蛋白质的代谢过程
人体三大营养物质(糖类、蛋白质、脂肪)的代谢过程与相互关系
人体三大营养物质(糖类、蛋白质、脂肪)的代谢过程与相互关系展开全文糖又称碳水化合物,包括蔗糖(红糖、白糖、砂糖)、葡萄糖、果糖、半乳糖、乳糖、麦芽糖、淀粉、糊精和糖原等。
在这些糖中,除了葡萄糖、果糖和半乳糖能被人体直接吸收外,其余的糖都要在体内转化为葡萄糖后,才能被吸收利用。
糖的主要功能是提供热能。
每克葡萄糖在人体内氧化产生4千卡能量,人体所需要的70%左右的能量由糖提供。
人体中的糖大部分由食物中的淀粉经消化道的水解作用,以葡萄糖的形式吸收后进入人体,在细胞内经细胞呼吸产生大量能量,为各种生命活动所用;脂肪是人体主要的储能物质,主要是由甘油和脂肪酸组成;人体的膳食脂肪来源主要是动物性脂肪和植物性脂肪。
动物性脂肪富含饱和脂肪酸(40%~60%),但不饱和脂肪酸含量约为30%~50%。
植物性脂肪富含不饱和脂肪酸(80%~90%),饱和脂肪酸的含量仅为10%~20%。
人体内脂肪代谢的过程可概括如下图:蛋白质是人体内含量最多、种类最多的有机物,是生命活动的承担者,是食物中的动植物蛋白被水解成氨基酸后,经消化道的吸收进入细胞,再合成各类蛋白质。
在人体细胞内,糖类、脂类和蛋白质具有不同的代谢途径,同一种物质也往往有几条代谢途径,例如,糖、脂质和氨基酸在细胞内部都有各自不同的代谢特点,合成代谢及分解代谢往往在一个细胞内同时进行。
各条代谢途径之间,可以通过一些枢纽性中间代谢物发生联系,或相互协调,或相互制约,从而确保生命活动正常进行。
通常上来讲,营养物质的转化代谢可以分为蛋白质与脂肪之间的转化代谢关系、糖类与脂肪之间的转化代谢关系、糖类与蛋白质之间的转化代谢关系。
下面就对这三大营养物质转化代谢关系做一个具体的分析。
(一)蛋白质与脂肪之间的转化代谢关系正常情况下,人体的蛋白质不会转化为脂肪,但在机体能量供应不足或病理情况下,蛋白质中的氨基酸在分解代谢过程中,有些中间产物在相关酶的作用下,再转化成合成脂肪的原料,继而合成脂肪。
生化蛋白质代谢
第五章蛋白质代谢第一节概述一、主要途径1.蛋白质代谢以氨基酸为核心,细胞内外液中所有游离氨基酸称为游离氨基酸库,其含量不足氨基酸总量的1%,却可反映机体氮代谢的概况。
食物中的蛋白都要降解为氨基酸才能被机体利用,体内蛋白也要先分解为氨基酸才能继续氧化分解或转化。
2.游离氨基酸可合成自身蛋白,可氧化分解放出能量,可转化为糖类或脂类,也可合成其他生物活性物质。
合成蛋白是主要用途,约占75%,而蛋白质提供的能量约占人体所需总能量的10-15%。
蛋白质的代谢平衡称氮平衡,一般每天排出5克氮,相当于30克蛋白质。
3.氨基酸通过特殊代谢可合成体内重要的含氮化合物,如神经递质、嘌呤、嘧啶、磷脂、卟啉、辅酶等。
磷脂的合成需S-腺苷甲硫氨酸,氨基酸脱羧产生的胺类常有特殊作用,如5-羟色胺是神经递质,缺少则易发生抑郁、自杀;组胺与过敏反应有密切联系。
二、消化外源蛋白有抗原性,需降解为氨基酸才能被吸收利用。
只有婴儿可直接吸收乳汁中的抗体。
可分为以下两步:1.胃中的消化:胃分泌的盐酸可使蛋白变性,容易消化,还可激活胃蛋白酶,保持其最适pH,并能杀菌。
胃蛋白酶可自催化激活,分解蛋白产生蛋白胨。
胃的消化作用很重要,但不是必须的,胃全切除的人仍可消化蛋白。
2.肠是消化的主要场所。
肠分泌的碳酸氢根可中和胃酸,为胰蛋白酶、糜蛋白酶、弹性蛋白酶、羧肽酶、氨肽酶等提供合适环境。
肠激酶激活胰蛋白酶,再激活其他酶,所以胰蛋白酶起核心作用,胰液中有抑制其活性的小肽,防止在细胞中或导管中过早激活。
外源蛋白在肠道分解为氨基酸和小肽,经特异的氨基酸、小肽转运系统进入肠上皮细胞,小肽再被氨肽酶、羧肽酶和二肽酶彻底水解,进入血液。
所以饭后门静脉中只有氨基酸。
三、内源蛋白的降解1.内源蛋白降解速度不同,一般代谢中关键酶半衰期短,如多胺合成的限速酶-鸟氨酸脱羧酶半衰期只有11分钟,而血浆蛋白约为10天,胶原为1000天。
体重70千克的成人每天约有400克蛋白更新,进入游离氨基酸库。
蛋白质分解代谢过程
消化系统疾病
消化酶缺乏
蛋白质的消化需要特定的酶来分解,如果缺乏这些酶,蛋白质无 法被有效消化,可能导致消化不良、腹胀、腹泻等症状。
肠道炎症
肠道炎症可能影响蛋白质的消化和吸收,导致营养不足和生长迟缓。
肠易激综合征
肠易激综合征是一种功能性肠道疾病,可能导致腹痛、腹泻和便秘 等症状,影响蛋白质的消化和吸收。
氨基酸代谢异常
苯丙酮尿症
苯丙酮尿症是一种常见的氨基酸代谢异常, 由于缺乏苯丙氨酸羟化酶,导致苯丙氨酸无 法正常代谢,可能出现智力发育迟缓、癫痫 等症状。
枫糖尿症
枫糖尿症是由于支链氨基酸代谢异常引起的 ,可能出现神经系统损害、生长迟缓等症状
。
肥胖与糖尿病
要点一
肥胖
过多的蛋白质摄入可能导致肥胖,肥胖又与多种健康问题 相关,如心血管疾病、糖尿病等。
要点二
糖尿病
蛋白质摄入过多可能增加肾脏负担,长期高蛋白饮食可能 增加患糖尿病的风险。糖尿病患者的蛋白质代谢也可能出 现异常,影响身体健康。
感谢您的观看
THANKS
03
主动运输需要消耗能量,能量来源于细胞内的ATP水解。ATP水解后释放的能量 用于驱动载体蛋白的构象变化,从而完成氨基酸的转运。
氨基酸的分类与转运
氨基酸的分类
中性氨基酸
酸性氨基酸
碱性氨基酸
氨基酸根据其侧链基团的性质 可以分为中性、酸性、碱性氨 基酸等不同类型。不同类型氨 基酸在细胞内的转运方式和作 用也有所不同。
蛋白质分解代谢过程
目录
CONTENTS
• 蛋白质的消化 • 氨基酸的吸收 • 蛋白质分解后的代谢途径 • 蛋白质分解代谢过程中的调节 • 蛋白质分解代谢过程中的疾病与健康问
第10章:蛋白质的代谢
第三节 蛋白质的合成机制
以大肠杆菌为例 1. 氨基酸的活化与搬运 2. 活化氨基酸在核蛋白体上的缩合
① 起始
a. 核蛋白体大小亚基分离;
b. mRNA在小亚基定位结合; c. 起始氨基酰-tRNA的结合; d. 核蛋白体大亚基结合。
第三节 蛋白质的合成机制 a.核蛋白体大小亚基分离
白质的场所。
第二节 蛋白质的合成系统
二、蛋白质合成体系
1、mRNA和遗传密码 2、tRNA和氨基酸的活化 3、rRNA和核糖体 4、 辅助因子 5、供能物质和无机离子
第二节 蛋白质的合成系统
1、mRNA和遗传密码
帽子结构功能
①使mRNA免遭核酸酶的破坏 ②使mRNA能与核糖体小亚基结合并开始合 成蛋白质 ③被蛋白质合成的起始因子所识别,从而 促进蛋白质的合成。
第十章 蛋白质的代谢
第一节 蛋白质的消化和降解 一、蛋白质的消化与吸收
蛋白质在动物消化道中的水解过程称为蛋白质 的消化。消化产物是氨基酸或短的肽链。
消化部位:自胃中开始,主要在小肠。 食物蛋白质在酶作用下水解为氨基酸和小肽。
第一节 蛋白质的消化和降解
胃蛋白酶以酶原的形式由胃粘膜主细胞 分泌,其被盐酸激活。胃泌素促使胃中 柱细胞分泌盐酸。
5´
AUG
3´
IF-3
IF-2促进
IF-1
fMet-tRNAifMet
与小亚基结合
第三节 蛋白质的合成机制 d.核蛋白体大亚基的结合
IF2自复合物解离的同时发生 GTP水解(消耗一个高能磷酸
键),大亚基随之与小亚基结
合,并释放各种起始因子,形
成70S起始复合物,为延伸作好
蛋白质分解代谢的最终产物
蛋白质分解代谢的最终产物蛋白质是生物体内重要的营养成分之一,它在机体中的分解代谢是一个复杂而精确的过程。
经过一系列酶的作用,蛋白质分解成为最终产物,这些产物在人体中发挥着重要的功能。
本文将介绍蛋白质分解代谢的最终产物及其作用。
蛋白质分解代谢的最终产物主要分为两类:氨基酸和尿素。
氨基酸是蛋白质分解的基本单位,它们通过肠道吸收进入血液,然后被运输到细胞中用于合成新的蛋白质。
氨基酸还可以作为能量的来源,被氧化分解产生ATP(三磷酸腺苷),提供细胞所需的能量。
此外,氨基酸还参与合成多种生物活性物质,如激素、酶和抗体等。
尿素是蛋白质分解代谢的另一个重要产物。
在氨基酸代谢过程中,氨基酸发生脱氨作用产生氨基基团(NH2-),这些氨基基团会与二氧化碳结合形成尿素。
尿素是一种无毒的代谢产物,它通过肾脏被排泄出体外。
尿素的主要作用是维持氮平衡,保持体内氨基酸代谢的正常进行。
除了氨基酸和尿素,蛋白质分解代谢还会产生一些其他的代谢产物,如酮体和亮氨酸等。
酮体是一种由脂肪代谢产生的物质,它在某些情况下可以作为能量的来源,尤其是在长时间禁食或低碳水化合物饮食的情况下。
亮氨酸是一种必需氨基酸,它是蛋白质分解代谢中产生的重要产物之一,参与合成多种生物活性物质,如肌红蛋白和色素等。
蛋白质分解代谢的最终产物对人体具有重要的作用。
首先,氨基酸是构成人体蛋白质的基本单位,它们通过合成新的蛋白质维持身体正常的生长和修复。
其次,氨基酸还参与合成多种生物活性物质,如激素、酶和抗体等,维持机体的正常功能。
尿素的主要作用是维持氮平衡,保持体内氨基酸代谢的正常进行。
酮体在长时间禁食或低碳水化合物饮食的情况下可以作为能量的来源,维持身体的正常代谢。
亮氨酸参与合成多种生物活性物质,如肌红蛋白和色素等,对维持机体的正常功能具有重要作用。
蛋白质分解代谢的最终产物主要包括氨基酸和尿素,它们在人体中发挥着重要的功能。
氨基酸参与合成新的蛋白质以及多种生物活性物质,提供细胞所需的能量;尿素维持氮平衡,保持体内氨基酸代谢的正常进行。
生物化学蛋白质的代谢分解
解约20克蛋白质,由于食物蛋白质与人体蛋白质组成有质的 差异,不可能全部被利用,因此,成人每天至少需要补充30~50 克食物蛋白质才能维持氮的总平衡,这是蛋白质的最低生理需 要量,要长期维持氮的总平衡,我国营养学会推荐正常成人每 日蛋白质需要量为80克,
转氨基的作用机制
转氨酶的辅酶都是维生素B6的磷酸酯,即磷酸吡哆醛, 磷酸吡哆醛和磷酸吡哆胺的相互转变,起着传递氨基的作用,
生理意义:转氨基作用不仅是体内多数氨基酸脱氨基 的重要方式,也是体内合成非必需氨基酸和氨基酸互变 的重要途径之一,另外,转氨基作用还是联合脱氨基的 重要组成环节,
正常情况下,转氨酶主要存在于组织细胞内,血清中转氨酶 的活性很低,肝组织中GPT的活性最高,心肌组织中GOT 的活性最高,
生理意义: 1、使肌肉中有毒的氨以无毒的丙氨酸形式输 出,
2、为肝脏提供合成尿素的氮源和糖异生的原 料,而肝糖异生产生的葡萄糖既为肌肉组织提 供能量又为肌肉排氨再循环提供了丙酮酸,
谷氨酰胺的运氨作用
部位:脑、肌肉组织细胞的线粒体内 作用:将氨运至肝、肾 酶:谷氨酰胺合成酶、谷氨酰胺酶 反应:不可逆,耗能
二、氨的代谢:
体内代谢产生的氨以及肠道吸收的氨进入血液形成 血氨,氨具有毒性,中枢神经系统对氨的毒性极为敏感,
生理情况下,氨的来源和去路始终保持动态平衡,体内 的 血氨浓度很低,一般不超过47~60μmol/L 1mg/L ,
对于严重肝病患者,其尿素合成能力降低,致使血氨增 高,过量的氨进入脑组织造成脑功能紊乱,常与肝性脑 病的发病有关,
四、氨基酸的脱羧基作用
有些氨基酸在脱羧酶的作用下可进行脱羧基作用,生成相应的胺 类,
三大营养物质的代谢
课堂小结: 构建知识网络
密切联系生活实际
养成良好的饮食习惯
课堂达标检测题:
1、人吃了鸡蛋后,最终的代谢终产物是—B—
A、CO2+H2O+无机盐
B、CO2+H2O+尿素
C、CO2+H2O+无机盐+尿素 D、H2O、无机盐+尿素
2、糖、脂肪和蛋白质在人体代谢过程中,都可
能出现的是
(4)、从图中可知,体内氨基酸的来源有 和 自身组织蛋白分解
(5)、B和C代表的物质是 糖类 和
食物中吸收 脂肪 。
、氨基转换形成 的的氨基酸
转氨基机理:
谷氨酸 COOH
(CH2) +
NH2 CH COOH
丙酮酸
CH3 酶
C=O COOH
酮戊二酸 COOH
(CH2) +
O= C-COOH
丙氨酸
CH3 NH2-CH
思考:低血糖晚期为什么会出现惊厥、昏迷等症状?
练2、下面是人体糖类代谢的图解,请据图回答:
(2002年浙江会考52题)
A
淀① 粉
葡 萄 糖
②③
吸收 血 糖
④
⑤
丙 酮
酸
⑧ 脂肪
⑥ CO2+H2O+能量 ⑦ C3H6O3+能量
肌糖元
(1)①过程所需的酶有淀粉酶和 麦芽糖酶
(2)消化道中的葡萄糖是以 主动运输 方式进入血液的。 (3)图中A为 肝糖元
血液中氨基酸
吸收
氨基酸
运输
组织细胞 脱氨基 (氨基酸)
含氮部分:氨基
转变 肝脏
尿素
肾脏
蛋白质酶解途径及其代谢作用
蛋白质酶解途径及其代谢作用蛋白质是构成细胞组织和器官的基本物质之一,也是形成酶、激素、抗体等重要生物分子的原料。
但是蛋白质分子往往过于庞大,在机体内无法直接利用。
因此,细胞需要将蛋白质酶解成小分子肽甚至氨基酸,以便能够通过细胞膜进入细胞内并参与代谢过程。
本文将探讨蛋白质酶解途径及其代谢作用。
一、蛋白质的分类通常情况下,蛋白质可以分为两类:结构蛋白和功能蛋白。
结构蛋白是细胞质和细胞膜的主要构成元素,如细胞骨架蛋白、肌红蛋白等。
这些蛋白质通常结构复杂,由多个多肽链交织成一个三维结构。
而功能蛋白是人体内的主要酶、激素和抗体等,对于维持生命的正常运转起到极其重要的作用。
这些蛋白质通常特异性强,分子结构相对简单。
二、蛋白质酶解途径蛋白质酶解是将蛋白质分子分解成氨基酸和小肽链,并保留蛋白质分子的结构特性的过程。
实现这个过程的途径和酶种类多种多样,下面将逐个介绍。
1. 胃蛋白酶胃蛋白酶是胃液中含量最高的酶。
它主要是由胃腺分泌的,用于消化蛋白质。
胃蛋白酶的酸性环境适应性非常强,它能够在pH值为2.0左右的胃酸环境中工作。
2. 胰蛋白酶胰蛋白酶在胰腺中合成,并通过胰管进入十二指肠和小肠,是人体内最重要的蛋白质酶。
由于胃液的pH值过低,使得胰蛋白酶失去大部分活性。
因此,胰蛋白酶主要在小肠中发挥作用。
它可以将蛋白质分子酶解成肽、二肽、三肽和四肽等中短肽链,并将肽链酶解成单个氨基酸。
3. 转胺酶和脱氨酶除了蛋白酶外,还有一些代谢途径也可以将蛋白质酶解成可利用的氨基酸。
转胺酶和脱氨酶就是其中两种,它们主要存在于肝脏细胞中。
转胺酶把一个氨基团转移至葡萄糖等物质上,形成氨基酸;而脱氨酶则将氨基团直接减去,生成氨、二氧化碳等代谢产物。
三、蛋白质酶解的代谢作用由于蛋白质是构成生命体的重要组分,因此,蛋白质酶解的代谢作用也非常重要。
1. 促进健康蛋白质酶解不仅能够提供氨基酸等营养物质,还有利于身体对膳食蛋白的消化和吸收。
此外,还有一些研究表明,蛋白质酶解还能够调节体内的免疫系统、促进肠道健康等。
(参考课件)蛋白质与脂质代谢
糖类、脂肪、蛋白质 糖类、脂类和蛋白质之间还相互制约着。
10
糖类
脂肪
氨基酸
蛋白质
返回
11
巩固练习
1、下图是人体内糖代谢的图解,字母代表器官、细胞、
物质和 能量,数码代表某些生理过程。请分析回答:
肝脏
34 淀粉 1 G 2 血糖
消化吸收 分解
氨基酸
氨基转换
生成非必需氨基酸
8
2、与人体健康的关系
氨基酸 健康
种类齐全
蛋白质
缺乏必需 氨基酸
营养 不良
返回
9
思考
1、家畜饲喂富含糖类的饲料可以育肥,说明了什么? 糖类、脂类和蛋白质是可以相互转化的。
2、只有在糖类供应充足的情况下,糖类才可能转化 成脂类,说明了什么?
糖类、脂类和蛋白质之间的转化是有条件的。
(4)人摄取糖过多会发胖,说明糖可通过[6]转变为B
脂肪
12
返回
2、下图为蛋白质代谢图解,请据呼回答:
新的氨基酸 含氮部分 4 A
食物中的 蛋白质
1
氨基酸
3
2
不含氮部分 5
各种组织蛋白质、
酶和激素
6 CO2+H2O+E B或C
体外
(1)、1和3的生化过程分别为 氨基转换 和 脱氨基 。 (2)、2和6所代表的生理过程分别在 核糖体 和 线粒体 细胞器进行。 (3)、过程4进行的器官是 肝脏 ,A是 尿素 ,其中大部分通过 泌尿 系统以 尿液 形式排出体外,部分通过皮肤汗腺 形成 汗液 而排出体外。
食物中脂肪 消化吸收
蛋白质分解代谢的最终产物
蛋白质分解代谢的最终产物
蛋白质分解代谢的最终产物是氨基酸。
蛋白质是人体内重要的营养物质,它们是构成肌肉、骨骼、皮肤、毛发等组织的基本成分。
蛋白质的分解代谢是人体内的一项重要过程,它能够提供能量和维持身体正常的代谢功能。
蛋白质的分解代谢主要发生在肝脏和肌肉组织中。
在这个过程中,蛋白质被分解成氨基酸,然后通过血液循环运输到各个组织中。
氨基酸是构成蛋白质的基本单元,它们可以被身体利用来合成新的蛋白质,或者被分解成能量。
氨基酸在人体内的作用非常重要。
它们不仅是构成蛋白质的基本成分,还能够参与到许多生化反应中。
例如,一些氨基酸可以被转化成神经递质,参与到神经传递过程中。
另外,一些氨基酸还可以被转化成其他重要的物质,例如肝脏中的尿素,它是人体内排泄氮的主要代谢产物。
氨基酸的摄入对于人体健康非常重要。
人体无法自行合成所有的氨基酸,因此需要从食物中摄取。
一些富含蛋白质的食物,例如肉类、鱼类、奶制品等,都含有丰富的氨基酸。
此外,一些植物性食物,例如豆类、坚果等,也含有一定量的氨基酸。
蛋白质分解代谢的最终产物是氨基酸,它们是构成蛋白质的基本单元,也是许多生化反应的重要参与者。
人体需要从食物中摄取氨基
酸,以维持身体正常的代谢功能。
体内蛋白质分解代谢的最终产物
体内蛋白质分解代谢的最终产物一、概述蛋白质是构成生物体的重要组成部分,它们参与到体内的许多重要生理活动中。
蛋白质分解代谢是蛋白质在体内被分解并代谢的过程,其最终产物对人体健康至关重要。
本文将介绍体内蛋白质分解代谢的最终产物及其对人体健康的影响。
二、蛋白质分解代谢的过程1. 蛋白质分解蛋白质在体内首先被水解酶分解成氨基酸,这是蛋白质分解代谢的第一步。
氨基酸是蛋白质的基本组成单元,其在体内具有多种重要生理功能。
2. 氨基酸代谢氨基酸在体内经过一系列酶促反应,被转化为其他物质,包括能量物质和合成物质。
其中重要的产物包括尿素、谷氨酸、丙酮酸等。
三、体内蛋白质分解代谢的最终产物1. 尿素尿素是氨基酸代谢的最终产物之一,它由肝脏合成,并通过肾脏排出体外。
尿素的主要作用是将体内产生的过量氨基酸转化为较为稳定的尿素,从而维持体内氮平衡。
2. 谷氨酸谷氨酸是氨基酸代谢的重要产物,它参与到体内许多代谢途径中,包括糖异生、丙酮酸循环等。
谷氨酸还是脑内的重要神经递质,对维持神经系统的正常功能至关重要。
3. 丙酮酸丙酮酸是氨基酸代谢的重要产物之一,它可用于肌肉运动时的能量供应,也可以通过丙酮酸循环转化为葡萄糖,参与到血糖的调节过程中。
四、体内蛋白质分解代谢产物对人体健康的影响1. 尿素及氮平衡尿素的产生和排泄对维持体内氮平衡起着重要作用,它能够帮助人体排出多余的氮负荷,维持血液中氨基酸的平衡。
如果氮平衡失调,可能导致氮中毒等健康问题。
2. 谷氨酸及神经系统功能谷氨酸是体内重要的神经递质之一,它参与到神经系统的正常功能中。
如果谷氨酸代谢失调,可能导致神经系统功能异常,出现头晕、记忆力下降等症状。
3. 丙酮酸及能量供应丙酮酸作为能量供应物质,如果其产生不足或过多,可能导致人体能量供应不足或代谢异常,从而影响体内代谢平衡。
五、结语体内蛋白质分解代谢的最终产物对人体健康有着重要影响,其平衡与否关系着人体的正常生理功能。
通过了解体内蛋白质分解代谢的最终产物及其影响,可以更好地维护人体健康。
蛋白质的分解代谢
蛋白质在体内先水解成氨基酸再进一步代谢,氨基酸代谢是蛋白质代谢的中心内容。
六、氨基酸的一般代谢:(1)氨基酸代谢库:分布于全身的游离氨基酸。
氨基酸的三个来源:食物蛋白的消化吸收、组织蛋白的降解、利用α酮酸和NH3合成非必需氨基酸。
四条去路:合成组织蛋白、脱氨基生成α酮酸和NH3、脱羧基生成胺类和CO2、通过特殊代谢途径生成一些重要的生物活性物质(肾上腺素、甲状腺激素等)。
(2)氨基酸脱氨基:生成α酮酸和NH3,方式:转氨基反应、氧化脱氨基作用、联合脱氨基作用(最主要)及其他脱氨基作用。
1、转氨基:由转氨酶(VitB6的活性形式磷酸吡哆醛、胺作辅酶)催化,反应可逆,只发生氨基转移不产生游离的NH3.除赖氨酸、脯氨酸、羟脯氨酸外,大多数氨基酸都可进行此反应,将氨基转移给α酮戊二酸,生成谷氨酸和相应的α酮酸;不同的氨基酸由不同的转氨酶催化,重要的转氨酶有丙氨酸转氨酶(ALT)和天冬氨酸转氨酶(AST)。
正常情况下,转氨酶主要存在于组织细胞内(以肝和心中活性最高),而在血清中活性很低,急性肝炎患者血清ALT活性显著升高;心梗者血清AST活性显著升高。
2、氧化脱氨基:在L谷氨酸脱氢酶和氨基酸氧化酶,氨基酸氧化脱氢、水解脱氨基,生成NH3和α酮酸。
L谷氨酸脱氢酶的特点:体内分布广(肌组织除外)、活性高,能催化L谷氨酸氧化脱氨基,生成NH3和α酮戊二酸;以NAD+或NADP+(VitPP的活性形式)为辅酶的不需氧脱氢酶,所产生的NADH可通过氧化磷酸化推动合成ATP;所催化的反应可逆,其逆反应是细胞内合成谷氨酸的反应;是一种变构酶,活性受ADP、GTP等物质的变构调节。
3、联合脱氨基:在转氨酶和L谷氨酸脱氢酶的催化下,氨基酸可将氨基转给α酮戊二酸,生成谷氨酸,谷氨酸再氧化脱氨基。
反应可逆,其逆反应是体内合成非必需氨基酸的主要途径,主要在肝脏和肾脏中进行。
肌肉组织中,L谷氨酸脱氢酶活性低,可通过嘌呤核苷酸循环(可看作是另一种形式的联合脱氨基)将氨基酸脱氨基。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蛋白质的代谢过程
蛋白质代谢涉及到三个主要的过程:蛋白质合成、蛋白质降解、氨基酸转运。
1. 蛋白质合成(蛋白质合成作用)
蛋白质合成是指通过翻译机制,将mRNA上的信息转换为蛋白质的过程。
合成蛋白质时,先是需要氨基酸的输入,然后逐个将氨基酸通过肽键连接起来形成多肽链,最终形成具有特定功能的三维蛋白质。
2. 蛋白质降解
蛋白质的降解是指将蛋白质分解为氨基酸的过程。
这个过程涉及到多个酶类,比如蛋白酶、肽酶等。
蛋白质降解的目的是使有害的、老化的蛋白质分解并重新利用其组成的氨基酸。
3. 氨基酸转运
氨基酸转运指的是通过氨基酸转运体将氨基酸从细胞外部或内部转移到细胞内部(如细胞质和内质网),以满足蛋白质合成和其他代谢过程对氨基酸的需求。
这个过程是由多个运输蛋白协同完成的。