环形道路上的行程问题
环形道路上的行程问题
行程问题专题训练(环形道路上的行程问题)一、知识梳理1.行程问题中的基本数量关系式:速度×时间=路程;路程÷时间=速度;路程÷速度=时间.2.相遇问题中的数量关系式:速度和×相遇时间=相遇路程;相遇路程÷速度和=相遇时间;相遇路程÷相遇时间=速度和.3.追及问题中的数量关系式:速度差×追及时间=追及距离;追及距离÷速度差=追及时间;追及距离÷追及时间=速度差.4.流水问题中的数量关系式:顺水速度=船速+水速;逆水速度=船速-水速;船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2.5.应该注意到:(1)顺逆风中的行走问题与顺逆水中的航行问题考虑方法类似;(2)在一条路上往返行走与在环形路上行走解题思考方法类似。
因此不要机械地去理解环形道路长的行程问题.二、例题精讲例1、李明和王林在周长为400米的环形道路上练习跑步.李明每分钟跑200米,是王林每分钟所跑路程的.如果两人从同一地点出发,沿同一方向前进,问至少要经过几分钟两人才能相遇?分析:由于两人从同一地点同向出发,因此是追及问题,追及距离是400米,可用公式“追及距离÷速度差=追及时间”.解:追及距离=400米;追及时的速度差.由公式列出追及时间(分).答:至少经过16分钟两人才能相遇.例2、如图所示,A、B是圆的直径的两个端点,亮亮在点A,明明在点B,他们同时出发,反向而行.他们在C点第一次相遇,C点离A点100米;在D点第二次相遇,D点离B 点80米.求这个圆的周长.分析:第一次相遇,两人合起来走了半圈,第二次相遇,两个人合起来又走了一圈,所以从开始出发到第二次相遇,两个人合起来走了一圈半.可知,第二次相遇时两人合起来的行程是第一次相遇时合起来的行程的3倍,可知,每个人在第二次相遇时所走的行程是第一次相遇时所走的行程的3倍,所以第二次相遇时亮亮走的行程(A→c→B→D)应该是第一次相遇时走的行程(A直接到C)的3倍。
环形路1的行程问题
丙每分钟走75米。
例3甲、乙两人在400米环形跑道上的同一点同时出发,背向而跑,两人相遇后,乙立即回头跑,并把速度提高到原速的1.4倍,甲、乙两人同时回到出发点之后甲立即回头跑,并把速度提高到原速的1.5倍。问甲从出发到两人再次相遇,一共跑了多少米?
解:
甲、乙两人第一次相遇后乙回头提高速度与甲同时回到出发点,跑这段路两人速度相同,甲回头跑速度提高到原来的1.5倍,这时甲的速度也是乙的1.5倍,甲回头跑第二圈跑的路程是400÷(1+1.5)×1.5=240(米),甲从出发到两人第二次相遇一共跑了400+240=640(米)。答:
甲一共跑了640米。
例4一个湖的湖边有一条小路环绕,小志从小路的A点,小华从小路的B点同时出发,背向而行走(如右图),经9分钟两人相遇,在过6分钟,小志走到B点;在过12分钟,两人再次相遇,小志在这条小路绕湖边走一圈要多少分钟?
解:
设两人第一次相遇点是C,小华从B点到C走9分钟,小志从C到B走6分钟,就是说小华9分钟走的路小志只要走6分钟。
两人从第一次相遇到第二次相遇,合走了一圈,用的时间是6+12=18(分),而小华走18分钟所走的路,小志用的时间只是18÷
9×6=12(分),所以小志绕湖边走一圈的时间是18+12=30(分)。
答:
小志在这条小路绕湖边走一圈要30分钟。
例5一个游泳池长50米,甲、乙两人在两端同时开始往返游泳,甲每秒钟游1.6米,乙每秒钟游1.4米,游了10分钟,两人迎面相遇多少次?
解:
在游泳池两端往返一次相当于在100米(50×2)的环形路游了一圈(如右图所示),第一次各在一端同时出发,游半圈(一个池长)相遇,以后每圈(两个池长)相遇一次。甲、乙两人10分钟一共游了:
环形路上的行程问题
追及问题
相差路程÷速度之差=追上时间
追上时间×速度之差=相差路程
相差路程÷追上时间=速度之差
相遇问题
速度之和×相遇时间=相遇路程(路程之和) 相遇路程÷相遇时间=速度之和 相遇路程÷速度之和=相遇时间
复习:
1
2
3
4
5
6
STEP5
STEP4
STEP3
STEP2
STEP1
分析:
小明走4分钟的路程相当于小强走6分钟的路程。
16
1
3
5
7
9
11
13
15
1
2
3
4
5
6
7
8
8
则它们从出发到初次相遇经过的时间是: 1+3+5+7+9+11+13+15=64分钟 第一次相遇在下半圆,折返向上半圆爬去,须爬行17分钟。去掉在下半圆的8分钟,在上半圆须爬行17-8=9分钟。但在上半圆爬行8分钟就会相遇,因此总时间用去了8+8=16分钟。 即:在第一次64分钟相遇后再过16分钟第二次相遇。 (相遇位置在上半圆)
后一半用时:80-36=44(秒)
答:小明后一半路程用了44秒。
2.小明在360米长的环形跑道上跑了一圈。已知他前一半时间每秒跑5米,后一半时间每秒跑4米,那么小明后一半路程用了多少秒?
分析:
假设小王走了2小时10分:4×2=8(千米)
小张在这段时间走了:
2×[ (60-10)÷10]+1=11(千米)
8 .三个环形跑道相切排列,每个环形跑道的周长均为210厘米。甲、乙两只爬虫分别从A、B两地按箭头所示的方向出发,甲爬虫绕1、2号环形跑道作“8”字形循环运动,乙爬虫绕3、2号环形跑道作“8”字形循环运动,甲、乙两只爬虫的速度分别是每分钟20、15厘米。问甲、乙两爬虫第二次相遇时,甲爬虫爬了多少厘米?
五年级奥数-环形道路上的行程问题
第五讲环形道路上的行程问题一、知识要点和基本方法1.行程问题中的基本数量关系式: 速度×时间=路程;路程÷时间=速度; 路程÷速度=时间. 2.相遇问题中的数量关系式:速度和×相遇时间=相遇路程; 相遇路程÷速度和=相遇时间; 相遇路程÷相遇时间=速度和. 3.追及问题中的数量关系式:速度差×追及时间=追及距离; 追及距离÷速度差=追及时间; 追及距离÷追及时间=速度差. 4.流水问题中的数量关系式:顺水速度=船速十水速; 逆水速度=船速一水速;船速=(顺水速度+逆水速度)÷2; 水速=(顺水速度-逆水速度)÷2. 5.应该注意到:(1)顺逆风中的行走问题与顺逆水中的航行问题考虑方法类似; (2)在一条路上往返行走与在环形路上行走解题思考方法类似,因此不要机械地去理解环形道路长的行程问题.二、例题精讲例1 李明和王林在周长为400米的环形道路上练习跑步.李明每分钟跑200米,是王林每分钟所跑路程的89.如果两人从同一地点出发,沿同一方向前进,问至少要经过几分钟两人才能相遇?分析 由于两人从同一地点同向出发,因此是追及问题,追及距离是400米,可用公式“追及距离÷速度差=追及时间”. 解 追及距离=400米;返及时的速度差=200÷89-200.由公式列出追及时间=400÷(200÷89-200)=400 ÷(225-200) =400 ÷ 25 =16(分).答 至少经过16分钟两人才能相遇.例2 如图5-1,A、B是圆的直径的两个端点,亮亮在点A,明明在点B,他们同时出发,反向而行.他们在C点第一次相遇,C点离A点100米;在D 点第二次相遇,D点离B点80米.求这个圆的周长.图5-1分析第一次相遇,两人合起来走了半圈,第二次相遇,两个人合起来又走了一圈,所以从开始出发到第二次相遇,两个人合起来走了一圈半.也就是说,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,也就是每个人在第二次相遇时所走的行程是第一次相遇时所走的行程的3倍,所以从A到D(A→C→B→D)的距离应该是从A到C(A直接到C)的距离的3倍.于是有解法如下.解 A 到D(A→C→B→D)的距离:100 × 3=300(米).半个圆圈长:300-80=220(米).整个圆圈长:220 × 2=440(米).答这个圆的周长是440米.例3 一个圆的周长为1.44米,两只蚂蚁从一条直径的两端同时出发,沿圆周相向爬行.l分钟后它们都调头而行,再过3分钟,他们又调头爬行,依次按照1、3、5、7,…(连续奇数)分钟数调头爬行.这两只蚂蚁每分钟分别爬行5.5厘米和3.5厘米.那么经过多少时间它们初次相遇?再次相遇需要多少时间?分析半圆的周长是÷..(米)=72(厘米).1442=072先不考虑往返的情况,那么两只蚂蚁从出发到相遇所花时间为÷(..)=8(分).7255+35再考虑往返的情况,则有表5-1.表5-1经过时间(分) 1 3 5 7 9 11 13 15 16在上半圆爬行时间 1 3 5 7 8在下半圆爬行时间 2 4 6 8此可求出它们初次相遇和再次相遇的时间.解由题意可知它们从出发到初次相遇经过时间=1+3+5+7+9+11+13+15=64(分).第一次相遇时,它们位于下半圆,折返向上半圆爬去,须爬行17分钟,此时,爬行在下半圆的时间仍为8分钟(与上次在下半圆爬行时间相同),爬行在上半圆的时间应为9(=17-8)分钟,但在上半圆(相向)爬行8分钟就会相遇,此时总时间又用去了16(=8+8)分钟,因此,第二次相遇发生在第一次相遇后又经过了16分钟(从总时间计算则为64+16=80(分)).此时,相遇位置在上半圆.答它们经过时分钟初次相遇,再经过16分钟再次相遇,例4 一个圆周长70厘米,甲、乙两只爬虫从同一地点,同时出发同向爬行,用以每秒4厘米的速度不停地爬行,乙爬行15厘米后,立即反向爬行,并且速度增加1倍,在离出发点30厘米处与甲相遇,问爬虫乙原来的速度是多少?图5-2分析根据题意画出示意图5-2.观察示意图可知:甲共行了70-30=40(厘米),所需时间是40÷4=10(秒).在10秒内,乙按原速度走了15厘米,按2倍的速度走了15+30=45(厘米),假如全按原速走,乙10秒共走15+45÷2=37.5(厘米),由此可求出乙原来的速度.解(70-30)÷4=40 ÷ 4=10(秒),[(30+15)÷2+15]÷ 10.÷10=375?.(厘米/秒).=375?答爬虫乙原来的速度是每秒爬3.75厘米例5 如图5-3,沿着边长为90米的正方形,按逆时针方向,甲从A出发,每分钟走65米,乙从B出发,每分钟走72米,当乙第一次追上甲时是在正方形的哪一条边上?图5-3分析这是环形追及问题.这类问题可以先看成“直线”追及问题,求出乙追上甲所需要的时间,再回到“环形”追及问题,根据乙在这段时间内所走路程,推算出乙应在正方形哪一条边上.解设追上甲时乙走了x分钟.依题意,甲在乙前方3 × 90=270(米),故有72x =65x + 270, 解得x =2707在这段时间内乙走了72×2707=277717由于正方形边长为90米,共四条边,所以由277717=3 0× 90+7717=(4× 7+2)×90+7717,可以推算出这时甲和乙应在正方形的AD 边上.答 当乙第一次追上甲时在正方形的AD 边上.例6 150人要赶到90千米外的某地去执行任务.已知步行每小时可行10千米.现有一辆时速为70千米的卡车,可乘50人.请你设计一种乘车及步行的方案,能使这150人在最短的时间内全部赶到目的地.其中,在中途每次换车(上、下车)时间均忽略不计.解 显然,只有人、车不停地向目标前进,车一直不停地往返载人,最后使150人与车同时到达目的地时,所用的时间才会最短.由于这辆车只能乘坐50人,因此将150分为3组,每组50人来安排乘车与步行.图5-4中,实线表示汽车往返路线(AE →EC →CF →FD →DB ),虚线表示步行路段.显然每组乘车、步行的路程都应一样多.所以图5-4AE =CF =DB ,且AC =CD =EF =FB . 若没AE =CF =DB =x ,AC =CD =EF =FB =y ,则290x y +=.且因为汽车在AE 十EC 上所用的时间与步行AC 所用时间相同,所以 ()7010x x y y+-= 解方程组290x y +=()7010x x y y+-=得60,15x y ==.则150人全部从A 到B 最短时间为602156370107⨯+=小时 答 方案是50人一组,共分3组,先后分别乘60千米车,先后分段步行30千米,由A 同时出发,最后同时到B ,最短时间是637小时.例7 甲、乙二人沿椭圆形跑道作变速跑训练:他们从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈。
环形路上的行程问题
环形路上的行程问题例9小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分.(1)小张和小王同时从同一个地方出发,朝相反的方向跑去。
75秒后,他们第一次见面。
小张的速度是多少?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?例10如图所示,a和B是圆直径的两端。
小张从a点出发,小王在B点朝相反的方向走。
他们第一次在距离a点80米的C点相遇;在距离B点6米的D点第二次相遇,找出圆的周长小张和小王各自以一定的速度在周长为500米的环形跑道上跑步。
小王每分跑180米。
(1)小张和小王同时从一个地点出发,反向跑步,75秒后两人相遇,求小张的速度。
(2)小张和小王从同一个地方出发,同时朝同一个方向跑。
他们在路上第一次见面有多少分钟?例11甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?解决方案:原理图如下:如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是40×3÷60=2(小时)从图上可以看出从出发至第二次相遇,小张已走了6×2-2=10(千米).小王已走了6+2=8(千米).因此,他们的速度分别是小张10÷2=5(千米/小时),小王8÷2=4(千米/小时).A:小张和小王的速度分别是5公里/小时和4公里/小时例12小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次见面时,他们走的距离是a村和B村的三倍,所以张离开了3.5×3=10.5(千米).从图中可以看出,第二次会议距离B村2公里,因此a村和B村之间的距离为10.5-2=8.5(千米).每次他们再次见面,他们必须走两倍于a村和B村之间的距离。
环形路行程问题
第七讲环形路上的行程问题环形路行程问题本质:①追及②相遇【追及知识要点】追及概念:两运动物体同时做同向运动,速度慢者在前,快者在后,经一定时间快者追上慢者,像这样的数学问题叫追及问题。
追及问题主要研究下面三种数量之间关系:追及距离:快者和慢者所走的路程差速度差:快者、慢者速度之差追及时间:快者追上慢车者所用时间追及问题中主要的数量关系式:追及距离= 速度差×追及时间〖适用于所有追及问题〗下面来看环形路上的追及问题:追及距离 = 二人初始距离 + 环形道路之长倍数(几倍是看第几次追上)(只适用于环形路)相遇距离 = 二人从出发到相遇所行路程总和例1:如下图,甲乙在环形跑道长跑,甲250 m/min,乙200 m/min。
甲乙同时同地同向出发,45 min后,甲第一次追上乙。
若二人同时同地反向跑,几分钟后相遇(三分钟思考时间)思路:关键是求环形路总长吗甲1 min比乙多跑50 m,那45 min多跑多少米多跑的路程是环形路长吗为什么家庭作业:甲、乙同时同地同向起跑,绕300 m长环行跑道跑,甲6 m/min,乙4 m/min,甲第二次追上乙时,跑了几圈(提示:追及时间×速度差=追及距离)例2:已知等边三角形ABC周长360 m,甲从A点出发,逆时针,速度55 m/min,乙从BC 边上D点(距C点30 m)出发,顺时针,速度50 m/min。
两人同时出发,几分钟相遇当乙到达A点时,甲在哪条边上,离C点多远思路:相遇问题,快者所走路程+慢者所走路程=初始相距路程例3:甲、乙村相距6 km,小张、小王分别从甲、乙两村同时出发,在两村间往返走(到达另一村后就马上返回).在出发后40 min两人第一次相遇.小王到达甲村后返回,在离甲村2km的地方两人第二次相遇.小张、小王的速度各是多少例4:绕湖一周是24 km,小张、小王从湖边某一地点同时反向而行.小王速度4 km/h,每走1 h 后休息5 min,小张以6 km/h速度每走50 min后休息10 min。
环形路上的行程问题——例题加练习
环形路上的行程问题相遇问题:路程=速度和×时间=(甲速度+乙速度)×时间追及问题:时间=路程÷时间差=路程÷(甲速度-乙速度)注:甲>乙例1 小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分,小张的速度是220米/分。
(1)小张和小王同时从同一点出发,反向跑步,小张跑多久后才能第一次追上小王?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多久后才能第一次追上小王?例2 一片草坪有一条环形路,甲、乙二人在意条环形路上练习跑步,甲每分钟跑210米,乙每分钟跑180米,二人同时同地出发,背向而跑,4分钟相遇。
如果二人同时同地出发,同向而跑,甲多少分钟第一次追上乙?提示:相遇问题与追及问题的转换练习:甲、乙二人在一个环形道路上练习跑步,甲每分钟跑195米,乙每分钟跑225米,两人同时同地出发,同向而跑,乙跑28分钟追上甲;如果两人同时同地出发,背向而跑,多少分钟相遇?例3 甲、乙、丙三人在长2970米的环形路上的同一地点同时出发,甲、乙同向,丙与甲、乙背向行走,甲每分钟走90米,乙每分钟走80米,丙在距离乙180米处遇见甲。
丙每分钟走多少米?练习:1、甲、乙、丙三人在一条环形路上的同一地点同时出发,甲、乙同向,丙与甲、乙背向而走,丙走12分钟遇见甲再过1.2分钟遇见乙。
已知甲每分钟走75米,乙每分钟走60米,那么这条环形路长多少米?2、甲、乙、丙三人在一环形公路上进行骑自行车的练习,三人同时在同一地点出发,甲、乙同向,丙与甲、乙背向而行,丙遇见乙1.6分钟后遇见甲。
已知甲每分钟行195米,乙每分钟行225米,丙每分钟行180米。
这一环形公路一圈有多少米?。
小五奥数教材课程十八环形路上的行程问题
课程十八环形路上的行程问题学习目标我们已经学习过追及问题和相遇问题,下面我们学习利用追及、相遇问题解环形路上的行程问题。
重点1.当二人(或物)同向运动时就是追及问题,追及问题是二人初始距离及环形道路之长的倍数之和;2.当二人(或物)反向运动时就是相遇问题,相遇距离是二人从出发到相遇所行路程和。
总结环形道路上的行程问题本质上讲就是追及和相遇问题,仍记住以下数量关系:相遇路程=速度和×相遇时间速度和=相遇路程÷相遇时间追及路程÷速度差=追及时间速度差×追及时间=追及路程追及路程÷追及时间=速度差乙 甲200米/分 250米/分乙 甲200米/分250米/分AAB如图,两名运动员在沿湖的环形跑道上练习长跑,甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,45分钟后甲追上了乙.如果两人同时同地反向而跑,经过多少分钟后两人相遇?(1) (2)分析与解法根据图(1)用追及问题公式求出环形跑道的长,因从同一点出发,距离差=跑道长. (250-200)×45=2250(米)同理在环形跑道上,若反向而行,从同一点出发两人相遇所经过的路程和=跑道长。
2250÷(250+200)=5(分钟) 即 经过5分钟两人相遇例2如图所示,A 、B 是一圆形道路的一条直径的两个端点,现有甲、乙两人分别从A 、B 两点同时沿相反方向绕道匀速跑步(甲、乙两人的速度未必相同),假设当乙跑完100米时,甲、乙两人第一次相遇;当甲差60米跑完一圈时,甲、乙两人第二次相遇,那么当甲、乙两人第十二次相遇时,甲跑完几圈又多少米?分析与解法甲、乙第一次相遇时共跑0.5圈,第二次相遇时共跑1.5圈.因为甲、乙第一次相遇时乙跑了100米,所以第二次相遇时乙跑了100×3=300(米),此时甲差60米跑1圈,推知0.5圈是300-60=240(米),1圈是480米.第一次相遇时甲跑了240-100=140(米),以后每次相遇甲又跑140×2=280(米),所以第12次相遇时,甲共跑了140+280×11=3220(米)=6圈340(米).如图,AOB 和COD 是⊙O 的两条互相垂直的直径.甲沿圆周走一圈用12分钟,乙走一圈用8分钟.若甲、乙二人同时分别从点 A 、C 出发,顺时针方向沿圆周行走.问:出发后几分钟乙能追上甲?分析与解法甲沿圆周走一圈用12分钟,每分钟走圆的;乙走一圈用8分钟,每分钟走圆的.一分钟乙追上甲(圆周),所以乙追上甲圆周,要用=6(分钟).说明:由[12,8]=24,即24分钟乙比甲多走一个圆周,现乙要追甲。
环形路上的行程问题
环形路上的行程问题
1、一片草坪有一条环形路,甲、乙二人在意条环形路上练习跑步,甲每分钟跑210米,以每分钟跑180米,二人同时同地出发,被向而跑,4分钟相遇。
如果二人同时同地出发,背向而跑,甲多少分钟第一次追上乙?
2、甲、乙二人在一个环形道路上练习跑步,甲每分钟跑195米,乙每分钟跑225米,两人同时同地出发,同向而跑,乙跑28分钟追上甲;如果两人同时同地出发,背向而跑,多少分钟相遇?
1.甲、乙二人在450米的环形跑道的同一点同时出发,背向而走,相遇后立即回头走,并把速度提高到原来的3倍。
问从出发到二人再次相遇,甲一共跑了多少米?
2.右图ABCD是正方形的环形道路,甲、乙二人同时从A点出发,反向行走,甲的速度是乙的2倍,二人在CD边上距D点2150米处第一次相遇。
这时甲走了多少米?
3.甲、乙两只爬虫在周长1米的一个圆上的同一点同时出发,绕圆周同向爬行,甲以3cm/秒的速度不断爬行,乙爬行20cm后立即回头,并把速度提高1倍爬行,在离出发点40cm处与甲迎面相遇,乙在开始时爬行的速度是多少cm/秒?
4.在一条环形路上,甲从A点,乙从B点同时出发,背向而走(如右图),经过16分钟二人相遇,再过12分钟,甲走到B点;再过20分钟,二人第二次相遇。
甲走这条环形路的一个圈要多少分钟?
5.东村和西村相距1200米,甲从东村起跑,每秒钟跑4.8米,乙从西村起跑,每秒钟跑4.5米,同时开始,在东村和西村往返练习跑步跑12分钟,两人相遇多少次?
1/ 1。
第五讲环形道路上的行程问题
第五讲环形道路上的行程问题一、知识要点和基本方法1.行程问题中的基本数量关系式:速度×时间=路程;路程÷时间=速度;路程÷速度=时间.2.相遇问题中的数量关系式:速度和×相遇时间=相遇路程;相遇路程÷速度和=相遇时间;相遇路程÷相遇时间=速度和.3.追及问题中的数量关系式:速度差×追及时间=追及距离;追及距离÷速度差=追及时间;追及距离÷追及时间=速度差.4.流水问题中的数量关系式:顺水速度=船速十水速;逆水速度=船速一水速;船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2.5.应该注意到:(1)顺逆风中的行走问题与顺逆水中的航行问题考虑方法类似;(2)在一条路上往返行走与在环形路上行走解题思考方法类似,因此不要机械地去理解环形道路长的行程问题.二、例题精讲例1 李明和王林在周长为400米的环形道路上练习跑步.李明每分钟跑200米,是王林每分钟所跑路程的89.如果两人从同一地点出发,沿同一方向前进,问至少要经过几分钟两人才能相遇?分析 由于两人从同一地点同向出发,因此是追及问题,追及距离是400米,可用公式“追及距离÷速度差=追及时间”.解 追及距离=400米;返及时的速度差=200÷89-200. 由公式列出追及时间=400÷(200÷89-200) =400 ÷(225-200)=400 ÷ 25=16(分).答 至少经过16分钟两人才能相遇.例2 如图5-1,A、B是圆的直径的两个端点,亮亮在点A,明明在点B,他们同时出发,反向而行.他们在C点第一次相遇,C点离A点100米;在D 点第二次相遇,D点离B点80米.求这个圆的周长.图5-1分析第一次相遇,两人合起来走了半圈,第二次相遇,两个人合起来又走了一圈,所以从开始出发到第二次相遇,两个人合起来走了一圈半.也就是说,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,也就是每个人在第二次相遇时所走的行程是第一次相遇时所走的行程的3倍,所以从A到D(A→C→B→D)的距离应该是从A到C(A直接到C)的距离的3倍.于是有解法如下.解 A 到D(A→C→B→D)的距离:100 × 3=300(米).半个圆圈长:300-80=220(米).整个圆圈长:220 × 2=440(米).答这个圆的周长是440米.例3 一个圆的周长为1.44米,两只蚂蚁从一条直径的两端同时出发,沿圆周相向爬行.l分钟后它们都调头而行,再过3分钟,他们又调头爬行,依次按照1、3、5、7,…(连续奇数)分钟数调头爬行.这两只蚂蚁每分钟分别爬行5.5厘米和3.5厘米.那么经过多少时间它们初次相遇?再次相遇需要多少时间?分析半圆的周长是÷..(米)=72(厘米).1442=072先不考虑往返的情况,那么两只蚂蚁从出发到相遇所花时间为÷(..)=8(分).7255+35再考虑往返的情况,则有表5-1.表5-1经过时间(分) 1 3 5 7 9 11 13 15 16在上半圆爬行时间 1 3 5 7 8在下半圆爬行时间 2 4 6 8此可求出它们初次相遇和再次相遇的时间.解由题意可知它们从出发到初次相遇经过时间=1+3+5+7+9+11+13+15=64(分).第一次相遇时,它们位于下半圆,折返向上半圆爬去,须爬行17分钟,此时,爬行在下半圆的时间仍为8分钟(与上次在下半圆爬行时间相同),爬行在上半圆的时间应为9(=17-8)分钟,但在上半圆(相向)爬行8分钟就会相遇,此时总时间又用去了16(=8+8)分钟,因此,第二次相遇发生在第一次相遇后又经过了16分钟(从总时间计算则为64+16=80(分)).此时,相遇位置在上半圆.答它们经过时分钟初次相遇,再经过16分钟再次相遇,例4 一个圆周长70厘米,甲、乙两只爬虫从同一地点,同时出发同向爬行,用以每秒4厘米的速度不停地爬行,乙爬行15厘米后,立即反向爬行,并且速度增加1倍,在离出发点30厘米处与甲相遇,问爬虫乙原来的速度是多少?图5-2分析根据题意画出示意图5-2.观察示意图可知:甲共行了70-30=40(厘米),所需时间是40÷4=10(秒).在10秒内,乙按原速度走了15厘米,按2倍的速度走了15+30=45(厘米),假如全按原速走,乙10秒共走15+45÷2=37.5(厘米),由此可求出乙原来的速度.解(70-30)÷4=40 ÷ 4=10(秒),[(30+15)÷2+15]÷ 10.÷10=375?.(厘米/秒).=375?答爬虫乙原来的速度是每秒爬3.75厘米例5 如图5-3,沿着边长为90米的正方形,按逆时针方向,甲从A出发,每分钟走65米,乙从B出发,每分钟走72米,当乙第一次追上甲时是在正方形的哪一条边上?图5-3分析这是环形追及问题.这类问题可以先看成“直线”追及问题,求出乙追上甲所需要的时间,再回到“环形”追及问题,根据乙在这段时间内所走路程,推算出乙应在正方形哪一条边上.解设追上甲时乙走了x分钟.依题意,甲在乙前方3 × 90=270(米),故有72x =65x + 270,解得x =2707 在这段时间内乙走了72×2707=277717 由于正方形边长为90米,共四条边,所以由277717=3 0× 90+7717=(4× 7+2)×90+7717, 可以推算出这时甲和乙应在正方形的AD 边上.答 当乙第一次追上甲时在正方形的AD 边上.例6 150人要赶到90千米外的某地去执行任务.已知步行每小时可行10千米.现有一辆时速为70千米的卡车,可乘50人.请你设计一种乘车及步行的方案,能使这150人在最短的时间内全部赶到目的地.其中,在中途每次换车(上、下车)时间均忽略不计.解 显然,只有人、车不停地向目标前进,车一直不停地往返载人,最后使150人与车同时到达目的地时,所用的时间才会最短.由于这辆车只能乘坐50人,因此将150分为3组,每组50人来安排乘车与步行.图5-4中,实线表示汽车往返路线(AE →EC →CF →FD →DB ),虚线表示步行路段.显然每组乘车、步行的路程都应一样多.所以图5-4AE =CF =DB ,且AC =CD =EF =FB .若没AE =CF =DB =x ,AC =CD =EF =FB =y ,则290x y +=.且因为汽车在AE 十EC 上所用的时间与步行AC 所用时间相同,所以()7010x x y y +-= 解方程组290x y += ()7010x x y y +-=得60,15x y ==.则150人全部从A 到B 最短时间为602156370107⨯+=小时 答 方案是50人一组,共分3组,先后分别乘60千米车,先后分段步行30千米,由A 同时出发,最后同时到B ,最短时间是637小时. 例7 甲、乙二人沿椭圆形跑道作变速跑训练:他们从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈。
小升初培优专题五环形线路问题行程问题篇
小升初培优专题五环形线路问题行程问题篇在小学奥数的行程问题中,环形线路问题是一个比较有挑战性的专题。
今天,我们就来深入探讨一下环形线路中的行程问题。
首先,我们来了解一下环形线路的基本概念。
环形线路,简单来说,就是一个封闭的曲线形状的道路,比如圆形跑道、环形公园小路等。
在环形线路上运动,物体的运动方向可以是同向的,也可以是反向的。
我们先来看同向运动的情况。
假设甲和乙在环形跑道上同时同地出发,甲的速度比乙快。
由于甲的速度快,所以甲会逐渐追上乙。
当甲第一次追上乙时,甲比乙多跑了一圈。
举个例子,环形跑道的周长是 400 米,甲的速度是每分钟 250 米,乙的速度是每分钟 200 米。
那么甲每分钟比乙多跑 250 200 = 50 米。
甲第一次追上乙所用的时间就是跑道的周长除以甲每分钟比乙多跑的距离,即 400 ÷ 50 = 8 分钟。
接下来,我们再看反向运动的情况。
还是在同样的环形跑道上,甲和乙同时同地出发,方向相反。
那么两人相遇时,他们所跑的路程之和就是跑道的周长。
比如说,跑道周长依然是 400 米,甲的速度是每分钟 250 米,乙的速度是每分钟 200 米。
两人的速度之和就是 250 + 200 = 450 米/分钟。
所以他们相遇所用的时间就是 400 ÷ 450 = 8/9 分钟。
下面我们来看一些稍微复杂一点的环形线路行程问题。
例 1:在一个周长为 600 米的环形跑道上,甲、乙两人同时从同一地点按顺时针方向跑步,甲的速度是每分钟 300 米,乙的速度是每分钟 250 米。
问经过多少分钟甲第一次追上乙?思路:甲要追上乙,就要比乙多跑一圈,也就是 600 米。
甲每分钟比乙多跑 300 250 = 50 米,所以追上乙所用的时间就是 600 ÷ 50 = 12 分钟。
例 2:在周长为 400 米的圆形操场上,小明和小红同时从 A 点出发,小明逆时针跑步,速度是每分钟 200 米,小红顺时针跑步,速度是每分钟 150 米。
行程问题——环形路(教师版)
行程问题——环形路(教师版)一、【本讲知识点】在环行道路上的行程问题本质上讲是追及问题或相遇问题。
当二人(或物)同向运动就是追及问题,追及距离是二人初始距离及环形道路之长的倍数之和;当二人(或物)反向运动时就是相遇问题,相遇距离是二人从出发到相遇所行路程和。
二、【本讲经典例题】【铺垫】如下图,两名运动员在沿湖周长为2250米的环形跑道上练习长跑。
甲每分钟跑250米,乙每分钟跑200米。
两人同时同地同向出发,多少分钟后甲第1次追上乙?若两人同时同地反向出发,多少分钟后甲、乙第1次相遇?分析与解答:2250÷(250-200)=2250÷50=45(分钟),即45分钟后甲第1次追上乙;2250÷(250+200)=2250÷450=5(分钟),即5分钟后甲、乙第1次相遇. 【例1】如下图,两名运动员在沿湖的环形跑道上练习长跑。
甲每分钟跑250米,乙每分钟跑200米。
两人同时同地同向出发,45分钟后甲追上了乙。
如果两人同时同地反向而跑,经过多少分钟后两人相遇?(1)(2)分析与解答:根据图(1)用追及问题公式求出环形跑道的长,因从同一点出发,距离差=跑道长。
(250-200)×45=2250(米)。
同理,在环形跑道上,若反向而行,从同一点出发两人相遇所经过的路程和=跑道长。
如图(2),2250÷(250+200)=5(分钟)即经过5分钟两人相遇。
【随堂练习1】如下图,两名运动员在沿湖的环形跑道上练习长跑。
甲每分钟跑250米,乙每分钟跑200米。
两人同时同地同向出发,54分钟后甲追上乙。
如果两人同时同地反向而跑,经过多少分钟后两人相遇?一问分析与解答:具体分析见例题。
环形跑道周长:(250-200)×54=2700(米),两人相遇时间:2700÷(250+200)=2700÷450=6(分钟),即经过6分钟后两人相遇。
五年级数学—环形路上的行程问题
五年级奥数——环形路上的行程问题1、环形运动问题:环形周长=(大速度+小速度)×相遇的时间环形周长=(大速度-小速度)×相遇的时间环形运动的追及问题和相遇问题:同时同向起点运动,第一次相遇,速度快的比速度慢的多跑一圈。
在环形跑道上同时同向,速度快的在前,慢的在后。
不是封闭的跑道追及问题,速度慢的在前,快的在后。
1.两名运动员在沿湖的环形跑道上练习长跑,甲分钟跑250米,乙每分钟跑200米,两人人同时同地同向出发,45分钟后甲追上了乙,如果两人同时同地反向而跑,经过多少钟后两人相遇?2.甲,乙两运动员在周长为400米的环形跑道上同向竞走,已知乙的平均速度是每分钟80米,甲的平均速度是乙的1.25倍,甲在乙前面100米处,问几分钟后,甲第1次追上乙?3.如图,A、B是圆的直径的两端,小军在A点,小勇在B点,同时出发相向而行,他俩第1次在C点相遇,C离A点50米;第2次在D点相遇,D点离B点3O米.求这个圆的周长是多少米?4.在一个长800米的环行湖边上,小明,小张两人同时从同一点出发,反向跑步,5分钟两人第一次相遇,小明每分钟跑100米,张静每分钟跑多少米?如果两人同时从同一点出发,同向跑步,多少分钟后小明能追上张静?(湘麓P29)5.有一条长400米的环形跑道,甲乙二人同时同地出发,反向而行,1分钟后第一次相遇,若二人同时同地出发,同向而行,则10钟后第一次相遇,若甲比乙快,那第甲乙二人的速度分别是多少米?(湘麓P29)6.跑马场一周之长为1080。
甲乙两人骑自行车从同一地点同时出发,朝同一方向行驶,经过45分钟,甲追上乙,如果甲的速度分钟减少50米,乙的速度每分钟增加30米,从同一地点同时背向而行,则经过3分钟两人相遇。
求原来甲,乙两人每分钟各行多少米?(湘麓P30)※7.在300米的环形跑道上,甲,乙两从同时从起跑线出发反向而跑,甲每秒跑4米,乙每秒跑6米,当他们第一次相遇在起跑点时,他们已在途中想遇多少次?(湘麓P30)8.小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分。
五年级奥数第七讲_环形路程上的行程问题
五年级奥数第七讲_环形路程上的行程问题五年级奥数第七讲——环形路上的行程问题在环形道路上的形成问题本质上讲就是追击问题或相遇问题。
当二人(或物)同向运动时就是追击问题,追及距离是二人初始距离及环形道路之长的倍数之和;当二人(或物)反向运动时就是相遇问题,相遇距离是二人从出发到相遇所行路程和。
例1、如图所示,两名运动员在沿湖的环形跑道上练习长跑。
甲每分钟跑250米,乙每分钟跑200米。
两人同时同地同向除法,45分钟后甲追上了乙。
如果两人同时同地反向而跑,经过多少分钟后两人相遇?随堂练习1甲、乙两运动员在周长为400米的环形跑道上同向竞走,已知乙的平均速度是每分钟80米,甲的平均速度是乙的1.25倍,甲在乙前面100米处。
问几分钟还哦,甲第一次追上乙?例2、如图所示,是一个圆形中央花园,A、B是直径的两端。
小军在A点,小勇在B 点,同时出发相向而行。
他俩第1次在C点相遇,C点离A点有50米;第2次在D点相遇,D点离B点有30米。
问这个花园一周长多少米?随堂练习2如图所示,A、B是圆直径的两端点,亮亮在点A,明明在点B,相向而行。
他们在C 点第一次相遇,C点离A点100米;在D点第二次相遇,D点离B点80米。
求圆的周长。
例3、如图所示,是一个边长为100米的正方形跑道。
甲从A点出发,乙从C点出发都逆时针同时起跑,甲的速度每秒7米,乙的速度每秒5米。
他们拐弯处都要停留5秒,当甲第一次追上乙时,乙跑了多少米?如图所示,有一条长方形跑道,甲从A点出发,乙从C点出发,同时按逆时针方向奔跑。
甲速每秒6.25米,乙速每秒5米。
跑道长100米,宽60米。
当甲、乙每次跑到拐点A、B、C、D时都要停留5秒。
问当甲第一次追上乙时,甲、乙各跑了多少米?例4、一个圆的周长为1.44米,两只蚂蚁从一条直径的两端同时除法,沿圆周相向爬行。
1分钟后它们都调头而行,经过3分钟,它们又调头爬行,依次按照1、3、5、7,……(连续奇数)分钟调头爬行。
第六讲环形道路上行程问题
• 【例1】小张和小王各自以一定的速度在周长为 800米的环形跑道上跑步。小王每分钟跑 100米。 (1>小张和小王同时从同一个地点出发,反向跑 步,5分钟后两人相遇,求小张的速度.
• (2)小张和小王同时从同一地点出发,沿同一方向 _,经过多少分钟两人第•次在途中 相遇?解答环 形行程问题时要采用化曲为直的方法,两人同时 间地竹向而彳/,那么 相遇时两人和走了一个环形 全程;如果两人同时同地同向而行,那么相遇时 正好快的追]:了 慢的一个环形全程。
• ①速度和:800÷5=160(米/分)小张:160-100= 60(米/分)
• ② 追及问题:800÷160=5(分钟)800÷(10060)=20(米/分)
• 【例2】有一条长400米的环形跑道,甲、乙两人 同时同地出发,反向而行,1分钟后第一 次相遇, 若二人同时同地出发,同向而行,则10分钟后第 一次相遇,若甲比乙快,那么甲、乙二人的速度 分别是多少?
• 2、入冬前,妈妈买来了一筐苹果,清理时, 发现这筐苹果2个、2个的数,余1个; 3个、 3个的数,余2个; 4个、4个的数,余3个; 5个、5个的数,余4个; 6个、6个 的数,余 5个。你知道这筐苹果至少有多少个吗?
• 答:苹果个数比2,3,4,5,6的最小公倍数 小1,(2,3,4,5,6)=60
• 60-1=59(个)
• 答:这筐苹果至少有59个。
第六讲环形道路上的行程问题
1、 “环形跑道”,也是称为封闭回路,它 可以是圆形的、长方形的、三角形的,也可以 是 由长方形和两个半圆组成的运动场形状。解 题时,我们可以运动“转化法”把线路“拉直” 或“截断”,从而把物体在“环形路道”上的 运动转化亨我们熟悉的物体在直线上的运动。 2、 在行程问题中,与环形有关的行程问题 的解决方法長一般行程问题的方法类似,但有 两 点值得注意•• 一是两人同地背向运动,从第 一次相遇到下一次相遇共行一个全程.二是同地、 同向运动时,甲追上乙时甲比乙多行一个行程。
小六培优专题18-行程问题(环形赛道)
行程问题之环形赛道一、夯实基础在封闭的环形上,如果是同时同地背向而行,合走一个周长相遇一次。
相遇时间是:环形周长÷速度和=相遇时间。
如果是同时同地同向而行,速度快的追上速度慢的时候,正好比速度慢的多行一个周长的路程,一周的长度就是追及距离,追上一次。
追及时间是:环形周长÷速度差=追及时间二、典型例题例1.小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分。
(1)小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?解:(1)75秒=1.25分,两人相遇,也就是合起来跑了一个周长的行程。
小张的速度是:500÷1.25-180=220(米/分)。
(2)在环形的跑道上,小张要追上小王,就是小张比小王多跑一圈(一个周长),因此需要的时间是:500÷(220-180)=12.5(分);220×12.5÷500=5.5(圈)。
答:(1)小张的速度是220米/分;(2)小张跑5.5圈后才能追上小王。
例2.如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点60米.求这个圆的周长。
解:第一次相遇,两人合起来走了半个周长;第二次相遇,两个人合起来又走了一圈。
从出发开始算,两个人合起来走了一周半。
因此,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,那么从A到D的距离,应该是从A到C距离的3倍,即A到D是80×3=240(米);240-60=180(米);180×2=360(米)。
答:这个圆的周长是360米。
例3.甲、乙两人在周长600米的水池边上玩,两人从一点出发(甲速度比乙快),同向而行30分钟后又走到一起,背向而行4分钟相遇。
五年级奥数——环形路上的的行程问题
年 级五年级 授课日期 授课主题 第7讲——环形路上的行程问题教学内容i.检测定位在环形道路上的行程问题本质上就是追及问题或相遇问题.当两人(或物)同向运动时就是追及问题,追及距离是两人初始距离及环形道路之长的倍数之和;当两人(或物)反向运动时就是相遇问题,相遇问题是两人从出发到相遇所行路程和.【例1】如图7-1,两名运动员在沿湖的环形跑道上练习长跑.甲每分钟跑250米,乙每分钟跑200米.两人同时同地同向出发,45分钟后甲追上了乙.如果两人同时同地反向跑,经过多少分钟后两人相遇?分析与解 根据图7-1①用追及问题公式求出环形跑道的长,因从同一点出发,距离差=跑道长..225045200-250(米))(=⨯ 同理在环形跑道上,若反向而行,从同一点出发两人相遇所经过的路程和=跑道长.(图7-1②).52002502250(分钟))(=+÷即经过5分钟两人相遇.随堂练习1甲乙两运动员在周长为400米的环形跑道上同向竞走,已知乙的平均速度是每分钟80米,甲的平均速度是乙的1.25倍,甲在乙前面100米处.问几分钟后,甲第1次追上乙?【例2】如图7-2是一个圆形中央花园,A 、B 是直径的两个端点.小军在A 点,小勇在B 点,同时出发相向而行.他俩第一次在C 点相遇,C 点离A 点有50米;第2次在D 点相遇,D 点离B 点有30米.问这个花园一周长多少米?分析与解 第1次相遇,两人合起来走了半周长,从C 点开始第2次在D 点相遇两人走了一周长,两次共走了一周长半.小军从A →C →D 走了50米的3倍,即走了.150350(米)=⨯去掉BD 之间30米的距离,就是半个圆周的长,所以一周的长度为.240230-150米)(=⨯ 随堂练习2如图7-3,A 、B 是圆直径的两个端点,亮亮在A 点,明明在B 点,相向而行.他们在C 点第一次相遇,C 点离A 点有100米;在D 点第2次相遇,D 点离B 点有80米.求圆的周长.【例3】如图7-4,一个边长为100米的正方形跑道.甲从A 点出发,乙从C 点出发都逆时针同时起跑,甲的速度每秒7米,乙的速度每秒5米.他们拐弯处都要停留5秒,当甲第一次追上乙时,乙跑了多少米?分析与解 如图7-4,由题意知甲(在后)、乙(在前)相距200米(即追及距离200米)且甲第一次追及乙要多拐两个弯,即要多休息.1025秒=⨯设甲纯跑步时间为y 秒,则乙纯跑步时间为秒10+y .则有,200)10(57+⨯-y y解得 ).(125秒=y甲应跑路程为.8757125米=⨯当甲跑了800米又到达A 点时,用时为秒,28.149757800≈⨯+÷他将在A 点逗留5秒,到秒28.154528.149=+又离开A 点.而乙跑完600(=800-200)米到达A 点时,用时.145555600秒=⨯+÷而在第秒1505145=+时离开A 点.因此,从起跑到149.28秒至150秒的间隔内甲、乙都在A 点,即甲第1次追上乙,此时乙跑了600米.随堂练习3如图7-5,有一条长方形跑道,甲从A 点出发,乙从C 点出发,同时按逆时针方向奔跑.甲速每秒6025米,乙速每秒5米.跑道长100米,宽为60米.当甲、乙每次跑到拐点A 、B 、C 、D 时都要停留5秒.问当甲第1次追上乙时,甲、乙各跑了多少米?【例4】图7-6所示是一个玩具火车轨道,A 点有个变轨开关,可以连结B 或者C 。
环形道路上的行程问题
环形道路上的行程问题环形道路上的行程问题(必胜课五年级)一、填空。
1、甲、乙二人按顺时针方向沿圆形跑道练习跑步,已知甲跑一圈用12分钟,乙跑一圈用15分钟,如果他们分别从圆形跑道直径两端同时出发,那么出发分钟甲追上乙。
2.城市中有一条环路。
一辆逆时针行驶的公共汽车每10分钟从车站开出一次。
王师傅驾驶的卡车在同一条路上以公交车的速度顺时针行驶。
半小时后,王师傅可以在公交车上碰面。
3、有一条长400米的环形跑道,甲、乙二人同时同地出发,反向而行,1分钟后第一次相遇,基二人同时同地出发,同向而行,则10分钟后第一次相遇。
若甲比乙快,那么甲、乙二人的速度分别为米/分和米/分。
4、一环形跑道周长为240米,甲与乙同向,丙与他们背向,三人都从同一地点出发,每秒钟甲跑8米,乙跑5米,丙跑7米,出发后三人第一次相遇时,丙跑了圈。
5.如图所示,a和B是圆直径的两端。
A在A点,B在B点。
同时,他们朝相反的方向出发。
他们第一次在C点相遇,第二次在D点相遇。
已知C点距离a点80米;D在距离B 60米处(如图所示),该圆形跑道的周长为米。
6、在一圆形跑道上,甲从a点、乙从b点同时出发反向而行。
6分钟后两人相遇。
再过4分钟甲到达b点,又过8分钟两人再次相遇,则甲跑一圈用时分钟;乙跑一圈用时分钟。
五年级必胜7、甲、乙两人沿400米环形跑道练习跑步。
两人同时从跑道上同一点a向相反方向跑去。
相遇后甲比原来速度每秒增加2米;乙比原来速度每秒减少2米,结果都用24秒同时回到原地,则甲原来的速度为每秒米。
8.右边的图片是一条边长100米的方形花园小径。
A和B同时从A点开始。
A每分钟逆时针走75米,B每分钟顺时针走45米。
他们第一次在CD一侧见面(不是在c点和D 点),是他们离开后的第一次见面。
9、两辆电动车在周长为360米的圆形道上不断行驶,甲车每分钟行驶20米。
甲、乙两车分别从相距90米的a、b两点背向而行。
相遇后乙车立即返回,甲车不改变方向。
环形线路行程问题
伍献金
学生姓名
填写时间
学科
数学
年级
六年级
教材版本
人教版
课题名称
环形线路行程问题
课时计划
第()课时共(4)课时
上课时间
教学目标
知识与方法
1.两人在环形线路同地同时背向相遇问题:
速度和×相遇时间=环形路路程
2.两人在环形线路同Байду номын сангаас同时同向相遇问题即追及问题:
环形线路÷速度差=追及时间
教学重点
教学难点
教学过程
Welcome To
Download !!!
欢迎您的下载,资料仅供参考!
解法2:(5+5×3)×2=40(千米)
练一练1有一个圆形水池,周长500米.甲乙二人同时、同地出发围绕水池相背而行,5分钟相遇;如果甲每分钟走45米,那么乙每分钟走多少米?
※例2甲、乙两人沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米.如果两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?
【思路点拨】先求出林玲在环形跑道上跑一圈的时间,(可变为两个两圈路程除以速度和)就可以求出前一半时间所跑的路程,即求出后一半路程所用的时间.
解:450×2÷(4+5)=100
因为前一半时间跑5×(100÷2)=250(米),
所以前一半路程都是用每秒5米的速度跑的,用了(450÷2)÷5=45(秒),后一半路跑了
解:甲跑1圈需:3÷2=1.5(分)=1分30秒
练一练4陈欢练习4分钟跑(即跑4分钟).由于体力下降,后面每分钟跑的长度都比前一分钟跑的长度减少相同的米数.已知陈欢前两分钟跑了500米,后两分钟跑了420米,那么第一分钟跑了多少米?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环形道路上的行程问题
环形道路上的行程问题(必胜课五年级)
一、填空题。
1、甲、乙二人按顺时针方向沿圆形跑道练习跑步,已知甲跑一圈用12分钟,乙跑一
圈用15分钟,如果他们分别从圆形跑道直径两端同时出发,那么出发分钟甲追上乙。
2、某市有一条环城公路,按逆时针方向行驶的公共汽车每隔10分钟从车站发出一辆,王师傅驾驶的货车用公共汽车的速度按顺时针方向行驶在同一公路上,在半小时中,王师
傅最多能遇到辆公共汽车。
3、有一条长400米的环形跑道,甲、乙二人同时同地出发,反向而行,1分钟后第一次相遇,基二人同时同地出发,同向而行,则10分钟后第一次相遇。
若甲比乙快,那么甲、乙二人的速度分别为米/分和米/分。
4、一环形跑道周长为240米,甲
与乙同向,丙与他们背向,三人都从同一地点出发,每秒钟甲跑8米,乙跑5米,丙跑7米,出发后三人第一次相遇时,丙跑了圈。
5、如图,A、B是圆的直径两端,甲在A点,乙在B点,同时出发反向而行,两人在
C点第一次相遇,在D点第二次相遇。
已知C在离A80米处;D在离B60米处(如图所示),那么这个圆形跑道周长为米。
6、在一圆形跑道上,甲从A点、乙从B点同时出发反向而行。
6分钟后两人相遇。
再过4分钟甲到达B点,又过8分钟两人再次相遇,则甲跑一圈用时分钟;乙跑一圈
用时分钟。
五年级必胜课
7、甲、乙两人沿400米环形跑道练习跑步。
两人同时从跑道上同一点A向相反方向
跑去。
相遇后甲比原来速度每秒增加2米;乙比原来速度每秒减少2米,结果都用24秒
同时回到原地,则甲原来的速度为每秒米。
8、右图是一条边长为100米的正方形花园小道,甲、乙两人同时从A点出发,甲逆
时针每分钟行75米,乙顺时针每分钟行45米。
两人第一次在CD边上相遇(不在C、D两点)是出发后的第次相遇。
9、两辆电动车在周长为360米的圆形道上不断行驶,甲车每分钟行驶20米。
甲、乙
两车分别从相距90米的A、B两点背向而行。
相遇后乙车立即返回,甲车不改变方向。
当
乙车回到B时,甲车经过B点恰好又回到A。
此时甲车立即返回(乙车过B点后继续行驶),甲车再过分钟与乙车再度相遇。
二、解答题。
10、环行跑道的周长是500米。
甲、乙两人按顺时针方向沿环形跑道同时、同地起跑,甲每分钟跑60米,乙每分钟跑50米。
甲、乙两人每跑200米都要停下来休息1分钟。
那
么甲首次追上乙需要多少分钟?
11、如图,有一条呈五边形的小道。
甲、乙两人沿这条小道在上面行走,已知甲行走
3分钟的路程,乙要用7分钟。
如果甲、乙同时从A点出发,都按顺时针方向行走。
那么,甲第三次追上乙时,在哪条边上?
五年级必胜课
感谢您的阅读,祝您生活愉快。