工程流体力学实验

合集下载

流体力学实验报告(全)

流体力学实验报告(全)

工程流体力学实验报告实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。

另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。

实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。

测压管水头线指测压管液面的连线。

实验直接观察可知,同一静止液面的测压管水头线是一根水平线。

<0时,试根据记录数据,确定水箱内的真空区域。

2.当PB,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。

(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。

(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。

这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。

3.若再备一根直尺,试采用另外最简便的方法测定γ最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。

4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。

常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。

水与玻璃的浸润角很小,可认为cosθ=1.0。

于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。

工程流体力学实验报告

工程流体力学实验报告

福州大学土木工程学院本科实验教学示范中心学生实验报告工程流体力学实验题目:实验项目1:毕托管测速实验实验项目2:管路沿程阻力系数测定实验实验项目3:管路局部阻力系数测定实验实验项目4:流体静力学实验姓名:李威学号:051001509组别:________实验指导教师姓名:__________________________同组成员:____________________________________2011年月日实验一毕托管测速实验一、实验目的要求:1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用测压管测量点流速的技术和使用方法。

2.通过对毕托管的构造和适用性的了解及其测量精度的检验,进一步明确水力学量测仪器的现实作用。

二、实验成果及要求实验装置台号No 表1 记录计算表校正系数c= ,k= cm0.5/s三、实验分析与讨论1.利用测压管测量点压强时,为什么要排气?怎样检验排净与否?答:若测压管内存有气体,在测量压强时,水柱因含气泡而虚高,使压强测得不准确。

排气后的测压管一端通静止的小水箱中(此小水箱可用有透明的机玻璃制作,以便看到箱内的水面),装有玻璃管的另一端抬高到与水箱水面略高些,静止后看液面是否与水箱中的水面齐平,齐平则表示排气已干净。

2.毕托管的压头差Δh和管嘴上、下游水位差ΔH之间的大小关系怎样?为什么?答:这两个差值分别和动能及势能有关。

在势能转换为动能的过程中,由于粘性的存在而有能量损失,所以压头差较小。

3.所测的流速系数ϕ'说明了什么?实验二 管路沿程阻力系数测定实验一、实验目的要求:1. 掌握沿程阻力的测定方法;2. 测定流体流过直管时的摩擦阻力,确定摩擦系数λ与的关系; 3测定流体流过直管时的局部阻力,并求出阻力系数ξ; 4学会压差计和流量计的使用。

二、实验成果及要求1.有关常数。

实验装置台号圆管直径d= cm , 量测段长度L=85cm 。

及计算(见表1)。

工程流体力学实验

工程流体力学实验
18
1.40
0
3.500
7.500
3.500
11.000
6.100
19
1.40
0
3.500
6.208
3.500
9.708
0.000
1.292
毕托管测速计算表
编号
6
8
12
14
16
18
备注
测速管读数
44.75
23.9
22.5
14.7
12
11
测压管读数
14.7
15.05
11.85
6.9
9.6
3.5
点流速u(cm/s)
三、使用仪器、材料
自循环供水器、恒压水箱、溢流板、稳水孔板、可控硅无级调速器、实验管道、流量调节阀、接水阀、接水盒、回水管测压计。
四、实验步骤
1、熟悉实验仪器,分清普通测压管和测速管及两者功能上的区别。
2、打开电源,启动供水系统,水箱供水至溢流,排净实验管道内的空气后关闭流量调节阀。检查所有的测压管液面是否齐平,若不平需查明原因并排除气体。
8、在均匀流断面上,推求测速管处的流速,将测试与计算成果列于表中。
水箱面高程 =47.60cm直径
实验装置图:
五、实验过程原始记录(数据、图表、计算等)
测点液面读数于断面能量转换的测算表单位:cm
测点
管径d
位置水头Z
压强水头p/γ
流速水头
测压管水头z+ p/γ
总水头H
测压管水头差△(z+ p/γ)
水头损失h=-=
如果自由表面压强p0与当地大气压pa压强相等时,液体内任一点相对压强可表示为:
式中:h为液体自由表面下任一点液体深度。

工程流体力学实验

工程流体力学实验

工程流体力学实验指导书谢振华编北京科技大学土木与环境工程学院2003 年9 月前言工程流体力学实验是《工程流体力学》课程教学的重要环节。

通过实验,可以对课堂讲授的理论知识加以巩固和进一步的验证,加强理论和实践的结合,同时可以培养学生实际动手能力和分析问题、解决问题的能力,为今后的科学研究打下基础。

本实验指导书是根据教学大纲的要求,并结合实验室的具体设备编写的。

实验内容包括水静压强实验,不可压缩流体定常流动动量方程实验,雷诺实验,管路沿程阻力实验,管路局部阻力实验,毕托管测速实验,文丘里流量计实验。

这些实验可以使学生掌握流体力学的实验技术和测量技巧,为进行科学实验研究做准备。

由于编者水平有限和实验设备的限制,书中不足之处在所难免,敬请读者批评指正。

编者2003年7月目录实验1 水静压强实验 (1)实验2 不可压缩流体定常流动动量方程实验 (3)实验3 雷诺实验 (6)实验4 管路沿程阻力实验 (8)实验5 管路局部阻力实验 (12)实验6 毕托管测速实验 (15)实验7 文丘里流量计实验 (17)1图1.1 水静压强实验装置图实验1 水静压强实验一、实验目的1.加深理解流体静力学基本方程及等压面的概念。

2.理解封闭容器内静止液体表面压强及其液体内部某空间点的压强。

3.观察压强传递现象。

二、实验装置实验装置如图1.1所示。

三、实验原理对密封容器(即水箱)的液体表面加压时,设液体表面压强为P 0,则P 0>P a ,a p 为大气压强。

从U 形管中可以看到有压差产生,U 形管与密封水箱上部连通的一面,液面下降,而与大气相通的一面,液面上升。

密闭水箱内液体表面压强0p 为:h p p a γ+=02 式中γ——液体的重度;h ——U 形管中液面上升的高度。

当密闭水箱内压强P 0下降时,U 形管内的液面呈现相反的现象,即P 0<P a ,这时密闭水箱内液面压强0p 为:h p p a γ-=0式中 h ——U 形管中液面下降的高度。

10-1工程流体力学实验报告

10-1工程流体力学实验报告

10-1工程流体力学实验报告本次实验是关于工程流体力学的实验。

本实验的目的是通过实验测量液体的流量、速度和压力,以及探究流体力学的基本原理。

首先,我们需要了解流体力学的基本概念。

流体力学是研究流体的运动规律和性质的一门学科。

液体流体力学主要研究液体在静态或准静态的情况下的运动规律、流动状态、压力分布等;气体流体力学主要研究在压力作用下气体的流动规律、流动状态、压力分布等。

流体力学是工程学科中的重要分支,它与化学工程、机械工程、船舶工程等领域有着密切的联系。

在实验中,我们首先进行了流量测量实验。

为了测量液体的流量,我们使用了容积式流量计。

容积式流量计是一个柱体形状的设备,内部分为两个隔间。

流体进入第一个隔间,通过流量计具体的计量设备,然后流入第二个隔间。

在第二个隔间内留存的流体的容积就是流量计所测量的液体的流量。

在实验中,我们使用的是LZB-系列玻璃塞式流量计。

首先,我们读取流量计的读数,记录在表格中。

然后,我们调节水龙头的开度,使得流量计读数在一定时间内(如30秒)内在一定的范围内,便可得到实验数据。

接下来,我们进行了速度测量实验。

为了测量液体的速度,我们使用了Pitot静压管。

Pitot静压管由两部分组成,一个静压孔和一个动压管。

当Pitot静压管被放置在流体当中时,液体的速度将会带动动压管中的空气,空气进入动压管后,因为静压孔会保证动压管中的压力与周围环境相等,所以空气在动压管中的压力将会比周围环境高出一定值。

因此,通过测量这个高出值的大小,我们就能够计算出液体的速度。

在实验中,我们使用了型号为PTM-1、量程为0~10kPa的Pitot静压管。

首先,我们需要将Pitot静压管插入液体中,并测量其两端的压差,然后根据静压管的性质进行修正,最终计算出液体的速度。

最后,我们进行了压力测量实验。

为了测量流体中的压力,我们使用了压力传感器。

压力传感器是一种基于电气电子技术的传感器,它能够将流体中的压力转换为电信号输出。

工程力学实验工程流体力学实验课程设计

工程力学实验工程流体力学实验课程设计

工程力学实验工程流体力学实验课程设计1. 引言工程力学实验是工程学科的一门基础实验课程,涵盖了力学基本定律、力学基本现象和力学原理的实验研究。

本次实验是通过实验研究来理解流体动力学基本原理,在实验中通过观察流体运动过程、测量流体速度和压力等参数,从而掌握流体动力学的基本知识和实验技能。

2. 实验目的本次实验的主要目的是:1.了解流体力学的基本概念和基本原理;2.学习流体力学的基本实验技能;3.培养实验操作能力和实验数据处理能力;3. 实验原理3.1 海绵球浓度场流动特性实验原理海绵球流动实验中,流体通过的是由海绵球组成的浓度场。

浓度场的流动特性取决于海绵球的密度和海绵球组成的结构,通过观察海绵球的流动速度和海绵球形成的水流来描述浓度场的流动特性。

3.2 海绵球流场中速度场的测量原理在海绵球流动实验中,海绵球实际上是浓度场的流动元件,通过浓度场的流动来实现整个流场的流动。

速度场的测量需要使用流速仪器,通过测量海绵球流场中的流速来描述流场的速度分布情况。

3.3 海绵球流场中压力场的测量原理在海绵球流动实验中,压力场是受到海绵球和流体运动产生的压力,压力场的测量需要使用差压传感器,通过测量流场中的压强差来描述流场的压力分布情况。

4. 实验设备本次实验需要使用以下设备:1.海绵球流动实验装置(包括流量计、差压传感器、电源装置等);2.流速仪器。

5. 实验步骤5.1 海绵球浓度场流动特性实验步骤具体操作步骤如下:1.接通电源,将流速表与差压传感器接入检测设备;2.放置海绵球,开始实验;3.通过观察海绵球流动速度、水流等现象来描述浓度场的流动特性。

5.2 海绵球流场中速度场的测量步骤具体操作步骤如下:1.使用流速仪器放置在流场中心位置;2.将流速仪器与数据处理装置相连;3.根据流速仪器测量出的速度数值,来描述流场的速度分布情况。

5.3 海绵球流场中压力场的测量步骤具体操作步骤如下:1.将差压传感器接入流体管道;2.将差压传感器输出信号接入数据处理装置;3.根据差压传感器测量出的压差数值,来描述流场的压力分布情况。

《工程流体力学》实验指导书

《工程流体力学》实验指导书

《工程流体力学》实验指导书适用专业:机械电子工程上海电机学院2014年9月目录实验一雷诺实验 (1)实验二局部水头损失实验 (5)实验三沿程水头损失实验 (10)实验一雷诺实验一、实验目的和要求1. 观察层流、湍流的流态及其转换过程;2. 测定临界雷诺数,掌握园管流态判别准则;3. 学习应用量纲分析法进行实验研究的方法,确定非圆管流的流态判别准数。

二、实验装置1.实验装置简图实验装置及各部分名称如图1所示。

图1 雷诺实验装置图1. 自循环供水器2. 实验台3. 可控硅无级调速器4. 恒压水箱5. 有色水水管6. 稳水孔板7. 溢流板8. 实验管道9. 实验流量调节阀10. 稳压筒11.传感器12. 智能化数显流量仪2. 装置说明与操作方法供水流量由无级调速器调控,使恒压水箱4始终保持微溢流的程度,以提高进口前水体稳定度。

本恒压水箱设有多道稳水隔板,可使稳水时间缩短到3~5分钟。

有色水经有色水水管5注入实验管道8,可据有色水散开与否判别流态。

为防止自循环水污染,有色指示水采用自行消色的专用色水。

实验流量由调节阀9调节。

流量由智能化数显流量仪测量,使用时须先排气调零,所显示为一级精度瞬时流量值。

水温由数显温度计测量显示。

三、 实验原理1883年, 雷诺(Osborne Reynolds)采用类似于图1所示的实验装置,观察到液流中存在着层流和湍流两种流态:流速较小时,水流有条不紊地呈层状有序的直线运动,流层间没有质点混掺,这种流态称为层流;当流速增大时,流体质点作杂乱无章的无序的直线运动,流层间质点混掺,这种流态称为湍流。

雷诺实验还发现存在着湍流转变为层流的临界流速c v ,c v 与流体的粘性ν、园管的直径d 有关。

若要判别流态,就要确定各种情况下的c v 值,需要对这些相关因素的不同量值作出排列组合再分别进行实验研究,工作量巨大。

雷诺实验的贡献不仅在于发现了两种流态,还在于运用量纲分析的原理,得出了量纲为一的判据——雷诺数Re ,使问题得以简化。

《工程流体力学》雷诺实验

《工程流体力学》雷诺实验

《工程流体力学》雷诺实验【实验目的】(1)观察流体在管道中的流动状态;(2)测定几种状态下的雷诺数;【实验装置】在流体力学综合实验台中,雷诺实验涉及的部分有高位水箱、雷诺数实验管、阀门、颜料水盒及其控制阀门、上水阀、出水阀,水泵和计量水箱等,时间及温度可由显示面板直接读出。

【实验原理】(1)英国物理学家雷诺1883年提出,黏性流体存在两种不同流动状态,即层流和紊流状态,并提出了流动状态的判别方法。

当雷诺管道内流速较小时,流体处于层流状态,由注入针流出的有色流体在实验中没有垂直于主流方向的横向运动,即垂直于管道轴线方向没有流体质点的交换。

管道中间部位出流有色流体,此部分流体与周围液体不发生流体质点交换,因此在层流状态呈现一条清晰的有色流体线。

层流与紊流的过度阶段,着色流束振荡,处于不稳定状态。

当雷诺管道内流速较大时,流体处于紊流状态,管道内流体质点(包括有色流体)既有沿管道轴线的主流方向流动,还有垂直于管道轴线方向的流体质点交换。

因此有色流体流出注入针后,迅速与周围液体混合,在雷诺管道中看不到清晰的有色流体线而只有混合均匀的淡颜色水。

因此可以根据管道中有色流体呈现不同的状态判断管道内流体处于紊流还是层流状态。

(2)雷诺数νμρvd vd R e == 在实验中依据流量计测得流速v ,测量管道内径,实验前记录水温,可以查得对应温度下水的运动黏度ν,即可计算出几种状态下的雷诺数。

(3)对比所得数据,即可观察出流动状态与雷诺数大小的关系。

【实验内容】(1)观察不同流动状态下有色流线的变化情况;(2)测定上临界雷诺数及下临界雷诺数;【实验步骤】(1)打开工程流体力学综合实验台电源开关。

(2)调节液晶显示屏面板至雷诺实验。

(3)调节各阀门至恰当位置,操作显示屏开启电机,恒压水箱4开始上水至最左侧溢流水箱有溢流现象。

适当开启回水阀门,使溢流水箱自由液面保持恒定位置。

(4)全开雷诺管道阀门,使雷诺实验管段充满水,为保证溢流水箱自由液面位置恒定,此时须适当关闭回水阀门。

工程流体力学实验报告

工程流体力学实验报告

工程流体力学实验报告哎呀,这次的工程流体力学实验可真是让我开了眼界。

想当初,我以为流体力学就只是个高大上的学科,没想到在实验室里,真是一场精彩的“水上运动会”。

先说说那天的实验环境,实验室里充满了各种设备,有些像太空船的控制台,有些则像老爷爷的发明,真是五花八门。

光是看到那些闪闪发光的仪器,我的心情就像孩子看到糖果一样,别提多兴奋了。

实验开始之前,老师简单介绍了一下实验的目的和步骤。

乍一听,感觉复杂得像天书,但老师用通俗易懂的话把它拆解开来,简直是拨云见日。

我们这次的任务是研究不同流速下流体的行为。

没错,水就是我们的主角!说实话,看着水流动的时候,我的心里总是忍不住想象:这些水到底在想什么呢?是着急赶路,还是悠闲散步?哈哈,可能它们也会想:“这群人真奇怪,居然对我感兴趣。

”接下来的步骤更是让人兴奋。

我们分成小组,每组负责一个实验环节。

我的小组负责测量流速。

说到这里,大家一定想象到了那种紧张又兴奋的气氛。

我们拿着计量器,像侦探一样观察水流,恨不得每一滴水都不放过。

想象一下,几个人围在一起,眼神都亮了,像是发现了新大陆,简直是一幅好玩的画面。

实验开始了,水在管道里汩汩流动,发出轻微的“哗哗”声,那声音真是音乐般悦耳。

我们用不同的流量调节器调节水流速度,心里想着:“快来呀,水宝宝,咱们看看你能有多快!”每当看到水流速度加快,心里那个激动啊,真是像打了鸡血。

然后,我们就开始记录数据,真是看似简单的过程,却让人感到无比的重要。

数据像是我们的宝贝,得好好保存!不过,实验过程中也不乏搞笑的插曲。

我的一个小伙伴因为太兴奋,竟然把手里的记录本掉进了水里。

看着那本书在水中漂浮,我们都笑得前仰后合,心想:“这下水里有记录了,真是开了眼界。

”实验室的气氛瞬间轻松了不少,大家的笑声回荡在墙壁之间,仿佛连水流都被我们的快乐感染了。

随着实验的深入,我们慢慢意识到,流体的行为真的有它的规律。

比如,当流速增加的时候,水流的形状会发生变化,这可是让我们大开眼界的发现。

工程流体力学实验报告

工程流体力学实验报告

工程流体力学实验报告工程流体力学实验报告引言工程流体力学是研究流体在工程领域中的运动和力学性质的学科。

实验是工程流体力学研究中不可或缺的一部分,通过实验可以验证理论,探究流体的行为和特性。

本实验报告旨在介绍并分析工程流体力学实验的设计、方法、结果和讨论。

一、实验目的本次实验的目的是研究流体在管道中的流动特性,通过测量流体的压力、流速和管道摩阻系数等参数,探究不同条件下的流体流动规律。

二、实验装置和方法本次实验使用的装置包括一段直径为D的水平圆管、压力传感器、流速计和流量调节阀等设备。

实验方法主要分为以下几个步骤:1. 准备工作:根据实验要求选择合适的管道直径和长度,将管道安装在实验台上,并连接好压力传感器、流速计等设备。

2. 流量调节:通过调节流量调节阀控制流体的流量,保持一定的实验条件。

3. 测量压力:利用压力传感器测量管道中的压力,并记录下来。

在不同流量条件下进行多次测量,确保数据的准确性。

4. 测量流速:使用流速计测量管道中的流速,并记录下来。

同样地,在不同流量条件下进行多次测量。

5. 数据处理:根据测量得到的数据,计算出流体的摩阻系数、雷诺数等参数,并进行数据分析和比较。

三、实验结果和讨论根据实验数据,我们可以绘制出不同流量条件下的压力-流速曲线和压力-摩阻系数曲线。

通过观察曲线的变化趋势,我们可以得出以下结论:1. 流体的摩阻系数与流速成正比,即流速越大,摩阻系数越大。

这与工程流体力学中的理论预测相符合。

2. 随着流速的增加,管道中的压力也随之增加。

这是由于流体在管道中的摩擦力增加导致的。

3. 在一定流速范围内,压力和流速之间存在线性关系。

然而,在流速达到一定阈值后,压力增加的速率会减缓,这是由于流体达到了临界状态,流动变得不稳定。

通过实验结果的分析,我们可以更好地理解流体在管道中的流动特性,为工程实践提供参考和指导。

四、实验误差和改进在实验过程中,可能会存在一些误差,例如仪器的精度限制、实验条件的不完全控制等。

10-1工程流体力学实验报告

10-1工程流体力学实验报告

工程流体力学实验报告班级:_________姓名:_________学号:_________实验一 能量转换实验一、实验目的1、熟悉流体在流动过程中各种能量和水头的概念及其转换关系,加深对伯努利方程的理解;2、观察流体流速随管径变化的规律。

二、实验原理1、总水头的分析:总水头为测压管水头与流速水头之和,任意两截面间的能量方程为21,2111222222--++=++f H gv g p Z g v g p Z ρρ 。

图一所示实验装置中,从实验可以观测到B 截面的总水头低于A 截面的总水头,这符合伯努利方程。

2、A 、B 截面间压强水头的分析:由于A 、B 两截面处于同一水平位置,B 截面面积比A 截面面积大。

所以B 截面处的流速比A 截面处小。

设流体从A 截面流到B 截面的水头损失为B A f H -,,在A 、B 两截面间列伯努利方程。

B A f BB B A A A H gv g p Z g v g p Z -+++=++,2222ρρB A Z Z =B A f BA AB H gv g v g p g p ---=-,2222ρρ 即A 、B 两截面处的压强水头之差,决定于ggBA2222νν-和B A f H -,。

当ggBA2222νν-大于B A f H -,时,压强水头的增值为正,反之,压强水头的增值为负。

3、C 、D 截面间压强水头的分析:出口阀全开时,由于C 、D 截面积相等,所以C 、D 两截面处的流速相等,即流速水头相等;设流体从C 截面流到D 截面的水头损失为D C f H -, ,在C 、D 两截面间列伯努利方程。

D C f DD D C C C H gv g p Z g v g p Z -+++=++,2222ρρgv g v DC 2222=D C f D C CD H Z Z gp g p ---=-,ρρ 即C 、D 两截面压强水头之差,决定于)(D C Z Z -和D C f H -,。

工程流体力学实验报告

工程流体力学实验报告

工程流体力学实验报告学院:交通运输工程学院班级:交通设备 1206姓名:***学号: **********雷诺数测定实验【实验目的】1. 观察水的层流和紊流的形态及特征;2. 学习测量和计算流体的雷诺数和临界雷诺数。

【实验原理】雷诺数是流体惯性力Lυρ2与黏性力Lv2μ的比值,它是一个无因次化的量。

R e =μρVl =llVl V 22)/(2μρ雷诺说较小时,粘滞力对流场的影响大于惯性力,流场中流速的扰动会因粘滞力而衰减,流体流动稳定,为层流;反之,若雷诺数较大时,惯性力对流场的影响大于粘滞力,流体流动较不稳定,流速的微小变化容易发展、增强,形成紊乱、不规则的紊流流场。

【实验内容】1. 缓慢调节水量控制阀,观察透明水管中红色水流线的变化。

观察水的层流态、紊流态的特征。

2. 找出层流和紊流转换临界点,在临界点测量水的流速,往复测量三次。

3. 根据测量数据计算出水的临界雷诺数。

【实验现象】1. 当水流流速较低时,水管中水流处于层流状态,示踪剂(红色墨水)呈线状,无分散;2. 逐渐开大控制阀,水流速度加大,呈线状流动的红色墨水开始出现波动,逐渐散开,这时水流处于过渡状态;3. 再开大控制阀,水流速度继续增大,红色墨水消失,此时水流处于紊流状态。

层流状态紊流状态【实验结果】项目组别时间(s)水量(mL)流量(mL/s)流量均值120120060220110055320125062.51306002023070023.333072024从层流到紊流从紊流到层流59.122.4实验中,水流束的特征长度l=D=3CM,流速由公式D2π4qv V =求得,得到V1=0.032m/s,V2=0.084m/s ,而水在标准大气压,室温时的动力粘度s p 10000.1a-3ו=μ,则雷诺数R e1 =μρVD =960R e2 =μρVD =2520【结果分析】查阅资料可知一般管道雷诺数Re <2000为层流状态,Re >4000为紊流状态,Re =2000~4000为过渡状态。

工程流体力学实验

工程流体力学实验

工程流体力学实验实验目的本实验旨在通过实验操作及数据分析,加深对工程流体力学相关概念的理解,掌握流体静力学和流体动力学的基本原理,以及流体在工程中的应用。

实验仪器与材料•1 台水泵•1 块稳定台•1 条直管道•1 台流量计•1 台压力计•配套管道及接头实验原理流体静力学•流体静力学是研究在静止或稳定流动状态下流体的性质和力学的学科。

•流体静力学方程包括连续性方程、动量守恒方程及能量守恒方程等。

流体动力学•流体动力学研究流体在运动状态下的性质及相关现象。

•流体动力学方程描述了流体在不同流动状态下各种参数的变化规律。

实验步骤1.搭建实验装置,保证管道连接紧密。

2.启动水泵,调节泵的流量,记录不同流量下的压力、流速数据。

3.使用流量计检测不同流速下的流量值,并记录数据。

4.分析数据,绘制流速、压力、流量之间的关系曲线。

实验数据分析通过实验数据分析可得出以下结论: 1. 流速和流量呈线性关系,流量随着流速的增大而增大。

2. 压力随着流速增大而减小,说明流速增加时管道内的摩阻增大,压力减小。

结论通过工程流体力学实验,深入了解了流体在管道内的流动规律,掌握了流体静力学和流体动力学方面的基本原理,实验结果对于设计工程系统具有指导意义。

参考文献1.White, Frank M. Fluid Mechanics. 8th ed., McGraw-Hill, 2016.2.Munson, Bruce R., et al. Fundamentals of Fluid Mechanics. 7th ed., Wiley, 2012.以上是关于工程流体力学实验的简要介绍,通过实际操作和数据分析,使学生对相关理论知识有了更深入的了解。

工程流体力学实验报告

工程流体力学实验报告
形式一:
Z+ =const(1-1-1a)
形式二:
P=p + h (1-1-1b)
式中 z---测点在基准面以上位置高度;
p---测点的静水压强(用相对压强表示,以下同);
p --水箱中液面的表面压强;
---液体的重度;
h----测点的液体深度。
2. 油密度测量原理
当U形管重水面与油水界面齐平(见图1-1-2),取油水界面为等压面,有:
3.若再备一根直尺,试采用另外最简便的方法测定 。
答:在水箱内通大气的情况下,用直尺分别测量管8油水界面至水面的垂直高度h1和油水界面至油面的垂直高度h2,由公式可得γ1h1=γ2h2。
4.如测压管太细,对测压管液面的读数将有何影响?
答:若测压管太细,则会造成毛细现象,造成测量误差。如测量液体为水,测压管液面会随之升高,测量液体为水银,测压管液面则会随之降低。
根据式(1-1-4),可以用仪器(怒用额外的尺子)直接测得d 。
三、实验装置
本实验的装置如图1-1-1所示
图1-1-1流体静力学实验装置图
1.测压管2.带标尺的测压管;3.连通管4.通气阀;
5.加压打气球6.真空测压管;
7.截止阀;8.U形测压管;
9.油柱;10.水柱;
11.减压放水阀;
说明:
(1)所有测压管液面标高均以标尺(测压管2)零读数为基准
2.当 时,试根据记录数据确定水箱内的真空区域。
答:有实验数据可知,水箱内的真空区域包括三部分:一是由测压管2做一水平面,由于测压管内水体与水箱内水体为一等压面且均为大气压强,则水箱内该平面以上水、气的密封区域;二是由箱顶小杯液面至测压管6内水体;三是在测压管8中U形管左侧水面向下深度为 深度的水体。以上均为真空区。

工程流体力学实验报告

工程流体力学实验报告

工程流体力学实验报告《工程流体力学实验报告》摘要:本实验旨在通过对流体力学实验的研究,探讨流体在工程中的应用。

实验采用了流体动力学原理和实验技术,通过对不同流体的流动特性进行观察和分析,得出了一些有价值的结论和数据。

实验结果表明,流体力学在工程中具有重要的应用价值,并为工程实践提供了一定的参考。

关键词:流体力学、实验、工程应用引言:流体力学是研究流体运动规律的一门学科,广泛应用于工程领域。

流体力学实验是通过实验手段对流体力学理论进行验证和研究的过程,是理论与实践相结合的重要环节。

本实验旨在通过对流体力学实验的研究,探讨流体在工程中的应用,为工程实践提供理论支持和技术指导。

实验原理:本实验采用了流体动力学原理和实验技术,通过对不同流体的流动特性进行观察和分析,得出了一些有价值的结论和数据。

实验过程中,我们使用了流体力学实验仪器,通过对流体的流速、压力、流量等参数进行测量和分析,得出了流体在工程中的一些重要特性和规律。

实验结果与分析:通过实验,我们得出了一些有价值的结论和数据。

首先,我们发现不同流体在相同条件下的流动特性存在一定差异,这为工程中流体的选择和应用提供了一定的参考。

其次,我们发现流体在管道中的流动受到管道形状、壁面粗糙度等因素的影响,这为工程中管道设计和流体输送提供了一定的指导。

此外,我们还得出了一些关于流体力学实验仪器的使用和操作技巧,为今后的实验研究提供了一定的经验和借鉴。

结论:通过本实验的研究,我们得出了一些有价值的结论和数据,表明流体力学在工程中具有重要的应用价值,并为工程实践提供了一定的参考。

我们相信,通过今后的深入研究和实践,流体力学将为工程领域的发展和进步提供更多的支持和帮助。

工程流体力学实验报告答案

工程流体力学实验报告答案

工程流体力学实验报告答案工程流体力学实验报告答案引言:工程流体力学实验是工程学科中非常重要的一门实践课程,通过实验可以帮助学生加深对流体力学理论的理解,并提高解决实际工程问题的能力。

本篇文章将对一份工程流体力学实验报告的答案进行详细分析和解释,帮助读者更好地理解和应用流体力学实验原理。

实验目的:本次实验的目的是研究和分析流体在管道中的流动特性,了解不同流速和管道直径对流体流动的影响,并通过实验数据计算出相关的流体参数。

实验装置与原理:实验装置主要由水泵、流量计、压力传感器、管道和流体介质组成。

通过水泵将水送入管道,流量计用于测量流体的流量,压力传感器用于测量管道中的压力变化。

根据流体力学的基本原理,通过测量流量和压力的变化,可以计算出流体的速度、压力损失和管道阻力系数等参数。

实验步骤与结果:1. 首先,根据实验要求选择不同的管道直径,并将流量计和压力传感器连接到管道上。

2. 打开水泵,调节水泵的流量,记录不同流速下的流量计读数和压力传感器的压力变化。

3. 根据实验数据计算出流体的速度、压力损失和管道阻力系数,并绘制相应的曲线图。

4. 通过对比不同管道直径和流速下的实验结果,分析流体在管道中的流动特性和管道阻力的变化规律。

实验结果分析:根据实验数据计算得到的流体速度与流量的关系曲线图显示,流体速度与流量成正比关系,即流量增大时,流体速度也随之增大。

这符合流体力学中的连续性方程,即质量守恒定律。

同时,通过实验数据计算得到的管道阻力系数与雷诺数的关系曲线图显示,管道阻力系数与雷诺数成正比关系,即雷诺数越大,管道阻力系数也越大。

这符合流体力学中的达西定律,即管道阻力与雷诺数成正比。

实验讨论与结论:通过本次实验,我们可以得出以下结论:1. 流体在管道中的流动特性受到管道直径和流速的影响,流量增大时,流体速度也随之增大。

2. 管道阻力系数与雷诺数成正比,雷诺数越大,管道阻力系数也越大。

3. 实验结果与流体力学理论相符,验证了流体力学的基本原理和方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程流体力学实验实验一 静水压强实验一、实验目的1、通过实验加深对流体静力学基本方程h p p γ+=0的理解。

2、验证静止流体中不同点对于同一基准面的测压管水头为常数,即=+γpz 常数3、实测静水压强,掌握静水压强的测量方法。

4、巩固绝对压强、相对压强、真空度的概念,加深理解位置水头、压力水头以及测压管水头之间的关系。

5、已知一种液体重度测定另一种液体的重度。

二、实验原理γ3图1 静水压强实验原理图静水压强实验原理如图1所示,相对静止的液体只受重力的作用,处于平衡状态。

以p 表示液体静压强,γ表示液体重度,以z 表示压强测算点位置高度(即位置水头),流体静力学方程为=+γp z 常数上式说明 1、在重力场中静止液体的压强p 与深度h 成线性分布,即4030403h h h h p p p p --=--2、同一水平面(水深相同)上的压强相等,即为等压面。

因此,水箱液面和测点3、4处的压强(绝对压强)分别为00h p p a γ+=()03∆-∆+=γa p()04∆-∆+=γa p33h p p a γ+=()33z p a -∆+=γ44h p p a γ+=()44z p a -∆+=γ与以上各式相对应的相对压力(相对压强)分别为a p p p -='000h γ= ()03∆-∆=γ()04∆-∆=γa p p p -='333h γ= ()33z -∆=γa p p p -='444h γ= ()44z -∆=γ式中 a p —— 大气压力,Pa γ—— 液体的重度,3m N0h —— 液面压力水头,m0∆ —— 液面位置水头,m3∆、4∆—— 3、4处测压管水头,m3z 、 4z —— 3、4处位置水头,m3h 、4h —— 3、4处压力水头,m3、静水中各点测压管水头均相等,即43∆=∆或 γγ'+='+4433p z p z 或 4433h z h z +=+即测压管3、4的液位在同一平面上。

4 、由于密封容器顶部与左侧U 型管联通,根据联通器原理,得()()0321∆-∆+=∆-∆'+γγa a p p即 γγ2103'∆-∆∆-∆=式中 γ'—— U 型管中液体的重度,3m N1∆、2∆ —— U 型管中两液面位置高度 , m根据上式可知,已知某种液体(如水)的重度γ,可以通过本实验确定另一种液体的重度γ'。

三、实验步骤1、读出液面初始位置高度Δ0 , 并记入表内。

2、顺时针旋转加减压气缸手柄,使水箱液面压力升高,此时0p >a p ,读出1∆、2∆、3∆、4∆,并记入表内。

再继续给水箱加压两次,记下各测压管位置高度。

3、逆时针旋转加减压气缸手柄,使水箱内减压,并获得0p <a p 的状态。

同样读取三组数据记入表内。

实验二流谱及流线演示实验一、实验目的用带有泡沫的变压器油加在油槽中经过导叶栅后形成许多平行的流线,以观察其绕经不同固体壁面的变化。

二、实验原理液体流线仪是研究液流在模型试件出口和入口的流线变化,特别是当试件的突扩、突缩而发生流线的扭曲现象和旋涡、死区等。

另外,根据教学的需要可以定作补充各种模型试件,以观察流线在绕经不同固体壁面时的变化。

三、实验装置实验装置由油泵、供油箱、回油箱、油盘调整螺栓、支架、供油管等组成(见图2)。

油盘的倾斜度可通过前端调整螺栓调整。

实验装置带有园柱、机翼、突扩(反放为突缩)模型试件。

图2 流谱及流线演示实验装置四、实验步骤1、接通电源。

2、开始时不同箱中可多放些油,开动油泵后,首先将供油管上的铜阀旋松,放出管路中空气,然后用烧杯在后面不断把油接走,直到流线清晰为止。

并通过调整油盘前端的调整螺栓改变油盘的倾斜,以改变油的流速。

3、进行实验模型的组合更换。

实验三文丘里管实验一、实验目的1、在文丘里管收缩段和扩张段,观察压力水头、速度水头沿程的变化规律,加深对伯努利方程的理解。

2、了解文丘里流量计的工作原理。

3、掌握文丘里管流量系数的测定方法。

二、实验原理1、理想流体伯努利方程的验证文丘里管是在管路中安装一段断面急速变小,而后又逐渐恢复原来断面的异径管,如图3所示。

喉管图3理想流体伯努利方程示意图在收缩段,由于流体流动断面减小,因而流速增加,测压管水头连续下降,喉管处断面最小,流速最大,测压管水头因而最低;相反,在渐扩管中流体流动截面逐渐扩大,流速减小,测压管水头也不断得到恢复。

这些现象都是由于流体流径文丘里管时,遵守连续性方程vA (常数)(1)Q和伯努利方程H h gv =+22(常数) (2) 以上两个方程表明,无论流体流动过程中断面几何参数如何变化,所有断面上的总水头H 和流量都保持不变,也就是说流体流动一直遵守着能量守恒和物质守恒这两个基本定律。

上述现象和规律将在实验中通过11根测压管的液面变化加以验证。

为了便于实验分析,现将公式(2)作如下变换,并以下标 i 表示测压管序号,例如 4=i 表示第四根测压管即喉管。

公式(2)可以写成gv h g v h i i 222211+=+ 两边同除以24v , 并移项得 242212412v v v g v h h i i -=- (3) 公式(1)可以写成i i A v A v A v ==4411所以 21241441d d A A v v == 22444ii i d d A A v v == 代入公式(3)得444142412⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-i i d d d d g v h h (4) 公式(3)和公式(4)表明,测压管水头变化的相对值,完全决定于流动断面的几何比例,从而进一步揭示了断面流速与测压管水头之间的关系。

我们根据公式(4)画出测压管水头相对变化的理论曲线和实际曲线(分别为上式右项和左项),通过比较,两者应当是一致的(横坐标为测压管序号,纵坐标分别为以上两项)。

2、流量系数的测定将公式(1)、(2)应用于1、4两断面,可以得到42141v d d v ⎪⎪⎭⎫ ⎝⎛=42412122h gv h g v +=+ 前式代入后式得4144141)(2⎪⎪⎭⎫ ⎝⎛--=d d h h g v 流量为 ()414412444124⎪⎪⎭⎫ ⎝⎛--==d d h h g d v A Q π若以流量系数μ 表示阻力损失的影响,上式可以写成41h h c Q -=μ (ml/s ) (5) 式中 c ——仪器常数,为定值(s cm 5.2) (6)因此,在实验中,测得流量 Q 和测压管水头 1h 、4h ,即可求得流量系数μ,μ一般在0.92~0.99之间。

三、实验步骤1、缓缓打开进水阀和针阀,使测压管1、4的水面差达到最大,并适当调节,观察测压管水头的变化,理解伯努利方程的含义。

2、读取各测压管水头刻度,并按测压管编号为序记入表内。

3、在读取测压管水头的同时,用体积法测量流量,记入表内。

4、调节进水阀和针阀,改变各测压管读数,并记录各读数和流量。

5、实验结束后,关闭进水阀门。

41424124⎪⎪⎭⎫ ⎝⎛-=d d gdc π实验四 雷诺实验一、实验目的1、观察圆管内流体恒定流动层流和紊流两种流动状态及其转换的现象。

2、测定不同流动状态下流体的雷诺数Re 。

3、测定圆管内流体恒定流动层流和紊流两种流动状态下的沿程水头损失f h 与断面平均流速v 之间的关系。

二、实验原理雷诺实验装置示意图如图4 所示。

图4 雷诺实验装置示意图1、玻璃管2、注色水细管3、色水阀门4、色水容器5、水箱6、蜂窝板7、溢水隔板 8、供水阀门 9、放水管 10、出水阀门 11、测压管 12、量水筒1、实际流体的流动会呈现出两种不同的型态:层流和紊流,它们的区别在于:流动过程中流体层之间是否发生混掺现象。

在紊流流动中存在随机变化的脉动量,而在层流流动中则没有。

2、圆管中恒定流动的流态转化取决于雷诺数。

雷诺根据大量实验资料,将影响流体流动状态的因素归纳成一个无因次数,称为雷诺数Re ,作为判别流体流动状态的准则νμρvd vd ==Re式中 v ——流体断面平均流速 , s cmd ——圆管直径 , cmν——流体的运动粘度 , s cm 2在本实验中,流体是水。

水的运动粘度与温度的关系可用泊肃叶和斯托克斯提出的经验公式计算2000221.00337.010178.0tt ++=ν 式中 ν——水在t C ︒时的运动粘度,s cm 2;t ——水的温度,C ︒。

3、判别流体流动状态的关键因素是临界速度。

临界速度随流体的粘度、密度以及流道的尺寸不同而改变。

流体从层流到紊流的过渡时的速度称为上临界流速,从紊流到层流的过渡时的速度为下临界流速。

4、圆管中定常流动的流态发生转化时对应的雷诺数称为临界雷诺数,对应于上、下临界速度的雷诺数,称为上临界雷诺数和下临界雷诺数。

上临界雷诺数表示超过此雷诺数的流动必为紊流,它很不确定,跨越一个较大的取值范围。

而且极不稳定,只要稍有干扰,流态即发生变化。

上临界雷诺数常随实验环境、流动的起始状态不同有所不同。

因此,上临界雷诺数在工程技术中没有实用意义。

有实际意义的是下临界雷诺数,它表示低于此雷诺数的流动必为层流,有确定的取值。

通常均以它作为判别流动状态的准则,即Re < 2320 时,层流Re > 2320 时,紊流该值是圆形光滑管或近于光滑管的数值,工程实际中一般取Re = 2000。

5、实际流体的流动之所以会呈现出两种不同的型态是扰动因素与粘性稳定作用之间对比和抗衡的结果。

针对圆管中定常流动的情况,容易理解:减小 d ,减小 v ,加大 v 三种途径都是有利于流动稳定的。

综合起来看,小雷诺数流动趋于稳定,而大雷诺数流动稳定性差,容易发生紊流现象。

6、由于两种流态的流场结构和动力特性存在很大的区别,对它们加以判别并分别讨论是十分必要的。

圆管中恒定流动的流态为层流时,沿程水头损失与平均流速成正比,而紊流时则与平均流速的1.75~2.0次方成正比。

7、通过对相同流量下圆管层流和紊流流动的断面流速分布作一比较,可以看出层流流速分布呈旋转抛物面,而紊流流速分布则比较均匀,壁面流速梯度和切应力都比层流时大,如图5所示。

2、打开出水阀门10至最大,排出实验管道中的气泡。

反复开闭出水阀门10,排出压差计中气泡,即可开始实验。

3、稍微打开出水阀门10和色水阀门3,观察流体的层流状态。

继续开大出水阀门10,色水细流出现波动,即过渡状态。

再开大出水阀门10,水流稳定性遭到破坏,色迹消失,变为紊流。

整个过程可以清晰地看到流体从层流变化到紊流。

4、在流体完全变到紊流时,逐渐关闭出水阀门10,在观察流体从紊流变化到层流的同时,记录沿程水头损失f h 和流量Q 。

相关文档
最新文档