华师大版数学八年级下册17.1《变量与函数(2)》导学案

合集下载

【最新】华师大版八年级数学下册第十七章《变量与函数2》导学案1

【最新】华师大版八年级数学下册第十七章《变量与函数2》导学案1

新华师大版八年级数学下册第十七章《变量与函数2》导学案二、教学重点、难点重点:函数自变量取值的求法.难点:函数自变量取值的确定.预习案1.函数的定义是什么?函数概念包含哪三个方面的内容?2.什么叫二次根式?使二次根式成立的条件是什么?(答:根指数是2的根式叫二次根式,使二次根式成立的条件是被开方数≥0.)3.举出一个函数的实例,并指出式中的变量与常量、自变量与函数.1.结合同学举出的实例说明解析法的意义:用数学式子表示函数的方法叫解析法.并指出,函数表示法除了解析法外,还有图象法和列表法.2.结合同学举出的实例,说明函数的自变量取值范围有时要受到限制.这就可以引出自变量取值范围的意义,并说明求自变量的取值范围的两个依据是:(1)自变量取值范围是使函数解析式(即是函数表达式)有意义.(2)自变量取值范围要使实际问题有意义.探究案【定向导学·互动展示·当堂反馈】学习流程【探究·展示·反馈】问题1:图1是某地一天内的气温变化图.这张图告诉我们哪些信息?看出回答:(1)这天的6时,10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时候的气温在逐渐升高?什么时候的气温在逐渐降低?思考:这张图是怎样来展示这天各时刻的温度和刻画这天的气温变化规律的?问题2:银行对各种不同的存款方式都规定了相应的利率,下表是2004年7月中国工商银行为”整存整取”的存款方式规定的年利率.存期x 三月六月一年二年三年五年年利率y(%) 1.710 1.890 1.980 2.250 2.520 2.790 观察上表,说一说随着存期x的增长,相应的年利率y是如何变化的?问题3:收音机的刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对对应的数值: 随堂笔记【成果记录、知识生成、规律总结】教学反思:波长l(m) 300 500 600 1000 1500频率f(kHz) 1000 600 500 300 200仔细的观察你能发现什么?问题4:圆的面积是随着半径增大而增大的.如果用r表示圆的半径,S表示圆面积,则S与r之间满足什么关系?利用这个关系式,试求出半径为1cm,1.5cm,2cm,2.6cm,3.2cm时圆的面积,并将结果填入下表:半径r(cm) 1 1.5 2 2.6 3.2 …圆面积S(cm2)由此你可以得到什么结论?二、形成概念(一)变量与常量概念的形成过程1.举例、归纳问题1:某地一天内的气温变化图(示图)学生观察气温随时间变化的情况,引出“变量”。

华东师大版版八年级下册17.1函数与变量教案

华东师大版版八年级下册17.1函数与变量教案

17.1变量与函数✓教学目标:(1)掌握常量和变量、自变量和因变量(函数)基本概念;(2)引导学生联系代数式和方程的相关知识,继续探索数量关系,增强数学建模意识,列出函数关系式.✓教学重点:函数的定义以及运用方程的方法列出具体实例中的两个变量间的关系.✓教学难点:对函数概念的理解✓知识点梳理:1.变量与常量的概念:(1)变量:数值会产生变化的量,即未知数。

(2)常量:数值不会产生变化的量,即已知数。

2.函数的认识:揭示两个变量之间的关系(1)研究两个变量(2)两个变量分别为:自变量、因变量(3)当自变量去一个值时,代入相应关系式,因变量只能取一个值3.函数的表示方法:(1)数字语言:习惯上因变量在等号左边(因变量=含有自变量的式子)如y=2x-1,其中y是因变量,x是自变量;若x=2y-1,其中x是因变量,y是自变量。

(2)文字语言:y是x的函数,y关于x的函数。

“是、关于”相当于“=”,即y=含x 的式子,y 是自变量,x是因变量。

4.函数自变量的取值范围(1)当关系式是整数时,自变量的取值范围是全体实数(2)当关系式是分式时,自变量的取值范围是使分母不为0的实数(3)当关系式是偶次方根(二次根式)时,自变量的取值范围是使被开方数大于等于0的实数(4)当关系式是表示实际问题时,自变量的取值范围要使实际问题进行调整。

5. 函数值与自变量的值函数的值即因变量的值,由自变量x可以求出相应y的值,即此时函数的值。

6.函数关系式:用来表示函数关系的等式。

(1)函数关系式是等式,例如Y=4X-2,是一个函数关系式,我们就说y是关于x的函数,但不可以说(4x-2)是函数关系式。

(2)函数关系式指明自变量,因变量。

通常等号右边的代数式中的变量是自变量,等号左边的变量是因变量。

例如:Y=4X-2,x是自变量,y是因变量。

7.函数的表示方法:列表法、解析法、函数法(1)列表法可以看到每一个自变量所对应的函数值(2)解析法是用函数关系表示函数,能准确的反应函数与自变量之间的数值对应关系(4)图像法直观的看出函数随自变量的变化趋势变量与常量✓典例精析1.骆驼被称为“沙漠之舟”,它的体温是随时间的变化而变化的,在这一问题中,因变量是()A.沙漠B.体温C.时间D.骆驼2.在△ABC中,它的底边是a,底边上的高是h,则三角形面积S=12ah,当a为定长时,在此式中()A.S,h是变量,12,a是常量 B.S,h,a是变量,12是常量C.S,h是变量,12,S是常量 D.S是变量,12,a,h是常量3.对于圆的周长公式C=2πR,下列说法错误的是()A.π是变量B.R、C是变量C.R是自变量D.C是因变量4.挂重物后会伸长,测得弹簧长度y(cm)最长为20cm,与所挂物体重量x(kg)间有下面的关系:列说法不正确的是()A.x与y都是变量,x是自变量,y是因变量B.所挂物体为6 kg,弹簧长度为11 cmC.物体每增加1 kg,弹簧长度就增加0.5 cm✓ 小题精炼1. 假设汽车匀速行驶在高速公路上,那么在下列各量中,变量的个数是( ) ①行驶速度;②行驶时间;③行驶路程;④汽车油箱中的剩余油量.A.1个B.2个C.3个D.4个2列给出的式子中,x是自变量的是( ) A.x=5 B.2x+y=0 C.2y 2=4x+3 D.y=3x ﹣1✓ 函数的概念、表示方法✓ 典例精析1列曲线中不能表示y 是x 的函数的是( )2.下列关系中,y 不是x 的函数关系的是( )A.长方形的长一定时,其面积y 与宽xB.高速公路上匀速行驶的汽车,其行驶的路程y 与行驶的时间xC.y=|x|D.|y|=x3下列变量之间的关系中,是函数关系的有( )①三角形的面积与底边长;②多边形的内角和与边数;③圆的面积与半径; ④y=2017x+365中的y 与x .A.1个B.2个C.3个D.4个✓ 函数自变量取值问题✓ 典例精析1. 使函数y=√3−x 有意义的自变量x 的取值范围是( )A.x ≥3B.x ≥0C.x ≤3D.x ≤02.若函数y=1x−1有意义,则( )A.x >1B.x <1C.x=1D.x ≠1A B C D3.函数y=x 2−x 中自变量x 的取值范围是( )A.x ≠2B.x ≥2C.x ≤2D.x >2✓ 小题精炼1函数y=1x−3+√x −1的自变量x 的取值范围是( )A.x ≥1B.x ≥1且x ≠3C.x ≠3D.1≤x ≤32.函数y=13−x中自变量x 的取值范围是( ) A.x <3 B.x ≥3 C.x ≤3 D.x ≠33.下列函数中,自变量x 的取值范围不正确的是( )A.y=2x 2中,x 取全体实数B.y=√x −2中,x ≥2C.y=√x−3中,x>3D. .y=1x+1中,x ≠1✓ 函数的值✓ 典例精析1.已知变量s 与t 的关系式是s=6t ﹣52t 2,则当t=2时,s=( )A.1B.2C.3D.4 2. 已知两个变量之间的关系满足y=﹣x+2,则当x=﹣1时,对应的y 的值为( )A.1B.3C.﹣1D.﹣33. 如图,若输入x 的值为﹣5,则输出的结果为( )A.﹣6B.﹣5C.5D.6✓ 小题精炼1. 若物体运动的路程s (米)与时间t (秒)的关系式为s=3t 2+2t+1,则当t=4秒时,该物体所经过的路程为( )A.28米B.48米C.57米D.88米2.根据如图所示程序计算函数值,若输入的x的值为−13,则输出的函数值为()A.1B.19C.53D.733. 根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为﹣1,则输出的结果为()A.−3B.﹣2C.﹣1D.1。

八年级数学下册 17.1 变量与函数教案2 (新版)华东师大版-(新版)华东师大版初中八年级下册数学

八年级数学下册 17.1 变量与函数教案2 (新版)华东师大版-(新版)华东师大版初中八年级下册数学

【教学内容】变量与函数2【教学目标】知识与技能1、学会求函数自变量的取值X围,了解实际情境中对函数自变量取值的限制.2、理解函数自变量与函数值的对应关系,会求指定条件下的函数值.3、进一步会求具体问题中的函数关系式.过程与方法联系求代数式的值的知识,探索求函数值的方法.情感、态度与价值观使学生在探索、归纳求函数自变量取值X围的过程中,增强数学建模意识。

【教学重难点】重点:在具体的问题情境中, 求函数自变量的取值X围难点:探究出相应的函数关系式.【导学过程】【知识回顾】(1)为了刻画事物变化规律,数学上常用函数表示;(2)函数的表示方法主要有列表法、图象法、解析法;2:(1)如果分式的分母中含有字母,那么这个字母的取值有什么限制?(2)如果二次根式的被开方式中含有字母,那么这个字母的取值有什么限制?(3)当时,?【情景导入】填写如图所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么?如果把这些涂黑的格子横向的加数用x 来表示,纵向的加数用y 来表示,•试写出y 与x 之间的函数关系式.【新知探究】探究一、例1 试写出等腰三角形中顶角的度数y 与底角的度数x 之间的函数关系式. 探究二、如图所示,等腰直角△ABC 的直角边长与正方形MNPQ 的边长均为10•厘米,AC 与MN 在同一条直线上,开始时A 点与M 点重合,让△ABC 向右运动,最后A 点与N•点重合.1、试写出重叠部分面积y(厘米2)与MA 的长度x(厘米)之间的函数关系式.2、当点A 向右移动1厘米时,重叠部分的面积是多少?…….【知识梳理】1、自变量取值X 围的限制条件 由于等腰三角形的底角只能是锐角。

所以0<x <90°17-1-6C BA D xy 2180-= 221x y =211212=⨯=y2、函数值的求法【随堂练习】1、求下列函数中自变量的取值X 围:(1)y=3x-1 (2)y=2x 2+7 (3)y=12x +(5)25-+-=x x y2、如图所示,一堵旧墙长8米,现要借助旧墙用20•米长的篱笆围成一个矩形养鸡场,其中垂直于墙的一边留一个宽1米的木门,设垂直于墙的另一边长为x 米,•试求养鸡场的面积y(米2)与x(米)的函数关系式,并求出x 的取值X 围.门篱笆养鸡场旧墙x 8m。

八年级数学下册17函数及其图像课题变量与函数2 精品导学案 华东师大版6

八年级数学下册17函数及其图像课题变量与函数2 精品导学案 华东师大版6

课题 变量与函数(2)【学习目标】1.让学生掌握函数、组合函数、实际问题中函数自变量的求法.2.让学生学会已知自变量求函数值、已知函数值求自变量的方法.【学习重点】函数自变量的求法.【学习难点】实际问题中函数自变量的求法.行为提示:创设问题情景导入,激发学生的求知欲望.行为提示:让学生阅读教材,尝试完成“自学互研”的所有内容,并适时给学生提供帮助,大部分学生完成后,进行小组交流.知识链接:1.分式A B:B≠0. 2.二次根式:a (a≥0).3.三角形内角和为180°.解题思路:1.看清题目中的条件限制.2.在实际问题中,切记不等号下是否带“=”号.方法指导:求组合函数自变量的取值范围时,有几个条件限制一般用“{”号,表示并列的意思,若有排除时用“且”.情景导入 生成问题【旧知回顾】1.举一个生活中的实例,用实例中的量来说明什么是变量?什么是自变量?什么是因变量?什么是一个变量的函数?答:举例后,归纳:一般地,如果在一个变化过程中,有两个变量,例如x 和y ,对于x 的每一个值,y 都有唯一的值与之对应,我们就说x 是自变量,y 是因变量,此时也称y 是x 的函数.2.如图所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么?如果把这些涂黑的横向的加数用x 表示,纵向的加数用y 表示,试写出y 与x 的函数关系式.解:y =10-x.自学互研 生成能力知识模块一 函数自变量的取值范围【自主探究】1.求函数自变量取值范围的两个依据:(1)应使函数的表达式有意义:①当函数的表达式为整式时,自变量可取全体实数;②函数的表达式分母中含有字母时,自变量的取值应使分母不等于零;③函数的表达式是二次根式时,自变量的取值应使被开方数大于等于零.(2)对于反映实际问题的函数关系,应使实际问题有意义.2.对于组合而成的函数,应该使每一个组成部分都有意义,最后将它们合并起来.3.在“旧知回顾”中第2题:发现y +x =10,即有函数关系式:y =10-x ,这个函数的右边是一个整式,自变量x 应为全体实数,又因为是10以内的正整数的加法,所以自变量x 的取值范围是:1≤x≤9,且x 为正整数.学习笔记:1.函数中,每一个自变量都有自己的取值范围.2.善于挖掘题目中的隐含条件.3.实际问题考虑不等号是否带“=”号.4.组合函数的自变量的求法.5.求函数值与自变量的值的过程和格式都是固定的,要牢记.行为提示:教师结合各组反馈的疑难问题分配任务,各组展示过程中,教师引导其他组进行补充、纠错、释疑,然后进行总结评比.学习笔记:检测的目的在于让学生进一步熟悉函数自变量取值范围的求法以及函数值的求法. 【合作探究】范例1:(2016·娄底中考)函数y =x x -2的自变量x 的取值范围是( A ) A .x ≥0且x≠2 B .x ≥0 C .x ≠2 D .x >2分析:这是一个组合函数:由二次根式与分式组成,由⎩⎪⎨⎪⎧x≥0,x -2≠0,得x≥0且x ≠2. 范例2:等腰三角形顶角的度数y 是底角度数x 的函数,试写出这个函数关系式,并求出自变量x 的取值范围.解:由等腰三角形的性质和三角形内角和定理得:2x +y =180,∴y =180-2x.∵⎩⎪⎨⎪⎧x >0,180-2x >0,∴0<x <90. 知识模块二 函数值的求法【自主探究】1.求函数值时,需要利用“代入法”将自变量的值代入求出函数值.2.求自变量的值时,需要利用“代入法”将函数的值代入组成方程求出自变量的值.【合作探究】范例3:汽车从A 地驶往相距840 km 的B 地,汽车的平均速度为70 km /h ,t h 后,汽车距B 地s km .(1)求s 与t 的函数关系式,并写出自变量t 的取值范围;(2)经过2 h 后,汽车离B 地多少千米?(3)经过多少小时,汽车离B 地还有140 km?解:(1)∵s+70t =840,∴s =840-70t.∵⎩⎪⎨⎪⎧t ≥0,840-70t≥0,∴0≤t ≤12; (2)当t =2时,s =840-70×2=700,∴经过2 h 后,汽车离B 地700 km ;(3)当s =140时,140=840-70t ,解得t =10.∴经过10 h ,汽车离B 地还有140 km .交流展示 生成新知1.将阅读教材时“生成的新问题“和通过“自主探究、合作探究”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 函数自变量的取值范围知识模块二 函数值的求法检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________教师个人研修总结在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。

华师大版八下数学17.1变量与函数(第2课时)教学设计

华师大版八下数学17.1变量与函数(第2课时)教学设计

华师大版八下数学17.1变量与函数(第2课时)教学设计一. 教材分析华师大版八下数学17.1变量与函数(第2课时)的内容主要包括函数的定义、函数的表示方法以及函数的性质。

本节课是学生在学习了初中阶段函数的基本概念和表示方法之后,进一步深入研究函数的性质,理解函数在实际问题中的应用。

本节课的内容对于学生来说较为抽象,需要通过实例来帮助学生理解和掌握。

二. 学情分析八年级的学生已经具备了一定的函数知识,对于函数的基本概念和表示方法有一定的了解。

但是,对于函数的性质以及其在实际问题中的应用,可能还存在一定的困惑。

因此,在教学过程中,需要通过实例来引导学生理解函数的性质,并能够将函数知识应用到实际问题中。

三. 教学目标1.理解函数的定义,掌握函数的表示方法。

2.理解函数的性质,能够运用函数知识解决实际问题。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.函数的定义和表示方法。

2.函数的性质及其在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过实例来理解函数的性质。

2.利用多媒体辅助教学,通过动画和图片来展示函数的性质,增强学生的直观感受。

3.采用小组合作学习的方式,鼓励学生相互讨论,共同解决问题。

六. 教学准备1.多媒体教学设备。

2.教学课件。

3.相关实例材料。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾已学的函数知识,为新课的学习做好铺垫。

2.呈现(15分钟)利用多媒体展示函数的定义和表示方法,引导学生理解函数的概念。

通过举例说明函数的性质,让学生初步感知函数的特性。

3.操练(20分钟)让学生分组讨论,选取实例分析函数的性质。

每组选取一个实例,从函数的定义、表示方法以及性质等方面进行深入分析,并总结出函数的特点。

4.巩固(10分钟)让学生通过做练习题的方式,巩固所学内容。

教师及时给予解答和指导,帮助学生掌握函数的知识。

5.拓展(10分钟)引导学生将函数知识应用到实际问题中,举例说明函数在生活中的应用。

2019-2020学年八年级数学下册《17.1.1-变量与函数》导学案(新版)华东师大版

2019-2020学年八年级数学下册《17.1.1-变量与函数》导学案(新版)华东师大版

2019-2020学年八年级数学下册《17.1.1 变量与函数》导学案(新版)华东师大版【学习目标】1、通过探索具体问题中的数量关系和变化规律来了解常量、变量的意义;2、学会用含一个变量的代数式表示另一个变量;3、结合实例,理解函数的概念以及自变量的意义;在理解掌握函数概念的基础上,确定函数关系式;【重点】了解常量与变量的意义;理解函数概念和自变量的意义;确定函数关系式。

【难点】函数概念的理解;函数关系式的确定一、学前准备(自主学习)认真阅读课本28页内容。

完成问题1二、合作探究:活动二:问题引申,探索概念(一)观察探究:1、在前面研究的每个问题中,都出现了______个变量,它们之间是相互影响,相互制约的.2、同一个问题中的变量之间有什么联系?(请同学们自己分析“问题一”中两个变量之间的关系,进而再分析上述所有实例中的两个变量之间是否有类似的关系.)归纳:上面每个问题中的两个变量相互联系,当其中一个变量取定一个值时,另一个变量就有________确定的值与其对应。

3、其实,在一些用图或表格表达的问题中,也能看到两个变量间有上述这样的关系.我们来看课本96页思考的两个问题,通过观察、思考、讨论后回答:三、展示点评一般地,在一个变化过程中,如果有两个变量....x与y,并且对于x•的每一个确定的值,y•都有唯一..确定的值与其对应....,•那么我们就说x•是_________,y 是x的________.如果当x=a时y=b,那么b•叫做当自变量的值为a时的函数值.反馈练习:指出下列变化关系中,哪些y是x的函数?哪些不是?说出你的理由.①xy=2; ②x2+y2=10; ③x+y=5;④│y│=3x+1; ⑤y=x2-4x+5;活动三:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km. (1)指出其中的常量和变量。

吉林省八年级数学下册17函数及其图象17.1变量与函数2教学设计新版华东师大版

吉林省八年级数学下册17函数及其图象17.1变量与函数2教学设计新版华东师大版

吉林省八年级数学下册17函数及其图象17.1变量与函数2教学设计新版华东师大版一. 教材分析《华东师大版吉林省八年级数学下册》第17章介绍了函数及其图象,而本节内容主要讲述了变量与函数的概念。

通过本节的学习,学生能够理解变量、常量的概念,掌握函数的定义及其表示方法,并能绘制简单的函数图象。

教材通过丰富的例题和练习题,帮助学生巩固所学知识,培养学生的数学思维能力。

二. 学情分析八年级的学生已经学习了代数基础知识,对变量、常量有一定的了解。

但在函数方面,学生可能还存在着对函数概念理解不深、难以将函数与实际问题相联系等问题。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生建立函数的概念,并通过实例分析,让学生体会函数在实际生活中的应用。

三. 教学目标1.知识与技能:使学生理解变量、常量的概念,掌握函数的定义及其表示方法,学会绘制简单的函数图象。

2.过程与方法:通过实例分析,培养学生从实际问题中提出函数模型的能力,提高学生运用数学知识解决实际问题的能力。

3.情感态度与价值观:激发学生学习函数的兴趣,培养学生积极参与数学学习的热情,感受数学在生活中的重要作用。

四. 教学重难点1.重点:函数的概念及其表示方法,函数图象的绘制。

2.难点:理解函数的概念,将实际问题转化为函数模型。

五. 教学方法采用问题驱动法、实例分析法、合作学习法等。

通过设置富有挑战性的问题,引导学生主动探究;以实际例子为背景,让学生在解决问题的过程中,体会函数的概念及其应用;鼓励学生相互讨论、合作学习,提高学生的数学素养。

六. 教学准备1.准备相关实例,用于讲解函数的概念。

2.准备函数图象的绘制工具,如直尺、圆规等。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过展示生活中的一些实例,如气温变化、物体运动等,引导学生关注变量之间的关系。

提问:这些变量之间是否存在某种规律?学生通过思考、讨论,提出猜想。

2.呈现(10分钟)教师给出一个具体的实例,如正方形的边长与面积之间的关系。

华师大版八下数学17.1变量与函数(第2课时)说课稿

华师大版八下数学17.1变量与函数(第2课时)说课稿

华师大版八下数学17.1变量与函数(第2课时)说课稿一. 教材分析华师大版八下数学17.1变量与函数是本册书的重要内容,本节课的主要内容是让学生理解变量与函数的概念,以及它们之间的关系。

通过本节课的学习,使学生能够理解生活中的变量和函数,能够运用函数的观点看待实际问题,提高学生的数学素养。

二. 学情分析八年级的学生已经初步接触过函数的概念,对于变量和函数的理解有一定的基础。

但是,对于函数的定义和性质还需要进一步的巩固。

因此,在教学过程中,需要引导学生从实际问题中抽象出函数关系,进一步理解和掌握函数的概念。

三. 说教学目标1.让学生理解变量与函数的概念,能够判断生活中的函数关系。

2.使学生能够运用函数的观点看待实际问题,提高学生的数学素养。

3.通过对函数的学习,培养学生的逻辑思维能力和解决问题的能力。

四. 说教学重难点1.教学重点:让学生理解变量与函数的概念,能够判断生活中的函数关系。

2.教学难点:对于函数的定义和性质的理解,以及如何运用函数的观点看待实际问题。

五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中抽象出函数关系。

2.利用多媒体手段,如PPT、视频等,帮助学生直观地理解函数的概念。

3.通过小组合作学习,培养学生的团队协作能力和解决问题的能力。

六. 说教学过程1.导入:通过生活中的实例,引导学生理解变量与函数的概念,激发学生的学习兴趣。

2.新课导入:介绍函数的定义和性质,引导学生理解函数的概念。

3.案例分析:分析生活中的函数关系,使学生能够运用函数的观点看待实际问题。

4.练习与讨论:布置相关的练习题,让学生巩固所学的内容,并通过小组讨论,培养学生的团队协作能力。

5.总结与拓展:对本节课的内容进行总结,提出相关的拓展问题,激发学生的学习兴趣。

七. 说板书设计板书设计主要包括以下内容:1.变量与函数的概念2.函数的定义和性质3.生活中的函数关系八. 说教学评价教学评价主要从学生的学习效果和课堂表现两个方面进行评价。

2023年华师大版八年级数学下册第十七章《变量与函数》导学案1

2023年华师大版八年级数学下册第十七章《变量与函数》导学案1

新华师大版八年级数学下册第十七章《变量与函数》导学案【学习范围】(教材P28—30)【学习目标】(1) 掌握常量和变量、自变量和因变量(函数)基本概念;(2)了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系.【学习重点】常量和变量、自变量和因变量(函数)基本概念;【学习难点】函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系.【学习程序】一自主学习:1、在一个变化过程中,我们称数值发生变化....的量为________;在一个变化过程中,我们称数值始终不变....的量为________;2、函数的概念:在一个变化过程中,有两个变量x和y,对于x的每一个值,y 都有_____的值与之对应,那么x是_______,y是________,此时也称_______是_____的函数。

3、函数的表示方法:①_____________②____________③_________ _二、课堂探究问题1请你来观察:图1是某地一天内的气温变化图。

图1(1)这天的6时,10时和14时的气温分别、、;任意给出这天中的某一时刻,你能说出这一时刻的气温吗? 为什么?(2)由此,我们发现:在这个问题中有个变化的量,它们是随着时间t的变化,温度T也。

问题2请你读一读同学们去银行存过钱吗? 你知道银行对各种不同的存款方式都作了哪些规定?下表是20XX年8月中国人民银行为”整存整取”的存款方式规定的年利率. 观察下表:存期x 三月六月一年二年三年五年年利率y(%) 1.80 2.25 2.52 3.06 3.69 4.14说一说:1、在这个问题中,变化的量是2、随着存期x的增长,相应的年利率y问题3请你来完成收音机的刻度盘上的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的。

下面是一些对应的数值:波长λ(m) 300 500 600 1000 1500频率f(kHz) 1000 600 500 300 2001、在这个问题中,变化的量是_____ ___2、波长l越大,频率f就3、试着找出频率f与波长λ的数值的关系为λf = ,把频率f用波长l 的代数式表示为f =问题4 1.圆的面积:如果用r表示圆的半径,S表示圆面积,则S与r之间满足下列关系:S=2.利用这个关系式,试求出半径为1cm,1.5cm,2cm,3cm,4cm时圆的面积,并将结果填入下表:(保留π)半径r(c m) 1 1.5 2 3 4 …圆面积S(cm2) …3.由此我们可以发现:在这个问题中变化的量有个,它们是,圆的半径越大,它的面积就。

华东师大版八年级数学(下册)导学案:17.1.1变量和函数(无答案)

华东师大版八年级数学(下册)导学案:17.1.1变量和函数(无答案)

赵集一初中课改教学案年级:八年级下期科目:数学执笔:课题17.1.1变量与函数课型:预习+展示总第15节学习目标:知识与能力1.掌握常量和变量、自变量和因变量(函数)基本概念;2.了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系.过程与方法1.通过实际问题,引导学生直观感知,领悟函数基本概念的意义;2.引导学生联系代数式和方程的相关知识,继续探索数量关系,增强数学建模意识,列出函数关系式.情感态度与价值观通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。

培养学生乐于探究,合作学习的习惯。

学习重点:函数的的基本概念:常量和变量、自变量和因变量。

学习难点:函数的识别及自变量和因变量的区别。

学习过程:一、自主学习问题1 图18.1.1是某日的气温变化图.看图回答:(1)这天的6时、10时和14时的气温分别为,自己任意给出这天中的某一时刻,说出这一时刻的气温.(2)这一天中,最高气温是,最低气温是。

(3)这一天中,时段的气温在逐渐升高,时段的气温在逐渐降低。

(4)在这张图中,主要体现了那些数量的变化?答:(5)在这张图中,你发现任意一个时刻对应的气温有几个?答:结论:从图中我们可以看到,随着的变化,相应地也随之变化.每一个时间t,都有的气温T与之对应.问题2 下表是2006年8月中国人民银行为”整存整取”的存款方式规定的年利率. 观察下表:存期x 三月六月一年二年三年五年年利率y(%) 1.80 2.25 2.52 3.06 3.69 4.14说一说:(1)在这个问题中,变化的量是(2)观察上述表格,在上述变化过程中,任取存期x的一个确定的值,年利率y有个值和它对应。

(3)随着存期x的增长,相应的年利率y问题3收音机上的刻度盘上的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数:(1)在这个问题中,变化的量是_____ ___(2)观察上述表格,在上述变化过程中,任取波长λ的一个确定的值,频率f有个值和它对应。

华师大版八下数学17.1变量与函数17.1.2变量与函数教学设计

华师大版八下数学17.1变量与函数17.1.2变量与函数教学设计

华师大版八下数学17.1变量与函数17.1.2变量与函数教学设计一. 教材分析华东师范大学出版社八年级下册数学第17.1节“变量与函数”是学生在学习了代数基础知识后的进一步拓展。

本节内容主要包括变量的概念、函数的定义及其相关性质。

通过本节课的学习,学生能理解变量与函数的基本概念,掌握函数的表示方法,为后续学习函数的性质和图象打下基础。

二. 学情分析八年级的学生已经掌握了代数的基本知识,具备一定的逻辑思维能力和抽象思维能力。

但学生在学习过程中,对于一些抽象的概念和定义容易产生混淆,因此,在教学过程中,需要引导学生通过实例来理解变量与函数的概念,从而提高学生的理解和应用能力。

三. 教学目标1.理解变量、常量的概念,能正确区分两者。

2.掌握函数的定义,了解函数的表示方法。

3.能运用函数的概念解决实际问题,提高学生的应用能力。

四. 教学重难点1.重点:变量、常量的概念,函数的定义及其表示方法。

2.难点:函数概念的理解和应用。

五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。

通过实例引入概念,引导学生主动探究,合作交流,从而提高学生的理解能力和动手能力。

六. 教学准备1.准备相关实例,用于引导学生理解和掌握概念。

2.设计好练习题,用于巩固所学知识。

3.准备课件,辅助教学。

七. 教学过程1.导入(5分钟)通过一个实际问题引入变量和常量的概念,例如:某商品的原价是100元,现进行8折优惠,求优惠后的价格。

让学生思考:原价和优惠后的价格是什么?它们之间的关系如何表示?2.呈现(10分钟)讲解变量的概念,介绍常量和变量的区别。

通过课件展示实例,让学生直观地理解变量和常量的含义。

同时,引入函数的定义,讲解函数的表示方法,如解析式、表格法和图象法。

3.操练(10分钟)让学生分组讨论,每组设计一个函数实例,并用不同的方法表示出来。

讨论结束后,每组汇报成果,其他组进行评价。

4.巩固(10分钟)出示练习题,让学生独立完成。

华东师大版八年级下册17.1变量与函数 教案设计

华东师大版八年级下册17.1变量与函数 教案设计

第17章函数及其图象17.1 变量与函数一、教学目标(一)知识储备点1.通过直观感知,领悟常量、变量、函数的意义.2.了解函数的三种表示方法.3.学会求已知函数自变量的取值范围.4.学会求给定函数的函数值.(二)能力培养点经历对熟悉的具体事例数量关系的探索过程,•体验函数是刻画事物变化规律的常用方法,初步形成用函数描述事物变化规律的习惯.二、教学设想1.重点、难点、疑点重点:在具体的问题情境中,探究出相应的函数关系式.难点:对函数概念和对应思想的理解.疑点:从图象、表格中获取有用的信息.2.课型及基本教学思路课型:新授课.教学思路:问题情境━━概念归纳━━解决问题━━例题演示.三、媒体平台1.教具学具准备教具:多媒体一台学具:三角板一副、几何练习本一本、剪刀一把,正方形卡片若干张.2.多媒体课件撷英(1)课件资讯利用多媒体制作“试一试”中问题1、问题2、问题3、问题4和例题等幻灯片;“圆的面积与半径的关系”课件、“涂方格子”课件、“重叠部分面积”课件(•华东师范大学出版社教学光盘).(2)素材储备利用幻灯片1、2、3、4、5展现“试一试”中问题1、2、3、4和例题,插入相应的对话框和图片;课件:涂方格子、重叠部分面积等.四、课时安排2课时.五、教学设计第1课时(一)本课目标1.初步学会从图形(或图象),表格中获取有用信息.2.了解常量、变量、函数的意义,了解函数的三种表示方法.3.能够列出简单问题的函数解析式.(二)教学流程1.情境导入观察情境图(利用多媒体演示情境图),并思考:情境图中哪些物体是运动变化的?怎样刻画这些物体运动变化的规律?2.课前热身(1)怎样刻画路程、速度和时间之间的规律?(2)怎样刻画圆的面积与它的半径之间的规律?(3)银行里怎样展示存款期限与相应的存款利率之间的规律的?3.合作探究(1)整体感知如何利用数学知识定量刻画事物的运动变化规律呢?•数学家们经过很长时间的探索和研究,发现引入了函数的知识来表示这个动态过程.从本节课开始我们将学习这一部分知识.(2)四边互动互动1师:利用幻灯片1演示问题1.如图17-1-1是所示某地一天内的气温变化图.温度T(℃)时间t(时)看图回答:(1)这一天的6时、10时和14时的气温分别为多少?(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段气温在逐渐上升?什么时段气温在逐渐降低?生:首先独立思考,再小组交流、讨论,然后举手回答.师:在这个变化过程中,任选时刻t的一个确定值,温度T•有几个值和这个时刻相对应?生:独立思考后和同桌交流,举手回答.明确师生共同归纳:在该图形(或图象)中,任取一个时刻t的一个确定值,温度T都有唯一的一个值和该时刻t相对应.互动2师:利用幻灯片2演示问题2.银行对各种不同的存款方式都规定了相应的利率,下表是2002年7月中国工商银行为“整存整取”的存款方式规定的年利率.┌─────┬────┬───┬────┬───┬────┬────┐│存期x │三月│六月│一年│二年│三年│五年│├─────┼────┼───┼────┼───┼────┼────┤│年利率y(%)│ 1.7100 │1.8900│ 1.9800 │2.2500│ 2.5200 │2.7900 │└─────┴────┴───┴────┴───┴────┴────┘观察上表,说一说随着存期x的增长,相应的年利率y是如何变化的.生:逐个举手回答,不断补充完善.师:观察上述表格,在上述变化过程中,任取存期x的一个确定的值,年利率y有几个值和它对应?生:讨论并回答问题.明确师生共同归纳:从表格中可以看出,任取一个存期x的一个确定值,年利率y都有唯一的一个值和该存期x相对应.互动3师:利用幻灯片3演示问题3.如图17-1-2所示的收音机刻度盘的波长和频率分别是用米和千赫兹为单位表刻的.下表是一些对应的数值.图17-1-2┌───────┬──┬──┬───┬──┬───┐│波长L(米) │300 │ 500│ 600 │000 │1500 │├───────┼──┼──┼───┼──┼───┤│频率f(千赫兹) │1000│ 600│ 500 │300 │ 200 │└───────┴──┴──┴───┴──┴───┘观察表格,你发现L与f之间存在怎样的规律?波长L越长,频率f将怎样变化?生:举手回答问题.师:观察表格,在上述变化过程中,任取波长L的一个确定值,频率f有几个值和它对应?生:独立思考后,举手回答.明确师生共同归纳:结论与问题1、2相同.互动4师:利用幻灯片4演示问题4,并播放“圆的面积与半径的关系”课件.如果用r表示圆的半径,S表示圆的面积,则S与r满足的关系是:S=_____.•利用这个关系式填写下表:┌──────┬─┬──┬─┬──┬───┬──┐│半径r(厘米) │ 1│ 1.5│ 2│ 2.6│ 3.2 │…│├──────┼─┼──┼─┼──┼───┼──┤│面积S(厘米2)│││││││└──────┴─┴──┴─┴──┴───┴──┘从表格中你发现:圆的半径越大,它的面积就_______. 生:完成上述空格,并和同桌交流结果.师:在上述变化过程中,任取圆的半径r 的一个确定值,其面积S•有几个值和它相对应? 生:思考交流后举手回答.明确 师生共同归纳:结论与问题1、2、3相同. 互动5师:在问题1、2、3、4中,分别涉及几个可以取不同值的量(变量)?•把它们一一说出来. 生:讨论交流.师:同学们能够把问题1、2、3、4•中反映变化过程的共同规律用自己的语言概括归纳出来吗?生:独立尝试后,交流讨论.明确 师生共同归纳得出下列结论:(利用多媒体展示或板演)在某个变化过程中,可以取不同的值叫做变量,保持不变的量叫做常量.在霜个变化过程中,有两个变量x 和y,对于变量x 的每一个值,变量y•都有唯一确定的值和它相对应,我们就说x 是自变量,y 是因变量,或称y 是x 的函数. 互动6师:根据问题1、2、3、4,说说函数有哪些表示方法? 生:交流讨论后,举手回答,不断补充完善.明确 师生共同归纳:函数通常有三种表示方法. (1)解析法,例如问题3中的f=300000l,问题4中的S=2r . (2)列表法,例如问题2、3中的表格. (3)图象法,例如问题1中的气温曲线. 互动7师:利用多媒体演示例题内容.小明为了表示爷爷吃过晚饭后,出门散步、报亭看报、回家的过程,绘制了爷爷离家的路程S(米)与外出的时间(分)之间的关系图(如图17-1-3所示),请根据这个关系图回答下列问题.图17-1-3t(分)S(米)400402510(1)这个关系图反映了哪几个变量之间的关系?(2)任取变量t 的一个值,变量S 有几个值与它对应,变量S 是t 的函数吗? (3)报亭离爷爷家多远?爷爷在报亭看了多长时间的报? (4)爷爷出门、返回的平均速度分别是多少? 生:在合作交流的基础上,举手逐个回答问题.明确 确定两个变量之间的相依关系是否是函数,必须把握住函数的概念. 4.达标反馈课堂自侧(多媒体演示)(1)指出下列变化关系中,哪些y 是x 的函数?哪些不是?说出你的理由.①xy=2;(是) ②x 2+y 2=10;(否) ③x+y=5;(是) ④│y │=3x+1;(否)⑤y=x 2-4x+5;(是)(2)写出下列问题中的函数关系式,并指出其中的常量与变量. ①等腰三角形的顶角度数y 与底角度数x 的关系式;②时速为110千米的火车行驶的路程y(千米)与行驶的时间x(小时)•之间的关系式; ③底边长为10的三角形的面积y 与高x 之间的关系式;④某种弹簧原长20厘米,每挂重物1千克,伸长0.2厘米,挂上重物后的长度y(•厘米)与所挂上的重物x(千克)之间的关系式;⑤某种饮水机盛满20升水,打开阀门每分钟可流出0.2升水,•饮水机中剩余水量-y(升)与放水时间x(分)之间的关系式.答案:①y=180-2x ②y=110x ③y=5x ④y=20+0.2x ⑤y=20-0.2x 5.学习小结 (1)内容总结 意义函数 表示法 解析法 列表法图象法 (2)方法归纳函数是表示事物运动变化的常用方法. (三)延伸拓展 1.链接生活“龟兔赛跑”讲述了这样一个故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则如图17-1-4所示的图象中与故事情节相吻合的是 (D)AS 2S 1tSBS 2S 1tSCS 2S 1tSDS 2S 1tS2.实践探索 ①实践活动⎧⎨⎩⎧⎪⎨⎪⎩取长为40厘米的铝丝一根,弯折成矩形,通过测量,找出使面积最大时,矩形相邻两边的长度.②巩固练习课本练习第2题、第3题;习题18.1第1题和第4题.(四)板书设计:┌──┬───────────┬───────┐││课题:变量与函数(1) │││例题│常量、变量、函数的意义│多媒体演示内容│││函数的表示方法││└──┴───────────┴───────┘。

华东师大版初八年级数学下册17.1变量与函数导学案

华东师大版初八年级数学下册17.1变量与函数导学案

华东师大版初八年级数学下册17.1变量与函数导学案17.1变量与函数导学案课题变量与函数单元17 学科数学年级八年级知识目标经历对具体变化过程中两个变量之间关系的探索过程,能指出自变量和函数;会求出函数值和写出解析式;认识变量之间的一一对应和唯一性,有简单的函数思想. 重点难点重点:用关系式表示某些变量之间的关系. 难点:求自变量的取值范围. 教学过程知识链接每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,如何用代数式表示总收入?合作探究一、教材第28页问题1、从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.问题2、小蕾在过14岁生日的时候,看到了爸爸为她记录的各周岁时的体重,如下表观察上表,说说随着年龄的增长,小蕾的体重是如何变化的?在哪一段时间内体重增加较快?二、教材第29页问题3、收音机刻度盘上的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值波长λ和频率f 数值之间有什么关系? 问题4、如果用r表示圆的半径,S表示圆的面积,S与r之间满足关系式:S=πr2 ,可以看出:圆的半径越大,它的面积就越大概括:变量:。

自变量:,因变量:。

函数:。

三、教材第30页函数的表示方法:,,。

四、教材第31页例1、等腰三角形顶角的度数y是底角度数x的函数,试写出这个函数关系式,并求出自变量x的取值范围. 列函数关系式的步骤:,,。

例2、如图,已知等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为10cm,CA与MN在同一条直线上,开始时点A与点M重合,让△ABC向右移动,最后点A与点N重合(1)试写出两图形重叠部分的面积y与线段MA的长度x之间的函数关系式. (2)当点A向右移动1cm时,重叠部分的面积是多少?自主尝试1、试写出用自变量表示函数的式子.(1)改变正方形的边长x,正方形的面积S随之改变.(2)秀水村的耕地面积是106m2,人均占有耕地面积y随这个村人数n•的变化而变化.2、一水库的水位在最近5小时内持续上涨,下表记录了这5小时的水位高度.t/时0 1 2 3 4 5 。

八年级数学下册17函数及其图象17.1变量与函数2教案[华东师大版]

八年级数学下册17函数及其图象17.1变量与函数2教案[华东师大版]

变量与函数使学生理解自变量的取值范围和函数值的意义.一、复习提问1.函数的定义是什么?函数概念包含哪三个方面的内容?2.什么叫二次根式?使二次根式成立的条件是什么?(答:根指数是2的根式叫二次根式,使二次根式成立的条件是被开方数≥0.) 3.举出一个函数的实例,并指出式中的变量与常量、自变量与函数.二、新课1.结合同学举出的实例说明解析法的意义:用数学式子表示函数的方法叫解析法.并指出,函数表示法除了解析法外,还有图象法和列表法.2.结合同学举出的实例,说明函数的自变量取值范围有时要受到限制.这就可以引出自变量取值范围的意义,并说明求自变量的取值范围的两个依据是:(1)自变量取值范围是使函数解析式(即是函数表达式)有意义.(2)自变量取值范围要使实际问题有意义.3.讲解例题,求下列函数中自变量x的取值范围,并指出四个小题代表三类题型:(1)y=2x+3;(2)y=-3x2;(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是只含有一个自变量的分式;(4)题给出的是只含有一个自变量的二次根式.让学生通过自主探究,发现问题并学会分析解决问题。

注意渗透与训练学生的归纳思维.比如例3、例4中各是4个小题,对每一个例题均可归纳为三类题型.而对于例3、例4这两道例题,虽然要求各异,但题目结构仍是三类题型:整式、分式、二次根式.4.讲解例题,求下列函数当x=2时的函数值:(1)y=2x-5; (2)y=-3x2;结合例题引出函数值的意义.并指出两点:(1)例题中的4个小题归纳起来仍是三类题型.(2)求函数值的问题实际是求代数式值的问题.课堂练习:求下列函数当x=3时的函数值:(1)y=6x-4;(2)y=-5x2;三、课堂小结1.解析法的意义:用数学式子表示函数的方法叫解析法.2.求函数自变量取值范围的两个方法(依据):(1)要使函数的解析式有意义.①函数的解析式是整式时,自变量可取全体实数;②函数的解析式是分式时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.(2)对于反映实际问题的函数关系,应使实际问题有意义.3.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相应的函数值.四、课堂练习:选用课本练习五、课后作业:32页1、2、3通过例题讲解和纠错,加深学生对知识的理解,使学生灵活应用.注意培养学生对于"具体问题要具体分析"的良好学习方法.比如对于有实际意义的函数,自变量的取值范围应根据实际意义来确定,由于实际问题千差万别,所以我们就要具体分析,灵活处置.。

华师版八年级数学下册教案:第17章 变量与函数2 函数的图象

华师版八年级数学下册教案:第17章 变量与函数2 函数的图象

17.2 函数的图象1 平面直角坐标系(第1课时)教学目标一、基本目标1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念,并能画出平面直角坐标系.2.结合平面直角坐标系,知道不同象限中点的坐标的特征.二、重难点目标【教学重点】根据点的坐标在平面直角坐标系中找出点的位置,平面直角坐标系中点的坐标特征.【教学难点】平面直角坐标系中点的坐标特征.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P34~P35的内容,完成下面练习.【3 min反馈】1.在平面上画两条原点重合、互相垂直且具有相同单位长度的数轴,就建立了平面直角坐标系.通常把其中水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两条数轴的交点O叫做坐标原点.2.在平面直角坐标系中,两条坐标轴把平面分成四部分,右上方的部分叫做第一象限,其他三部分按逆时针方向依次叫做第二象限、第三象限、第四象限.坐标轴上的点不属于任何一个象限.3.坐标轴上的点的坐标特征:横轴上点的纵坐标为0,纵轴上点的横坐标为0,原点的横、纵坐标都为0.4.象限内点的坐标特点:点P(x,y)分别在:第一象限内,则x>0,y>0;第二象限内,则x <0,y>0;第三象限内,则x<0,y<0;第四象限内,则x>0,y<0.5.平面直角坐标系中的点和有序实数对是一一对应的.6.如图,直角坐标系中的五角星在(B)A.第一象限 B.第二象限C.第三象限D.第四象限7.小明建立了如图的直角坐标系,则点A的坐标是(1,2).环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】(1)在如图所示的平面直角坐标系中,描出下列各点:A(-5,0)、B(1,4)、C(3,3)、D(1,0)、E(3,-3)、F(1,-4).(2)依次连结A、B、C、D、E、F、A,得到什么图形?(3)在平面直角坐标系中,点与实数对之间有何关系?【互动探索】(引发学生思考)在平面直角坐标系中描出点的坐标,连线得出图形的形状.【解答】(1)如题图所示.(2)轴对称图形.(3)在平面直角坐标系中,点与实数对之间是一一对应的关系.【互动总结】(学生总结,老师点评)(1)在直角坐标系中,对于平面上的任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应.(2)纵坐标相同的点所在直线平行(重合)于x轴;横坐标相同的点所在直线平行(重合)于y轴.活动2巩固练习(学生独学)1.坐标平面内的下列各点中,在x轴上的是(B)A.(0,3)B.(-3,0)C.(-1,2)D.(-2,-3)2.在直角坐标系中,点P(2,-3)在(D)A.第一象限B.第二象限C.第三象限D.第四象限3.如图是画在方格纸上的某一小岛的示意图.(1)分别写出点A、C、E、G、M的坐标;(2)(3,6),(7,9),(8,7),(3,3)所代表的点分别是什么?解:(1)A(2,9)、C(5,8)、E(5,5)、G(7,4)、M(8,1).(2)(3,6),(7,9),(8,7),(3,3)分别代表点B、D、F、H.4.观察图形,并回答以下问题:(1)写出多边形ABCDEF各个顶点的坐标;(2)线段BC、CE的位置各有什么特点?(3)计算多边形ABCDEF的面积.解:(1)A(-2,0)、B(0,-3)、C(3,-3)、D(4,0)、E(3,3)、F(0,3).(2)线段BC平行于x轴(或线段BC垂直于y轴),线段CE垂直于x轴(或线段CE平行于y 轴).(3)S多边形ABCDEF=S△ABF+S长方形BCEF+S△CDE=12×6×2+3×6+12×6×1=6+18+3=27.活动3拓展延伸(学生对学)【例2】已知点P(a-2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.【互动探索】在x轴上、y轴上的点的坐标各有什么特征?平行于x轴、y轴的直线上的点的坐标又有什么特征?【解答】(1)因为点P(a-2,2a+8)在x轴上,所以2a+8=0,解得a=-4.故a-2=-4-2=-6,则P(-6,0).(2)因为点P(a-2,2a+8)在y轴上,所以a-2=0,解得a=2.故2a+8=2×2+8=12,则P(0,12).(3)因为点Q的坐标为(1,5),直线PQ∥y轴,所以a-2=1,解得a=3.故2a+8=14,则P(1,14).(4)因为点P到x轴、y轴的距离相等,所以a-2=2a+8,或a-2+2a+8=0,解得a=-10,或a=-2.当a=-10时,a-2=-12,2a+8=-12,则P(-12,-12);当a=-2时,a-2=-4,2a+8=4,则P(-4,4).综上所述,点P的坐标为(-12,-12)或(-4,4).【互动总结】(学生总结,老师点评)横轴上的点的纵坐标为0,纵轴上的点的横坐标为0.平行于x轴的直线上的点的纵坐标相同,平行于y轴的直线上的点的横坐标相同.【例3】如图,在一次部队军事对抗演习中甲方已经找到了乙方坐标为A(2,1)和B(-2,1)的两个警卫营的位置,并且知道乙方的指挥所的位置为(3,3),除此之外不知道其他信息,如何确定乙方的指挥所所处的位置?B(-2.1)A(2.1)··【互动探索】观察A、B的坐标,有什么特征?由此能否建系确定原点的位置?【解答】连结AB,作线段AB的中垂线记为y轴,以AB的中点为起点,以AB长的14为一个单位长度向下作一个单位为坐标原点,过原点作AB的平行线记为x轴,建立平面直角坐标系,找到坐标(3,3)即可.如图,点C所示位置即为乙方的指挥所所处的位置.【互动总结】(学生总结,老师点评)两点的纵坐标相等,横坐标互为相反数时,连结两点所成线段的中垂线即为y 轴所在直线.环节3 课堂小结,当堂达标 (学生总结,老师点评) 1.平面直角坐标系⎩⎪⎨⎪⎧x 轴y 轴原点2.平面直角坐标系中的点一一对应,有序数对 3.点P (x ,y )的位置 点的坐标特征 第一象限 x >0,y >0 第二象限 x <0,y >0 第三象限 x <0,y <0 第四象限 x >0,y <0 x 轴上 y =0 y 轴上 x =0 坐标原点x =0,y =0练习设计请完成本课时对应练习!2 函数的图象(第2课时)教学目标一、基本目标1.理解并掌握描点法,会根据描点法在平面直角坐标系中画出函数的图象. 2.根据函数图象解决实际问题. 二、重难点目标 【教学重点】 描点法画函数图象. 【教学难点】根据函数图象解决实际问题.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P36~P40的内容,完成下面练习. 【3 min 反馈】1.一般来说,函数的图象是由平面直角坐标系中一系列的点组成的.图象上每一点的坐标(x ,y )代表了函数的一对对应值,它的横坐标x 表示自变量的某一值,纵坐标y 表示该自变量对应的函数值.2.描点法通常可概括为三步,即列表、描点、连线.3.在实际问题中,为了表达的方便,平面直角坐标系的横轴和纵轴的单位长度可以不一致,这不影响对问题的表达和理解.4.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y 与时间t 之间的函数关系的大致图象是( B )环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】在同一直角坐标系中,画出函数y 1=-2x 和y 2=-x -1的图象.【互动探索】(引发学生思考)按列表、描点、连线的方法解决问题.【解答】列表如下:x …-3-2-1123…y1 (2)312-2-1-23…y2…210-2-3-4…描点、连线,得两函数图象如下:【互动总结】(学生总结,老师点评)作函数图象的一般步骤:列表、描点、连线.连线时,一定要用平滑的曲线将各点连起来.【例2】甲、乙两名运动员在一次赛跑中,路程(米)与时间(秒)之间的关系图象如图所示,请根据图象回答下列问题:(1)这次比赛的距离是多少?(2)甲、乙两人中先到达终点的是谁?(3)乙在这次赛跑中的平均速度是多少?【互动探索】(引发学生思考)图中两条直线各表示什么意思?由图象可以得到哪些信息?如何利用得到的信息求解?【解答】(1)由图象可知,甲、乙的终点的纵坐标均为100,故这次比赛的距离是100米.(2)由图知,甲、乙两人同时出发,甲到达终点所用的时间较少,故甲、乙两人中先到达终点的是甲.(3)由图知,乙到达终点时,横坐标t=12.5,纵坐标s=100,即乙跑完100米用了12.5秒,则v=st=10012.5=8,故乙在这次赛跑中的平均速度是8米/秒.【互动总结】(学生总结,老师点评)解此类题时,要仔细读图,从图中找出有用信息,进而求解.活动2巩固练习(学生独学)1.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是(C)第1题第2题2.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是15分钟.3.如图,l1反映了某公司产品的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,根据图象判断:当该公司盈利(收入大于成本)时,销售量必须大于4.4.画出函数y=2x2-4x-6的图象.解:列表如下:x …-10123…y …0-6-8-60…描点、连线,5.小刘从家里骑自行车出发,去镇上超市途中碰到妹妹甜甜走路从镇上回家,小刘在超市买完东西回家,在回去的路上又碰到了甜甜,便载甜甜一起回家,结果小刘比正常速度回家的时间晚了3 min,二人离镇的距离s(km)和小刘从家出发后的时间t(min)之间的关系如图所示.(假设二人之间交流时间忽略不计)(1)小刘家离镇上的距离8 km;(2)小刘和甜甜第1次相遇时离镇上距离是多少?(3)小刘从家里出发到回家所用时间是多少?解:(2)840=0.2(km/min),0.2×15=3(km),故小刘和甜甜第1次相遇时离镇上距离是8-3=5(km).(3)40+20+15+(8-6)÷615+3=83(min),故小刘从家里出发到回家所用时间是83 min.活动3拓展延伸(学生对学)【例3】如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是________.图1图2【互动探索】根据图象可知点P在BC上运动时,BP不断增大,而从点C向点A运动时,BP 先变小后变大,由此可求出BC与AC的长度.【分析】由图象可知,点P从点B向点C运动时,BP的最大值为5,即BC=5.点P由点C向点A运动时,M是曲线部分的最低点,此时BP最小,即满足BP⊥AC,且BP =4,则在Rt△BPC中,由勾股定理,得PC=BC2-BP2=3.又图象的曲线部分是轴对称图形,所以P A=PC=3,所以AC=6,所以S△ABC=12AC·BP=12×6×4=12.【答案】12【互动总结】(学生总结,老师点评)本题考查动点问题的函数图象,解题的关键是结合图象求出BC与AC的长度.环节3课堂小结,当堂达标(学生总结,老师点评)1.描点法:列表、描点、连线.2.读函数图象,解决实际问题.练习设计请完成本课时对应练习!。

华师大版数学八年级下册17.1《变量与函数》(第2课时)教学设计

华师大版数学八年级下册17.1《变量与函数》(第2课时)教学设计

华师大版数学八年级下册17.1《变量与函数》(第2课时)教学设计一. 教材分析《变量与函数》是华师大版数学八年级下册17.1章节的第二课时,本节课主要内容是让学生掌握函数的定义及其相关概念,理解函数的性质,并能够运用函数解决实际问题。

教材通过实例引入函数的概念,引导学生探究函数的性质,进而掌握函数的表示方法。

本节课的内容是学生进一步学习初中数学的基础,对于培养学生的逻辑思维能力具有重要意义。

二. 学情分析学生在八年级上册已经学习了代数基础知识,对变量、方程等概念有一定的了解。

但函数概念较为抽象,学生可能难以理解。

因此,在教学过程中,需要结合学生的实际生活例子,让学生感受函数的存在,从而更好地理解函数的概念。

三. 教学目标1.了解函数的定义及其相关概念,理解函数的性质。

2.学会用函数表示实际问题,能够运用函数解决简单问题。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.函数的定义及其相关概念。

2.函数的性质。

3.函数在实际问题中的应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过生活实例引入函数概念,引导学生探究函数性质,激发学生学习兴趣,培养学生的独立思考能力和团队合作精神。

六. 教学准备1.准备相关的生活实例和数学案例。

2.制作PPT,展示函数的图像和性质。

3.准备练习题和拓展题。

七. 教学过程1.导入(5分钟)通过一个生活实例引入函数的概念,如:气温随时间的变化。

引导学生思考:如何用数学语言描述这个现象?从而引出函数的定义。

2.呈现(10分钟)展示PPT,讲解函数的定义及其相关概念,如自变量、因变量、函数值等。

通过PPT动画展示函数的图像,让学生直观地感受函数的性质。

3.操练(10分钟)让学生分组讨论,分析给出的数学案例,探究函数的性质。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示练习题,让学生独立完成。

教师选答部分学生的作业,讲解错误之处,巩固所学知识。

2023年华师大版八年级数学下册第十七章《变量与函数2》导学案1 (2)

2023年华师大版八年级数学下册第十七章《变量与函数2》导学案1 (2)

新华师大版八年级数学下册第十七章《变量与函数2》导学案【学习范围】(教材 P31—32)【学习目标】1.会写出函数关系式,会求函数值;2.会确定自变量取值范围.【学习重点】会写出函数关系式,会求函数值.【学习难点】会确定自变量取值范围.【学习程序】一、自主学习:1、使下列代数式有意义的字母的取值范围。

(1)、使整式a+1有意义的条件是_______________________。

(2)、使分式11 a 有意义的条件是_________________________。

(3)、使算术平方根a 有意义的条件是________________________。

(4)、在实际问题中,字母的取值范还必须 。

2、求下列函数中自变量x 的取值范围(1)y=3x -l (2)y =22x +7 (3)y=1x +2(4)y=x -23、对于函数y =22x +7,当x=3时,函数值为 。

4、 一辆汽车油箱现有汽油50L ,如果不再加油,那么油箱中的油量y (L )随行驶里程x (km )的增加而减少,平均耗油量为0.1L/km .(1).表示y 与x 的函数关系式是 。

(2).自变量x 的取值范围是 。

(3).汽车行驶200km 时,油箱中还有汽油 升。

二、课堂探究 1.如图(二),请写出等腰三角形的顶角y 与底角x 之间的函数关系式.2.如图(三),等腰直角三角形ABC 边长与正方形MNPQ 的边长均为l0cm ,AC 与MN 在同一直线上,开始时A 点与M 点重合,让△ABC 向右运动,最后A 点与N点重合。

试写出重叠部分面积y 与MA 长度x 之间的函数关系式.3、讨论:问题1:在上面的联系中所出现的各个函数中,自变量的取值有限制吗?如果有.各是什么样的限制?图(二): 图(三):问题2:某剧场共有30排座位,第l 排有18个座位,后面每排比前一排多1个座位,写出每排的座位数与这排的排数n 的函数关系式为 ,n 的取值怎么限制呢?显然这个n 应该取正整数,所以n 取 ≤n ≤ 的整数或 <n< 的整数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§17.1.2 变量与函数
学习目标:
使学生进一步理解函数的定义,熟练地列出实际问题的函数关系式,理解自变量取值范围的含义,能求函数关系式中自变量的取值范围。

一、衔接知识回顾:规范地填写下列空格,独立完成后互相订正。

1.在某一变化过程中,的量,叫做变量。

2.一般地,如果在一个变化过程中,有两个量,例如x和y ,对于x的每一个值,y 都有的值与之应,我们就说是自变量,是因变量,此时也称是的函数。

3.函数的表示方法主要有、、。

4.思考:
(1)如果分式的分母中含有字母,那么这个字母的取值有什么限制?
(2)如果二次根式的被开方式中含有字母,那么这个字母的取值有什么限制?
(3)当x=2时,代数式
1
2
y
x
=
-

二、新知自学:(学生独立完成后,互相订正)
1.如图(二),请写出等腰三角形的顶角y与底角x之间的函数关系式,并求出自变量x的取值范围.
2.如图(三),等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为l0cm,AC与MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N点重合。

试写出重叠部分面积y与MA长度x之间的函数关系式.
3.问题1:在上面的联系中所出现的各个函数中,自变量的取值有限制吗?如果有.各是什么样的限制?图(二):图(三):
问题2:某剧场共有30排座位,第l排有18个座位,后面每排比前一排多1
个座位,写出每排的座位数与这排的排数n 的函数关系式为 ,n 的取值怎么限制呢?显然这个n 应该取正整数,所以n 取 ≤n≤ 的整数或 <n< 的整数。

所以,函数自变量的取值范围必须满足下列条件:
(1)使分母 ;
(2)使二次根式中被开方式 ;
(3)使实际 。

三、探究、合作、展示
问题1:求下列函数中自变量x 的取值范围
(1)y=3x -l (2)y =2x 2+7
(3)y=1
x +2 (4)y=x -2
问题2:函数值
1.在上面的练习图(三)中,当AN =1cm 时,重叠部分的面积是
2.请同学们求一求在“新知自学”1、2中当x=5时各个函数的函数值:
(1) ;(2) 。

四、巩固训练:
1.完成课本P32练习的第1、2、3题
2.(2010达州市)函数1
2y x =-中自变量的取值范围在数轴上表示为(
)
3.(2010苏州市)函数1
1y x =-的自变量x 的取值范围是( )
A.x≠0 B .x≠1 C .x≥1 D .x≤1
4.在函数y x =+1
1中,自变量x 的取值范围是( )
A. x ≠1
B. x ≥-1
C. x >1
D. x >-1。

相关文档
最新文档