8、463,P=0、072>0、05,差异不显著,即 3 种奶牛牛场不同类型奶牛得构成比对差异不显著。

例例 6 6、5 5表 9LPA* FA 交叉制表FA 合计 1 2 LPA 1 17 0 17 2 4 7 11 合计 21 7 28 分析: 表9就是LPA* FA资料分析得列联表。

表 10配对卡方检验值精确 Sig、(双侧)McNemar 检验、125a有效案例中得 N 28a、使用得二项式分布。

分析: 表10就是LPA与FA两种检测方法得配对卡方检验。

由于b+c<40,SPSS选用二项分布得直接计算概率法(相当于进行了精确校正),计算该配对资料得检验得精确双侧概率,并且不能给出卡方值。

本例P=0、125>0、05,差异不显著,即LPA法与FA法对番鸭细小病毒抗原得检出率差异不显著。

表 11对称度量值渐进标准误差 a近似值 T b近似值 Sig、一致性度量 Kappa、680、140 3、798、000 有效案例中得 N 28a、不假定零假设。

b、使用渐进标准误差假定零假设。

分析: 表11为LPA与FA两种检测结果得得一致性检验。

Kappa 值就是内部一致性系数,除数据P值判断一致性有无统计学意义外,根据经验,Kappa≥0、75,表明两者一致性较好0、7>Kapp a≥0、4,表明一致性一般,Kappa<0、4,则表明一致性较差。

本例Kappa值为0、680,P=0、000<0、01,拒绝无效假设,即认为两种检测方法结果存在一致性,Kappa值=0、680,0、7>Kappa≥0、4,表明一致性一般。

例1 1表 12周内日频数表观察数期望数残差 1 11 16、0-5、0 2 19 16、0 3、0 3 17 16、0 1、0 4 15 16、0-1、0 5 15 16、0-1、0 6 16 16、0、0 7 19 16、0 3、0 总数 112分析: 表12结果显示一周内各日死亡得理论数(Expected)为16、0,即一周内各日死亡均数;还算出实际死亡数与理论死亡数得差值(Residual)。

表 13检验统计量周日卡方 2、875adf 6渐近显著性、824 a、0 个单元(、0%)具有小于 5 得期望频率。

单元最小期望频率为 16、0。

分析: Chi-Square过程,调用此过程可对样本数据得分布进行卡方检验。

卡方检验适用于配合度检验,主要用于分析实际频数与某理论频数就是否相符。

卡方值X2 =2、875,自由度数(df)=6,P=0、824>0、05,差异不显著,即可认为一周内各日得死亡危险性就是相同得。

例2 2表 14二项式检验类别 N 观察比例检验比例精确显著性(双侧)性别组 1 0 12、30、50、017 组 2 1 28、70总数40 1、00分析: 调用Binomial过程可对样本资料进行二项分布分析。

表14得二项分布检验表明,女婴12名,男婴28名,观察概率为0、70(即男婴占70%),检验概率为0、50,二项分布检验得结果就是双侧概率为0、017,可认为男女比例得差异有高度显著性,即与通常0、5得性比例相比,该地男婴比女婴明显为多。

例3 3表 15两组工人得血铅值及秩group N 秩均值秩与血铅值 1 10 5、95 59、50 2 7 13、36 93、50 总数 17分析: Independent Samples过程:调用此过程可对两个独立样本得均数、中位数、离散趋势、偏度等进行差异比较检验。

有四种检验方法:Mann-Whitney U:主要用于判别两个独立样本所属得总体就是否有相同得分布;Kolmogorov-Smirnov Z:推测两个样本就是否来自具有相同分布得总体;Moses extreme reactions:检验两个独立样本之观察值得散布范围就是否有差异存在,以检验两个样本就是否来自具有同一分布得总体;Wald-Wolfowitz runs:考察两个独立样本就是否来自具有相同分布得总体。

表 16检验统计量b b血铅值 Mann-Whitney U 4、500 Wilcoxon W 59、500 Z-2、980 渐近显著性(双侧)、003 精确显著性[2*(单侧显著性)]、001aa、没有对结进行修正。

b、分组变量: group分析: 本例选Mann-Whitney U检验方法,表15结果表明,第1组得平均秩次(Mean Rank)为5、95,第2组得平均秩次为13、36,U = 4、5,W = 93、5,精确双侧概率P = 0、001,可认为铅作业组工人得血铅值高于非铅作业组。

例4 4表 17group* effect 交叉制表计数effect 合计无效有效 group 对照组 21 75 96 实验组 5 99 104 合计 26 174 200 分析: 表17就是group* effect资料分析得列联表。

表 18 卡方检验X2 值df 渐进Sig、(双侧)精确Sig、(双侧)精确Sig、(单侧)Pearson 卡方 12、857a1、000连续校正b11、392 1、001似然比 13、588 1、000Fisher 得精确检验、001、000 有效案例中得 N 200a、0 单元格(、0%)得期望计数少于5。

相关文档
最新文档