一元二次方程用配方法求最值

合集下载

一元二次方程配方法求最值

一元二次方程配方法求最值

一元二次方程配方法求最值嘿,大家知道吗,一元二次方程的配方法求最值那可是相当厉害的呀!
配方法求最值的步骤其实并不复杂啦。

首先将一元二次方程化为一般形式,然后在方程两边同时加上一次项系数一半的平方,把左边配成完全平方的形式,右边就是一个常数啦。

哎呀呀,这就求出最值了呢!但要注意哦,配方的时候可别配错啦,不然就前功尽弃啦!
在这个过程中呀,那可是很安全很稳定的哟!就像走在平坦的大路上一样,只要按照步骤来,就不会出啥岔子。

它不会突然给你来个“惊喜”,让你不知所措。

那它的应用场景和优势可多了去啦!无论是在数学领域还是在实际生活中,都能大显身手呢。

比如在建筑设计中,可以用它来计算最优的结构参数;在经济领域中,可以帮助企业找到最佳的生产策略。

它就像是一把万能钥匙,能打开好多难题的大门呢!
给大家举个实际案例吧。

比如要建造一个矩形的花园,已知周长是一定的,要让面积最大,这时候就可以用配方法求最值来解决啦!通过计算得出最优的长和宽,就能让花园的面积最大化啦。

看,这效果多明显呀!
所以呀,一元二次方程配方法求最值真的是超级有用的呀,大家一定要好好掌握哦!。

21.2 解一元二次方程——配方法

21.2 解一元二次方程——配方法
2
解: 把常数项移到方程右边得:如何配方?
x 4x 1
2
2 2 2 两边同时加上2 得: x 4x 2 1 2
2

降次
( x 2) 5
2
x2 5
∴原方程的根为 x1 2 5, x2 2 5
例1.解下列方程 2 x 8x 2 0.
x2+8x+ 42 =( x+4 )2 2 2 2 = ( a +b ) a +2 a b + b x2+2.x.4 + 42
配方依据:完全平方公式.
2 2 2 a ±2ab+b =(a±b) .
合作探究
填上适当的数或式,使下列各等式成立. 2 2 (1) x 4 x 2 =( x + 2 )2 2 2 =(x - 3 )2 (2) x 6 x 3
系数一半的平方,得
x 4 x 1.
2
2 2 2
x 4x 2 1 2 .
x 4 x 4 5.
2
写成()2 降次,得
的形式,得
x 2
2
5.
x 2 5.
所以,原方程的根为
x1 2 5
x2 2 5.
练习:3x – 6x + 4 = 0
配方法的基本步骤:
1、将二次项系数化为1:两边同时除以二次项系数; 2、移项:将常数项移到等号一边; 3、配方:左右两边同时加上一次项系数一半的平方; 4、等号左边写成( )2 的形式;
5、降次:化成一元一次方程;
6、解一元一次方程; 7、写出方程的解.
练习 题组
(1)
16 x 4 x 8x __ _ .

初中数学几何模型与最值问题09专题-一元二次方程在实际应用中的最值问题(含答案)

初中数学几何模型与最值问题09专题-一元二次方程在实际应用中的最值问题(含答案)

初中数学几何模型与最值问题专题9 一元二次方程在实际应用中的最值问题【应用呈现】1、 近年来,某县为发展教育事业,加大了对教育经费的投入,2009年投入6000万元,2011年投入8640万元.(1)求2009年至2011年该县投入教育经费的年平均增长率;(2)该县预计2012年投入教育经费不低于9500万元,若继续保持前两年的平均增长率,该目标能否实现?请通过计算说明理由.2、如图,要建造一个四边形花圃ABCD ,要求AD 边靠墙,CD ⊥AD ,AD ∥BC ,AB ∶CD =5∶4,且三边的总长为20 m .设AB 的长为5x m . (1)请求AD 的长;(用含字母x 的式子表示)(2)若该花圃的面积为50 m 2,且周长不大于30 m ,求AB 的长.【方法总结】一、一元二次方程判别式求解1、已知x 、y 为实数,且满足x y m ++=5,xy ym mx ++=3,求实数m 最大值与最小值。

2、已知m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两实数根,则(m +2)(n +2)的最小值是( ) A .7 B .11 C .12 D .16二、配方法求最值1、设a 、b 为实数,那么a ab b a b 222++--的最小值为_______。

2、将形状、大小完全相同的两个等腰三角形如图所示放置,点D 在AB 边上,△DEF 绕点D 旋转,腰DF 和底边DE 分别交△CAB 的两腰CA ,CB 于M ,N 两点,若CA =5,AB =6,AB =1:3,则MD +的最小值为 .三、 “夹逼法”求最值1、不等边三角形∆ABC 的两边上的高分别为4和12且第三边上的高为整数,那么此高的最大值可能为________。

1、国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2017年底有贫困人口1万人,通过各方面的共同努力,2019年底该地区贫困人口减少到0.25万人,求该地区2017年底至2019年底贫困人口年平均下降的百分率.2、某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利50元.经调查发现:这种衬衫的售价每降低1元,平均每天能多售出2件,设每件衬衫降价x元.(1)降价后,每件衬衫的利润为元,平均每天的销量为件;(用含x的式子表示)(2)为了扩大销售,尽快滅少库存,商场决定采取降价措施,但需要平均每天盈利1600元,那么每件衬衫应降价多少元?3、2020年,我国脱贫攻坚在力度、广度、深度和精准度上都达到了新的水平,重庆市深度贫困地区脱贫进程明显加快,作风治理和能力建设初见成效,精准扶贫、精准脱贫取得突破性进展.为助力我市脱贫攻坚,某村村委会在网上直播销售该村优质农产品礼包,该村在今年1月份销售256包,2、3月该礼包十分畅销,销售量持续走高,在售价不变的基础上,3月份的销售量达到400包.(1)若设2、3这两个月销售量的月平均增长率为a%,求a的值;(2)若农产品礼包每包进价25元,原售价为每包40元,该村在今年4月进行降价促销,经调查发现,若该农产品礼包每包降价1元,销售量可增加5袋,当农产品礼包每包降价多少元时,这种农产品在4月份可获利4620元?4、某商场第一年销售某品牌手机5000部,如果每年的销售量比上年增长相同的百分率x,且第三年比第二年多销售了1200部,求x的值.5、某通讯公司规定:一名客户如果一个月的通话时间不超过A分钟,那么这个月这名客户只要交10元通话费;如果超过A分钟,那么这个月除了仍要交10元通话费外,超过部分还要按每分钟元交费.(Ⅰ)某名客户7月份通话90分钟,超过了规定的A分钟,则超过部分应交通话费元(用含A的代数式表示);(Ⅱ)下表表示某名客户8月份、9月份的通话情况和交费情况:月份通话时间/分钟通话费总数/元8月份80 259月份45 10根据上表的数据,求A的值.6、在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角,墙DF足够长,墙DE长为9米,现用20米长的篱笆围成一个矩形花园ABCD,点C在墙DF上,点A在墙DE上,(篱笆只围AB,BC两边).(Ⅰ)根据题意填表;BC(m) 1 3 5 7矩形ABCD面积(m2)(Ⅱ)能够围成面积为100m2的矩形花园吗?如能说明围法,如不能,说明理由.专题9 一元二次方程在实际应用中的最值问题 答案【应用呈现】2、 近年来,某县为发展教育事业,加大了对教育经费的投入,2009年投入6000万元,2011年投入8640万元.(1)求2009年至2011年该县投入教育经费的年平均增长率;(2)该县预计2012年投入教育经费不低于9500万元,若继续保持前两年的平均增长率,该目标能否实现?请通过计算说明理由.【解析】(1)设每年平均增长的百分率为x . 60002)1(x +=8640,2)1(x +=1.44,∵1+x >0, ∴1+x =1.2, x =20%.答:每年平均增长的百分率为20%;(2)2012年该县教育经费为8640×(1+20%)=10368(万元)>9500万元. 故能实现目标.2、如图,要建造一个四边形花圃ABCD ,要求AD 边靠墙,CD ⊥AD ,AD ∥BC ,AB ∶CD =5∶4,且三边的总长为20 m .设AB 的长为5x m . (1)请求AD 的长;(用含字母x 的式子表示)(2)若该花圃的面积为50 m 2,且周长不大于30 m ,求AB 的长.【解析】(1)作BH ⊥AD 于点H ,则AH =3x ,由BC =DH =20-9x 得AD =20-6x (2)由2(20-9x )+3x +9x ≤30得x ≥53,由12[(20-9x )+(20-6x )]×4x =50得3x 2-8x +5=0,∴x 1=53,x 2=1(舍去),∴5x =253.答:AB 的长为253米 【方法总结】一、一元二次方程判别式求解1、已知x 、y 为实数,且满足x y m ++=5,xy ym mx ++=3,求实数m 最大值与最小值。

一元二次方程之配方法

一元二次方程之配方法

一元二次方程的解法二:配方法一元二次的解又叫做一元二次方程的根.我们知道一个一元二次方程可能有个实数根,也可能有个实数根,也可能实数根.我们知道,如果一个一元二次方程具有(x +h )²=k 的形式.那么就可以用直接开方法求解.例如 (x -)2=x 2+6x +9=0 x 2+6x +9=2 4x 2-1=0思考:如何解关于x 的一元二次方程 x 2+6x +4=0 ?这种方法叫做配方法.例1.用配方法解下列关于x 的方程(1)x 2-8x +1=0 (2)x 2-2x -=0 (3)4x 2+16x =-7例2. 某种罐头的包装纸是长方形,它的长比宽多10cm ,面积是200cm ²,求这张纸的长与宽.例3.如图,在Rt △ACB 中,∠C=90°,AC=8m ,CB=6m ,点P 、Q 同时由A ,B•两点出发分别沿AC 、BC 方向向点C 匀速移动,点P 的速度都是0.75m/s ,点Q 的速度是1m/s.(1) P 、Q 运动过程中,判断PQ 与AB 的关系 (2) 几秒后四边形APQB 的面积为Rt △ACB 面积的一半.235912C AQ P配方法练习小测一、选择题1.将二次三项式x 2-4x +1配方后得( ).A .(x -2)2+3B .(x -2)2-3C .(x +2)2+3D .(x +2)2-32.已知x 2-8x +15=0,左边化成含有x 的完全平方形式,其中正确的是( ).A .x 2-8x +(-4)2=31B .x 2-8x +(-4)2=1C .x 2+8x +42=1D .x 2-4x +4=-113.如果m x 2+2(3-2m )x +3m-2=0(m ≠0)的左边是一个关于x 的完全平方式,则m 等于( ).A .1B .-1C .1或9D .-1或9二、填空题1.方程x 2+4x -5=0的解是________.2.代数式的值为0,则x 的值为________. 3.已知(x +y )(x +y+2)-8=0,求x +y 的值,若设x +y=z ,则原方程可变为_______,•所以求出z 的值即为x +y 的值,所以x +y 的值为______.三、解答题1.已知三角形两边长分别为2和4,第三边是方程x 2-4x +3=0的解,求这个三角形的周长.2.如果x 2-4x +y 2,求(x y )z 的值.3.新华商场销售某种冰箱,每台进货价为2500•元,•市场调研表明:•当销售价为2900元时,平均每天能售出8台;而当销售价每降50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达5000元,每台冰箱的定价应为多少元(50的倍数)?2221x x x ---一元二次方程的解法二:配方法(2)配方法解方程x 2+2x -3=0 x 2+10x +20=0 x 2-6x =4x 2-x =1 x 2-8x =8 x 2+8x =-18在配方过程中,方程的两边总是加上的平方.思考:如如何解方程2x 2-5x +2=0 ? (发现有什么不同?并思考该怎么办?)练习1 -3x 2+4x +1=0 2x 2-8x +2=121x 2+2x -1=02x 2-3x =0 3x 2-1=6x -2 x 2+21x +5=0练习3用配方法解方程x 4 +8x ²=-7 (1+x )2+2(1+x )-4=0代数式配方与方程配方的区别练习4求证:无论y 取何值时,代数式-3 y 2+8y-6恒小于0.练习5 一个小球,竖直上抛的过程中,它离上抛点的距离h (m )与跑出后小球运动的时间t (s )关系为:h=24t-5t ².经过多长时间后,小球到上抛点的距离为16m.配方法解一元二次方程的一般步骤:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x +p)²=q 的形式,如果q ≥0,方程的根是x =-p ±√q ;如果q <0,方程无实根.课堂小测试1.配方法解方程2x 2-x -2=0应把它先变形为( ). A .(x -)2=B .(x -)2=0 C .(x -)2= D .(x -)2= 2.下列方程中,一定有实数解的是( ).A .x 2+1=0B .(2x +1)2=0C .(2x +1)2+3=0D .(x -a )2=a 3.已知x 2+y 2+z 2-2x +4y-6z+14=0,则x +y+z 的值是( ).A .1B .2C .-1D .-24.如果16(x -y )2+40(x -y )+25=0,那么x 与y 的关系是.5.(1)9y 2-18y-4=0 (2)x 2x (3)已知:x 2+4x +y 2-6y+13=0,求的值.6.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,•为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,•如果每件衬衫每降价一元,商场平均每天可多售出2件.①若商场平均每天赢利1200元,每件衬衫应降价多少元?②设每件衬衫降价x 元时,用含x 的代数式表示出商场平均每天的利润w ,并分析当x 为多少时w 最大?4313892313891310912222x y x y-+。

《一元二次方程——用配方法求解一元二次方程》数学教学PPT课件(3篇)

《一元二次方程——用配方法求解一元二次方程》数学教学PPT课件(3篇)

知2-讲
(2) 移项,得
2x2-3x=-1.
x2
二次项系数化为1,得
3
1
x .
2
2
2
2
3
1 3
3
x x .
2
2 4
4
2
配方,得
2
3
1

x

=
.


4
16

3
1
x ,
4
4
由此可得
x1 1, x2
1
2
知2-讲
(3)移项,得
(1)当p>0时,方程(Ⅱ)有两个不等的实数根
x1=-n-
p ,x
2=-n+
p;
(2)当p=0时,方程(Ⅱ)有两个相等的实数根
x1=x2=-n;
(3)当p<0时,因为对任意实数x,都有(x+n)2≥0,
所以方程(Ⅱ)无实数根.
知2-练
1 用配方法解下列方程,其中应在方程左右两边同时 加上4的
是(
)
12.在实数范围内定义一种新运算“※”,其规则为a※b=a2-b2,根据这个规则求方程( 2x1 )※( -4 )=0的解.
解:根据新定义得( 2x-1 )2-( -4 )2=0,
即( 2x-1 )2=( -4 )2,
5
3
∴2x-1=±4,∴x1=2,x2=-2.
-41-
第二章
2.2 用配方法求解一元二次方程
2
3
1
A.x,-4
B.2x,-2
3
3
C.2x,D.x,2
2
C )
10.已知关于x的多项式-x2+mx+4的最大值为5,则m的值为( B )

一元二次方程配方法

一元二次方程配方法

一元二次方程配方法
一元二次方程配方法是解决一元二次方程的一种常见方法,通过配方法可以将一元二次方程变形为完全平方 trinomial,从而更容易求解。

下面我们来看一些例子,以便更好地理解一元二次方程配方法的应用。

例1:
将方程 x^2 + 6x + 9 = 0 进行配方法变形。

解:
首先,我们发现 x^2 + 6x + 9 是一个完全平方 trinomial,可以
写成 (x+3)^2。

所以,方程可以写成 (x+3)^2 = 0。

进一步化简可得 x+3 = 0,解得 x = -3。

例2:
将方程 x^2 - 4x + 4 = 0 进行配方法变形。

解:
同样地,我们可以发现 x^2 - 4x + 4 是一个完全平方 trinomial,可以写成 (x-2)^2。

所以,方程可以写成 (x-2)^2 = 0。

进一步化简可得 x-2 = 0,解得 x = 2。

通过以上两个例子,我们可以看到一元二次方程配方法的应用。

希望通过这些例子能够帮助大家更好地理解和掌握一元二次方程配方法。

21.2.2一元二次方程的解法--配方法教学课件26

21.2.2一元二次方程的解法--配方法教学课件26

转化思想,把一个一元二次方程“降次”转化为
两个一元一次方程。即: ax² +bx+c=0 →(x+n)² =p(p≥0) → x+n=
p
或 x+n= -
p
“转化”的数学思想,就是把生疏问题转化为熟悉问题,把抽象问题转 化为具体问题,把复杂问题转化为简单问题,把一般问题转化为特殊问题, 把高次问题转化为低次问题,把未知条件转化为已知条件,把一个综合问题 转化为几个基本问题。转化的目的是不断发现问题、分析问题,最终解决问 题。 只要主动参与,认真思考,勤于动手,就能感悟到 “数学数学真奇妙,学好数学更聪明”!
① 移项:把常数项移到方程的右边; ② 二次项系数化为1:方程两边都除以二次项系数; ③ 配方:方程两边都加上一次项系数一半的平方; ④ 整理:方程变成(x+n)2 =p的形式; ⑤ 求解(直接开平方):若p≥0,转化成两个一 元一次方程求解;若 p<0,则原方程无实数根。 ⑥ 定解:写出原方程的解,即 x1= , x2 = 。
配方法解一元二次方程应注意
1、移项时注意变符号; 2、二次项系数化为1时,每一项都要除以二 次项系数; 3、配方时,方程两边都要加上一次项系数一 半的平方; 4、当p≥0,开方时方程两边都要开平方,且 有两个根; 5、注意书写格式的规范性。
转化的数学思想方法
配方法是重要的数学思想方法,其实质就是
2.拓展题(任选一题做):
(1)利用配方法求代数式的值:
若x²-4x+y²+6y+
z2
+13=0,求(xy)²的值。
(2)求证:不论a取何值,a2-a+1的值总是 一个正数。
2
(3)配方法求最值:x -6x+12的最值。

一元二次方程配方法求最大值的方法总结

一元二次方程配方法求最大值的方法总结

一元二次方程配方法求最大值的方法总结一、确定变量和参数在一元二次方程中,通常设变量为x,参数为a、b、c。

其中,a、b、c为常数,且a≠0。

二、构建一元二次方程一元二次方程的标准形式为:ax^2 + bx + c = 0。

其中,a、b、c为已知参数,x为变量。

三、进行配方转换配方法是一元二次方程求解中的一种常用方法。

通过配方,将一元二次方程转化为完全平方的形式,从而简化求解过程。

具体的配方步骤如下:1. 将方程的常数项移到等号的右边:ax^2 + bx = -c2. 为了使用配方法,我们需要使左边成为一个完全平方项,所以需要加上(b/2a)^2,这样左边的式子就可以写成一个完全平方的形式了:ax^2 + bx + (b/2a)^2 = (b/2a)^2 - c3. 接下来,我们可以将左边的式子写成一个完全平方的形式:a(x + b/2a)^2 = (b^2/4a^2) - c4. 最后,我们得出方程的解为:x = [-b ±sqrt(b^2-4ac)] / (2a)四、求判别式并确定方程解的情况判别式Δ= b^2 - 4ac,根据判别式的值,我们可以确定方程解的情况:1. 当Δ> 0时,方程有两个不相等的实根;2. 当Δ= 0时,方程有两个相等的实根;3. 当Δ< 0时,方程没有实根,而是有两个共轭复根。

五、利用配方法求解最值当一元二次方程代表的是开口向上的抛物线时(即a > 0),我们可以利用配方法求出抛物线的最大值。

最大值出现在顶点处,顶点的横坐标即为方程的解。

而纵坐标即为所求的最值。

当抛物线开口向下时(即a < 0),我们可以利用配方法求出抛物线的最小值,最小值同样出现在顶点处。

九年级数学配方法解一元二次方程

九年级数学配方法解一元二次方程
即:
x1 9 x2 2
用公式法解一元二次方程的一般步骤:
b c 的值。 1、把方程化成一般形式,并写出 a、、
2、求出 b 4ac 的值,
2
特别注意:当 b2 4ac 0 时无解
b b 4ac 3、代入求根公式 : x 2a
2
x2 4、写出方程的解: x1、
群散去的差不多了,她依旧在充当吃瓜群众。看着正在相互交涉的买卖双方,她又凑近了一些。(古风一言)剑指山河兵临城下,不为夙愿,只为 守护你的安然。第076章 嫌弃这马真是可爱,慕容凌娢对马的了解很少,自然不敢妄下断言,但等到人群散去的差不多了,她依旧在充当吃瓜群 众。看着正在相互交涉的买卖双方,她只是更仔细的观察着这匹黑马。正在她肆无忌惮的观察时,那匹黑马突然一扭头,她们一人一马四目相对, 时间仿佛停顿了下来……一切都变得很慢很慢……“噗~”那马看着慕容凌娢,打了一个响鼻,然后嫌弃的翻了一个白眼,满满地都是怨气摇摇 脑袋,甩甩尾巴,便再也不理睬她了。这……这也太尴尬了,慕容凌娢居然会被一只马嫌弃!简直是受到了1000点的暴击!慕容凌娢感觉整个人 都不好了,生无可恋啊~“算了算了,还是去别处看看吧。”慕容凌娢回过神来,发现围观的人都已经走光了。“唉!”那大汉重重的叹了口气, 摸了摸马的鬃毛,“如今这般落魄,留着你也是受罪,还不如给你个痛快……”他说着便要解开拴在木桩上的绳子,那黑马似乎也明白了什么, 开始焦躁不安的挣扎,无奈被绳子束缚,再怎么用力拽也无用。这是要杀马的套路啊!当慕容凌娢脑子转过来弯时,大汉已经准备把马迁走了。 “等等!”慕容凌娢拦住了他,大义凌然的挡在黑马身边,“这马我要了。”“二十两银子,不能再少了!”在醉影楼呆了那么久,慕容凌娢已 经搞清楚了这个年代的物价,一两银子差不多是500RMB,二十两银子……大概就是1WRMB。这也太贵了!自己这回出来,总共就带了四两银子,可 是这马,要是没人要,就要惨死在街头了……怎么办?这个年代又没有动物保护协会这样的组织,她实在不想看见这只马就这样死 掉……“我……”情急之下,慕容凌娢摸到了自己挂在脖子上的那块血玉,就是穿越时拿着的那块。“我用这块玉来换可以吗?”“这是……” 大汉接过慕容凌娢的玉,摆弄了几下,又丢了回来,“我又不知道这东西是真是假,万一你给我个假的,我不就亏大了吗!”“这个绝对是真 的!”慕容凌娢着急着想解释,可是那大汉始终不为所动。“二十两银子是吗?”“韩哲轩!”慕容凌娢惊喜的回过头,“你刚才跑哪里去了! 找你半天,还以为你丢了呢……”“方蛤蟆?慌什么?,人多,被挤掉线了而已,看来该换网了。”韩哲轩依旧是不紧不慢态度,没有想要认真回 答慕容凌娢。他脸上带着常有的笑意,把钱袋递给了大汉,“这么多够了吧?”“够了够了!”“那马我带走了。”韩哲轩把马的缰绳接下来, 交到了慕容凌娢手里,“归你了,不用谢我。”“公子您慢走!”……“老哥(稳),这回坑了不少钱吧!”等韩哲轩

九年级数学配方法解一元二次方程

九年级数学配方法解一元二次方程

拦住一辆面包车,然后出示了警官代谢说,我是警察,想搭你的车。司机打量了一下他全身的警服,并没看他的代谢件,就痛快地说,上来吧。 上车后,通过交谈,才知道司机是黎鸣家所在的镇街上的,在镇政府旁边开了一家饭馆,每隔几天开车去县城买一次菜。到了镇上后,司机主
动说,你离家还远,我送你吧。从镇上到村里三公里的路程,步行需要半个小时,而坐车,五分钟就到家门口了,省了他以前的步行之苦。 第一次搭车,黎鸣觉出了搭车的好处,方便快捷,省时省力。自此,每次回家,他都在县城搭车,而且每次都能如愿。这更使他感觉到了当警察的
黎鸣是个优秀的青年,为人诚实,懂礼貌;孝顺母亲,工作出色;二是黎鸣的违规行为并不严重,通过对他的约谈、警示,黎鸣已经认识到错误,不必再处分。事实代谢明“黎鸣从此再也没有搭过车”。这样人性化处理,体现了领导者的通情达理、体察民情,起到了保护、 鞭策作用。
例2:不认同。一方面,原则、制度必须遵守,人情不能超越法纪。因人而异的处理会导致不公。另一方面,千里之堤溃于蚁穴,如果因为情节轻微而不加以重视,就有可能会使一些违纪者产生侥幸心理,进而一犯再犯,最终走到无法挽救的地步。文中黎鸣起先在县城搭车,后来逐渐发
x=
=
=.
(t1= ,t2= - )
即 x1= -2 , x2= .
例 用公式法解方程: x2 – x - =0
解:方程两边同乘以 3
得 2 x2 -3x-2=0
a=2,b= -3,c= -2.
∴b2-4ac=(-3) 2-4×2×(-2)=25.
∴x=
=
= 即 x1=2,
x2= -
求根公式 : X=
记。 ③晨曦微亮,不必急于晨起,和衣而坐,望向邻近的窗棂,你会惊喜地发现,整个窗玻璃上冰窗花葳蕤①如春,轻轻地凑近鼻息,似乎能嗅出冰窗花散发着馥郁的馨香,冰洁,剔透,令人心灵震颤。手指轻轻抚摸上去,冰窗花棱角分明,如一朵朵雪花,被夜神的手指悄悄安抚上去,

第02讲解一元二次方程——直接开方法与配方法(原卷版)

第02讲解一元二次方程——直接开方法与配方法(原卷版)

第02讲 解一元二次方程——直接开方与配方法知识点01 直接开方法解一元二次方程1. 直接开方法求p x =2的一元二次方程:由平方根的定义可知: ①0>p 时,一元二次方程p x =2有 个 的实数根,分别是 或 。

他们互为 。

②当0=p 时,一元二次方程p x =2有 个 的实数根,即。

③当0<p 时,一元二次方程p x =2 实数根。

2. 直接开方法解()p b ax =+2的一元二次方程:同样由平方根的定义可知:①当0>p 时,一元二次方程()p b ax =+2有 个 的实数根。

方程开方降次得到一元一次方程p b ax =+或p b ax -=+。

所以它的两个实数根分别是 或 。

②当0=p 时,一元二次方程()p b ax =+2有 个 的实数根。

方程开方降次得到一元一次方程0=+b ax ,所以一元二次方程的两个实数根为 。

③当0<p 时,一元二次方程b ax =+题型考点:①利用直接开方法解方程。

②根据根的情况求字母的值或取值范围。

【即学即练1】1. 方程x 2=1的根是( )A .x =1B .x =﹣1C .x =±1D .x =±22.方程(x +6)2﹣9=0的两个根是( )A .x 1=3,x 2=9B .x 1=﹣3,x 2=9C .x 1=3,x 2=﹣9D .x 1=﹣3,x 2=﹣9 3.解方程:(1)x 2﹣81=0; (2)4(x ﹣1)2=9. 【即学即练2】4.关于x 的一元二次方程x 2=a 的两个根分别是2m ﹣1与m ﹣5,则m = .【即学即练3】5.若关于x 的方程(x ﹣a )2﹣4=b 有实数根,则b 的取值范围是( )A .b >4B .b >﹣4C .b ≥4D .b ≥﹣46.如果关于x 的方程(x ﹣1)2=m 没有实数根,那么实数m 的取值范围是 .知识点02 配方法解一元二次方程1. 配方法的定义:将一元二次方程化成()p b x =+2的形式在利用直接开方法解一元二次方程的方法。

九年级数学配方法解一元二次方程

九年级数学配方法解一元二次方程
配方法解一元二次方程
用配方法解一元二次方程 2x2+4x+1=0
用配方法解一元二次方程的步骤: 1.把原方程化成 x2+px+q=0的形式。
2.移项整理 得 x2+px=-q
3.在方程 x2+px= -q 的两边同加上一次项系数 p的一半的平方。 x2+px+( 4. 用直接开平方法解方程 (x+ )2 = -q+( )2
2、 6t2 -5 =13t (t1 = ,t2 = )

用公式法解方程: x2 +3 = 2 x 解:移项,得 x2 -2 x+3 = 0 ,c=3 )2-4×1×3=0 = =

用公式法解方程:
x2 – x =0
解:方程两边同乘以 3
得 2 x2 -3x-2=0 a=2,b= -3,c= -2. ∴b2-4ac=(-3) 2-4×2×(-2)=25. ∴x= = 即 x1=2, 求根公式 : X= x2 = =
有两个相等的实数解
;成人蹦床 /products/hbxmcrsnjscjbcgy ; ; 2019.1 ;
那次就看看实战效果.给我好好表现!" 叶甫根尼做着标准的军礼,下一秒弓着身子到自己的部队驻地. "我们呢?长官!我们民兵那么办?" 李小克看看那个人,他是尼聂利,当初进入沼泽就是那个人引路. "你们民兵是第一次参与战斗,就作为战略预备队,当我们主力有压力时,你们参与战 斗.男兵女兵都参与战斗.所有少年兵一样作为预备队." 李小克知道,那群几乎没有进行过战术训练,只进行过打靶训练的民兵,如果真的把他们当做正规部队,战斗结束后必然伤亡很大.因为他们是动员兵,各方面的素质一塌糊涂.它些女兵,平日里打靶再多也没用,因

九年级数学配方法解一元二次方程

九年级数学配方法解一元二次方程

这包比上次那包甜。”
? 阿嬷的俭约,有时近乎刻苦。每一回陪她买菜,我总要生闷气,她看我拿钱出手快,也不高兴。两个时代的价值观一旦面对面,就算亲若血缘也会争执不已,所有的家庭问题关键不就在这儿?阿嬷坚持买最便宜的菜,七口之家一日的菜钱只用七
十元,不能不算奇迹--半斤豆芽炒韭十元,一条苦瓜熬汤八元,一把菠菜清炒十元,两块豆腐红烧十元,一条吴郭鱼烧酱二十元,半斤鸡蛋煎菜辅菜十元。当我们各组逛完市场在候车亭相见,她见我手上提的是最贵的水果,加上一大捧鲜花时,庭训就要开始了:
一粒吃又揣了一粒在口袋,再将它放回原处,装作啥事都不知晓。过不了几日,便会听到她的抱怨:“半包软糖仔那是你们阿姑买给我的,放在棉被堆里也给你们偷拿去呷。看看,剩三粒,比日本仔还野!夭鬼囡仔,我藏到无路啰!--喏,敏嫃,剩这粒给你。”
?我
的确是特权了,可以分享到阿嬷的卷仔饼,及她那个年代的甜处。于是,公事包里常常有些奇怪的东西:五条卷仔饼、一把纽仔饼、六粒龙眼球、两块爆米香、一块红龟仔果......我便拿着去普渡众生,遇到谁就给谁。回到家,阿嬷还要问食后心得:“好呷莫?”我说:“马马虎虎啦,
? “莫
彩钱!哼(不屑的声调),买那个花干啥?看没三天就谢去,你拢免呷饭静静坐住看,就会饱啊?你买那把花的钱,我买一甲地的菠宁菜还有剩!” “看‘水’呀,瘄内插一盆花‘水’呀!” “‘水’去壁!人说‘猪仔牵去唐山还是猪’,你这已经讲不变了!”
?
阿嬷的老磨功,我是及不上的。她能够把市场的每一条曲巷壁缝都探摸得如视掌纹,找出卖价最便宜的摊贩,使自己永远不在钱字上吃闷亏,这些技巧很顶有心理学修养的,她说:
阿嬷还是每日梳一个紧紧的髻。 我问阿嬷:“你几岁的时头壳上有白头毛?” 她说:“谁会记住这,大概是嫁给你阿公以后,抑是你阿公死了后?做啥?” 我说:“我有白头毛了。” 尚未发生 ? 四月当然不是残酷的季节。孩童在草地上踢足球,球追孩子,孩子追球。

人教版数学九上21.2《解一元二次方程》(配方法)ppt课件

人教版数学九上21.2《解一元二次方程》(配方法)ppt课件
方程两边都加上一次项系数的一半的平方,使 左边配成一个完全平方式
3.你能总结出来用这种方法解一元二次方程的 步骤吗?
21.2 解一元二次方程
3.你能总结出来用这种方法解一元二次方程的 步骤吗? (1)把常数项移到方程右边; (2)方程两边同除以二次项系数,化二次项 系数为1; (3)方程两边都加上一次项系数一半的平方 ; (4)原方程变形为(x+m)2=n的形式; (5)如果右边是非负数,就可以直接开平方 求出方程的解,如果右边是负数,则一元二次 方程无解.
,配方后的方程可以是A( )
A.(x-1)2=4
B.(x+1)2=4
C.(x-1)2=16
D.(x+1)2=16
2.一个小球以15 m/s的初速度向上竖直弹出
,它在空中的高度h(m)与时间t(s)满足关系式h
=15t-5t2,当小球的高度为10 m时,t为C( )
A.1 s
B.2 s
C.1 s或2 s
21.2 解一元二次方程
1.用配方法解一元二次方程x2-4x=5时
,此方程可变形D为( ) A.(x+2)2=1
B.(x-2)2=
1
C.(x+2)2=9
D D.(x-2)2=9
2.下列配方有错误的是(
)
A.x2-2x-3=0化为(x-1)2=4
B.x2+6x+8=0化为(x+3)2=1
C.x2-4x-1=0化为(x-2)2=5
用配方法解二次项系数不是1的一元二次方程,首先方 程两边都除以二次项系数,将方程化为二次项系数是1 的类型.
21.2 解一元二次方程
1.通过配成__完___全__平__方__形__式___来解一元二次方程的方法叫

1.22一元二次方程的解法(二)配方法—知识讲解(提高)

1.22一元二次方程的解法(二)配方法—知识讲解(提高)

1.22一元二次方程的解法(二)配方法—知识讲解(提高)【学习目标】1.了解配方法的概念,会用配方法解一元二次方程; 2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力。

【要点梳理】知识点一、一元二次方程的解法---配方法 1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±.知识点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.【典型例题】类型一、用配方法解一元二次方程1. 用配方法解方程:(1)2410x x --=; (2)22730x x ++=.【思路点拨】方程(1)的二次项系数是1,方程(2)的二次项系数不是1,必须先化成1,才能配方,这是关键的一步.配方时,方程左右两边同时加上一次项系数一半的平方,目的是把方程化为2()(0)mx n P P +=≥的形式,然后用直接开平方法求解. 【答案与解析】(1)移项,得241x x -=. 配方,得224214x x -+=+.即2(2)5x -=.直接开平方,得25x -=±, ∴ 125x =+,225x =-. (2)移项,得2273x x +=-,方程两边同除以2,得27322x x +=-, 配方,得22277372424x x ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭,即2725416x ⎛⎫+= ⎪⎝⎭,直接开平方,得7544x +=±. ∴ 112x =-,23x =-. 【点评】配方要注意一次项的符号决定了左边的完全平方式中是两数和的平方还是两数差的平方.举一反三:【变式】 用配方法解方程 (1)(2)20x px q ++=【答案】(1)2235x x +=2253x x -=-25322x x -=-2225535()()2424x x -+=-+ 251()416x -=5144x -=±123,12x x ==.(2)20x px q ++=222()()22p px px q ++=-+224()24p p qx -+=①当240p q -≥时,此方程有实数解,221244,22p p q p p qx x -+----==; ②当240p q -<时,此方程无实数解.类型二、配方法在代数中的应用2. 用配方法证明21074x x -+-的值小于0.【思路点拨】本题不是用配方法解一元二次方程,但所用的配方法思想与自己学的配方法大同小异,即思路一致. 【答案与解析】22271074(107)410410x x x x x x ⎛⎫-+-=-+-=--- ⎪⎝⎭ 27494910410400400x x ⎛⎫=--+-- ⎪⎝⎭ 274910420400x ⎡⎤⎛⎫=----⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2274971111041020402040x x ⎛⎫⎛⎫=--+-=---⎪ ⎪⎝⎭⎝⎭. ∵ 2710020x ⎛⎫--≤ ⎪⎝⎭,∴ 271111002040x ⎛⎫---< ⎪⎝⎭, 即210740x x -+-<.故21074x x -+-的值恒小于0.【点评】证明一个代数式大于零或小于零,常用方法就是利用配方法得到一个含完全平方式和一个常数的式子来证明.举一反三:【变式】试用配方法证明:代数式223x x -+的值不小于238. 【答案】 22123232x x x x ⎛⎫-+=-+ ⎪⎝⎭22211123244x x ⎡⎤⎛⎫⎛⎫=-+-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦21123416x ⎡⎤⎛⎫=--+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2112348x ⎛⎫=--+ ⎪⎝⎭2123248x ⎛⎫=-+ ⎪⎝⎭.∵ 1204x ⎛⎫-≥ ⎪⎝⎭,∴ 2123232488x ⎛⎫-+≥ ⎪⎝⎭.即代数式223x x -+的值不小于238.3. 若实数x y ,满足224250x y x y +--+=,则32x y y x+-的值是( )A.1B.322+ C.322+ D.322-【答案】C ;【解析】对已知等式配方,得2210x y -+-=2()(),∴21x y ==,. ∴32x y y x+-22121213222132221+++====+---().故选C. 【点评】本例是配方法在求值中的应用,将原等式左边配成完全平方式后,再运用非负数的性质求出待定字母的取值. 举一反三: 【变式】(1)的最小值是 ;(2)的最大值是 .【答案】(1)222222333152632(3)323()()32()2222x x x x x x x ⎡⎤+-=+-=++--=+-⎢⎥⎣⎦;所以的最小值是152-(2)22222245(4)5(422)5(2)9x x x x x x x -++=--+=--+-+=--+所以的最大值是9.4. 分解因式:42221x x ax a +++-. 【答案与解析】42221x x ax a +++-4222221x x x ax a =+-++- 4222212x x x ax a =++--+()()2221x x a =+--()() 22(1)(1)x x a x x a =++-+-+.【点评】这是配方法在因式分解中的应用,通过添项、配成完全平方式,进而运用平方差公式分解因式. 【巩固练习】 一、选择题1.已知关于x 的一元二次方程220x x m --=,用配方法解此方程,配方后的方程是( )A .2(1)1x m -=+ B .2(1)1x m +=+ C .22(1)1x m -=+ D .22(1)1x m +=+ 2.用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为2(1)100x -= B .22740t t --=化为2781416t ⎛⎫-= ⎪⎝⎭C .2890x x ++=化为2(4)25x +=D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭3.用配方法解方程x 2-2x -5=0时,原方程应变形为( )A .(x +1)2=6B .(x +2)2=9C .(x -1)2=6D .(x -2)2=9 4.不论x 、y 为何实数,代数式22247x y x y ++-+的值 ( )A .总小于2B .总不小于7C .为任何实数D .不能为负数 5.已知,则的值等于( )A.4B.-2C.4或-2D.-4或2 6.若t 是一元二次方程的根,则判别式和完全平方式 的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定二、填空题 7.(1)x 2-43x+ =( )2; (2)x 2+px+ =( )2. 8.已知223730216b a a b -+-+=,则4a b -的值为 . 9.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.10.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为____ ___,•所以方程的根为_________.11.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是___ ________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________. 12.已知.则的值为 .三、解答题13. 用配方法解方程.(1) 3x 2-4x-2=0; (2)x 2-4x+6=0.14.分解因式44x +.15.已知在⊿ABC 中,三边长a 、b 、c ,满足等式a 2-16b 2-c 2+6ab+10bc=0,求证:a+c=2b【答案与解析】 一、选择题 1.【答案】A ;【解析】配方的步骤是:(1)移项,把常数项移到等号右边;(2)把二次项系数化为1,即在方程两边同时除以二次项系数;(3)配方,在方程两边同时加上一次项系数的一半的平方.2.【答案】C ;【解析】选项C :2890x x ++=配方后应为2(4)7x +=.3.【答案】C ;【解析】x 2-2x -5=0,x 2-2x =5,x 2-2x +1=5+1,(x -1)2=6. 4.【答案】D ; 【解析】2222247(1)(2)22x y x y x y ++-+=++-+≥.5.【答案】A ;【解析】原方程化简为:(x 2+y 2)2-2(x 2+y 2)-8=0,解得x 2+y 2=-2或4,-2不符题意舍去.故选A. 6.【答案】A .【解析】由t 是方程的根得at 2+bt+c=0,M=4a 2t 2+4abt+b 2=4a(at 2+bt)+b 2= b 2-4ac=△.故选A.二、填空题7.【答案】(1)49;23x -; (2)24p ;2px +.【解析】配方:加上一次项系数一半的平方. 8.【答案】12-;【解析】将原式进行配方,得2291304216b a a b ⎛⎫⎛⎫-++-+= ⎪ ⎪⎝⎭⎝⎭,即2231024a b ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,∴ 302a -=且104b -=, ∴ 32a =,14b =.∴ 31314422422a b -=-=-=-. 9.【答案】4;【解析】4x 2-ax+1=(2x-b)2化为4x 2-ax+1=4x 2-4bx+b 2,所以241a b b =-⎧⎨=⎩- 解得41a b =⎧⎨=⎩或41a b =-⎧⎨=-⎩所以4ab =.10.【答案】(x-1)2=5;15± .【解析】方程两边都加上1的平方得(x-1)2=5,解得x=15±.11.【答案】;2或6.【解析】3x 2-2x-3=0化成;即2(-)232aa =-,a=2或6.12.【答案】5; 【解析】原式三、解答题13. 【答案与解析】(1)将常数项移到方程右边 3x 2-4x=2将二次项系数化为1:x 2-x=方程两边都加上一次项系数一半的平方:x 2-x+()2=+()2配方:(x-)2=直接开平方得:x-=±∴x=∴原方程的解为x 1=, x 2=.(2)将常数项移到方程右边x 2-4x=-6.两边都加“一次项系数一半的平方”=(-2)2,得x 2-4x+(2)2=-6+(2)2.(x-2)2=2,用直接开平方法,得 x-2=±, ∴ x=3或x=.14. 【答案与解析】4222224()22222x x x x +=++-22222(2)(2)(22)(22)x x x x x x =+-=++-+. 15. 【答案与解析】a 2-16b 2-c 2+6ab+10bc=(a 2+6ab+9b 2)-(25b 2-10bc+c 2)=(a+3b)2-(5b-c)2=(a+8b-c)(a-2b+c)∵a,b,c 为三角形的三边长,∴a+b-c >0,a+8b-c=(a+b-c)+7b >0. 故由条件只有 a-2b+c=0,即a+c=2b.。

用配方法推导一元二次方程的求根公式

用配方法推导一元二次方程的求根公式
x2 bx a 0,
解方程得x b b2 4a (1) 2
可悲的是当时世界上是清一色的不承认负根,自然不
知道有两个根,只取一个正根并且二次项系数为1.
第二站:约公元前300年前后古希腊欧几里得的《几何 原本》,约第三世纪丢番图的《算术》对公式(1)也 有所记载。 中国古代数学家赵爽在其《周髀算经》注文的《勾股 圆方图注》一文中,用几何方法找到了形如:
设大正方形abcd的面积为小正方形面积为矩形面积为那么就有1s2s3s??222123220xxascxxxcxa??????????????2211212s221xxcxxc???????????222221322121s424442ssxxcaxxca??????????????????22222222221124412224422441222442ccaxccaxccaxccax???????????????得
x1x2 a2 S3 2c x x x2 2cx a2 0
S1= x1 x2 2 2c2 x1 x2 2c 1
S1 4S3 S2 x2 x1 2 2c2 4a2 x2 x1 4c2 4a2 2
4
22
2 1 a 2 a 3 2
4
4
练习4,已知a 6 2 , 求-a3 - 6a2 -a- 6的值.
2ac
x 1是一元二次方程acx2 bx 1 0的解。
ac b 1 0
ac b 1
b2 4ac b2 4b 1 b 22
b 0,当b 0时,b 22 有最小值为4
当b 0, ac 1时,b2 4ac的最小值为4.
2 2 16 24

02用配方法求解一元二次方程

02用配方法求解一元二次方程
(4)?2 x2+?1 x-2=0.
33
栏目索引
解析 (1)配方得(x+2)2=4,所以x+2=±2,所以x1=0,x2=-4.
(2)移项得x2-2x=2,配方得(x-1)2=3,所以x-1=±? 3 ,所以x1=? 3 +1,x2=-? 3 +1.
? (3)系数化为1得x2-?3 2
x-3=0,配方得??
2
? ??
=1+???
1 3
2
? ?
,即?? x
??
?
1 3
2
? ??
=
?10
9
,
栏目索引
直接开平方,得x+?1 =±?10 , 33
∴x+?1 =?10 或x+?1 =-?10 ,
33
33
∴x1=?? 1? 10 ,x2=??1? 10 .
3
3
点拨 x1,x2表示方程的两个实根,其下标与根的大小无关.注意当方程配
栏目索引
5.若3?x2m2 ?m y2与-x4m-2y2是同类项,则m=
.
答案 2或?1
2
解析 由题意得2m2-m=4m-2,移项、合并同类项,得2m2-5m=-2,二次项系
? ? ? 数化为1,得m2-?5 2
m=-1,配方,得m2-?5
2
m+??? ?
5 4
2
? ??
=-1+??? ?
5
2
?
4 ??
x2=-? 2 +2.
? (2)
系数化为1,得x2-?1
6
x-2=0.移项,得x2-?1
6
x=2.配方,得x2-?1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程用配方法求最值
一元二次方程是数学中的一个重要概念,我们可以通过配方法来求解其最值。

在这篇文章中,我将详细介绍一元二次方程以及如何使用配方法来求解其最值。

一元二次方程是形如ax^2+bx+c=0的方程,其中a、b、c为实数且
a不等于0。

求一元二次方程的最值可以帮助我们找到函数的最高点或最低点,这在很多实际问题中具有重要意义。

我们来了解一下一元二次方程的一些基本性质。

一元二次方程的图像是一个抛物线,其开口方向由a的正负确定。

当a大于0时,抛物线开口向上,此时方程的最值为最低点;当a小于0时,抛物线开口向下,此时方程的最值为最高点。

接下来,我们将介绍如何使用配方法来求解一元二次方程的最值。

配方法是一种通过将方程进行变形,使其能够方便地进行因式分解的方法。

具体步骤如下:
1. 将一元二次方程的一次项系数b除以2,并将结果记为p,即
p=b/2。

2. 将方程进行变形,得到(x+p)^2+q=0的形式,其中q=c-(b^2/4)。

3. 将方程进行因式分解,得到(x+p+√q)(x+p-√q)=0。

4. 根据因式分解的结果,得到两个解x1=-p+√q和x2=-p-√q。

通过以上步骤,我们可以得到一元二次方程的两个解。

根据方程的
最值性质,最值点的横坐标为x=-p,最值点的纵坐标为y=q-p^2。

因此,最值点的坐标为(-p,q-p^2)。

对于开口向上的抛物线,最低点即为最小值点;对于开口向下的抛物线,最高点即为最大值点。

通过计算最值点的坐标,我们就可以求解一元二次方程的最值。

在实际问题中,我们经常需要求解一元二次方程的最值。

例如,在物理学中,当我们研究抛体运动时,需要确定抛体的最高点,这就需要求解一元二次方程的最值。

在经济学中,当我们研究成本和收益时,也需要求解一元二次方程的最值。

因此,掌握一元二次方程的配方法求最值是非常重要的。

总结起来,一元二次方程是数学中的一个重要概念,通过配方法可以求解其最值。

求解一元二次方程的最值可以帮助我们找到函数的最高点或最低点,具有重要的实际意义。

通过配方法的步骤,我们可以得到一元二次方程的最值点的坐标,进而求解最值。

在实际问题中,求解一元二次方程的最值是非常常见的,掌握这一方法对于解决实际问题具有重要的帮助。

相关文档
最新文档