新人教版七年级数学上册专题训练:角的计算(含答案)

合集下载

新人教版七年级数学上册专题训练:角的计算(含答案)

新人教版七年级数学上册专题训练:角的计算(含答案)

专题训练角的计算类型1利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算.1.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD的度数.解:因为∠AOC=75°,∠BOC=30°,所以∠AO B=∠AOC-∠BOC=75°-30°=45°.又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°.2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD时,求∠CAE的度数;(2)如图2所示,在此种情形下,当∠ACE=3∠BCD时,求∠ACD的度数.解:(1)因为∠BAD+∠DAC=90°,∠DAC=4∠B AD,所以5∠BAD=90°,即∠BAD=18°.所以∠DAC=4×18°=72°.因为∠DAE=90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE=3∠BCD,所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°.解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图,点A,O,E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数.解:因为∠EOD=28°46′,OD 平分∠COE,所以∠COE=2∠EOD=2×28°46′=57°32′.又因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.4.已知∠AOB=40°,OD 是∠BOC 的平分线.(1)如图1,当∠AOB 与∠BOC 互补时,求∠COD 的度数;(2)如图2,当∠AOB 与∠BOC 互余时,求∠COD 的度数.解:(1)因为∠AOB 与∠BOC 互补,所以∠AOB+∠BOC =180°.又因为∠AOB=40°,所以∠BOC=180°-40°=140°.因为OD 是∠BOC 的平分线,所以∠COD=12∠BOC=70°. (2)因为∠AOB 与∠BOC 互余,所以∠AOB+∠BOC=90°.又因为∠AOB=40°,所以∠BOC=90°-40°=50°.因为OD 是∠BOC 的平分线,所以∠COD=12∠BOC=25°.类型3 利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决.5.一个角的余角比它的补角的23还少40°,求这个角的度数. 解:设这个角的度数为x °,根据题意,得90-x =23(180-x)-40. 解得x =30.所以这个角的度数是30°.6.如图,已知∠AOE 是平角,∠DOE =20°,OB 平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC 的度数.解:设∠COD=2x °,则∠BOC=3x °.因为OB 平分∠AOC,所以∠AOB=3x °.所以2x +3x +3x +20=180.解得x =20.所以∠BOC=3×20°=60°.7.如图,已知∠AOB=12∠BOC,∠COD =∠AOD=3∠AOB ,求∠AOB 和∠COD 的度数.解:设∠AOB=x °,则∠COD=∠AOD=3∠AOB=3x °.因为∠AOB=12∠BOC, 所以∠BOC=2x °.所以3x +3x +2x +x =360.解得x =40.所以∠AOB=40°,∠COD =120°.类型4 利用分类讨论思想求解在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性.8.已知∠AOB=75°,∠AOC =23∠AOB,OD 平分∠AOC,求∠BOD 的大小. 解:因为∠AOB=75°,∠AOC =23∠AOB, 所以∠AOC=23×75°=50°.所以∠AOD=∠COD=25°.如图1,∠BOD =75°+25°=100°;如图2,∠BOD =75°-25°=50°.9.已知:如图,OC 是∠AOB 的平分线.(1)当∠AOB=60°时,求∠AOC 的度数;(2)在(1)的条件下,∠EOC =90°,请在图中补全图形,并求∠AOE 的度数;(3)当∠AOB=α时,∠EOC =90°,直接写出∠AO E 的度数.(用含α的代数式表示)解:(1)因为OC 是∠AOB 的平分线,所以∠AOC=12∠AOB. 因为∠AOB=60°,所以∠AOC=30°.(2)如图1,∠AOE =∠EOC+∠AOC=90°+30°=120°;如图2,∠AOE =∠EOC-∠AOC=90°-30°=60°.(3)90°+α2 或90°-α2.专题训练 整式的加减运算计算:(1)(钦南期末)a 2b +3ab 2-a 2b ;解:原式=3ab 2.(2)2(a -1)-(2a -3)+3;解:原式=4.(3)2(2a 2+9b)+3(-5a 2-4b);解:原式=-11a 2+6b.(4)3(x 3+2x 2-1)-(3x 3+4x 2-2);解:原式=2x 2-1.(5)(钦南期末)(2x 2-12+3x)-4(x -x 2+12); 解:原式=2x 2-12+3x -4x +4x 2-2 =6x 2-x -52.(6)3(x2-x2y-2x2y2)-2(-x2+2x2y-3);解:原式=3x2-3x2y-6x2y2+2x2-4x2y+6=5x2-7x2y-6x2y2+6.(7)-(2x2+3xy-1)+(3x2-3xy+x-3);解:原式=-2x2-3xy+1+3x2-3xy+x-3=x2-6xy+x-2.(8)(4ab-b2)-2(a2+2ab-b2);解:原式=4ab-b2-2a2-4ab+2b2=-2a2+b2.(9)-3(2x2-xy)+4(x2+xy-6);解:原式=-6x2+3xy+4x2+4xy-24=-2x2+7xy-24.(10)(钦州期中)2a2-[-5ab+(ab-a2)]-2ab. 解:原式=2a2+5ab-ab+a2-2ab=3a2+2ab.。

人教版数学七年级上册4.3.1《角》同步练习(有答案)

人教版数学七年级上册4.3.1《角》同步练习(有答案)

人教版数学七年级上册 4.3.1《角》同步练习(有答案)《角》同步练习一、选择题1.下列关于角的说法正确的是( )A .两条射线组成的图形叫角B .角的大小与这个角的两边长短无关C .延长一个角的两边D .角的两边是射线,所以角不可以度量2.关于平角、周角的说法正确的是( )A .平角是一条直线B .周角是一条射线C .反向延长射线OA ,就成一个平角D .两个锐角的和不一定小于平角3.在钝角∠AOB 内部引出两条射线OC 、OD ,则图中共有角( )A .3个B .4个C .5个D .6个4.如图所示,下列表示β∠的方法中,正确的是( )A .C ∠B .D ∠C .ADB ∠D .BAC ∠5.下列各角中,是钝角的是( )A .41平角B .32平角C .31平角D .41周角 6.如图下列表示角的方法,错误的是( ).A .1∠与AOB ∠表示同一个角B .AOC ∠也可用O ∠来表示C .图中AOB ∠、AOC ∠、BOC ∠D .β∠表示的是BOC ∠5.用度、分、秒表示52.73°为____度____分____秒.6.15°48′36″=_____________°.7.在图中,用三个大写字母表示1 ∠为________;2 ∠为________;3 ∠为________;4 ∠为________.8.在AOB ∠内部过顶点O 引3条射线,则共有___________个角,如果引出99条射线,则共有_____________个角.9.计算90°-57°34′44″的结果为_______________.10.如图,AOB ∠是直角,2:1:,38=∠∠︒=∠COB COD AOC ,则____=∠DOB 度.11.在图中,A 、B 、C 三点分别代表邮局,医院、 学校中的某一处,邮局和医院分别在学校的北偏 西方向,邮局又在医院的北偏东方向,那么图中A 点应该是___________,B 点是_________,C 点是_________.三、解答题1.钟表2时15分时,你知道时针与分针的夹角是多少度吗?2.用剪刀沿直线剪掉长方形的一个角,数一数,还剩多少个角?3.如图,从一点O 出发引射线OA 、OB 、OC 、OD 、OE ,请你数一数图中有多少个角.4.计算:(1)77°52′+32°43′-21°17′;(2)37°15′×3;(3)175°52′÷3.(4)23°45′+24°16′(5)53°25′28″×5(6)15°20′÷65.如图,在AOB∠内部,从顶点O引出3条射线OC、OD、OE,则图形中共有几个角?如果从O点引出几条射线,有多少个角?你能找出规律吗?6.如图,已知OE是AOC∠的平分线.∠的角平分线,OD是BOC(1)若︒,AOC,求DOE∠20110BOC==∠︒∠的度数;(2)若︒∠的度数.AOB,求DOE∠90=7.如图,指出OA表示什么方向的一条射线?并画出表示下列方向的射线:(1)南偏东60°(2)北偏西40°(3)南北方向8.时钟的时针从2点半到2点54分共转了多大角度?9.已知线段a、b、∠α用尺规画一个△ABC,使αBCaAB,,.b=B=∠=∠10.小明在宾馆大厅内看到反映世界几个大城市当前时刻的时钟如下(如图),请你分别写出每个钟面上时针和分针的夹角.11.一天24小时,时钟的分针与时针共组成多少次平角?多少次周角?12.如图,若放置一枝铅笔,使笔尖朝AB方向并重合于AB,以A为旋转中心,按逆时针方向旋转∠A的大小,与AF重合;再以F为中心,按逆时针方向旋转F的大小,与EF重合……这样连续都按逆时针方向旋转过去,最后与AB重合,这时笔尖的方向仍是朝向AB,你知道铅笔一共转过了多少度吗?这个实验能说明六边形内角和的度数吗?13.你知道下图中有多少三角形吗?参考答案一、选择题1.B 2.C 3.D 4.C 5.B 6.B 7.C 8.B 9.C 10.D11.D二、填空题1.1°,60′,60″2.153.954.4,45,05.52,43,486.15.817.∠BDE ;∠DBE ;∠ABC ;∠ACB8.10 50509.32°25′16″10.26°11.邮局,医院,学校三、解答题1.22.5°2.3个或4个或5个3.10个4.(1)89°18′;(2)112°45′;(3)58°38′(4)48°1′ (5)267°7′20″ (6)2°33′20″5.共有10个角;从O 点出发引出几条射线,能组)1(-n 个基本角,则共有角的个数为:)1(21123)2()1(-=++++-+-n n n n 个角. 6.(1)先求︒=∠=∠︒=∠1021,55BOC COD COE 故︒=︒-︒=∠451055DOE (2)有BOC COD AOC COE ∠=∠∠=∠21,21 则︒=∠=∠-∠=∠4521)(21AOB BOC AOC DOE 7.北偏东60°(图略)8.12°9.略10.从左至右依次为:150°、120°、30°,120°、90°、60°11.22次,22次12.720°,六边形内角和为720°13.78个《角的度量》典型例题例1 如图,你知道以A为顶点的角有哪些吗?除了以A为顶点的角外,图中还有哪些角?你会将它们表示出来吗?例2(1)下图中能用一个大写字母表示的角是___________.(2)以A为顶点的角有_____________个,它们是________________.例3 (1)把25.72°分别用度、分、秒表示.(2)把45°12′30″化成度.例4 计算:(1)53°39′+36°40′;(2)92°3′-48°34′;(3)53°25′28″×5;(4)15°20′÷6.例5 当时钟表面3时25分时,你知道时针与分针所夹角的度数是多少?参考答案例1解:以A为顶点的角有∠∠∠、、、,其他的角有∠、、DACEAC∠DAEBACBAD∠BAEα∠β、2、1C、B.∠∠∠∠、∠、说明:(1)在数以A为顶点的角的个数时,先选定一边为始边(如AB),确定以始边为一边的角的个数,再依次把后面的边看作起始边,数出角的个数,相加即可得角的总数.本题中以AB为始边的角有3个(如图1),以AD为始边的角有两个(如图2),以AE为始边的角有1个(如图3),在数角时注意要向同一个方向数,以免重复,这与线段的数法类似;(2)目前我们所说的角一般都是指小于平角的角.所以以D为顶点的平角和以E为顶点的平角不包括在内.(3)角的表示方法共有四种,可根据需求灵活选定;①用三个大写字母表示角,此时表示角的顶点的字母应写在中间(如∠BAD);②用一个大写字母表示角,适用于以某一点为顶点的角只有一个(如∠B或∠C);③用希腊字母α、γβ、等表示角,此时要在所表示的角的顶点处加上连接两边的弧线,以明确所表示的是图中的哪个角(如∠α或∠β);④用数字表示角(如∠1或∠2).图1 图2 图3例2 分析:第(1)题中,能用一个大写字母表示的这个角必须是独立的一个角,所以只能是C∠、;第(2)题中,以A为顶点的角,必须含A,而且AB∠为公共端点,这样的角有6个,以AC为一边的角:CAB∠、,∠、CAE∠CAD以AE为边且不重复的角:EAB∠、,以AD为边且不重复的角:DABEAD∠∠.答案:(1)C∠、;B∠(2)6个DAB EAB EAD CAB CAD CAE ∠∠∠∠∠∠、、、、、.说明:要正确写出答案,首先要弄清角的定义是什么,其次是熟悉表示角的方法,特别对于(2),还要仔细、认真地找出所有的角.例3 分析:第(1)题中25.72°含有两部分25°和0.72°,只要把0.72°化成分、秒即可,第(2)题中,45°21′30″含有三部分45°,12′和30″,其中45°已经是度,只要把12′和30″化成度即可.解:(1)0.72°=0.72×61′=43.2′0.2′=0.2×60″=12″所以25.72°=25°43′12″(2)5.0)601(3003'='⨯='' 21.0)601(5.125.12≈⨯=' 所以45°12′30″=45.21°说明:①是由高级单位向低级单位化:②是由低级单位向高级单位化.它们都必须是逐级进行的,“越级”化单位容易出错而且还要熟记他们之间的换算关系.例4 解:(1)53°39′+36°40′=89°+79=90°19′;(2)92°3′-48°34′=91°63′-48°34′=43°29′;(3)53°25′28″×5=265°+125′+140″=267°7′20″;(4)15°20′÷6=2°+(3×60′+20′)÷6=2°33′20″.说明:角度的运算规律为:(1)加减法时将同一单位进行加减,加法够60进1,减法不够减要借1为60;(2)乘法时将数与度、分、秒分别相乘,然后从小到大逢60进1;(3)除法时用度先除,把余数化为分,再加上原来的分,用这个数除以除数,把余数化成秒,再加上原来的秒,再用这个数除以除数,如果除不尽就按题意要求,进行四舍五入;(4)度、分、秒之间的互化有:由低级单位向高级单位转化,使用的公式是'⎪⎭⎫ ⎝⎛=''︒⎪⎭⎫ ⎝⎛='6011,6011.例如30°42′,可化为30.7°;另一种是由高级单位向低级单位转化,使用的公式是1°=60′,11 / 111′=60″,例如2.45°可化为2°27′,在度、分、秒的互化过程中要逐级进行,不要“跳级”,以免出错.例5 解:法一:从3时整开始,分针转过了6°×25=150°,时针转过了0.5°×25= 5.12,因为3点整时两针夹角为90°,所以3时25分时两针夹角为150°-90°-12.5°= 5.47.法二:3时25分时,分针在钟面“5”字上,时针从“3”字转过了0.5°×25= 5.12.又“3”、“5”两字之间夹角为60°,所以3时25分时两针夹角为60°-12.5°= 5.47.法三:设所求夹角度数为x °,将分针视作在追赶并超过时针,它们的速度分别是 6/min 和0.5°/min ,则由题意,得方程x +=⨯-9025)5.06(,5.47=x .说明:(1)此题是角的度量的实际应用,它能加深我们对角的意义的理解.解题的关键是明确钟面上分针1分钟转过的角度是6°,时针1分钟转过的角度是分针转过角度的121,即0.5°;(2)解题时要注意分针在运动时,时针也在运动,而不能认为时针静止;(3)这类题型可视作时针和分针在作相对运动,可以参照环形线路上的行程问题列方程(组)求解,也可以以钟面上“格”作单位,即分针和时针每分钟走1格和121格.。

人教版2020年七年级数学上册小专题练习十七《角-解答题专练》(含答案)

人教版2020年七年级数学上册小专题练习十七《角-解答题专练》(含答案)

人教版2020年七年级数学上册小专题练习十七《角-解答题专练》1.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是;(2)若射线OE平分∠COD,求∠AOE的度数.2.如图,∠AOB=72°30′,射线OC在∠AOB内,∠BOC=30°.(1)∠AOC=_______;(2)在图中画出∠AOC的一个余角,要求这个余角以O为顶点,以∠AOC的一边为边.图中你所画出的∠AOC的余角是∠______,这个余角的度数等于______.3.如图,O是直线AB上一点,OC为任一条射线,OD平分∠AOC;OE平分∠BOC.(1)图中∠BOD的邻补角为_________;∠AOE的邻补角为____________。

(2)如果∠COD=25°,那么∠COE= ;如果∠COD=60°,那么∠COE= ;(3)试猜想∠COD与∠COE具有怎样的数量关系,并说明理由.4.如图,将两块直角三角尺的直角顶点C叠放在一起.(1)判断∠ACE与∠BCD的大小关系,并说明理由;(2)若∠DCE=30°,求∠ACB的度数;(3)猜想:∠ACB与∠DCE有怎样的数量关系,并说明理由.5.①如图1,点A、C、B在同一直线上,CD平分∠ACB,∠ECF=90°.回答下列问题:(1)写出图中所有的直角;(2)写出图中与∠ACE相等的;(3)写图中∠DCE所有的余角;(4)写图中∠ACE所有的余角;(5)写图中∠FCD的补角;(6)写图中∠DCE的补角;②如图2,已知点A、O、B在一条直线上,∠COD=90°,OE平分∠AOC,OF平分∠BOD,求∠EOF的度数.6.如图,已知∠AOM与∠MOB互为余角,且∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果已知∠AOB=80°,其他条件不变,求∠MON的度数;(3)如果已知∠BOC=60°,其他条件不变,求∠MON的度数;(4)从(1)(2)(3)中你能看出什么规律?7.如图,已知∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小.(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?8.已知如图,∠BOC和∠AOC的比是3:2,OD平分∠AOB,∠COD=10°,求∠AOB的度数.9.如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°.求∠COD的度数.10.如图,∠AOB=90°,∠AOC为∠AOB外的一个锐角,且∠AOC=30°,射线OM平分∠BOC,ON平分∠AOC.(1)求∠MON的度数;(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中∠AOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1),(2),(3)的结果中,你能看出什么规律?(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法.请你模仿(1)~(4)设计一道以线段为背景的计算题,并写出其中的规律.参考答案1.解:(1)北偏东70°;(2)因为∠AOB=55°,∠AOC=∠AOB,所以∠BOC=110°.又因为射线OD是OB的反向延长线,所以∠BOD=180°,∠COD=180°﹣110°=70°.因为∠COD=70°,OE平分∠COD,所以∠COE=35°又因为∠AOC=55°.所以∠AOE=∠AOC +∠COE =90°.2.解:(1)42°30′;(2)如图,AOD或COE,47°30′;3.解:(1)∠AOD;∠BOE;(2)65°;30°;(3)∠COD+∠COE=90°.理由如下:因为OD平分∠AOC,OE平分∠BOC.所以∠COD=∠AOC,∠COE=∠BOC.所以∠COD+∠COE=∠AOC+∠BOC==∠AOB=×180°=90°.4.解:(1)∠ACE=∠BCD,理由如下:∵∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,∴∠ACE=∠BCD;(2)由余角的定义,得∠ACE=90°﹣∠DCE=90°﹣30°=60°,由角的和差,得∠ACB=∠ACE+∠BCE=60°+90°=150°;(3)∠ACB+∠DCE=180°,理由如下:由角的和差,得∠ACB=∠BCE+∠ACE,∠ACB+∠DCE=∠BCE+(∠ACE+DCE)=∠BCE+∠ACE=180°.5.解:①∵CD平分∠ACB,∠ECF=90°,∴∠ACD=∠BCD=90°,∴∠ACE=∠FCD,∠BCF=∠ECD,(1)图中所有的直角有:∠ACD,∠BCD,∠ECF;(2)与∠ACE相等的角有∠DCF;(3)∠DCE所有的余角有∠ACE,∠DCF;(4)∠ACE所有的余角有∠DCE,∠BCF;(5)∠FCD的补角∠BCE;(6)∠DCE的补角∠ACF.故答案为:∠ACD,∠BCD,∠ECF;∠DCF;∠ACE,∠DCF;∠DCE,∠BCF;∠BCE;∠ACF.;(2)∵∠COD=90°,∴∠AOC+∠BOD=90°,∵OE平分∠AOC,OF平分∠BOD,∴∠COE+∠DOF=(∠AOC+∠BOD)==45°,∴∠EOF=∠COE+∠DOF+∠COD=135°.6.解:(1)因为OM平分∠AOC,所以∠MOC=0.5∠AOC.因为ON平分∠BOC,所以∠NOC=0.5∠BOC,所以∠MON=∠MOC-∠NOC=0.5∠AOC-0.5∠BOC=0.5∠AOB.而∠AOB=∠AOM+∠MOB=90°,所以∠MON=45°.(2)当∠AOB=80°,其他条件不变时,∠MON=0.5×80°=40°.(3)当∠BOC=60°,其他条件不变时,∠MON=45°.(4)分析(1)(2)(3)的结果和(1)的解答过程可知:∠MON的大小总等于∠AOB的一半,而与锐角∠BOC的大小无关.7.解:8.解:∵∠BOC和∠AOC的比是3:2,∴设∠BOC=3x,则∠AOC=2x,则∠AOB=5x,∵OD平分∠AOB,∴∠AOD=x,则x﹣2x=10,解得:x=20,则∠AOB=100°.9.【解答】解:∵OD平分∠AOB,∠AOB=114°,∴∠AOD=∠BOD==57°.∵∠BOC=2∠AOC,∠AOB=114°,∴∠AOC=.∴∠COD=∠AOD﹣∠AOC=57°﹣38°=19°.10.解:(1)因为∠AOB=90°,∠AOC=30°,所以∠BOC=120°.因为OM平分∠BOC,所以∠COM=∠BOC=60°.因为ON平分∠AOC,所以∠CON=∠AOC=×30°=15°,所以∠MON=∠COM-∠CON=60°-15°=45°(2)当∠AOB=α,其它条件不变时,仿(1)可得∠MON=α(3)仿(1)可求得∠MON=∠COM-∠CON=45°(4)从(1)(2)(3)的结果中,可以得出一般规律:∠MON的大小总等于∠AOB的一半,与锐角∠AOC的大小无关(5)问题可设计为:已知:线段AB=a,延长AB到点C,使BC=6,点M,N分别为AC,BC的中点,求MN的长.规律是:MN的长度总等于AB的长度的一半,而与BC的长度无关。

(人教版)初中七年级数学上册《角》同步练习试题(含答案解析)

(人教版)初中七年级数学上册《角》同步练习试题(含答案解析)

(人教版)初中七年级数学上册《角》同步练习试题(含答案解析)(人教版)初中七年级数学上册《角》同步练习试题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.1︒等于()A.10'B.12'C.60'D.100' 2.“V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V"字手势早已成为世界用语了.如图的“V”字手势中,食指和中指所夹锐角a的度数为()A.25B.35C.45D.553.下列说法中正确的是()A.射线AB与射线BA是同一条射线B.两条射线组成的图形叫做角C.各边都相等的多边形是正多边形D.连接两点的线段的长度叫做两点之间的距离4.下列角中,能用1∠,ACB∠三种方法表示同一个角的是()∠,CA.B.C.D .5.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,12740'∠=︒,则2∠的余角是( )A .1720'︒B .3220︒'C .3320'︒D .5820︒'6.如图,下列说法中错误的是( ).A .OA 方向是北偏东20︒B .OB 方向是北偏西15︒C .OC 方向是南偏西30︒D .OD 方向是东南方向二、填空题7.如图所示,120AOD ∠=︒,50AOB ∠=︒,OC 平分BOD ∠,那么BOC ∠=__________.8.计算:45396541︒'︒'+=________.(人教版)初中七年级数学上册《角》同步练习试题(含答案解析)9.计算:(1)1003441'︒-︒=_________;(2)23252455''︒+︒=_________;(3)1366435428''''︒-︒=_________.10.如图,写出图中以A 为顶点的角______.三、解答题11.读句画图如图,点,,A B C 是同一平面内三个点,借助直尺、刻度尺、量角器完成(以答题卡上印刷的图形为准):(1)画图:①画射线AB ;①画直线BC ;①连接AC 并延长到点D ,使得CD CA =.(2)测量:ABC ∠约为_________°(精确到1︒).12.【观察思考】如图,五边形ABCDE 内部有若干个点,用这些点以及五边形ABCDE 的顶点ABCDE 把原五边形分割成一些三角形(互相不重叠).【规律总结】(1)填写下表:(2)【问题解决】原五边形能否被分割成2022个三角形?若能,求此时五边形ABCDE 内部有多少个点;若不能,请说明理由.(人教版)初中七年级数学上册《角》同步练习试题(含答案解析)(人教版)初中七年级数学上册《角》同步练习试题(含答案解析)1.C【分析】根据1°=60′即可得到答案.【详解】解:1°=60′,故选:C.【点睛】本题考查了度、分、秒之间的换算,能正确进行度、分、秒之间的换算是解此题的关键,注意:1°=60′.2.B【分析】根据图形和各个角度的大小得出即可.【详解】解:根据图形可以估计①α约等于35°,故选:B.【点睛】本题考查了估算角的度数的大小的应用,主要考查学生观察图形的能力.3.D【分析】直接利用角的定义以及正多边形的定义、两点之间距离定义分别分析得出答案.【详解】解:A、射线AB与射线BA不是同一条射线,故此选项错误;B、有公共端点是两条射线组成的图形叫做角,故此选项错误;C、各边都相等、各角都相等的多边形是正多边形,故此选项错误;D、连接两点的线段的长度叫做两点之间的距离,故此选项正确.故选:D.【点睛】此题主要考查了角的定义以及正多边形的定义、两点之间距离定义,正确掌握相关定义是解题关键.4.C【分析】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,据此分析即可【详解】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,A、B、D选项中,点C为顶点的角存在多个,故不符合题意故选C【点睛】本题考查了角的表示方法,掌握角的表示方法是解题的关键.角的表示方法有三种:(1)用三个字母及符号“①”来表示.中间的字母表示顶点,其它两个字母分别表示角的两边上的点.(2)用一个数字表示一个角.(3)用一个字母表示一个角.具体用哪种方法,要根据角的情况进行具体分析,总之表示要明确,不能使人产生误解.5.B【分析】根据余角的定义可得①2的余角即①EAC ,然后利用角的运算列式计算求解,注意1°=60′.【详解】解:由题意可得:①2+①EAC =90°①①2的余角是①EAC①①EAC =601602740'3220'︒-∠=︒-︒=︒故选:B .【点睛】本题考查余角的概念及角的和差运算,掌握概念及角度制的运算是解题关键. 6.A【分析】由方位角的含义逐一判断各选项即可得出答案.【详解】解:OA 方向是北偏东70︒,故A 错误;OB 方向是北偏西15︒,故B 正确;OC 方向是南偏西30︒,故C 正确;OD 方向是东南方向,故D 正确;故选:A .【点睛】本题考查的是方位角,掌握方位角的含义是解题的关键.7.35°【分析】由已知可求BOD ∠的大小,根据角平分线的概念可求BOC ∠的大小.【详解】①120AOD ︒∠=,50AOB ︒∠=,①70BOD AOD AOB ︒∠=∠-∠=,①OC 平分BOD ∠, ①1352BOC BOD ︒∠=∠=, 故答案为:35︒.【点睛】本题主要考查了角的认识,角平分线的概念,熟练掌握角的相关概念是解题的关键. 8.111°20´.【分析】两个度数相交,度与度,分与分对应相加,分的结果若满60,则转化为度.【详解】45°39´+65°41´=111°20´,故答案为111°20´.【点睛】本题考查度角分的换算,学生们要知道角度之间的运算是60进制.(人教版)初中七年级数学上册《角》同步练习试题(含答案解析)9. 6519'︒ 4820'︒ 921132'''︒【分析】(1)根据角的各单位之间的是60进位,可以把100︒写成9060'︒,然后再用度减度,分减分,进行计算即可;(2)按照度加度,分加分计算即可;(3)根据角的各单位之间的是60进位,可以把1366'︒写成13565'60''︒,然后再用度减度,分减分,秒减秒进行计算即可【详解】(1)1003441'9960'3441'6519'︒-︒=︒-︒=︒;(2)2325'2455'4780'4820'︒+︒=︒=︒;(3)1366'4354'28''︒-︒=13565'60''4354'28''︒-︒9211'32''=︒.故答案为:①6519'︒,①4820'︒,①921132'''︒.【点睛】本题考查的度、分、秒的计算,掌握度、分、秒的换算方法是解题关键.10.①DAC ①DAB ①CAB【分析】根据角的表示方法即可求解.【详解】写出图中以A 为顶点的角①DAC 、①DAB 、①CAB.故答案为①DAC ,①DAB ,①CAB.【点睛】此题考查的是角的表示方法,角可用三个大写字母表示,顶点字母写在中间,每边上的点写在两旁;也可以用一个大写字母表示,在角的顶点处有多个角时,不可以用一个字母表示这个角.11.(1)①见解析;①见解析;①见解析;(2)50【分析】(1)根据题目要求结合概念作图可得;(2)利用量角器测量可得.【详解】解:(1)如图所示: ①射线AB 即为所求;①直线BC 即为所求;①线段CD=CA 即为所求(2)ABC ∠约为50°故答案为:50【点睛】本题主要考查作图,解题的关键是掌握直线、射线、线段的概念及角的定义和测量.12.(1)11,2n+3;(2)不能,理由见解析.(1)根据图形特点找出五边形ABCDE内点的个数与分割成的三角形的个数的关系,【分析】总结规律即可;(2)根据规律列出方程,解方程得到答案.(1)有1个点时,内部分割成5个三角形;有2个点时,内部分割成5+2=7个三角形;有3个点时,内部分割成5+2×2=9个三角形;有4个点时,内部分割成5+2×3=11个三角形;…以此类推,有n个点时,内部分割成5+2×(n−1)=(2n+3)个三角形;故答案为11,2n+3;(2)令2n+3=2022,即2n=2019,显然这个方程没有整数解,①原五边形不能被分割成2022个三角形.【点睛】本题考查图形类规律探索,熟练掌握不完全归纳的方法及求一元一次方程整数解的方法是解题关键.。

人教版七年级上册数学期末复习:角的计算综合 练习题汇编(含答案)

人教版七年级上册数学期末复习:角的计算综合 练习题汇编(含答案)

人教版七年级上册数学期末复习:角的计算综合练习题汇编1.如图所示,∠AOB是平角,OM、ON分别是∠AOC、∠BOD的平分线.(1)当∠BOC=140°时,求∠AOM的度数;(2)当∠AOC=30°,∠BOD=60°时,求∠MON的度数;(3)当∠COD=x度时,则∠MON=度.(请直接写出答案)2.如图所示,OC是∠AOD的平分线,OE是∠BOD的平分线,∠EOC=65°,∠DOC=25°,求∠AOB的度数.3.如图,已知射线OC在∠AOB内,OM和ON分别平分∠AOC和∠BOC.(1)若∠AOC=50°,∠BOC=30°,求∠MON的度数.(2)探究∠MON与∠AOB的数量关系.4.如图,已知A、O、B三点在一条直线上,OC平分∠AOD,∠AOC+∠EOB=90°.(1)求∠COE的度数;(2)判断∠DOE和∠EOB之间有怎样的关系,并说明理由.5.填空,完成下列说理过程.如图,点A、O、B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=∠AOC因为OE是∠BOC的平分线,所以∠COE=所以∠DOE=∠COD+ =(∠AOC+∠BOC)=∠AOB=°(2)由(1)可知∠DOE=90°因为∠COD=65°所以=∠COD=65°则:∠AOE=∠AOD+ =°6.如图,O为直线AB上一点,∠BOE=80°,直线CD经过点O.。

七年级数学角度的计算(专题)(含答案)

七年级数学角度的计算(专题)(含答案)

角度的计算(专题)一、单选题(共10道,每道10分)1.如图,∠AOC=∠BOD=90°,若∠AOB=150°,则∠DOC的度数为( )A.30°B.40°C.50°D.60°答案:A解题思路:∵∠AOB=150°,∠AOC=90°,∴∠BOC=∠AOB-∠AOC=150°-90°=60°.∵∠BOD=90°,∴∠DOC=∠BOD-∠BOC=90°-60°=30°.故选A.试题难度:三颗星知识点:余角2.如图,已知直线AB,CD相交于点O,OA平分∠EOC,且∠EOC=110°,则∠AOC的度数为( )A.25°B.35°C.45°D.55°答案:D解题思路:.故选D.试题难度:三颗星知识点:角平分线3.如图,已知∠COD为平角,OA⊥OE,且,则∠DOE的度数为( )A.30°B.45°C.60°D.75°答案:A解题思路:∵∠COD为平角∴∠COD=180°,即∠AOC+∠AOE+∠DOE=180°.∵OA⊥OE∴∠AOE=90°.∴∠AOC+∠DOE=180°-∠AOE=180°-90°=90°.∴∠AOC=2∠DOE,∴2∠DOE+∠DOE=3∠DOE=90°,∴∠DOE=30°.故选A.试题难度:三颗星知识点:平角的定义4.如图,直线AB与EO相交于点O,∠EOB=90°,∠FOD=90°,如果∠AOD=140°,那么∠EOF 的度数为( )A.60°B.50°C.40°D.30°答案:C解题思路:∵∠AOD=140°∴∠BOD=40°∵∠EOB=90°∴∠EOD+∠BOD=90°∵∠FOD=90°∴∠FOE+∠EOD=90°∴∠FOE=∠BOD=40°故选C.试题难度:三颗星知识点:平角5.已知∠AOB=70°,以O端点作射线OC,使∠AOC=28°,则∠BOC的度数为( )A.42°B.98°C.42或98°D.82°答案:C解题思路:如图,当点C与点C1重合时,∠BOC=∠AOB-∠AOC=70°-28°=42°当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+28°=98°故选C.试题难度:三颗星知识点:角度的计算6.已知从点O出发的三条射线OA,OB,OC,若∠AOB=50°,∠AOC=30°,则∠BOC的度数为( )A.80°或20°B.40°或10°C.40°或20°D.80°或10°答案:A解题思路:分析:根据题意,先作∠AOB,因为射线OC的位置不确定,且∠AOC∠AOB,故需分以下两种情况:①射线OC在射线OA的右边,如图1,求∠BOC,设计方案:∠BOC=∠AOB+∠AOC=50°+30°=80°②射线OC在射线OA的左边,如图2,求∠BOC的度数,设计方案:∠BOC=∠AOB-∠AOC=50°-30°=20°综上,∠BOC的度数为80°或20°.故选A.试题难度:三颗星知识点:角度的计算7.已知∠AOB为直角,∠AOC=40°,若OM平分∠AOB,则∠MOC的度数为( )A.65°或25°B.65°或85°C.5°或65°D.5°或85°答案:D解题思路:分析:根据题意,先作∠AOB,因为射线OC的位置不确定,且∠AOB∠AOC,故需分以下两种情况:①射线OC在射线OA的左边,如图1,求∠MOC的度数,设计方案:②射线OC在射线OA的右边,如图2,求∠MOC的度数,设计方案:综上,∠MOC的度数为5°或85°.故选D.试题难度:三颗星知识点:角平分线8.已知∠AOB=60°,∠AOC=4∠BOC,则∠AOC的度数为( )A.12°或20°B.12°或48°C.48°或80°D.20°或80°答案:C解题思路:由题意,射线OC的位置不确定,需要分类讨论.因为∠AOC=4∠BOC,所以∠AOC∠BOC,则射线OC只能在射线OA的右边,分以下两种情况.①当射线OC在∠AOB的内部时,如图1所示,求∠AOC的度数,设计方案:设∠BOC=x,则∠AOC=4x,依题意得x+4x=60°,解得x=12°,所以∠AOC=4×12°=48°.①当射线OC在∠AOB的外部时,如图2所示,求∠AOC的度数,设计方案:设∠BOC=x,则∠AOC=4x,依题意得4x-x=60°,解得x=20°,所以∠AOC=4×20°=80°.综上所述,∠AOC的度数为48°或80°.故选C.试题难度:三颗星知识点:角度的计算9.已知∠AOB=54°,∠AOC=2∠BOC,OM平分∠AOB,则∠MOC的度数为( )A.9°或81°B.72°或54°C.9°或18°D.81°或18°答案:A解题思路:由题意,射线OC的位置不确定,因此需要分类讨论.①当射线OC在∠AOB的内部时,如图1所示,由∠AOB=54°,∠AOC=2∠BOC,得∠BOC=18°,所以.②当射线OC在∠AOB的外部时,如图2所示,求∠MOC的度数,设计方案:由∠AOB=54°,∠AOC=2∠BOC,得∠BOC=54°,所以.综上所述,∠MOC的度数为9°或81°.故选A.试题难度:三颗星知识点:角度的计算10.已知∠AOB=20°,∠AOC=4∠AOB,且∠BOC∠AOC,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数为( )A.30°或50°B.20°或60°C.30°D.50°答案:C解题思路:分析知射线OC的位置不确定,需要分类讨论,又因为∠BOC∠AOC,所以符合题意的只有一种情况.如下图所示,由∠AOB=20°,∠AOC=4∠AOB,得∠AOC=80°,所以.综上所述,∠MOD的度数为30°.故选C.试题难度:三颗星知识点:角度的计算。

人教版七年级数学上册第四章《角》课时练习题(含答案)

人教版七年级数学上册第四章《角》课时练习题(含答案)

人教版七年级数学上册第四章《4.3角》课时练习题(含答案)一、单选题1.下列各度数的角,能借助一副三角尺画出的是( )A .55°B .65°C .75°D .85°2.如图所示,正方形网格中有α∠和∠β,如果每个小正方形的边长都为1,估测α∠与∠β的大小关系为( )A .αβ∠<∠B .αβ∠=∠C .αβ∠>∠D .无法估测3.下列换算中,正确的是( )A .23123623.48'''︒=︒B .22.252215'︒=︒C .18183018.183'''︒=︒D .47.1147736︒︒'=''4.已知6032α'∠=︒,则α∠的余角是( )A .2928'︒B .2968'︒C .11928'︒D .11968'︒5.已知∠A =38°,则∠A 的补角的度数是( )A .52°B .62°C .142°D .162° 6.如图,在同一平面内,90AOB COD ∠=∠=︒,AOF DOF ∠=∠,点E 为OF 反向延长线上一点(图中所有角均指小于180︒的角).下列结论:①COE BOE ∠=∠;②180AOD BOC ∠+∠=︒;③90BOC AOD ∠-∠=︒;④180COE BOF ∠+∠=︒.其中正确结论的个数有( )A .1个B .2个C .3个D .4个7.如图,68AOB ∠=︒,OC 平分AOD ∠且15COD ∠=︒,则BOD ∠的度数为( ).A .28︒B .38︒C .48︒D .53︒8.一个角的补角为138︒,则这个角的余角为( )A .38︒B .42︒C .48︒D .132︒二、填空题9.如图,过直线AB 上一点O 作射线OC ,∠BOC =29°18′,则∠AOC 的度数为_____.10.如图,直线,AB CD 相交于O ,OE 平分,∠⊥AOC OF OE ,若46BOD ∠=︒,则DOF ∠的度数为______︒.11.已知,如图,A 、O 、B 在同一直线上,OF 平分AOB ∠,12∠=∠,3=4∠∠.(1)射线OD 是_______的角平分线;(2)AOC ∠的补角是_______;(3)AOC ∠的余角是_______;(4)_______是2∠的余角;(5)DOB ∠的补角是_______;(6)_______是COF ∠的补角.12.如图,若OC 、OD 三等分AOB ∠,则AOB ∠=_______AOC ∠=_______AOD ∠,COD ∠=_______AOB ∠,BOC ∠=∠_______.13.如图,已知∠AOB =90°,射线OC 在∠AOB 内部,OD 平分∠AOC ,OE 平分∠BOC ,则∠DOE =_____°.14.如图,将一副三角尺的两个锐角(30°角和45°角)的顶点P 叠放在一起,没有重叠的部分分别记作∠1和∠2,若∠1与∠2的和为61°,则∠APC 的度数是 _____.三、解答题15.如图,点P 是直线l 外一点,过点P 画直线P A ,PB ,PC ,…,分别交直线l 于点A ,B ,C ,….用量角器量出1∠,2∠,3∠的度数,并量出P A ,PB ,PC 的长度,你发现了什么?16.如图,两个直角三角形的直角顶点重合,∠AOC =40°,求∠BOD 的度数.结合图形,完成填空:解:因为∠AOC+∠COB = °,∠COB+∠BOD = ①所以∠AOC = .②因为∠AOC =40°,所以∠BOD = °.在上面①到②的推导过程中,理由依据是: .17.如图①,已知线段AB=18cm,CD=2cm,线段CD在线段AB上运动,E,F分别是AC,BD的中点.(1)若AC=4cm,则EF=cm;(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度,如果变化,请说明理由.(3)a.我们发现角的很多规律和线段一样,如图②,已知∠COD在∠AOB内部转动,OE,OF分别平分∠AOC和∠BOD,若∠AOB=140°,∠COD=40°,求∠EOF.b.由此,你猜想∠EOF,∠AOB和∠COD会有怎样的数量关系.(直接写出猜想即可)18.如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°.将一块直角三角板的直角顶点放在点O处,边OM与射线OB重合,另一边ON位于直线AB的下方.(1)将图1的三角板绕点O逆时针旋转至图2,使边OM在∠BOC的内部,且恰好平分∠BOC,问:此时ON所在直线是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,设旋转时间为t秒,在旋转的过程中,ON所在直线或OM所在直线何时会恰好平分∠AOC?请求所有满足条件的t值;(3)将图1中的三角板绕点O顺时针旋转至图3,使边ON在∠AOC的内部,试探索在旋转过程中,∠AOM和∠CON的差是否会发生变化?若不变,请求出这个定值;若变化,请求出变化范围.19.已知:160AOD ∠=︒,OB 、OM 、ON 是AOD ∠内的射线.(1)如图1,若OM 平分AOB ∠,ON 平分BOD ∠.当射线OB 绕点O 在AOD ∠内旋转时,求MON ∠的度数.(2)OC 也是AOD ∠内的射线,如图2,若20BOC ∠=︒,OM 平分AOC ∠,ON 平分BOD ∠,当射线OB 绕点O 在AOD ∠内旋转时,求MON ∠的大小.20.【阅读理解】定义:在一条直线同侧的三条具有公共端点的射线之间若满足以下关系,其中一条射线分别与另外两条射线组成的角恰好满足2倍的数量关系,则称该射线是另外两条射线的“双倍和谐线”.如图1,点P 在直线l 上,射线PR ,PS ,PT 位于直线l 同侧,若PS 平分∠RPT ,则有∠RPT =2∠RPS ,所以我们称射线PR 是射线PS ,PT 的“双倍和谐线”.【迁移运用】(1)如图1,射线PS(选填“是”或“不是”)射线PR,PT的“双倍和谐线”;射线PT(选填“是”或“不是”)射线PS,PR的“双倍和谐线”;(2)如图2,点O在直线MN上,OA MN,∠AOB=40°,射线OC从ON出发,绕点O以每秒4°的速度逆时针旋转,运动时间为t秒,当射线OC与射线OA重合时,运动停止.①当射线OA是射线OB,OC的“双倍和谐线”时,求t的值;②若在射线OC旋转的同时,∠AOB绕点O以每秒2°的速度逆时针旋转,且在旋转过程中,射线OD平分∠AOB.当射线OC位于射线OD左侧且射线OC是射线OM,OD的“双倍和谐线”时,求∠CON的度数。

人教版七年级数学上册期末压轴题突破训练:角的相关计算 含答案

人教版七年级数学上册期末压轴题突破训练:角的相关计算   含答案

亲爱的同学,“又是一年芳草绿,依旧十里杏花红”。

当春风又绿万水千山的时候,我们胜利地完成了数学世界的又一次阶段性巡游。

今天,让我们满怀信心地面对这张试卷,细心地阅读、认真地思考,大胆地写下自己的理解,盘点之前所学的收获。

请同学们认真、规范答题!老师期待与你一起分享你的学习成果!人教版七年级数学上册期末压轴题突破训练角的相关计算1.已知:OC是∠AOB内部一条射线,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图①所示,若A,O,B三点共线,则∠MON的度数是,此时图中共有对互余的角.(2)如图②所示,若∠AOB=110,求∠MON的度数.(3)直接写出∠MON与∠AOB之间的数量关系.2.已知,如图1,把直角三角形MON的直角顶点O放在直线AB上,射线OC平分∠AON.(1)如图1,若MOC=28°,求∠BON的度数;(2)若将三角形MON绕点O旋转到如图2所示的位置,若∠BON=100°,则∠MOC 的度数为;(3)若将三角形MON绕点O旋转到如图3所示的位置,试写出∠BON和∠MOC之间的数量关系,并说明理由.3.(1)如图2,将直角三角形纸板绕O点顺时针旋转,∠DOE=90°,当OD恰好平分∠AOC时,指出∠COE与∠BOE之间的数量关系,并说明理由;(2)如图2,在(1)的条件下,作OM平分∠AOE,ON平分∠BOD,求∠MON的度数;(3)当直角三角形纸板旋转到如图3位置,∠DOE=90°,若∠COE=2∠AOD﹣30°,那么∠COD﹣2∠BOE的值是多少?4.点O在直线PQ上,过点O作射线OC,使∠POC=130°,将一直角三角板的直角顶点放在点O处.(1)如图①所示,将直角三角板AOB的一边OA与射线OP重合,则∠BOC=°.(2)将图①中的直角三角板AOB绕点O旋转一定角度得到如图②所示的位置,若OA 平分∠POC,求∠BOQ的度数.(3)将图①中的直角三角板AOB绕点O旋转一周,存在某一时刻恰有OB⊥OC,求出所有满足条件的∠AOQ的度数.5.已知:点O为直线AB上一点,过点O作射线OC,∠BOC=100°.(1)如图1,求∠AOC的度数;(2)如图2,过点O作射线OD,使∠COD=90°,作∠AOC的平分线OM,求∠MOD 的度数;(3)如图3,在(2)的条件下,作射线OP,若∠BOP与∠AOM互余,请画出图形,并求∠COP的度数.6.如图,OC,OB,OD是∠EOA内三条射线,OB平分∠DOA,OC平分∠EOA.(1)已知∠EOD=80°,∠AOB=20°,求∠BOC的度数.(2)设∠EOD=α,用含α的代数式表示∠BOC.(3)若∠EOD与∠BOC互余,求∠BOC的度数.7.如图1,将一副三角板的直角顶点C叠放在一起.观察分析:(1)若∠DCE=35°,则∠ACB=;若∠ACB=150°,则∠DCE=;猜想探究:(2)请你猜想∠ACB与∠DCE有何关系,并说明理由;拓展应用:(3)如图2,若将两个同样的三角尺60°锐角的顶点A重合在一起,请你猜想∠DAB 与∠CAE有何关系,请说明理由;(4)如图3,如果把任意两个锐角∠AOB、∠COD的顶点O重合在一起,已知∠AOB =α,∠COD=β(α、β都是锐角),请你直接写出∠AOD与∠BOC的关系.8.已知:如图所示,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由;(3)若∠BOC=α,∠AOC=β,则∠DOE与∠AOB是否互补,并说明理由.9.已知直线AB与CD相交于点O,且∠AOD=90°,现将一个直角三角尺的直角顶点放在点O处,把该直角三角尺OEF绕着点O旋转,作射线OH平分∠AOE.(1)如图1所示,当∠DOE=20°时,∠FOH的度数是.(2)若将直角三角尺OEF绕点O旋转至图2的位置,试判断∠FOH和∠BOE之间的数量关系,并说明理由.(3)若再作射线OG平分∠BOF,试求∠GOH的度数.10.已知:如图,OB、OC分别为定角(大小不会发生改变)∠AOD内部的两条动射线,(1)当OB、OC运动到如图1的位置时,∠AOC+∠BOD=100°,∠AOB+∠COD=40°,求∠AOD的度数.(2)在(1)的条件下(图2),射线OM、ON分别为∠AOB、∠COD的平分线,求∠MON的度数.(3)在(1)的条件下(图3),OE、OF是∠AOD外部的两条射线,∠EOB=∠COF=90°,OP平分∠EOD,OQ平分∠AOF,求∠POQ的度数.11.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)若直角△DOE的边OD在射线OB上(图1),求∠COE的度数;(2)将直角△DOE绕点O按逆时针方向转动,使得OE所在射线平分∠AOC(图2),说明OD所在射线是∠BOC的平分线;(3)将直角△DOE绕点O按逆时针方向转动到某个位置时,恰好使得∠COD:∠AOE =1:2,求∠BOE的度数.12.已知:如图1,OB、OC分别为锐角∠AOD内部的两条动射线,当OB、OC运动到如图的位置时,∠AOC+∠BOD=100°,∠AOB+∠COD=40°,(1)求∠BOC的度数;(2)如图2,射线OM、ON分别为∠AOB、∠COD的平分线,求∠MON的度数.(3)如图3,若OE、OF是∠AOD外部的两条射线,且∠EOB=∠COF=90°,OP平分∠EOD,OQ平分∠AOF,当∠BOC绕着点O旋转时,∠POQ的大小是否会发生变化,若不变,求出其度数,若变化,说明理由.参考答案1.解:(1)∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠AOM=∠COM,∠CON=∠BON,∴∠MON=∠MOC+∠NOC====90°;∴∠AOM+∠BON=90°,∴图中互余的角有:∠AOM与∠BON,∠AOM与∠CON,∠COM与∠CON,∠COM 与∠BON共4对,故答案为:90°;4;(2)∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MON=∠MOC+∠NOC=====55°;(3)∠MON=.2.解:(1)如图1,∵∠MOC=28°,∠MON=90°,∴∠NOC=90°﹣28°=62°,又∵OC平分∠AON,∴∠AOC=∠NOC=62°,∴∠BON=180°﹣2∠NOC=180°﹣62°×2=56°;(2)∵∠BON=100°,∴∠AON=80°,∴∠AOM=90°﹣∠AON=10°,∠AOC=40°,∴∠MOC=∠AOM+∠AOC=50°.故答案为:50°;(3)∠MOC和∠BON之间的数量关系不发生变化,如图2,∵OC平分∠AON,∴∠AOC=∠NOC,∵∠MON=90°,∴∠AOC=∠NOC=90°﹣∠MOC,∴∠BON=180°﹣2∠NOC=180°﹣2(90°﹣∠MOC)=2∠MOC,即:∠BON=2∠MOC.3.解:(1)∠COE=∠BOE,理由如下:∵∠DOE=90°,∴∠DOC+∠COE=90°,∴∠AOD+∠BOE=90°,∵OD平分∠AOC,∴∠AOD=∠DOC,∴∠COE=∠BOE;(2)∵OM平分∠AOE,ON平分∠BOD,∴∠BOM=180°﹣∠AOE,∠BON=∠BOD,∠MON=∠BOM﹣∠BON=180°﹣(∠AOE+∠BOD)=180°﹣×270°=45°;(3)在旋转的过程中,那么∠COD﹣2∠BOE的值发生不变化,.∵在(1)的条件下,若∠COE=2∠AOD﹣30°,∴90°+∠COD=2∠AOD﹣30°∴∠COD=2∠AOD﹣120°=2(180°﹣∠BOD)﹣120°=240°﹣2∠BOD,∵∠BOE=90°﹣∠BOD,∴∠COD﹣2∠BOE=(240°﹣2∠BOD)﹣2(90°﹣∠BOD)=60°,∴∠COD﹣2∠BOE的值不变为60°.4.解:(1)∵∠AOB=90°,∠POC=130°,∴∠BOC=∠POC﹣∠AOB=130°﹣90°=40°,故答案为:40;(2)∵OA平分∠POC,∴∠POA=∠POC=65°,∴∠POB=∠POA+∠AOB=65°+90°=155°,∴∠BOQ=180°﹣∠POB=25°;(3)当OB在OC的右边时,如图,则∠AOQ=180°﹣∠POC=50°,当OB在OC的左边时,如图,则∠AOQ=∠POC=130°.5.解:(1)∠AOC=180°﹣∠BOC=180°﹣100°=80°;(2)由(1)得∠AOC=80°,∵∠COD=90°,∴∠AOD=∠COD﹣∠AOC=10°,∵OM是∠AOC的平分线,∴∠AOM=∠AOC=×80°=40°,∴∠MOD=∠AOM+∠AOD=40°+10°=50°;(3)由(2)得∠AOM=40°,∵∠BOP与∠AOM互余,∴∠BOP+∠AOM=90°,∴∠BOP=90°﹣∠AOM=90°﹣40°=50°,①当射线OP在∠BOC内部时(如图1),∠COP=∠BOC﹣∠BOP=100°﹣50°=50°;②当射线OP在∠BOC外部时(如图2),∠COP=∠BOC+∠BOP=100°+50°=150°.综上所述,∠COP的度数为50°或150°.6.解:(1)∵OB平分∠DOA,OC平分∠EOA.∴∠AOB=∠BOD=∠AOD,∠EOC=∠AOC=∠EOA,∵∠EOD=80°,∠AOB=20°,∴∠EOA=80°+20°×2=120°,∴,∠EOC=∠AOC=∠EOA=60°,∴∠BOC=∠AOC﹣∠AOB=60°﹣20°=40°.(2)∵∠BOC=∠AOC﹣∠AOB=∠DOE﹣∠COD﹣∠BOD=∠DOE﹣∠BOC,∴2∠BOC=∠DOE,∴∠BOC=∠DOE=α,(3)∵∠EOD与∠BOC互余,∴∠EOD+∠BOC=90°,∵∠BOC=∠DOE,∴∠BOC=×90°=30°.7.解:(1)(1)若∠DCE=35°,∵∠ACD=90°,∠DCE=35°,∴∠ACE=90°﹣35°=55°,∵∠BCE=90°,∴∠ACB=∠ACE+∠BCE=55°+90°=145°;若∠ACB=150°,∵∠BCE=90°,∴∠ACE=150°﹣90°=60°,∵∠ACD=90°,∴∠DCE=90°﹣60°=30°,故答案为:145°,30°;(2)∠ACB+∠DCE=180°,理由:∵∠ACE+∠ECD=90°,∠ECD+∠DCB=90°,∴∠ACE+∠ECD+∠ECD+∠DCB=180°,∵∠ACE+∠ECD+∠DCB=∠ACB,∴∠ACB+∠ECD=180°;(3)∠DAB+∠EAC=120°,理由:∵∠DAE+∠EAC=60°,∠EAC+∠CAB=60°,∴∠DAE+∠EAC+∠EAC+∠CAB=120°,∵∠DAE+∠EAC+∠CAB=∠DAB,∴∠DAB+∠EAC=120°;(4)∠AOD+∠BOC=α+β,理由是:∵∠AOD=∠DOC+∠COA=β+∠COA,∴∠AOD+∠BOC=β+∠COA+∠BOC,=β+∠AOB,=α+β.8.解:(1)∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°﹣∠AOB=180°﹣120°=60°,(2)∠DOE与∠AOB互补,理由如下:∵∠DOC=∠BOC=×70°=35°,∠COE=∠AOC=×50°=25°.∴∠DOE=∠DOC+∠COE=35°+25°=60°.∴∠DOE+∠AOB=60°+70°+50°=180°,∴∠DOE与∠AOB互补.(3)∠DOE与∠AOB不一定互补,理由如下:∵∠DOC=∠BOC=α,∠COE=∠AOC=β,∴∠DOE=∠DOC+∠COE=α+β=(α+β),∴∠DOE+∠AOB=(α+β)+(α+β)=(α+β),∵α+β的度数不确定∴∠DOE与∠AOB不一定互补.9.解:(1)因为∠AOD=90°,∠DOE=20°所以∠AOE=∠AOD+∠DOE=110°因为OH平分∠AOE所以∠HOE=AOE=55°所以∠FOH=90°﹣∠HOE=35°;故答案为35°;(2)∠BOE=2∠FOH,理由如下:设∠AOH=x,因为OH平分∠AOE所以∠HOE=∠AOH=x所以∠FOH=90°﹣∠HOE=90°﹣x∠BOE=180°﹣∠AOE=180°﹣2x所以∠BOE=2∠FOH;(3)如图3,当OE落在∠BOD内时,OF落在∠AOD内因为OH平分∠AOE所以∠HOE=∠AOH=AOE因为OG平分∠BOF∠FOG=∠GOB=BOF所以∠GOH=∠GOF﹣∠FOH=BOF﹣(∠AOH﹣∠AOF)=(180°﹣∠AOF)﹣AOE+∠AOF=90°﹣AOF﹣(90°+∠AOF)+∠AOF =90°﹣AOF﹣45°﹣AOF+∠AOF=45°;所以∠GOH的度数为45°;如图4,当OE落在其他位置时因为OH平分∠AOE所以∠HOE=∠AOH=AOE因为OG平分∠BOF∠FOG=∠GOB=BOF所以∠GOH=∠GOF+∠FOH=BOF+∠AOH+∠AOF=(180°﹣∠AOF)+AOE+∠AOF=90°﹣AOF+(90°﹣∠AOF)+∠AOF=90°﹣AOF+45°﹣AOF+∠AOF=135°;所以∠GOH的度数为135°;综上所述:∠GOH的度数为45°或135°.10.解:(1)当OB、OC运动到如图1的位置时,∵∠AOC+∠BOD=100°,∴∠AOC+∠COD+∠BOC=100°∠AOD+∠BOC=100°①∵∠AOB+∠COD=40°,∴∠AOD﹣∠BOC=40°②①+②得2∠AOD=140°∴∠AOD=70°.∴∠BOC=30°答:∠AOD的度数为70°.(2)在(1)的条件下(图2),∵射线OM、ON分别为∠AOB、∠COD的平分线,∴∠CON=COD,∠BOM=AOB∴∠MON=∠CON+∠BOM+∠BOC=(∠AOB+∠COD)+∠BOC=×40°+30°=50°.答:∠MON的度数为50°.(3)在(1)的条件下(图3),OE、OF是∠AOD外部的两条射线,∠EOB=∠COF=90°,∵OP平分∠EOD,OQ平分∠AOF,∴∠POD=EOD∠AOQ=AOF∴∠POQ=∠AOD+∠POD+∠AOQ=70°+(∠EOD+∠AOF)=70°+(∠EOB﹣∠BOD+∠COF﹣∠AOC)=70°+[(90°+90°﹣(∠BOD+∠AOC)]=70°+90°﹣100°=110°.答:∠POQ的度数为110°.11.解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=∠COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=2x°,∵∠DOE=90°,∠BOC=60°,∴3x=30或2x+90﹣x=120,∴x=10或30,∴∠AOE=20°或60°,∴∠BOE=160°或120°.12.解:(1)∵∠AOC+∠BOD=100°,∴∠AOB+∠BOC+∠BOC+∠COD=100°,又∵∠AOB+∠COD=40°,∴2∠BOC=100°﹣40°=60°,∴∠BOC=30°,答:∠BOC的度数为30°;(2)∵OM是∠AOB的平分线,∴∠AOM=∠BOM=∠AOB,又∵ON是∠COD的平分线,本文使用Word编辑,排版工整,可根据需要自行修改、打印,使用方便。

人教版七年级上册数学 角度的计算专题解析及训练(word版,有答案)

人教版七年级上册数学  角度的计算专题解析及训练(word版,有答案)

专题6 角一、单选题1.(新人教版数学七年级上册第四章几何图形初步4.3.2《角的比较与运算》课时练习)如图所示,从点O出发的5条射线,可以组成的角的个数是().A. 4B. 6C. 8D. 10【答案】D2.北京时间上午8:30时,时钟上时针和分针之间的夹角(小于平角)是()A. 85°B. 75°C. 70°D. 60°【答案】B【解析】在钟面上,被12小时划分为12大格,每1大格对应的度数是30度,上午8:30的时候,时针指向8时和9时的中间位置,分针指向6时,两针之间刚好间隔2.5格,∴8:30时,时针和分针之间的夹角为:30° 2.5=75°.3.如图,下列说法错误的是()A. OA的方向是北偏东40°B. OB的方向是北偏西75°C. OC的方向是西南方向D. OD的方向是南偏东40°【答案】A【解析】A选项中,由图可知“OA的方向是北偏东50°”,所以本选项说法错误;B选项中,由图可知:“OB的方向是北偏西75°”是正确的;C选项中,由图可知;“OC的方向是西南方向”是正确的;D选项中,由图可知:“OD的方向是南偏东40°”是正确的;故选A.4.下列说法正确的是()A. A在B的南偏东30°的方向上,则B也在A的南偏东30°的方向上;B. A在B的南偏东30°的方向上,则B在A的南偏东60°的方向上;C. A在B的南偏东30°的方向上,则B在A的北偏西30°的方向上;D. A在B的南偏东30°的方向上,则B在A的北偏西60°的方向上【答案】C5.(北师大版数学七年级上册第四章基本平面图形4.3角同步测试题)一个角是70°18′,则这个角等于()A. 70.18° B. 70.3° C. 70.018° D. 70.03°【答案】B【解析】70°18′=70°+18′ 60=70°+0.3°=70.3°.故选B.6.如图,射线OC,OD分别在∠AOB的内部、外部,下列结论错误的是()A. ∠AOB<∠AODB. ∠BOC<∠AOBC. ∠COD>∠AODD. ∠AOB>∠AOC【答案】C【解析】观察图形可知:A.∠AOB<∠AOD正确;B.∠BOC<∠AOB正确;C.∠COD>∠AOD错误;D.∠AOB>∠AOC正确.故选C.7.(新人教版数学七年级上册第四章几何图形初步4.3.2《角的比较与运算》课时练)下列语句中,正确的是().A. 比直角大的角钝角; B. 比平角小的角是钝角C. 钝角的平分线把钝角分为两个锐角;D. 钝角与锐角的差是锐角【答案】C8.(新人教版数学七年级上册第四章几何图形初步4.3.1《角》课时练习)已知α 、β都是钝角,甲、乙、丙、丁四个同学的计算16(α +β)的结果依次为28°、48°、60°、88°,其中只有一个同学计算结果是正确的,则得到正确结果的同学是()A. 甲B. 乙C. 丙D. 丁【答案】B【解析】甲、乙、丙、丁四个同学的计算16(α +β)的结果依次为28°、48°、60°、88°,那么这四个同学计算α+β的结果依次为168°、288°、360°、528°,又因为两个钝角的和应大于180°且小于360°,所以只有乙同学的计算正确,故选B.9.(山东省东昌府区梁水镇中心中学2016-2017学年七年级下学期期中考试数学试题)如图,如果∠AOC=∠BOD,则∠AOB与∠DOC的大小关系是()A. ∠AOB>∠DOCB. ∠AOB<∠DOCC. ∠AOB=∠DOCD. 无法比较【答案】C【解析】∵∠AOC=∠BOD,∴∠AOC-∠BOC=∠BOD-∠BOC,∴∠AOB=∠DOC.故选C.10.如图,OB、OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的代数式为( )。

人教版数学初一上《角》测试题(含答案及解析)

人教版数学初一上《角》测试题(含答案及解析)

人教版数学初一上《角》测试题(含答案及解析)时间:60分钟总分:100题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.一副三角板按如图所示的方法摆放,且∠1的度数是∠2的3倍,则∠2的度数为()A. 20∘B. 22.5∘C. 25∘D. 67.5∘2.如图所示,能用∠AOB,∠O,∠1三种要领表示联合个角的图形是()A. B.C. D.3.下列说法正确的是()A. 平角是一条直线B. 角的边越长,角越大C. 大于直角的角叫做钝角D. 两个锐角的和不一定是钝角4.下列说法中正确的个数有()①议决一点有且只有一条直线;②相连两点的线段叫做两点之间的隔断;③射线比直线短;④ABC三点在联合直线上且AB=BC,则B是线段AC的中点;⑤在联合平面内,两条直线的位置干系有两种:平行与相交;⑥在8:30时,时钟上时针和分针的夹角是75∘.A. 1个B. 2个C. 3个D. 4个5.下图中能用一个字母表示的角()A. 三个B. 四个C. 五个D. 没有6.甲、乙两人都从A地出发,分别沿北偏东30∘、60∘的偏向抵达C地,且BC⊥AB,则B地在C地的()A. 北偏东30∘的偏向上B. 北偏西30∘的偏向上C. 南偏东30∘的偏向上D. 南偏西30∘的偏向上第 1 页7.钟表盘上指示的时间是10时40分,此刻时针与分针之间的夹角为()A. 60∘B. 70∘C. 80∘D. 85∘8.下列四个图形中,能同时用∠1,∠ABC,∠B三种要领表示联合个角的图形是()A. B.C. D.9.在8点30分时,时针上的时针与分针之间的夹角为()A. 85度B. 75度C. 70度D. 60度10.在时刻9:30时,时钟上的时针与分针间的夹角是()A. 75∘B. 90∘C. 105∘D. 120∘二、填空题(本大题共10小题,共30.0分)11.如图,∠1=∠2,则∠1+∠3=______度.12.如图,锐角的个数共有______个.13.如图,A岛在B岛的北偏东30∘偏向,C岛在B岛的北偏东80∘偏向,A岛在C岛北偏西40∘偏向,从A岛看B,C两岛的视角∠BAC是______ 度.14.如图,∠AOB=90∘,以O为极点的锐角共有______个.15.如图所示,能用一个字母表示的角有______个,以A为极点的角有______个,图中所有角有______个.16.如图,用字母A、B、C表示∠α、∠β.则∠α=______,∠β=______.17.把一个周角7平分,每一份是______ 度______ 分(准确到1分).18.如图,把一根小棒OC一端钉在点O,旋转小木棒,使它落在不同的位置上形成不同的角,此中∠AOC为______,∠AOD为______,∠AOE为______,木棒转到OB时形成的角为______.(回答钝角、锐角、直角、平角)19.当时针指向2:30时,时针与分针的夹角是______ 度.20.已知一个锐角为(5x−35)∘,则x的取值范畴是______.三、谋略题(本大题共4小题,共24.0分)21.钟面上的角的标题.(1)3点45分,时针与分针的夹角是几多?(2)在9点与10点之间,什么时候时针与分针成100∘的角?22.如图所示,直线AB上有一点O,恣意画射线OC,已知OD,OE分别是∠AOC,∠BOC的中分线,求∠DOE的度数.23.如图所示,OM是∠AOC的中分线,ON是∠BOC的中分线,(1)要是∠AOC=28∘,∠MON=35∘,求出∠AOB的度数;(2)要是∠MON=n∘,求出∠AOB的度数;(3)要是∠MON的巨细改变,∠AOB的巨细是否随之改变?它们之间有怎样的巨细干系?请写出来.24.如图,直线AB、CD相交于点O,∠EOD=∠AOC,OF中分∠AOE,若∠AOC=28∘,求∠EOF的度数.第 3 页四、解答题(本大题共2小题,共16.0分)25. 请将图中的角用不同要领表示出来,并填写下表:∠ABE∠1∠2∠326. 图中,以B 为极点的角有几个?把它们表示出来.以D 为极点的角有几个?把它们表示出来.答案和剖析【答案】 1. B 2. D 3. D 4. C5. A6. C7. C8. B 9. B 10. C11. 180 12. 5 13. 70 14. 515. 0;4;1516. ∠CAB 或∠BAC 表示∠α;∠CBA 或∠ABC 17. 51;2618. 锐角;直角;钝角;平角 19. 10520. 7<x <2521. 解:(1)如图,∵由3点到3点45分,分针转了270∘,时针转了270∘×112,∴时针与分针的夹角是:180∘−270∘×112=157.5∘;(2)设分针转的度数为x ,则时针转的度数为x 12, 得①90∘+x −x12=100∘, 解得,x =12011∘,12011∘÷6∘=2011(分);②90∘+x12−(x −180∘)=100∘,第 5 页解得,x =204011∘,204011∘÷6∘=34011(分);∴9点过2011或34011分钟时,时针与分针成100∘的角.22. 解:∵OD ,OE 分别是∠AOC ,∠BOC 的中分线,∴∠AOD =∠COD =12∠AOC ,∠BOE =∠COE =12∠BOC ,∵∠AOC +∠BOC =180∘,即2∠COD +2∠COE =180∘,∴∠DOE =∠DOC +∠COE =90∘.23. 解:(1)∵OM 是∠AOC 的中分线,∠AOC =28∘, ∴∠COM =12∠AOC =14∘,∵∠MON =35∘,∴∠CON =∠MON −∠COM =35∘−14∘=21∘, ∵ON 是∠BOC 的中分线,∴∠BOC =2∠CON =2×21∘=42∘,∴∠AOB =∠AOC +∠BOC =28∘+42∘=70∘;(2)∵OM 是∠AOC 的中分线,ON 是∠BOC 的中分线, ∴∠COM =12∠AOC ,∠CON =12∠BOC ,∴∠MON =∠COM +∠CON =12∠AOC +12∠BOC =12(∠AOC +∠BOC)=12∠AOB , ∵∠MON =n ∘,∴∠AOB =2∠MON =2n ∘;(3)根据(2)的推导,∠AOB 随∠MON 巨细的改变而改变,∠AOB =2∠MON . 24. 解:∵∠AOC =28∘, ∴∠BOD =∠AOC =28∘,∴∠AOE =180∘−56∘=124∘, 又∵OF 中分∠AOE , ∴∠EOF =62∘. 故答案为62∘.25. 解:由图可知,∠ABE =∠α,∠1=∠ABC ,∠2=∠ACB ,∠3=∠ACF . 故答案为∠α,∠ABC ,∠ACB ,∠ACF .26. 解:以B 为极点的角有3个,分别是:∠ABD 、∠ABC 、∠DBC ,以D 为极点的角有6个,分别是∠ADE 、∠EDC 、∠ADB 、∠BDC.∠ADC ,∠BDE 【剖析】1. 【剖析】本题主要考察了余角、补角和角的概念,能根据图形求出∠1+∠2=90∘是解此题的要害.求出∠1+∠2=90∘,根据∠1的度数是∠2的3倍得出4∠2=90∘,即可求出答案. 【解答】解:根据图形得出:∠1+∠2=180∘−90∘=90∘, ∵∠1的度数是∠2的3倍, ∴∠2+3∠2=90∘, 即4∠2=90∘,∴∠2=22.5∘.故选B.2. 解:A、以O为极点的角不止一个,不能用∠O表示,故A选项错误;B、以O为极点的角不止一个,不能用∠O表示,故B选项错误;C、以O为极点的角不止一个,不能用∠O表示,故C选项错误;D、能用∠1,∠AOB,∠O三种要领表示联合个角,故D选项正确.故选:D.根据角的四种表示要领和具体要求回答即可.本题考察了角的表示要领的应用,掌握角的表示要领是解题的要害.3. 解:A、平角是两条射线组成的一条直线,故此选项错误;B、角的边越长,与角的巨细无关,故此选项错误;C、大于直角且小于180∘的角叫做钝角,故此选项错误;D、两个锐角的和不一定是钝角,正确.故选:D.直接利用角的定义以及钝角的定义分别剖析得出答案.此题主要考察了角的定义以及钝角的定义,正确把握定义是解题要害.4. 解:①议决两点有且只有一条直线,故本小题错误;②应为相连两点的线段的长度叫做两点的隔断,故本小题错误;③射线与直线不能比较长短,故本小题错误;④因为A、B、C三点在联合直线上,且AB=BC,所以点B是线段AC的中点,故本小题正确;⑤在联合平面内,两条直线的位置干系有两种:平行,相交,故本小题正确;⑥在8:30时,时钟上时针和分针的夹角是75∘,正确.综上所述,正确的有④⑤⑥共3个.故选C.根据直线的性质,两点间隔断的概念,射线与直线的意义,线段中点的概念,联合平面内两条直线的位置干系,钟面角的谋略,对各小题逐一剖析鉴别后,利用消除法求解.本题考察了直线的性质,两点间隔断的定义,射线与直线的意义,线段中点的定义,两条直线的位置干系,钟面角,是基础题,熟记性质与概念是解题的要害.5. 解:∵只有在极点处只有一个角的环境,才可用极点处的一个字母来记这个角,∴图中能用一个字母表示的角有三个:∠A、∠B、∠C.故选:A.只有在极点处只有一个角的环境,才可用极点处的一个字母来记这个角,不然分不清这个字母结局表示哪个角,据此鉴别出图中能用一个字母表示的角有几个即可.此题主要考察了角的表示要领,要熟练掌握,解答此题的要害是要明确:角可以用一个大写字母表示,也可以用三个大写字母表示.此中极点字母要写在中间,唯有在极点处只有一个角的环境,才可用极点处的一个字母来记这个角,不然分不清这个字母结局表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.6. 解:∵∠1=30∘,BC⊥AB,∴∠2=30∘,∴∠3=∠2=30∘,∴B地在C地的南偏东30∘的偏向上,故选C.此题考察了学生对偏向角的理解及直角三角形的鉴定等知识点的掌握环境.7. 解:10×30+40×0.5−6×40=320−240=80(∘),故选:C.可画出草图,利用钟表表盘的特性解答.本题考察钟表时针与分针的夹角.在钟表标题中,常利用时针与分针转动的度数干系:)∘,而且利用开始时间时针和分针的位置干系建立分针每钟转动6∘,时针每分钟转动(12角的图形.8. 解:A、由于B为极点的角有四个,不可用∠B表示,故本选项错误;B、由于B为极点的锐角有一个,可用∠ABC,∠B,∠1三种要领表示联合个角,故本选项正确;C、由于B为极点的锐角有三个,不可用∠B表示,故本选项错误;D、由于B为极点的有二个,不可用∠B表示,故本选项错误.故选:B.根据角的表示要领对四个选项逐个举行剖析即可.本题考察了角的概念,要熟悉角的三种表示要领所适用的条件.9. 解:8点30分,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30∘,∴8点30分分针与时针的夹角是2.5×30∘=75∘.故选:B.根据钟表上12个数字,每相邻两个数字之间的夹角为30∘谋略得到答案.本题考察了钟面角,用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30∘.−6×30∘=105∘,10. 解:9:30时,时钟上的时针与分针间的夹角9×30∘+30∘×12故选:C.根据时针旋转的速度乘以时针旋转的时间,可得时针的旋转角,根据分针旋转的速度成分针旋转的时间,即是分针旋转的角度;再根据时针的角减去分针旋转的角即是时针与分针的夹角,可得答案.本题考察了钟面角,利用了时针的旋转角减去分针的旋转的角即是时针与分针的夹角.11. 解:∵∠2与∠3是邻补角,∴∠2+∠3=180∘,又∵∠1=∠2,∴∠1+∠3=180∘.充分运用邻补角的数量干系及等量代换解题.本题利用了两个补角的和为180∘和等量代换.12. 解:以OA为一边的角∠AOB=20∘,∠AOC=20∘+30∘=50∘,∠AOD=20∘+30∘+ 50∘=100∘(钝角舍去),以OB为一边的角∠BOC=30∘,∠BOD=50∘+30∘=80∘,以OC为一边的角∠COD=50∘.共有∠AOB,∠AOC,∠BOC,∠BOD,∠COD.故答案为5个.分别以OA、OB、OC为一边,数出所有角,相加即可.此题考察了角的数法,要以每条边为始边,数出所有角,要注意,不能漏数,也不能多数.13. 解:∵A岛在B岛的北偏东30∘偏向,即∠DBA=30∘,∵C岛在B岛的北偏东80∘偏向,即∠DBC=80∘;第 7 页∵A岛在C岛北偏西40,即∠ACE=40∘,∴∠ACB=180∘−∠DBC−∠ACE=180∘−80∘−40∘=60∘;在△ABC中,∠ABC=∠DBC−∠DBA=80∘−30∘=50∘,∠ACB=60∘,∴∠BAC=180∘−∠ABC−∠ACB=180∘−50∘−60∘=70∘.利用方位角的概念连合图形解答.解答此类题需要从运动的角度,正确画出方位角,再连合三角形的内角和定理与平行线的性质解答.14. 解:以OA为一边的角,∠AOD,∠AOC;以OD为一边的角,∠DOC,∠DOB;以OC为一边的角,∠COB.共5个角.故答案是:5.明确角的概念,依次数出以OA、OD、OC为一边的角的个数即可.此题考察了角的概念,首先要明白图中所示的角,再依次数出图中的角,要注意不要漏数,也不要多数.15. 解:能用一个字母表示的角有0个,以A为极点的角有4个,图中所有角有15个,故答案为:0,4,15.根据角的概念逐个得出即可.本题考察了角的概念,能数出相符的所有角是解此题的要害.16. 解:由图可知,∠α=∠CAB或∠BAC;∠β=∠CBA或∠ABC.故答案为∠CAB或∠BAC,∠CBA或∠ABC.根据角的定义找到图中角,用三个字母表示角时,将表示极点的字母置于三个字母中间.此题考察了角的多种表示要领,当极点处只有一个角时,此角可用多种要领表示,如有多个角,则不能只用一个字母表示,以免混淆.17. 解:由题意,得360∘÷7=51∘26′,故答案为:51,26.根据度分秒的除法,可得答案.本题考察了度分秒的换算,利用度分秒的除法是解题要害.18. 解:根据角的定义,∠AOC为锐角,∠AOD为直角,∠AOE为钝角,木棒转到OB时形成的角为平角.利用角的概念求解.互相垂直时,夹角是直角,即90∘;大于90∘小于180∘是钝角,小于90∘大于0∘是锐角,即是180度叫平角.由一点放射出两条射线,要是两条射线的夹角为90度叫直角,大于90度小于180度的叫钝角,在0度到90度之间的叫锐角,即是180度叫平角.19. 解:2:30时,时针与分针相距3.5份,2:30时,时针与分针的夹角是30∘×3.5=105∘,故答案为:105.根据钟面均匀分成12份,可得每份是30∘,根据时针与分针相距的份数乘以每份的度数,可得答案.本题考察了钟面角,利用了时针与分针相距的份数乘以每份的度数.20. 解:由题意可知:0<5x−35<90解得:7<x<25故答案为:7<x<25根据锐角的概念即可求出x的范畴.本题考察角的概念,解题的要害是根据锐角的定义列出不等式,本题属于基础题型.第 9 页21. (1)由图知,由3点到3点45分,分针转了270∘,时针转了270∘×112,180∘减去时针转的度数,即为夹角;(2)设分针转的度数为x ,则时针转的度数为x12,可根据干系式,①90∘+x −x12=100∘,②90∘+x12−(x −180∘)=100∘,求得x 值,根据分针走1分,其转动6∘,可得到时间; 本题考察了钟表分针所转过的角度谋略.在钟表标题中,常利用时针与分针转动的度数干系:分针每转动1∘时针转动(112)∘,而且利用开始时间时针和分针的位置干系建立角的图形.22. 由OD ,OE 分别为角中分线,利用角中分线定义得到两对角相等,而这四个角之和为一个平角,等量代换即可求出∠DOE 的度数.此题考察了角中分线定义,熟练掌握角中分线定义是解本题的要害.23. (1)根据角中分线的定义求出∠COM 的度数,再求出∠CON 的度数,然后根据角中分线的定义求出∠BOC 的度数,与∠AOC 相加即可得解; (2)根据角中分线的定义,用∠NOC 表示出∠BOC ,用∠COM 表示出∠AOC ,然后即可得解; (3)根据(2)的推导得解.本题考察了角中分线的定义以及角的谋略,熟记角中分线的定义是解题的要害.24. 先根据∠EOD =∠AOC =28∘,连合平角定义,求出∠EOA 的度数,再由角中分线的性质求出∠EOF 的度数即可.本题主要考察角中分线的概念,需要熟练掌握.25. 图中角的表示有多种,一个大写英文字母;三个大写英文字母;一个阿拉伯数字;一个希腊字母,择其适合者填表. 此题考察了角的表示要领,根据图形特点将每个角用合适的要领表示表现了一个别的数学基本功,必须重视这方面的训练.26. 先找到图中角的极点,再找到角的双方,从而找到角,以各极点为切入点,不要漏数也不要多数.此题考察了角的定义,也考察了角的表示,除用三个大写字母表示外,也可用数字或希腊字母来表示,但需在靠近极点处加上弧线.。

七年级数学上册角同步练习含解析新版新人教版

七年级数学上册角同步练习含解析新版新人教版

角一. 选择题.1.钟表在1点30分时,它的时针和分针所成的角度是().A.135° B.125° C.145° D.115°【答案】A【分析】根据钟表上的指针确定出所求角度数即可,时针每分钟走0.5°,钟面每小格的角度为6°.【详解】根据题意得:钟表在1点30分时,它的时针和分针所成的角度是135°,故选:A.2. 12点15分,钟表上时针与分针所成的夹角的度数为.A.B.C.D.【答案】C【分析】:时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12小时15分,求出时针与分针的夹角即可.【详解】12点15分时,时钟的时针与分针的夹角是6°×15−0.25×30°=82.5度.故选:C.【名师点睛】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每分钟转动6°,时针每小时转动30°,并且利用起点时间时针和分针的位置关系建立角的图形.3.已知,,则与的大小关系是A.B.C.D.无法确定【答案】A【解析】:分析:一度等于60′,知道分与度之间的转化,统一单位后比较大小即可求解.详解:∵∠α=21′,∠β=0.35°=21′,∴∠α=∠β.故选:A.4.如图,下列说法中不正确的是()A.∠1与∠AOB是同一个角B.∠AOC也可以用∠O表示C.∠β=∠BOC D.图中有三个角【答案】B【分析】:根据角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示进行分析即可.【详解】A、∠1与∠AOB是同一个角,说法正确;B、∠AOC也可用∠O来表示,说法错误;C、∠β与∠BOC是同一个角,说法正确;D、图中共有三个角:∠AOB,∠AOC,∠BOC,说法正确;故选:B.5.如图所示,从O点出发的五条射线,可以组成小于平角的角的个数是 ( )A.4个B.8个C.9个D.10个【答案】D【分析】:先以OA为角的一边,最大角为∠AOB,依次得到以OD、OC、OE、OB为另一边的五个角;然后利用同样的方法得到其他角,最后计算所有角的和即可求解.【详解】点O出发的五条射线,可以组成的小于平角的角有:∠AOB,∠AOC,∠AOD,∠AOE,∠BOC,∠BOD,∠BOE,∠COD,∠COE,∠DOE.故答案选D.6.钟表4点30分时,时针与分针所成的角的度数为( )A.45°B.30°C.60°D.75°【答案】A【分析】钟表上按小时算分12个格,每个格对应的是30度,分针走一圈时针走一格,30分钟走半格,4点30分时针和分针的夹角是45度。

16 专题十六:角度的计算(4)——整体思想(方法专题);人教版七年级上学期培优专题讲练(含答案)

16 专题十六:角度的计算(4)——整体思想(方法专题);人教版七年级上学期培优专题讲练(含答案)

专题十六:角度的计算(4)——整体思想方法点睛"整体思想"是中学数学中的一种重要思想方法,贯穿于中学学习的始终.在求角度的时候,有些问题若局部求解,往往无法解决;而从全局着眼,整体思考,则会使问题化繁为简。

在需要整体思想求角度的题型中,“设而不求”也是常用且通用的方法:设其中某个关系较多的“关键角”为x,然后以x去计算结论角,往往x能刚好抵消掉。

典例精讲1.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠DOB,求∠MON的大小.(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠DOB,求∠MON的大小.举一反三2.如图,直线AB、CD相交于点O,∠DOE=∠BOD,OF平分∠AOE.(1)判断OF与OD的位置关系,并说明理由;(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.3.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠DOB,当OB绕点O在∠AOD内旋转时,求∠MON的大小.(2)如图2.若∠BOC=20°,OM平分∠AOC,ON平分∠DOB,当∠COB绕点O在∠AOD内旋转时,求∠MON的大小.专题过关4.如图,射线OC在∠AOB的外部,∠BOC=a(a为锐角)且OM平分∠AOC,ON平分∠BOC.(1)若∠AOB=90°,求∠MON的度数;(2)若∠AOB=β(β为锐角)不变,当∠BOC的大小变化时,∠MON的度数是否变化?说明理由;(3)从(1)(2)的结果来看你能看出什么规律.5.如图,已知∠AOB内部有顺次的四条射线:OE、OC、OD、OF、OE平分∠AOC,OF 平分∠DOB(1)若∠AOB=160°,∠COD=40°,求∠EOF的度数;(2)若∠AOB=α,∠COD=β,求∠EOF的度数(3)从(1)、(2)的结果,你能看出什么规律吗?6.请从下列A、B两题中任选一题作答,我选择题A:如图1,已知∠AOB=90°,射线OC在∠AOB外部,且∠BOC=30°,若射线OD 平分∠BOC.求∠AOD的度数.B:如图2,已知∠AOB=90°,射线OC在∠AOB的内部,射线OD在∠COB内部,且∠COD=10°,若射线OM平分∠AOC,射线ON平分∠BOD,求∠MON的度数.7.已知:如图1,OB、OC分别为锐角∠AOD内部的两条动射线,当OB、OC运动到如图的位置时,∠AOC+∠BOD=100°,∠AOB+∠COD=40°,(1)求∠BOC的度数;(2)如图2,射线OM、ON分别为∠AOB、∠COD的平分线,求∠MON的度数.(3)如图3,若OE、OF是∠AOD外部的两条射线,且∠EOB=∠COF=90°,OP平分∠EOD,OQ平分∠AOF,当∠BOC绕着点O旋转时,∠POQ的大小是否会发生变化,若不变,求出其度数,若变化,说明理由.8.如图①,∠AOB=∠COD=90°,OM平分∠AOC,ON平分∠BOD.(1)已知∠BOC=20°,且∠AOD小于平角,求∠MON的度数;(2)若(1)中∠BOC=α,其它条件不变,求∠MON的度数;(3)如图②,若∠BOC=α,且∠AOD大于平角,其它条件不变,求∠MON的度数.【参考答案】1.解:(1)∵OM平分∠AOB,ON平分∠DOB,∴∠MOB=12∠AOB,∠NOB=12∠DOB,∴∠MON=∠MOB+∠BON=12(∠AOB+∠DOB)=12∠AOD=80°;(2)OM平分∠AOC,ON平分∠DOB,∴∠MOC=12∠AOC,∠NOB=12∠DOB,∴∠MON=∠MOC+∠BON﹣∠BOC=12(∠AOC+∠DOB)﹣∠BOC=70°.2.解:(1)OF与OD的位置关系:互相垂直,理由:∵OF平分∠AOE,∴∠AOF=∠FOE,∵∠DOE=∠BOD,∴∠AOF+∠BOD=∠FOE+∠DOE=12×180°=90°,∴OF与OD的位置关系:互相垂直;(2)∵∠AOC:∠AOD=1:5,∴∠AOC=16×180°=30°,∴∠BOD=∠EOD=30°,∴∠AOE=120°,∴∠EOF=12∠AOE=60°.3.解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠MOB=12∠AOB,∠BON=12∠BOD.∴∠MON=∠MOB+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD)=12×160°=80°.(2)∵OM平分∠AOC,ON平分∠BOD,∴∠∠MOC=12∠AOC,∠BON=12∠BOD.∴∠MON=∠MOC+∠BON﹣∠BOC=12∠AOC+12∠BOD﹣∠BOC=12(∠AOC+∠BOD)﹣∠BOC=12×180°﹣20°=70°4.解:(1)因为ON平分∠BOC,OM平分∠AOC,所以∠NOC=12∠BOC,∠MOC=12∠AOC,所以∠MON=∠MOC﹣∠NOC=12(∠AOC﹣∠BOC)=12(∠AOB+∠BOC﹣∠BOC)=12∠AOB=12×90°=45°;(2)由(1)的结论可知∠MON=12∠AOB,所以若∠AOB=β(β为锐角)不变,当∠BOC的大小变化时,∠MON的度数不变化,即∠MON=12β;(3)从(1)(2)的结果来看,射线OC在∠AOB的外部,∠BOC=a(a为锐角)且OM平分∠AOC,ON平分∠BOC,若∠AOB=β(β为锐角)不变,当∠BOC的大小变化时,∠MON的度数不变化,即∠MON=12∠AOB=12β.5.解:(1)∵∠EOF=∠EOC+∠DOC+∠FOD=12∠AOC+∠COD+12∠BOD=12∠AOB+12∠COD∵∠AOB=160°,∠DOC=40°∴∠EOF=80°+20°=100°.(2),∵∠EOF=∠EOC+∠DOC+∠FOD =12∠AOC+∠COD+12∠BOD=12∠AOB+12∠COD∵∠AOB=α,∠COD=β,∴∠EOF=12α+12β=12(α+β).(3)若∠AOB内部有顺次的四条射线:OE、OC、OD、OF,OE平分∠AOC,OF平分∠DOB,那么∠EOF=12(∠AOB+∠COD).6.解:A、∵射线OD平分∠BOC,∴∠BOD=12∠BOC=12×30°=15°,∵∠AOD=∠AOB+∠BOD,∴∠AOD=90°+15°=105°;B、∵射线OM平分∠AOC,射线ON平分∠BOD,∴∠MON=12∠AOC,∠NOD=12∠BOD,∵∠MON=∠MOC+∠NOD+∠COD,∴∠MON=12∠AOC+12∠BOD+∠COD,∴∠MON=12(∠AOC+∠BOD)+∠COD,∵∠AOB=∠AOC+∠BOD+∠COD,∴∠AOC+∠BOD=∠AOB﹣∠COD=90°﹣10°=80°,∴∠MON=12×80°+10°=50°.7.解:(1)∵∠AOC+∠BOD=100°,∴∠AOB+∠BOC+∠BOC+∠COD=100°,又∵∠AOB+∠COD=40°,∴2∠BOC=100°﹣40°=60°,∴∠BOC=30°,答:∠BOC的度数为30°;(2)∵OM是∠AOB的平分线,∴∠AOM=∠BOM=12∠AOB,又∵ON是∠COD的平分线,∴∠CON=∠DON=12∠COD,∴∠DON+∠BOM=12(∠COD+∠AOB)=12×40°=20°,∴∠MON=∠BOM+∠BOC+∠CON=20°+30°=50°,答:∠MON的度数为50°;(3)∠POQ的大小不会变化,理由如下:∵∠EOB=∠COF=90°,∠BOC=30°,∴∠EOF=90°+90°﹣30°=150°,∵∠AOD=∠AOB+∠BOC+∠COD=40°+30°=70°,∴∠AOF+∠DOE=∠EOF﹣∠AOD=150°﹣70°=80°,又∵OP平分∠EOD,OQ平分∠AOF,∴∠AOQ=∠FOQ=12∠AOF,∠DOP=∠EOP=12∠DOE,∴∠AOQ+∠DOP=12(∠AOF+∠DOE)=12×80°=40°,∴∠POQ=∠AOQ+∠DOP+∠AOD=40°+70°=110°.8.解:(1)∵∠AOB=∠COD=90°,∠BOC=20°,∴∠AOC=∠BOD=90°﹣20°=70°.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=35°,∴∠MON=∠MOC+∠COB+∠BON=35°+20°+35°=90°;(2)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°﹣α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°−12α,∴∠MON=∠MOC+∠COB+∠BON=45°−12α+α+45°−12α=90°;(3)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°+α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°+12α,∴∠MON=∠MOC﹣∠COB+∠BON=45°+12α﹣α+45°+12α=90°.。

角七年级数学人教版(上册)(解析版)

角七年级数学人教版(上册)(解析版)

第四章几何图形初步
4.3.1角
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
1.下列关于平角、周角的说法正确的是
A.平角是一条直线
B.周角是一条射线
C.反向延长射线OA,就形成一个平角
D.两个锐角的和不一定小于平角
2.如图,必须用三个大写字母表示且小于180°的角共有
A.10个B.15个
C.20个D.25个
3.如图,下列说法正确的是
A.∠1就是∠ABC
B.∠2就是∠ADB
C.以B为顶点的角有三个,它们是∠1,∠2,∠ABC
D.∠ADB也可表示为∠D
4.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为
A.45°B.55°C.135°D.145°
5.时钟显示为8:30时,时针与分针所夹的角是
A.90°B.120°
C.75°D.84°
6.∠1=45°24′,∠2=45.3°,∠3=45°18′,则
A.∠1=∠2 B.∠2=∠3
C.∠1=∠3 D.以上都不对
二、填空题:请将答案填在题中横线上.
7.如图,∠1还可以表示成__________或__________;∠β还可以表示成__________或__________.。

人教版七年级数学上册 角度的计算习题练习 (附答案)

人教版七年级数学上册  角度的计算习题练习 (附答案)

七年级上册数学角度的计算习题一、选择题1.如图,∠AOB是一直角,∠AOC=40°,OD平分∠BOC,则∠AOD等于()A. 65°B. 50°C. 40°D. 25°2.在15°、65°、75°、135°的角中,能用一副三角尺画出来的有()A. 1个B. 2个C. 3个D. 4个3.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A . 90°B . 120°C . 160°D . 180°4.一个钝角与一个锐角的差是( )A . 锐角B . 钝角C . 直角D . 不能确定 5.如图,∠AOB 是直角,∠COD 也是直角,若∠AOC =α,则∠BOD 等于 ( ).A .90°+αB .90°-αC .180°+αD .180°-α6.如图,射线OB 、OC 将∠AOD 分成三部分,下列判断错误的是( )DABC OA.如果∠AOB=∠COD,那么∠AOC=∠BODB.如果∠AOB>∠COD,那么∠AOC>∠BODC.如果∠AOB<∠COD,那么∠AOC<∠BODD.如果∠AOB=∠BOC,那么∠AOC=∠BOD二、填空题7.比较两角大小的方法有:(1)法;(2)法.三、解答题8.如图,将一副三角尺的两个直角顶点O重合在一起,在同一平面内旋转其中一个三角尺.(1)如图1,若∠BOC=70°,求∠AOD的度数.(2)如图2,若∠BOC=50°,求∠AOD的度数.(3)如图1,请猜想∠BOC与∠AOD的关系,并写出理由.9.下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°,求∠AOC的度数.解:根据题意可画出图∵∠AOC=∠BOA-∠BOC=70°-15°=55°∴∠AOC=55°若你是老师,会判小马虎满分吗?若会,说明理由.若不会,给出你认为正确的解法.10.把一副三角尺如图所示拼在一起.(1)写出图中∠A、∠B、∠BCD、∠D、∠AED的度数;(2)用小于号“<”将上述各角连接起来.11.如图所示,点O在直线AB上,并且∠AOC=∠BOC=90°,∠EOF=90°,试判断∠AOE 和∠COF,∠COE和∠BOF的大小关系.12.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD.答案解析1.【答案】A【解析】∵∠AOB是一直角,∠AOC=40°,∴∠COB=50°,∵OD平分∠BOC,∴∠COD=25°,∵∠AOD=∠AOC+∠COD,∴∠AOD=65°.故选A.2.【答案】C【解析】15°=45°-30°,65°不能画出,75°=30°+45°,135°=45°+90°,所以能用一副三角尺画出来的有15°、75°,135°共3个,故选C.3.【答案】D【解析】设∠AOD=a,∠AOC=90°+a,∠BOD=90°-a,所以∠AOC+∠BOD=90°+a+90°-a=180°.故选D.4.【答案】D【解析】一个钝角与一个锐角的差可能是锐角、直角也可能是钝角.故选D.5.【答案】B6.【答案】D【解析】A、如果∠AOB=∠COD,那么∠AOC=∠BOD,本选项正确;B、如果∠AOB>∠COD,那么∠AOC>∠BOD,本选项正确;C、如果∠AOB<∠COD,那么∠AOC<∠BOC,本选项正确;D、如果∠AOB=∠BOC,那么∠AOC=∠BOD,本选项错误.故选D.7.【答案】(1)度量;(2)叠合【解析】角的大小比较的两种方法:(1)度量法,即用量角器量角的度数,角的度数越大,角越大.(2)叠合法,即将两个角叠合在一起比较,使两个角的顶点及一边重合,另一边都不落在重合边的同侧,观察另一边的位置,据此判断即可.8.【答案】解:(1)∵∠BOC+∠BOD=90,∠BOC=70°,∴∠BOD=20°,∴∠AOD=∠AOB+∠BOD=110°.(2)∵∠AOB=∠DOC=90°,又∵∠AOB+∠AOD+∠DOC+∠BOC=360°,∴∠BOC+∠AOD=180°∵∠BOC=50°,∴∠AOD=180-∠BOC=130°.(3)结论:∠BOC+∠AOD=180°.理由:∵∠AOB=90°,∠COD=90°,∴∠BOC+∠AOD=(90°-∠AOC)+(90°+∠AOC)=90°-∠AOC+90°+∠AOC=180°,∴∠BOC+∠AOD=180°.【解析】(1)∠BOC和∠BOD互余,故∠BOD=20°,故可知∠AOD的度数.(2)利用∠BOC与∠AOD互补求∠AOD度数.(3)根据角的互补,叠和部分恰好为∠AOD的补角,故∠BOC和∠AOD的和始终等于180度.9.【答案】解:不会,如图,当OC在∠AOB的内部时,∠AOC=∠BOA-∠BOC=55°,当OC在∠AOB的外部时,∠AOC=∠BOA+∠BOC=85°,故∠AOC的度数是55°或85°.【解析】在同一平面内,∠BOA与∠BOC可能存在两种情况,即当OC在∠AOB的内部或OC在∠AOB的外部.10.【答案】解:(1)∠A=30°,∠B=90°,∠BCD=150°,∠D=45°,∠AED=135°;(2)∠A<∠D<∠B<∠AED<∠BCD.【解析】(1)一副三角尺一个是等腰直角三角形,另一个是一个角为30°的直角三角形,看图写出各个角的度数,(2)按角的大小顺序连接.11.【答案】解:因为∠EOF=∠COF+∠COE=90°,∠AOC=∠AOE+∠COE=90°,即∠AOE和∠COF都与∠COE互余,根据同角的余角相等得:∠AOE=∠COF,同理可得出:∠COE=∠BOF.【解析】根据已知得出∠AOE和∠COF都与∠COE互余,进而得出∠AOE=∠COF,即可得出:∠COE=∠BOF.12.【答案】解:∵∠AOC=75°,∠BOC=30°,∴∠AOB=∠AOC-∠BOC=75°-30°=45°,又∵∠BOD=75°,∴∠AOD=∠AOB+∠BOD=45°+75°=120°.故答案为120°.【解析】根据∠AOC=∠BOD=75°,∠BOC=30°,利用角的和差关系先求出∠AOB的度数,再求∠AOD.。

最新部编版人教初中数学七年级上册《角的计算 专题训练习题及答案》精品优秀实用打印版测试题

最新部编版人教初中数学七年级上册《角的计算 专题训练习题及答案》精品优秀实用打印版测试题

前言:
该专题训练习题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。

以高质量的专题训练习题助力考生查漏补缺,在原有基础上更进一步。

(最新精品专题训练习题)
专题训练(九) 角的计算
类型1利用角度的和、差关系
找出待求的角与已知角的和、差关系,根据角度和、差来计算.
1.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD的度数.
解:因为∠AOC=75°,∠BOC=30°,
所以∠AO B=∠AOC-∠BOC=75°-30°=45°.
又因为∠BOD=75°,
所以∠AOD=∠AOB+∠BOD=45°+75°=120°.
2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)
(1)如图1所示,在此种情形下,当∠DAC=4∠BAD时,求∠CAE的度数;
(2)如图2所示,在此种情形下,当∠ACE=3∠BCD时,求∠ACD的度数.
解:(1)因为∠BAD+∠DAC=90°,∠DAC=4∠B AD,
所以5∠BAD=90°,即∠BAD=18°.
1。

新人教版七年级数学上册专题训练:角的计算(含答案).优选

新人教版七年级数学上册专题训练:角的计算(含答案).优选
因为∠AOB=2∠BOC, 所以∠BOC=2x°. 所以 3x+3x+2x+x=360. 解得 x=40. 所以∠AOB=40°,∠COD=120°.
类型 4 利用分类讨论思想求解 在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性. 2
8.已知∠AOB=75°,∠AOC=3∠AOB,OD 平分∠AOC,求∠BOD 的大小. 2
专题训练 角的计算
类型 1 利用角度的和、差关系 找出待求的角与已知角的和、差关系,根据角度和、差来计算.
1.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD 的度数.
解:因为∠AOC=75°,∠BOC=30°, 所以∠AO B=∠AOC-∠BOC=75°-30°=45°. 又因为∠BOD=75°, 所以∠AOD=∠AOB+∠BOD=45°+75°=120°.
数,建立方程,通过解方程使问题得以解决. 2
5.一个角的余角比它的补角的3还少 40°,求这个角的度数. 解:设这个角的度数为 x°,根据题意,得 2 90-x=3(180-x)-40. 解得 x=30. 所以这个角的度数是 30°.
6.如图,已知∠AOE是平角 ,∠DOE=20°,OB 平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC的度数.
专题训练 整式的加减运算
计算 : (1)(钦南期末)a2b+3ab2-a2b; 解:原式=3ab2.
(2)2(a-1)-(2a-3)+3; 解:原式=4.
(3)2(2a2+9b)+3(-5a2-4b); 解:原式=-11a2+6b.
(4)3(x3+2x2-1)-(3x3+4x2-2); 解:原式=2x2- 1.
解:(1)因为 OC 是∠AOB 的平分线, 1

新人教版七年级数学上册§4.3.1角第一课时练习(含参考答案与试题解析)

新人教版七年级数学上册§4.3.1角第一课时练习(含参考答案与试题解析)

新人教版七年级数学上册第四章§角课时练习一.选择题〔共5小题〕1.如图所示,对所给图形与说法正确的个数是〔〕A.0B.1C.2D.32.下列关于角的说法正确的是〔〕A.角是由两条射线组成的图形B.角的边越长,角越大C.在角一边延长线上取一点D.角可以看作由一条射线绕着它的端点旋转而形成的图形3.如图,下列说法正确的是〔〕A.∠1与∠OAB表示同一个角B.∠AOC也可以用∠O表示C.图中共有三个角:∠AOB、∠AOC和∠BOCD.∠β表示的是∠COA4.如图,下列说法错误的是〔〕A.∠DAE也可以表示为∠AB.∠1也可以表示为∠ABCC.∠BCE也可以表示为∠CD.∠ABD是一个平角5.如图,∠AOB是直角,OP i〔i=1,2,3,4,5,6〕是射线,则图中共有锐角〔〕A.28个B.27个C.24个D.22个二.填空题〔共7小题〕6.如图,角的顶点是,边是,请你用四种不同的记法表示这个角为、、、.7.把一个周角分成7等份,每份是〔精确到1′〕.8.周角=平角= 直角.9.把15°30′化成度的形式,则15°30′=_________度.10.把角度化为度、分的形式,则20.5°=20°′.11.30.54°=°′″.12.用度表示:26°30′36″=°.三.解答题〔共2小题〕13.如图,写出:〔1〕能用一个字母表示的角:;〔2〕以B为顶点的角:;〔3〕图中共有几个小于平角的角?.14.写出如图的符合下列条件的角.〔图中所有的角均指小于平角的角〕.〔1〕能用一个大写字母表示的角;〔2〕以点A为顶点的角;〔3〕图中所有的角〔可用简便方法表示〕.新人教版七年级数学上册第四章§角课时练习参考答案与试题解析一.选择题〔共5小题〕1.如图所示,对所给图形与说法正确的个数是〔〕A.0B.1C.2D.3考点:角的概念;直线、射线、线段.分析:利用角的定义以与射线、直线、线段的定义分别分析得出即可.解答:解:①应表示为∠BOA,故此选项错误;②应表示为∠COA,∠AOB,∠COA,故此选项错误;③直线不能看作角,故此选项错误;④正确;⑤正确;故选:C.点评:此题主要考查了角的定义以与射线、直线、线段的定义,正确把握相关定义是解题关键.2.下列关于角的说法正确的是〔〕A.角是由两条射线组成的图形B.角的边越长,角越大C.在角一边延长线上取一点D.角可以看作由一条射线绕着它的端点旋转而形成的图形考点:角的概念.分析:根据角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边,角的大小与边的长度无关分别进行分析.解答:解:A、角是由两条射线组成的图形,说法错误;B、角的边越长,角越大,说法错误;C、在角一边延长线上取一点,说法错误,角的边是射线,只有反向延长线;D、角可以看作由一条射线绕着它的端点旋转而形成的图形,说法正确;故选:D.点评:此题主要考查了角的概念,关键是掌握有公共端点是两条射线组成的图形叫做角.3.如图,下列说法正确的是〔〕A.∠1与∠OAB表示同一个角B.∠AOC也可以用∠O表示C.图中共有三个角:∠AOB、∠AOC和∠BOCD.∠β表示的是∠COA考点:角的概念.分析:直接利用角的概念以与角的表示方法,进而分别分析得出即可.解答:解:A、∠1与∠OAB表示同一个角,错误;B、∠AOC也可以用∠O表示,错误;C、图中共有三个角:∠AOB、∠AOC和∠BOC,正确;D、∠β表示的是∠COA,错误.故选:C.点评:此题主要考查了角的概念,正确表示一个角是解题关键.4.如图,下列说法错误的是〔〕A.∠DAE也可以表示为∠AB.∠1也可以表示为∠ABCC.∠BCE也可以表示为∠CD.∠ABD是一个平角考点:角的概念.分析:根据角的表示方法解答:在本题中,当顶点处只有一个角时,可用一个大写字母表示,也可用三个大写字母表示,顶点处有多个角时,不能只用一个大写字母表示,依次推理即可得出结论.解答:解:A、A处就有一个角,∴∠DAE也可以表示为∠A正确,B、∠1也可以表示为∠ABC正确,C、∵C处有多个角,∴∠BCE不可以表示为∠C,故C错误,D、ABD在一条线上,∴∠ABD是一个平角正确,故选C.点评:此题考查了角的表示方法,在用三个大写英文字母表示角时,表示顶点的字母应位于中间位置,难度适中.5.如图,∠AOB是直角,OP i〔i=1,2,3,4,5,6〕是射线,则图中共有锐角〔〕A.28个B.27个C.24个D.22个考点:角的概念.专题:规律型.分析:分别以OP1、OP2等为一边,数出所有角,相加即可.解答:解:以OP1为一边的角有7个,以OP2为一边的角有6个,…以OP6为一边的角1个.∴共有角1+2+3+4+5+6+7=28个.去掉∠AOB〔直角〕,还有27个.故选B.点评:此题考查了角的数法,要以每条边为始边,数出所有角,要注意,不能漏数,也不能多数.二.填空题〔共7小题〕6.如图,角的顶点是O,边是ON,OM,请你用四种不同的记法表示这个角为∠MON、∠1、∠O、∠α.考点:角的概念.分析:根据角是有公共顶点的两条射线组成的图形,可得角的顶点,角的两边,根据角的表示方法,可得角的表示.解答:解:如图:,角的顶点是O,边是ON,OM,请你用四种不同的记法表示这个角为∠MON、∠1、∠O、∠α,故答案为:O,ON,0M,∠MON、∠1、∠O、∠α.点评:本题考查了角的概念,每种角的表示方法都要用角的符号表示,注意利用三个字母表示时,要把顶点的字母写在中间的位置.7.把一个周角分成7等份,每份是51°24′〔精确到1′〕.考点:角的概念.分析:根据1周角=360°即可得出结论.解答:解:∵1周角=360°,∴一个周角分成7等份,每份==51°24′.故答案为:51°24′.点评:本题考查的是角的概念,熟知周角的定义是解答此题的关键.8.周角=平角=1直角.考点:角的概念.分析:1周角=360°,求出周角的度数,根据1平角=180°和1直角=90°即可求出答案.解答:解:∵周角=×360°=90°,∴90°÷180°=,90°÷90°=1,∴周角=平角=1直角,故答案为:,1.点评:本题考查了对角的有关概念的计算,注意:1周角=360°,1平角=180°,1直角=90°.9.把15°30′化成度的形式,则15°30′=15.5度.考点:度分秒的换算.分析:根据度、分、秒之间的换算关系,先把30′化成度,即可求出答案.解答:解:∵30′=0.5度,∴15°30′=15.5度;故答案为:15.5.点评:此题考查了度分秒的换算,掌握1°=60′,1′=60″是解题的关键,是一道基础题.10.把角度化为度、分的形式,则20.5°=20°30′.考点:度分秒的换算.分析:1°=60′,可得0.5°=30′,由此计算即可.解答:解:20.5°=20°30′.故答案为:30.点评:本题考查了度分秒之间的换算,相对比较简单,注意以60为进制即可.11.30.54°=30°32′24″.考点:度分秒的换算.分析:根据度化成分乘以60,分化成秒乘以60,不到一度的化成分,不到一分的化成秒,可得答案.解答:解:30.54°=30°32′24″,故答案为:30,32,24.点评:本题考查了度分秒的换算,不满一度的化成分,不满一分的化成秒.12.用度表示:26°30′36″=26.51°.考点:度分秒的换算.分析:根据度分秒间的进率是60,小的单位化成大的单位除以进率,可得答案.解答:解:26°30′36″=26°330.6′=26.51°,故答案为:26.51.点评:本题考查了度分秒的换算,先把秒化成分,再把分化成度.三.解答题〔共2小题〕13.如图,写出:〔1〕能用一个字母表示的角:∠A,∠C;〔2〕以B为顶点的角:∠ABE,∠ABC,∠EBC;〔3〕图中共有几个小于平角的角?7个.考点:角的概念.分析:根据角的概念和角的表示方法,依题意求得答案.解答:解:〔1〕能用一个字母表示的角有2个:∠A,∠C;〔2〕以B为顶点的角有3个:∠ABE,∠ABC,∠EBC;〔3〕图中小于平角的角有7个:∠A,∠C,∠ABE,∠ABC,∠EBC,∠AEB,∠BEC.故答案是:∠A,∠C;∠ABE,∠ABC,∠EBC;7个.点评:利用了角的概念求解.从一点引出两条射线组成的图形就叫做角.角的表示方法一般有以下几种:1、角+3个大写英文字母;2、角+1个大写英文字母;3、角+小写希腊字母;4、角+阿拉伯数字.14.写出如图的符合下列条件的角.〔图中所有的角均指小于平角的角〕.〔1〕能用一个大写字母表示的角;〔2〕以点A为顶点的角;〔3〕图中所有的角〔可用简便方法表示〕.考点:角的概念.分析:〔1〕利用角的表示方法进而得出答案;〔2〕利用角的表示方法进而得出答案;〔3〕利用角的表示方法进而得出答案.解答:解:〔1〕能用一个大写字母表示的角为:∠B,∠C;〔2〕以点A为顶点的角为:∠CAD,∠BAD,∠BAC;〔3〕图中所有的角有:∠C,∠B,∠1,∠2,∠3,∠4,∠CAB.点评:此题主要考查了角的表示方法,正确把握角的定义是解题关键.。

人教版七年级数学上册期末求角的度数及证明专题练习-带答案

人教版七年级数学上册期末求角的度数及证明专题练习-带答案

人教版七年级数学上册期末求角的度数及证明专题练习-带答案学校:___________班级:___________姓名:___________考号:___________1.如图,直线AB,CD相交于点O,EO⊥AB,垂足为O,⊥EOC=35°.求⊥BOD的度数.2.如图,⊥AOC=30°,⊥BOC=80°,OC平分⊥AOD.求⊥BOD的度数.3.如图,直线AB,CD相交于点O,OE平分⊥BOC,OF⊥OE,且⊥AOD=66°.求⊥BOF的度数.4.如图,已知OB,OC,OD是⊥AOE内的三条射线,OB平分⊥AOE,OD平分⊥COE.(1)若⊥AOB=70°,⊥DOE=20°,求⊥BOC的度数.(2)若⊥AOE=136°,AO⊥CO,求⊥BOD的度数.(3)若⊥DOE=20°,⊥AOE+⊥BOD=220°,求⊥BOD的度数.5.如图,直线AB,CD和EF相交于点O.(1)写出⊥AOC,⊥BOF的对顶角.(2)如果⊥AOC=70°,⊥BOF=20,求⊥BOC和⊥DOE的度数.6.如图,OD是⊥BOC的平分线,OE是⊥AOC的平分线,⊥AOB︰⊥BOC=3︰2,若⊥BOE=13°,求⊥DOE的度数.7.如图,已知直线AB和CD相交于点O,∠COE为直角,OF平分∠AOE,∠COF=28°.求∠BOE的度数.8.如图,点O在直线AB上,∠COE是直角,OF平分∠AOE,∠COF=30°,求∠EOB的大小.9.如图所示,已知⊥AOB=90°,⊥BOC=30°,OM平分⊥AOC,ON平分⊥BOC,求⊥MON的度数?10.如图,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.11.如图∠AOB=∠COD=90°,∠DOA=150°,OM是∠AOC的平分线.求∠BOC和∠AOM 的度数.12.如图,OB是⊥AOC的角平分线,OD是⊥COE的角平分线,如果⊥AOB=40°,⊥COE=60°则⊥BOD的度数为多少度?13.如图,已知⊥AOC=90°,⊥BOD=90°,⊥BOC=38°19′,求⊥AOD的度数.14.如图,直线AB、CD相交于点O,⊥EOC=90°,OF是⊥AOE的角平分线,⊥COF=34°,求⊥BOD的度数.15.如图,O为直线AB上的一点,且⊥COD为直角,OE平分⊥BOD,OF平分⊥AOE,若⊥BOC=54°,求⊥COE和⊥DOF的度数.16.已知:如图,点O在直线AC上,OD平分⊥AOB,∠BOE=12∠EOC,∠DOE=70∘求:⊥EOC的度数.17.如图,直线AB,CD相交于点O,OM⊥AB于点O.(1)若⊥BOC=2⊥AOC,求⊥BOD的度数.(2)若⊥1=⊥2,则ON与CD垂直吗?如果垂直,请说明理由.18.如图,OE为⊥AOD的平分线,⊥COD=13,⊥COD=20°求:①⊥EOC的大小②⊥AOC的大小19.如图,直线AB,CD相交于点O,OE,OF是两条射线,⊥BOE=50°,OD平分⊥AOE.(1)求⊥AOD的度数.(2)若⊥BOF与⊥BOE互余,求⊥COF的度数.20.如图,直线AB与CD相交于点O,射线OE平分⊥BOF.(1)⊥AOD的对顶角是,⊥BOC的邻补角是(2)若⊥AOD=20°,⊥DOF :⊥FOB=1:7,求⊥EOC的度数.答案解析部分1.【答案】解:∵EO⊥AB∴⊥AOE=90° ∵⊥EOC=35°∴⊥AOC=⊥AOE-⊥EOC=55° ∴⊥BOD=⊥AOC=55°2.【答案】解:∵⊥AOC=30°,OC 平分⊥AOD∴⊥COD=⊥AOC=30° ∵⊥BOC=80°∴⊥BOD=⊥BOC-⊥COD=50°.3.【答案】解:∵⊥AOD=66°∴⊥BOC=⊥AOD=66° ∵OE 平分⊥BOC ∴⊥BOE=12⊥BOC=33°∵OF⊥OE ∴⊥EOF=90° ∴⊥BOF=90°-33°=57°.4.【答案】(1)解:∵OB 平分⊥AOE ,OD 平分⊥COE∴⊥BOE=⊥AOB=70°,⊥COE=2⊥DOE=40° ∴⊥BOC=⊥BOE-⊥COE=70°-40°= 30°. (2)解:∵OB 平分⊥AOE ,OD 平分⊥COE∴∠BOE =12∠AOE ,∠DOE =12∠COE .∵⊥BOD=⊥BOE-⊥DOE∴∠BOD =∠BOE −∠DOE =12(∠AOE −∠COE )=12∠AOC∵AO⊥CO ∴⊥AOC=90° ∴⊥BOD=45°.(3)解:∵OB 平分⊥AOE ∴⊥AOE=2⊥BOE .∵⊥AOE+⊥BOD=220° ∴2⊥BOE+⊥BOD=220°. ∵⊥BOE-⊥BOD=⊥DOE=20° ∴2⊥BOE-2⊥BOD=40° 即2⊥BOE=40°+2⊥BOD∴2⊥BOE+⊥BOD=40°+3⊥BOD=220° ∴3⊥BOD=180° ∴⊥BOD=60°.5.【答案】(1)⊥ AOC 的对顶角为⊥BOD ,⊥BOF 的对顶角为⊥AOE .(2)∵⊥AOC=70°,⊥AOC+⊥BOC= 180° ∴⊥BOC= 110°. ∵⊥BOF= 20°∴⊥COF=⊥BOC-⊥BOF= 90° ∴⊥DOE=⊥COF= 90°.6.【答案】解:设⊥AOB=3x ,⊥BOC=2x.则⊥AOC=⊥AOB+⊥BOC=5x. ∵OE 是⊥AOC 的平分线 ∴⊥AOE═12⊥AOC =52x∴⊥BOE=⊥AOB-⊥AOE=3x−52x =12x∵⊥BOE=13° ∴12x =13°解得:x=26°∵OD 是⊥BOC 的平分线∴⊥BOD =12⊥BOC =x =26°∴⊥DOE=⊥DOB+⊥BOE=26°+13°=39°.7.【答案】解:∵∠COE 为直角∠COF =28°∴∠EOF =90°−28°=62° ∵OF 平分∠AOE ∴∠AOF =∠EOF =62°∴∠EOB =180°−62°−62°=56°.8.【答案】解:∵∠COE 是直角∴∠COE =90°∵ ∠COE =∠COF +∠FOE∴∠FOE =∠COE −∠COF =90°−30°=60°∵OF 平分∠AOE∴∠FOE =∠AOF =12∠AOE ∴∠AOE =2∠FOE =120° ∵∠AOE +∠BOE =180° ∴∠BOE =180°−120°=60°9.【答案】解:∵⊥AOB =90°,⊥BOC =30°∴⊥AOC =90°+30°=120° ∵OM 平分⊥AOC∴⊥AOM =12⊥AOC =12(⊥AOB+⊥BOC )=12×120°=60°∵ON 平分⊥BOC∴⊥CON =12⊥BOC =12×30°=15°∴⊥MON =⊥AOC ﹣⊥AOM ﹣⊥CON =120°﹣60°﹣15°=45°.10.【答案】解:∵∠FOC =90°∴∠1+∠3=90° ∴∠3=90°−40°=50°∠AOD =180°−∠BOD =180°−∠3=180°−50°=130°∴∠2=∠AOD ÷2=130°÷2=65° 故⊥2=65°,⊥3=50°.11.【答案】解:因为 ∠DOC =∠AOB =90°,∠AOC =150°所以 ∠BOC =360°−∠DOC −∠AOB −∠AOD =30° 所以 ∠AOC =∠AOB +∠BOC =120° 因为OM 平分 ∠AOC所以 ∠AOM =12∠AOC =60° .12.【答案】解:∵OB 是⊥AOC 的角平分线,OD 是⊥COE 的角平分线,⊥AOB=40°,⊥COE=60°∴⊥BOC=⊥AOB=40°,⊥COD=12⊥COE=12×60°=30°∴⊥BOD=⊥BOC+⊥COD=40°+30°=70°.13.【答案】解:∵⊥BOD=90°,⊥BOC=38°19′∴⊥COD=⊥BOD-⊥BOC=51°41′∵⊥AOC=90°∴⊥AOD=⊥AOC+⊥COD=141°41′答:⊥AOD的度数为141°41′.14.【答案】解:∵∠EOC=90°∠COF=34°∴∠EOF=56°∵OF是⊥AOE的角平分线∴∠AOF=∠EOF=56°∴∠AOC=∠AOF−∠COF=22°∴∠BOD=∠AOC=22°15.【答案】解:∵⊥COD=90° ⊥BOC=54°∴⊥BOD=90°-54°=36°∵OE平分⊥BOD∴⊥DOE=⊥BOE=18°∴⊥COE=⊥BOC+⊥BOE=54°+18°=72°,⊥AOE=180°-⊥BOE=180°-18°=162°.∵OF平分⊥AOE∴∠EOF=12∠AOE=81°∴⊥DOF=⊥EOF-⊥DOE=81°-18°=63°16.【答案】解:设∠EOC=α∵∠BOE=12∠EOC∴∠BOE=1 2α∵∠DOE=70∘∴∠BOD=∠DOE−∠BOE=70∘−1 2α∵OD平分∠AOB∴∠AOD=∠BOD=70∘−1 2α因为点O 在直线AC 上 所以 ∠AOC =180∘∴∠EOC +∠DOE +∠AOD =180∘ ∴α+70°+70°−12α=180° ∴α=80∘ ∴∠EOC =80∘17.【答案】(1)解:∵⊥BOC=2⊥AOC ,⊥BOC+⊥AOC=180°∴2⊥AOC+⊥AOC=180° ∴3⊥AOC=180° ∴⊥AOC=60°∴⊥BOD=⊥AOC=60°. (2)解:垂直.理由如下: ∵OM⊥AB ∴⊥AOC+⊥1=90°. ∵⊥1=⊥2 ∴⊥AOC+⊥2=90° ∴ON⊥CD .18.【答案】解:①∵∠COD =13∠EOC ∠COD =20° ∴∠EOC =3∠COD =60°②∵∠EOC =60° ∠COD =20°∴∠DOE =40°∵OE 平分∠AOD∴∠AOD =2∠DOE =80°19.【答案】(1)解:∵⊥BOE=50°∴⊥AOE=180°-⊥BOE=130° ∵OD 平分⊥AOE ∴⊥AOD=12⊥AOE=65°;(2)解:∵ ⊥BOF 与⊥BOE 互余 ∴⊥BOF+⊥BOE=90°∵⊥BOE=50°∴⊥BOF=40°∵⊥BOC=⊥AOD=65°∴⊥COF=⊥BOC-⊥BOF=25°.20.【答案】(1)⊥ BOC;⊥ AOC,⊥BOD(2)解:∵⊥DOF :⊥FOB=1 :7 ⊥AOD= 20°∴⊥DOF= 18⊥BOD=18×(180°- 20°)= 20°.∴⊥BOF=140°∵OE平分⊥BOF∴⊥BOE= 12⊥BOF=12×140°=70°∴⊥EOC=⊥BOE+⊥BOC=70°+20°=90°.11/ 11。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版七年级数学上册专题训练:角的
计算(含答案)
专题训练角的计算
类型1 利用角度的和、差关系
要求求解的角与已知角之间有和、差关系,可以利用角度和、差来计算。

1.如图,已知 $\angle AOC=\angle BOD=75°$,$\angle BOC=30°$,求 $\angle AOD$ 的度数。

解:因为 $\angle AOC=75°$,$\angle BOC=30°$,所以$\angle AOB=\angle AOC-\angle BOC=75°-30°=45°$。

又因为$\angle BOD=75°$,所以 $\angle AOD=\angle AOB+\angle BOD=45°+75°=120°$。

2.将一副三角板的两个顶点重叠放在一起(两个三角板中的锐角分别为45°、45°和30°、60°)。

1) 如图1所示,在此种情形下,当 $\angle DAC=4\angle BAD$ 时,求 $\angle CAE$ 的度数。

2) 如图2所示,在此种情形下,当 $\angle ACE=3\angle BCD$ 时,求 $\angle ACD$ 的度数。

解:(1) 因为 $\angle BAD+\angle DAC=90°$,$\angle DAC=4\angle BAD$,所以 $5\angle BAD=90°$,即 $\angle BAD=18°$。

所以 $\angle DAC=4\times18°=72°$。

因为 $\angle DAE=90°$,所以 $\angle CAE=\angle DAE-\angle DAC=18°$。

2) 因为 $\angle BCE=\angle DCE-\angle BCD=60°-\angle BCD$,$\angle ACE=3\angle BCD$,所以 $\angle ACB=\angle ACE+\angle BCE=3\angle BCD+60°-\angle BCD=90°$。

解得$\angle BCD=15°$。

所以 $\angle ACD=\angle ACB+\angle BCD=90°+15°=105°$。

类型2 利用角平分线的性质
角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算。

3.如图,点A,O,E 在同一直线上,$\angle AOB=40°$,$\angle EOD=28°46'$,OD平分$\angle COE$,求 $\angle
COB$ 的度数。

解:因为 $\angle EOD=28°46'$,OD平分$\angle COE$,
所以 $\angle COE=2\angle EOD=2\times28°46'=57°32'$。

又因为$\angle AOB=40°$,所以 $\angle COB=180°-\angle AOB-\angle COE=180°-40°-57°32'=82°28'$。

4.已知 $\angle AOB=40°$,OD 是 $\angle BOC$ 的平分线。

1) 如图1,当 $\angle AOB$ 与 $\angle BOC$ 互补时,求$\angle COD$ 的度数。

2) 如图2,当 $\angle AOB$ 与 $\angle BOC$ 互余时,求$\angle COD$ 的度数。

解:(1) 因为 $\angle AOB$ 与 $\angle BOC$ 互补,所以$\angle AOB+\angle BOC=180°$。

又因为 $\angle AOB=40°$,所以 $\angle BOC=180°-40°=140°$。

因为 OD 是 $\angle
BOC$ 的平分线,所以 $\angle COD=\angle BOC=70°$。

2) 因为 $\angle AOB$ 与 $\angle BOC$ 互余,所以 $\angle AOB+\angle BOC=90°$。

由于∠AOB为60°,OC是其平分线,所以∠AOC也为60°。

在图中补全后,根据直角三角形的性质,得到∠EOC为30°,因为∠AOE为平角,所以∠AOE为150°。

当∠AOB为α时,由于OC是其平分线,所以∠AOC也为α。

又因为∠EOC为90°,所以∠EOA为90°-α,由于
∠AOE为平角,所以∠AOE为90°+α。

如图1,角AOE的度数为∠AOE=∠EOC+∠AOC=90°+30°=120°;如图2,角AOE的度数为∠AOE=∠EOC-
∠AOC=90°-30°=60°。

计算下列整式的加减运算:
1) 2ab+3ab-ab;解:原式=3ab。

2) 2(a-1)-(2a-3)+3;解:原式=4.
3) 2(2a+9b)+3(-5a-4b);解:原式=-11a+6b。

4) 3(x+2x-1)-(3x+4x-2);解:原式=2x-1.
5) (2x-y+4x)-4(x-y+2);解:原式=2x-y+3.
6) 3(x-xy-2xy)-2(-x+2xy-3);解:原式=5x-7xy +6.
7) -(2x+3xy-1)+(3x-3xy+x-3);解:原式=2x-
6xy-2.
8) (4ab-b)-2(a+2ab-b);解:原式=-2a+b。

9) -3(2x-xy)+4(x+xy-6);解:原式=-2x+7xy-24.
10) 2a-[-5ab+(ab-a)]-2ab;解:原式=3a+2ab。

相关文档
最新文档