【高考模拟】安徽省合肥一中2018届高三冲刺高考最后1卷 数学理(word版有答案)
2018年安徽省合肥一中高考数学最后一卷(理科) (1)

2018年安徽省合肥一中高考数学最后一卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则A. B.C. D.2. 已知是虚数单位,若,则的虚部是()A. B.C. D.3. 已知,函数在上单调递增,则的取值范围是()A.B.C.D.4. 《九章算术》之后,人们学会了用等差数列的知识来解决问题,《张丘建算经》卷上有叙述为:“今有女善织,日益功疾(注:从第天开始,每天比前一天多织相同量的布),如图是源于其思想的一个程序框图,如果输出的是,则输入的是()A. B.C. D.5. 已知,分别满足,,则的值为()A. B.C. D.6. 某空间凸多面体的三视图如图所示,其中俯视图和侧(左)视图中的正方形的边长为,正(主)视图和俯视图中的三角形均为等腰直角三角形,则该几何体的表面积为()A.B.C.D.7. 中,,,的对边分别为,,.已知,,则的值为________8. 某班级有男生人,女生人,现选举名学生分别担任班长、副班长、团支部书记和体育班委.男生当选的人数记为,则的数学期望为()A. B.C. D.9. 已知函数单调递增,函数的图象关于点对称,实数,满足不等式,则的最小值为()A. B.C. D.10. 一个正四面体的四个面上分别标有数字,,,.掷这个四面体四次,令第次得到的数为,若存在正整数使得的概率,其中,是互质的正整数,则的值为()A. B.C. D.11. 已知抛物线,过定点,且作直线交抛物线于,两点,且直线不垂直轴,在,两点处分别作该抛物线的切线,,设,的交点为,直线的斜率为,线段的中点为,则下列四个结论:①;②当直线绕着点旋转时,点的轨迹为抛物线;③当时,直线经过抛物线的焦点;④当,时,直线垂直轴.其中正确的个数有()A.个 B.个C. 个D. 个12. 设函数 在 上存在导函数 ,对任意的 有 ,且当 时, .若 , 的零点有( ) A. 个 B. 个 C. 个 D. 个 二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 平行四边形 中, , ,,则________.14.的展开式中含 的项的系数是________.15. 棱长为 的正方体 如图所示, , 分别为直线 , 上的动点,则线段 长度的最小值为________.16. 如图所示,已知直线 的方程为, , 是相外切的等圆,且分别与坐标轴及线段 相切, ,则两圆半径 ________(用常数 , , 表示)三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 设数列 的前 项和为 ,已知 . (1)求 的通项公式;(2)若数列 满足 ,求 前 项和 .18. 底面 为正方形的四棱锥 ,且 底面 ,过 的平面与侧面 的交线为 ,且满足 .(1)证明: 平面 ;(2)当 四边形时,求二面角 的余弦值.19. 深受广大球迷喜爱的某支欧洲足球队.在对球员的使用上总是进行数据分析,为了考察甲球员对球队的贡献,现作如下数据统计:(1)求 , , , , 的值,据此能否有 的把握认为球队胜利与甲球员参赛有关;(2)根据以往的数据统计,乙球员能够胜任前锋、中锋、后卫以及守门员四个位置,且出场率分别为: , , , ,当出任前锋、中锋、后卫以及守门员时,球队输球的概率依次为: , , , .则: 当他参加比赛时,求球队某场比赛输球的概率;当他参加比赛时,在球队输了某场比赛的条件下,求乙球员担当前锋的概率; 如果你是教练员,应用概率统计有关知识.该如何使用乙球员? 附表及公式:.20. 已知椭圆的离心率为,左、右焦点分别为 ,,且,与该椭圆有且只有一个公共点.(1)求椭圆标准方程;(2)过点 的直线与 相切,且与椭圆相交于 , 两点,求证: ;(3)过点 的直线 与 相切,且与椭圆相交于 , 两点,试探究 的数量关系.21. 已知函数.(1)讨论函数 的零点个数;(2)已知,证明:当时,.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22. 在平面直角坐标系中,以原点为极点,轴正半轴为极轴建立极坐标系,已知曲线的参数方程为(为参数),直线的极坐标方程为.(1)求曲线和直线的直角坐标方程,并求出曲线上到直线的距离最大的点的坐标,(2)求曲线的极坐标方程,并设,为曲线上的两个动点,且,求的取值范围.[选修4-5:不等式选讲]23. 已知函数.当时,求不等式的解集;若的解集包含,求实数的取值范围.参考答案与试题解析2018年安徽省合肥一中高考数学最后一卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A【考点】交、并、补集的混合运算【解析】求出集合,,从而求出,由此能求出.【解答】∵集合,,∴,∴.2.【答案】B【考点】复数的运算【解析】由已知可得,代入,利用复数代数形式的乘除运算化简得答案.【解答】∵,∴,∴的虚部为.3.【答案】C【考点】余弦函数的图象【解析】利用余弦函数的单调性建立不等式关系求解即可.【解答】函数在上单调递增,则,.解得:,.∵,∴当,可得.4.【答案】C【考点】程序框图【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】第一次执行循环体后,,,不满足退出循环的条件;第二次执行循环体后,,,不满足退出循环的条件;第三次执行循环体后,,,不满足退出循环的条件;第四次执行循环体后,,,不满足退出循环的条件;…第次执行循环体后,,,不满足退出循环的条件;第次执行循环体后,,,满足退出循环的条件;故输出∴,5.【答案】D【考点】函数与方程的综合运用【解析】对等式两边取自然对数,再由,求导,判断单调性,运用对数的运算性质,可得所求值.【解答】,可得,,可得,即有,可得,由的导数为,可得在递增,可得,即为,即,可得,可得,6.【答案】C【考点】由三视图求面积、体积【解析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.【解答】由题意可知几何体的直观图如图:左侧是放倒的三棱柱,右侧是三棱锥,俯视图和侧(左)视图中的正方形的边长为,正(主)视图和俯视图中的三角形均为等腰直角三角形,则该几何体的表面积为:.7.【答案】【考点】三角函数的恒等变换及化简求值【解析】利用二倍角和正弦定理,化简可得答案.【解答】∵由,得,即,∴得,∴则(舍),或,∵∴,∵,由正弦定理可得:,∴,推导可得:,即,∴. 8.【答案】C【考点】离散型随机变量的期望与方差【解析】由题意知随机变量的可能取值是,,,,,计算对应的概率值,求出的数学期望值.【解答】由题意知,随机变量的可能取值是,,,,,且,,,,;∴的数学期望为.9.【答案】A【考点】抽象函数及其应用简单线性规划【解析】根据题意,分析可得函数为奇函数,结合函数的单调性分析可得,变形可得:,即或,由二元一次不等式的几何意义分析其可行域,又由,设,其几何意义为可行域中任意一点到点距离的平方,求出的最小值,计算即可得答案.【解答】根据题意,因为函数的图象关于点对称,所以函数的图象关于点对称,即函数是定义在上的奇函数,则,又由函数单调递增,则,变形可得:,即或,所以可得其可行域,如图所示:,设,其几何意义为可行域中任意一点到点距离的平方,分析可得:的最小值为,则的最小值为;故选:.10.【答案】B【考点】模拟方法估计概率【解析】当时,的概率,当时,的概率,当时,的概率,当时,的概率,从而求出的概率,由此能求出的值.【解答】正四面体的四个面上分别标有数字,,,.掷这个四面体四次,令第次得到的数为,存在正整数使得的概率,∴当时,的概率,当时,的概率,当时,的概率,当时,的概率,∴得的概率,其中,是互质的正整数,∴,,则.11.【答案】C【考点】抛物线的性质【解析】设点坐标,根据导数的几何意义,即可求得直线的方程,代入即可求得,即可求得直线的方程,代入抛物线方程,利用韦达定理及中点坐标公式,即可求得,.即可判断①④正确.【解答】设,则直线的方程:,直线过点,所以,解得,所以直线,,由,所以,所以,即,,,所以,则,∴.故垂直轴,故①④正确,12.【答案】C【考点】函数零点的判定定理【解析】令,,由,可得函数为奇函数.利用导数可得函数在上是增函数,,即,解得,再令,分离参数,可得,,利用导数,求出当时,,即可判断函数零点的个数.【解答】当时,令时,,函数单调递增,令时,,函数单调递减,∴,(1)当时,,函数单调递减,∵,∴直线与有两个交点,∴的零点有个,故选:.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【答案】【考点】平面向量数量积的性质及其运算律【解析】推导出,,,由此能求出.【解答】∵平行四边形中,,,,如图,∴,∴,∴,∴,∴.14.【答案】【考点】二项式定理及相关概念【解析】利用二项式定理把展开,可得的展开式中含的项的系数.【解答】∵,故它的展开式中含的项的系数是,15.【答案】【考点】棱柱的结构特征【解析】线段长度的最小值是异面直线与间的距离,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出线段长度的最小值.【解答】∵棱长为的正方体如图所示,,分别为直线,上的动点,∴线段长度的最小值是异面直线与间的距离,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,,,,,,∴线段长度的最小值:.16.【答案】【考点】直线与圆的位置关系【解析】由题意画出图形,得,,设,,列关于,,,,,的方程组,整体求解得答案.【解答】如图,由已知得,,,设,,则,②+③得:④.把①代入④,得,∴.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【答案】,∴,.故.,当时,,令,∴,,∴,故,又满足上式,∴.【考点】数列的求和数列递推式【解析】(1),相减可得,.即可得出.(2),当时,,令,利用错位相减法即可得出.【解答】,∴,.故.,当时,,令,∴,,∴,故,又满足上式,∴.18.【答案】∵底面为正方形,且底面,∴,,两两垂直,建立如图所示的空间直角坐标系,设,,则,,,,,.∵底面,底面,∴.∵四边形为正方形,∴,∴平面,∴平面的一个法向量为.设平面的一个法向量为,而,.由,得,取得,得为平面的一个法向量.设二面角的大小为,由四边形,得,∴,∴,∴二面角的余弦值为.【考点】二面角的平面角及求法【解析】(1)推导出从而平面,进而,再由,得.连接交于点,连.则,由此能证明平面.(2)推导出,,两两垂直,建立空间直角坐标系,利用向量法能求出二面角的余弦值.【解答】∵底面为正方形,且底面,∴,,两两垂直,建立如图所示的空间直角坐标系,设,,则,,,,,.∵底面,底面,∴.∵四边形为正方形,∴,∴平面,∴平面的一个法向量为.设平面的一个法向量为,而,.由,得,取得,得为平面的一个法向量.设二面角的大小为,由四边形,得,∴,∴,∴二面角的余弦值为.19.【答案】,,,,,,∴有的把握认为球队胜利与甲球员参赛有关;设表示“乙球员担当前锋”;表示“乙球员担当中锋”;表示“乙球员担当后卫”;表示“乙球员担当守门员”;表示“球队输掉某场比赛”,则;.因为:::,所以,应该多让乙球员担任守门员,来扩大赢球场次.【考点】条件概率与独立事件【解析】(1)分别求出,,,,的值,求出的值,利用临界值表可得出结论;(2)根据条件概率公式分别计算出乙球员在担任“前锋”,“中锋”,“后卫”,“守门员”时输球的概率,最后相加得到已乙球员参加比赛时,球队输球的概率;利用乙球员担任前锋时输球的概率除以球队输球的概率即可得出答案;分别计算出乙队员在担任“前锋”,“中锋”,“后卫”,“守门员”时输球的概率,以输球概率最小时,乙球员担任的角色,作为教练员使用乙队员的依据.【解答】,,,,,,∴有的把握认为球队胜利与甲球员参赛有关;设表示“乙球员担当前锋”;表示“乙球员担当中锋”;表示“乙球员担当后卫”;表示“乙球员担当守门员”;表示“球队输掉某场比赛”,则;.因为:::,所以,应该多让乙球员担任守门员,来扩大赢球场次.20.【答案】∵与椭圆有且只有一个公共点,∴公共点为或,若公共点为时,则,又,解得,与矛盾,故公共点为.∴,又,∴,..反之,当时,联立,解得满足条件.∴椭圆标准方程为.证明:∵,设过的直线,联立,得.设,,则,又,∴.由与相切得:,,∴,∴.即:.猜:.证明如下:由(2)得.∵,∴.【考点】椭圆的性质【解析】(1)由与椭圆有且只有一个公共点,可得公共点为或,若公共点为时,得出矛盾,故公共点为.因此,又,.即可得出.(2),设过的直线,联立,得.设,,又,利用数量积运算性质与根及其系数的关系可得:.由与相切得:,解得,即可得出.(3)猜:.分析如下:利用斜率计算公式、根与系数的关系即可得出.【解答】∵与椭圆有且只有一个公共点,∴公共点为或,若公共点为时,则,又,解得,与矛盾,故公共点为.∴,又,∴,..反之,当时,联立,解得满足条件.∴椭圆标准方程为.证明:∵,设过的直线,联立,得.设,,则,又,∴.由与相切得:,,∴,∴.即:.猜:.证明如下:由(2)得.∵,∴.21.【答案】.令,∴.令,则函数与的零点个数情况一致.时,.∴在上单调递增.又,∴有个零点.时,在上单调递增,上单调递减.∴.① 即时,,无零点.② 即时,个零点.③ 即时,,又.又,,令,∴在上单调递增,∴,∴两个零点.综上:当或时,个零点;当时,个零点;当时,个零点.证明(2)要证,只需证.令,只需证:.令,,∴在上单调递增,在上单调递减,∴且.令,,∴在上单调递增,∴,∴,故.【考点】函数零点的判定定理利用导数研究函数的单调性【解析】(1).令,问题转化为求函数令,零点的个数问题,先求导,再分类讨论,根据函数零点存在定理即可求出,(2)利用分析法,和构造函数法,借用导数,即可证明.【解答】.令,∴.令,则函数与的零点个数情况一致.时,.∴在上单调递增.又,∴有个零点.时,在上单调递增,上单调递减.∴.① 即时,,无零点.② 即时,个零点.③ 即时,,又.又,,令,∴在上单调递增,∴,∴两个零点.综上:当或时,个零点;当时,个零点;当时,个零点.证明(2)要证,只需证.令,只需证:.令,,∴在上单调递增,在上单调递减,∴且.令,,∴在上单调递增,∴,∴,故.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.【答案】∵曲线的参数方程为(为参数),∴曲线的直角坐标方程为,∵直线的极坐标方程为.∴直线的普通方程为:,则曲线上点到直线的距离:,当时,最大,此时,.曲线的极坐标方程为,即.设,则.∴的取值范围是.【考点】简单曲线的极坐标方程【解析】(1)曲线的参数方程消去参数,能求出曲线的直角坐标方程;由直线的极坐标方程能求出直线的普通方程,由此能求出曲线上点到直线的距离最大的点的坐标.(2)曲线的极坐标方程转化为.设,能求出的取值范围.【解答】∵曲线的参数方程为(为参数),∴曲线的直角坐标方程为,∵直线的极坐标方程为.∴直线的普通方程为:,则曲线上点到直线的距离:,当时,最大,此时,.曲线的极坐标方程为,即.设,则.∴的取值范围是.[选修4-5:不等式选讲]23.【答案】解:当时,,即.①当时,不等式化为,解得.②当时,不等式化为,解得.③当时,不等式化为,解得.综上,不等式的解集为或.的解集包含在上恒成立在上恒成立.①当时,恒成立恒成立恒成立,解得.②当时,恒成立恒成立恒成立,解得.所以,实数的取值范围为.【考点】绝对值不等式的解法【解析】分段去绝对值,分别求出每个不等式组的解集,再取并集即得所求.(2)的解集包含在上恒成立在上恒成立.当时,恒成立,解得.当时,恒成立解得.【解答】解:当时,,即.①当时,不等式化为,解得.②当时,不等式化为,解得.③当时,不等式化为,解得.综上,不等式的解集为或.的解集包含在上恒成立在上恒成立.①当时,恒成立恒成立恒成立,解得.②当时,恒成立恒成立恒成立,解得.所以,实数的取值范围为.。
2018年安徽省合肥一中高考数学最后一卷(理科)

2018年安徽省合肥一中高考数学最后一卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合A={x||x−3|<2x},B={x|−4<x<3},则(∁R A)∩B=()A.(−4, 1]B.[−3, 3)C.[−3, 1]D.(−4, 3)【答案】A【考点】交、并、补集的混合运算【解析】求出集合A,B,从而求出C U A={x|x≤1},由此能求出(C R A)∩B.【解答】∵集合A={x||x−3|<2x}={x|x>1},B={x|−4<x<3},∴C U A={x|x≤1},∴(C R A)∩B={x|−4<x≤1}=(−4, 1].2. 已知i是虚数单位,若z=2+i,则zz的虚部是()A.4 5iB.45C.−45i D.−45【答案】B【考点】复数的运算【解析】由已知可得z,代入zz,利用复数代数形式的乘除运算化简得答案.【解答】∵z=2+i,∴zz =2+i2−i=(2+i)2(2−i)(2+i)=35+45i,∴zz 的虚部为45.3. 已知w>0,函数f(x)=cos(wx+π3)在(π3,π2)上单调递增,则w的取值范围是()A.(23,103) B.[23,103] C.[2,103] D.[2,53]【答案】C【考点】余弦函数的单调性【解析】利用余弦函数的单调性建立不等式关系求解即可.【解答】解:函数f(x)=cos(wx+π3)在(π3,π2)上单调递增,则{π3ω+π3≥2kπ−ππ2ω+π3≤2kπ,k ∈Z .解得:{ω≥6k −4ω≤4k −23,k ∈Z . ∵ ω>0,∴ 当k =1,可得2≤ω≤103.故选C .4. 《九章算术》之后,人们学会了用等差数列的知识来解决问题,《张丘建算经》卷上有叙述为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),如图是源于其思想的一个程序框图,如果输出的S 是60,则输入的x 是( )A.4B.3C.2D.1 【答案】 C【考点】 程序框图 【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【解答】第一次执行循环体后,n =1,S =x ,不满足退出循环的条件; 第二次执行循环体后,i =2,S =2x ,不满足退出循环的条件; 第三次执行循环体后,i =3,S =3x ,不满足退出循环的条件; 第四次执行循环体后,i =4,S =4x ,不满足退出循环的条件; …第29次执行循环体后,i =29,S =29x ,不满足退出循环的条件; 第30次执行循环体后,i =30,S =30x ,满足退出循环的条件; 故输出S =30x =60 ∴ x =2,5. 已知α,β分别满足α⋅e α=e 2,β(lnβ−2)=e 4,则αβ的值为( ) A.e B.e 2 C.e 3 D.e 4 【答案】 D【考点】函数与方程的综合运用【解析】对等式两边取自然对数,再由f(x)=x+lnx,求导,判断单调性,运用对数的运算性质,可得所求值.【解答】α⋅eα=e2,可得α+lnα=2,β(lnβ−2)=e4,可得lnβ+ln(lnβ−2)=4,即有lnβ−2+ln(lnβ−2)=2,可得α+lnα=lnβ−2+ln(lnβ−2),由f(x)=x+lnx的导数为1+1x>0,可得f(x)在x>0递增,可得α=lnβ−2,即为2−lnα=lnβ−2,即lnα+lnβ=4,可得ln(αβ)=4,可得αβ=e4,6. 某空间凸多面体的三视图如图所示,其中俯视图和侧(左)视图中的正方形的边长为1,正(主)视图和俯视图中的三角形均为等腰直角三角形,则该几何体的表面积为()A.2+3√22B.72+3√22C.3+2√2D.2+√2【答案】C【考点】由三视图求体积【解析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.【解答】由题意可知几何体的直观图如图:左侧是放倒的三棱柱,右侧是三棱锥,俯视图和侧(左)视图中的正方形的边长为1,正(主)视图和俯视图中的三角形均为等腰直角三角形,则该几何体的表面积为:1×√2+2×12×1×1+1×1+12×1×1+12×1×√2+1 2×1×√2+12×1×1=3+2√2.7. △ABC中,A,B,C的对边分别为a,b,c.已知c2=2b2−2a2,2sin2A+B2=1+ cos2C,则sin(B−A)的值为________【答案】√34【考点】三角函数的恒等变换及化简求值【解析】利用二倍角和正弦定理,化简可得答案.【解答】∵由2sin2A+B2=1+cos2C,得cos2C=2sin2A+B2−1=1−cos(A+B)−1=−cos(π−C)=cosC,即2cos2C−cosC−1=0,∴得(cosC−1)(2cosC+1)=0,∴则cosC=1(舍),或cosC=−12,∵0<C<π∴C=2π3,∵c2=2b2−2a2,由正弦定理可得:2(sin2B−sin2A)=sin2C=34,∴sin2B−sin2A=38,推导可得:sin(B+A)sin(B−A)=38,即sinCsin(B−A)=38,∴sin(B−A)=√34.8. 某班级有男生32人,女生20人,现选举4名学生分别担任班长、副班长、团支部书记和体育班委.男生当选的人数记为ξ,则ξ的数学期望为()A.16 13B.2013C.3213D.4013【答案】C【考点】离散型随机变量的期望与方差【解析】由题意知随机变量ξ的可能取值是0,1,2,3,4,计算对应的概率值,求出ξ的数学期望值.【解答】由题意知,随机变量ξ的可能取值是0,1,2,3,4,且P(ξ=0)=C 320∗C204C 524=C 204C 524,P(ξ=1)=C 321∗C203C 524,P(ξ=2)=C 322∗C202C 524,P(ξ=3)=C 323∗C201C 524,P(ξ=4)=C 324∗C200C 524=C 324C 524;∴ ξ的数学期望为 E(ξ)=0×C 204C 524+1×C 321∗C203C 524+2×C 322∗C202C 524+3×C 323∗C201C 524+4×C 324C 524 =1C 524(32×20×19×3+32×31×19×10+32×31×30×10+32×31×29×5) =3213.9. 已知函数y =f(x)单调递增,函数y =f(x −2)的图象关于点(2, 0)对称,实数x ,y 满足不等式f(x 2−2x)+f(−2y −y 2)≤0,则z =x 2+y 2−6x +4y +14的最小值为( ) A.32B.23C.3√22D.√22【答案】 A【考点】抽象函数及其应用 简单线性规划 【解析】根据题意,分析可得函数f(x)为奇函数,结合函数的单调性分析可得f(x 2−2x)≤f(2y +y 2)⇒x 2−2x ≤y 2+2y ,变形可得:(x +y)(x −y −2)≤0,即{x +y ≤0x −y −2≥0 或{x +y ≥0x −y −2≤0 ,由二元一次不等式的几何意义分析其可行域,又由z =x 2+y 2−6x +4y +14=(x −3)2+(y +2)2+1,设m =(x −3)2+(y +2)2,其几何意义为可行域中任意一点到点(3, −2)距离的平方,求出m 的最小值,计算即可得答案. 【解答】根据题意,因为函数y =f(x −2)的图象关于点(2, 0) 对称,所以函数y =f(x)的图象关于点(0, 0)对称, 即函数f(x)是定义在R 上的奇函数,则f(x 2−2x)+f(−2y −y 2)≤0⇒f(x 2−2x)≤−f(−2y −y 2) ⇒f(x 2−2x)≤f(2y +y 2),又由函数y =f(x)单调递增,则f(x 2−2x)≤f(2y +y 2) ⇒x 2−2x ≤y 2+2y ,变形可得:(x +y)(x −y −2)≤0, 即{x +y ≤0x −y −2≥0 或{x +y ≥0x −y −2≤0, 所以可得其可行域,如图所示:z =x 2+y 2−6x +4y +14=(x −3)2+(y +2)2+1,设m =(x −3)2+(y +2)2,其几何意义为可行域中任意一点到点(3, −2)距离的平方,分析可得:m的最小值为(√1+1)2=12,则z=x2+y2−6x+4y+14的最小值为12+1=32;故选:A.10. 一个正四面体的四个面上分别标有数字1,2,3,4.掷这个四面体四次,令第i次得到的数为a i,若存在正整数k使得∑=i=1k ai 4的概率p=mn,其中m,n是互质的正整数,则log5m−log4n的值为()A.1B.−1C.2D.−2【答案】B【考点】模拟方法估计概率【解析】当k=1时,∑=i=1k ai 4的概率p1=14,当k=2时,∑=i=1k ai4的概率p2=34×4=316,当k=3时,∑=i=1k ai 4的概率p=34×4×4=364,当k=4时,∑=i=1k ai4的概率p=14×4×4×4=1256,从而求出∑=i=1k ai4的概率p=mn=125256,由此能求出log5m−log4n的值.【解答】正四面体的四个面上分别标有数字1,2,3,4.掷这个四面体四次,令第i次得到的数为a i,存在正整数k使得∑=i=1k ai 4的概率p=mn,∴当k=1时,∑=i=1k ai 4的概率p1=14,当k=2时,∑=i=1k ai 4的概率p2=34×4=316,当k=3时,∑=i=1k ai 4的概率p=34×4×4=364,当k=4时,∑=i=1k ai 4的概率p=14×4×4×4=1256,∴得∑=i=1k ai 4的概率p=mn=14+316+664+1256=125256,其中m,n是互质的正整数,∴m=125,n=256,则log5m−log4n=log5125−log4256=3−4=−1.11. 已知抛物线y2=2px(p>0),过定点M(m, 0)(m>0,且m≠p2)作直线AB交抛物线于A,B两点,且直线AB不垂直x轴,在A,B两点处分别作该抛物线的切线l1,l2,设l1,l2的交点为Q,直线AB的斜率为k,线段AB的中点为P,则下列四个结论:①x A⋅x B=m2;②当直线AB绕着M点旋转时,点Q的轨迹为抛物线;③当m=p8,k>0时,直线PQ经过抛物线的焦点;④当m=8p,k<0时,直线PQ垂直y轴.其中正确的个数有()A.0个B.1个C.2个D.3个【答案】C【考点】抛物线的性质【解析】设Q点坐标,根据导数的几何意义,即可求得直线AB的方程,代入即可求得x0=−m,即可求得直线AB的方程,代入抛物线方程,利用韦达定理及中点坐标公式,即可求得x A x B=m2,y P=y0.即可判断①④正确.【解答】设Q(x0, y0),则直线AB的方程:y0y=p(x0+x),直线AB过点M(m, 0),所以y0×0=p(x0+m),解得x0=−m,所以直线AB:y0y=p(x0+x),x=y0y p−x0,由y2=2px(p>0),所以y2=2p(y0y p−x0)=2y0y−2px0,所以y2−2y0y+2px0=0,即y2−2y0y−2pm=0,y A+y B=2y0,y A y B=−2pm,所以x A x B=(y A y B)24p2=(−2mp)24p2=m2,则y P=y A+y B2=y0,∴y P=y0.故PQ垂直y轴,故①④正确,12. 设函数f(x)在R上存在导函数f′(x),对任意的x∈R有f(x)+f(−x)=2x2,且当x∈[0, +∞)时,f′(x)>2x.若f(2e−a)−f(a)<4e(e−a),g(x)=e x−ax的零点有()A.0个B.1个C.2个D.3个【答案】C【考点】函数零点的判定定理【解析】令ℎ(x)=f(x)−x2,ℎ(−x)=f(−x)−x2,由ℎ(−x)+ℎ(x)=0,可得函数ℎ(x)为奇函数.利用导数可得函数ℎ(x)在R 上是增函数,f(2e −a)−f(a)<4e(e −a),即ℎ(2e −a)<ℎg(a),解得a ≥e ,再令g(x)=e x−ax =0,分离参数,可得a =e x x,φ(x)=e x x,利用导数,求出当x >0时,φ(x)min =φ(1)=e ,即可判断函数零点的个数. 【解答】当x >0时,令x >1时,φ′(x)>0,函数φ(x)单调递增, 令0<x <1时,φ′(x)<0,函数φ(x)单调递减, ∴ φ(x)min =φ(1)=e ,(1)当x <0时,φ′(x)<0,函数φ(x)单调递减, ∵ a ≥e , ∴ 直线y =a 与y =e x x有两个交点,∴ g(x)=e x −ax 的零点有2个, 故选:C .二、填空题(每题5分,满分20分,将答案填在答题纸上)平行四边形ABCD 中,AB =3,AD =5,|DA →+DC →|=4,则BA →∗AD →=________. 【答案】 −9【考点】平面向量数量积的性质及其运算律 【解析】推导出BD =4,AB ⊥BD ,cos <BA →,AD →>=−cos∠BAD =−35,由此能求出BA →∗AD →.【解答】∵ 平行四边形ABCD 中,AB =3,AD =5,|DA →+DC →|=4,如图, ∴ BD =4,∴ AB 2+DB 2=AD 2,∴ AB ⊥BD , ∴ cos <BA →,AD →>=−cos∠BAD =−35,∴ BA →∗AD →=|BA →|⋅|AD →|⋅cos <BA →,AD →>=3×5×(−35)=−9.(2x 2−1)(1x −2x)7的展开式中含x 7的项的系数是________. 【答案】 1024 【考点】二项式定理的应用 【解析】利用二项式定理把(1x −2x)7展开,可得(2x 2−1)(1x −2x)7的展开式中含x 7的项的系数. 【解答】∵ (2x 2−1)(1x −2x)7=(2x 2−1)(1x 7−14⋅1x 5+841x 3−280⋅1x +560x −672x 3+448x 5−128x 7),故它的展开式中含x 7的项的系数是2×448+128=1024,棱长为1的正方体ABCD −EFGH 如图所示,M ,N 分别为直线AF ,BG 上的动点,则线段MN 长度的最小值为________.【答案】√33【考点】棱柱的结构特征 【解析】线段MN 长度的最小值是异面直线AF 与BG 间的距离,以H 为原点,HE 为x 轴,HG 为y 轴,HD 为z 轴,建立空间直角坐标系,利用向量法能求出线段MN 长度的最小值. 【解答】∵ 棱长为1的正方体ABCD −EFGH 如图所示,M ,N 分别为直线AF ,BG 上的动点, ∴ 线段MN 长度的最小值是异面直线AF 与BG 间的距离,以H 为原点,HE 为x 轴,HG 为y 轴,HD 为z 轴,建立空间直角坐标系, A(1, 0, 1),F(1, 1, 0),B(1, 1, 1),G(0, 1, 0), AF →=(0, 1, −1),AB →=(0, 1, 0), ∴ 线段MN 长度的最小值:d =|AB →|sin <AB →,AF →>=|AB →|√1−[cos <AB →,AF →>]2=1×√1−(1×√2)2=√22.如图所示,已知直线AB 的方程为x a +yb =1,⊙C ,⊙D 是相外切的等圆,且分别与坐标轴及线段AB 相切,|AB|=c ,则两圆半径r =________(用常数a ,b ,c 表示)【答案】 ac +bc −c 22(a +b)【考点】直线与圆的位置关系 【解析】由题意画出图形,得cos∠OAB =ac ,sin∠OAB =bc ,设AF =x ,BE =y ,列关于a ,b ,c ,r ,x ,y 的方程组,整体求解得答案. 【解答】 如图,由已知得,cos∠OAB =ac ,sin∠OAB =bc , 设AF =x ,BE =y , 则{x +y +2r =cr +2r ∗ac+x =a r +2r ∗bc +y =b, ②+③得:2r +2r(ac +bc )+x +y =a +b ④. 把①代入④,得2r(ac +b c )+c =a +b , ∴ r =ac+bc−c 22(a+b).三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)设数列{a n }的前n 项和为S n ,已知S n =n 2+n +2. (1)求{a n }的通项公式;(2)若数列{b n }满足b n =a n ∗2a n ,求{b n}前n 项和T n .【答案】S n =n 2+n +2,S n−1=(n −1)2+(n −1)+2(n ≥2), ∴ a n =S n −S n−1=2n(n ≥2),a 1=S 1=4. 故a n ={4(n =1)2n(n ≥2,n ∈N ∗) . b n =a n ∗2a n={2n ∗2a n =2n ∗4n (n ≥2,n ∈N ∗)4∗24=64(n =1), 当n ≥2时,T n =b 1+b 2+⋯+b n =64+2(2×42+3×43+⋯+n ×4n ), 令P n =2×42+3×43+⋯+n ×4n ,∴ 4P n =2×43+3×44+⋯+(n −1)×4n +n ×4n+1, −3P n =2×42+43+44−n ×4n+1=32+43(4n−2−1)4−1−n ×4n+1,∴ P n =−323−4n+1−439+n×4n+13,故T n =64+3P n =(6n−2)∗4n+1+5129(n ≥2,n ∈N ∗),又T 1=64满足上式, ∴ T n =(6n−2)∗4n+1+5129(n ∈N ∗).【考点】 数列的求和 数列递推式 【解析】(1)S n =n 2+n +2,S n−1=(n −1)2+(n −1)+2(n ≥2),相减可得a n =S n −S n−1=2n(n ≥2),a 1=S 1.即可得出. (2)b n =a n ∗2a n={2n ∗2a n =2n ∗4n (n ≥2,n ∈N ∗)4∗24=64(n =1),当n ≥2时,T n =b 1+b 2+⋯+b n =64+2(2×42+3×43+⋯+n ×4n ),令P n =2×42+3×43+⋯+n ×4n ,利用错位相减法即可得出. 【解答】S n =n 2+n +2,S n−1=(n −1)2+(n −1)+2(n ≥2), ∴ a n =S n −S n−1=2n(n ≥2),a 1=S 1=4. 故a n ={4(n =1)2n(n ≥2,n ∈N ∗) . b n =a n ∗2a n={2n ∗2a n =2n ∗4n (n ≥2,n ∈N ∗)4∗24=64(n =1), 当n ≥2时,T n =b 1+b 2+⋯+b n =64+2(2×42+3×43+⋯+n ×4n ), 令P n =2×42+3×43+⋯+n ×4n ,∴ 4P n =2×43+3×44+⋯+(n −1)×4n +n ×4n+1, −3P n =2×42+43+44−n ×4n+1=32+43(4n−2−1)4−1−n ×4n+1,∴ P n =−323−4n+1−439+n×4n+13,故T n =64+3P n =(6n−2)∗4n+1+5129(n ≥2,n ∈N ∗),又T 1=64满足上式, ∴ T n =(6n−2)∗4n+1+5129(n ∈N ∗).底面OABC 为正方形的四棱锥P −OABC ,且PO ⊥底面OABC ,过OA 的平面与侧面PBC 的交线为DE ,且满足S △PDE :S △PBC =1:4. (1)证明:PA // 平面OBD ;(2)当S 2四边形OABC =3S 2△POB 时,求二面角B −OE −C 的余弦值.【答案】∵ 底面OABC 为正方形,且PO ⊥底面OABC ,∴ PO ,OA ,OC 两两垂直,建立如图所示的空间直角坐标系O −xyz , 设OA =OC =2a ,OP =2b ,则O(0, 0, 0),C(0, 2a, 0),B(2a, 2a, 0),F(a, a, 0),P(0, 0, 2b),E(a, a, b). ∵ PO ⊥底面OABC ,CF ⊂底面OABC ,∴ CF ⊥PO .∵ 四边形OABC 为正方形,∴ AC ⊥OB ,∴ CF ⊥平面OBE , ∴ 平面OBE 的一个法向量为CF →=(a, −a, 0). 设平面OEC 的一个法向量为m →=(x, y, z), 而OC →=(0, 2a, 0),OE →=(a, a, b).由{m →∗OC →=0m →∗OE →=0,得{0∗x +2a ∗y +0∗z =0ax +ay +bz =0 , 取得z =−a ,得m →=(b, 0, −a)为平面OCE 的一个法向量. 设二面角B −OE −C 的大小为θ, 由S2四边形OABC=2S 2△POB ,得PO =√63OA ,∴ ba=√63,∴ cosθ=|OF →∗m →||OF →|∗|m →|=√a 2+a 2∗√a 2+b 2=√55, ∴ 二面角B −OE −C 的余弦值为√55.【考点】二面角的平面角及求法 【解析】(1)推导出OA // BC 从而OA // 平面PBC ,进而DE // OA ,再由OA // BC ,得DE // BC .连接AC 交OB 于F 点,连DF .则DF // PA ,由此能证明PA // 平面OBD . (2)推导出PO ,OA ,OC 两两垂直,建立空间直角坐标系O −xyz ,利用向量法能求出二面角B −OE −C 的余弦值. 【解答】∵ 底面OABC 为正方形,且PO ⊥底面OABC ,∴ PO ,OA ,OC 两两垂直,建立如图所示的空间直角坐标系O −xyz , 设OA =OC =2a ,OP =2b ,则O(0, 0, 0),C(0, 2a, 0),B(2a, 2a, 0),F(a, a, 0),P(0, 0, 2b),E(a, a, b). ∵ PO ⊥底面OABC ,CF ⊂底面OABC ,∴ CF ⊥PO .∵ 四边形OABC 为正方形,∴ AC ⊥OB ,∴ CF ⊥平面OBE , ∴ 平面OBE 的一个法向量为CF →=(a, −a, 0). 设平面OEC 的一个法向量为m →=(x, y, z), 而OC →=(0, 2a, 0),OE →=(a, a, b).由{m →∗OC →=0m →∗OE →=0,得{0∗x +2a ∗y +0∗z =0ax +ay +bz =0 , 取得z =−a ,得m →=(b, 0, −a)为平面OCE 的一个法向量. 设二面角B −OE −C 的大小为θ, 由S2四边形OABC=2S 2△POB ,得PO =√63OA ,∴ ba=√63,∴ cosθ=|OF →∗m →||OF →|∗|m →|=√a 2+a 2∗√a 2+b 2=√55, ∴ 二面角B −OE −C 的余弦值为√55.深受广大球迷喜爱的某支欧洲足球队.在对球员的使用上总是进行数据分析,为了考察甲球员对球队的贡献,现作如下数据统计:(1)求b,c,d,e,n的值,据此能否有97.5%的把握认为球队胜利与甲球员参赛有关;(2)根据以往的数据统计,乙球员能够胜任前锋、中锋、后卫以及守门员四个位置,且出场率分别为:0.2,0.5,0.2,0.1,当出任前锋、中锋、后卫以及守门员时,球队输球的概率依次为:0.4,0.2,0.6,0.2.则:1)当他参加比赛时,求球队某场比赛输球的概率;2)当他参加比赛时,在球队输了某场比赛的条件下,求乙球员担当前锋的概率;3)如果你是教练员,应用概率统计有关知识.该如何使用乙球员?附表及公式:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d).【答案】b=8,c=8,d=20,e=20,n=50,K2=50×(22×12−8×8)230×20×30×20≈5.556>5.024,∴有97.5%的把握认为球队胜利与甲球员参赛有关;1)设A1表示“乙球员担当前锋”;A2表示“乙球员担当中锋”;A3表示“乙球员担当后卫”;A4表示“乙球员担当守门员”;B表示“球队输掉某场比赛”,则P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)+P(A4)P(B|A4)=0.2×0.4+0.5×0.2+0.2×0.6+0.1×0.2=0.32;2)P(A1|B)=P(A1B)P(B)=0.2×0.40.32=0.25.3)因为P(A1|B):P(A2|B):P(A3|B):P(A4|B)=0.08:0.10:0.12:0.02,所以,应该多让乙球员担任守门员,来扩大赢球场次.【考点】条件概率与独立事件【解析】(1)分别求出b,c,d,e,n的值,求出K2的值,利用临界值表可得出结论;(2)1)根据条件概率公式分别计算出乙球员在担任“前锋”,“中锋”,“后卫”,“守门员”时输球的概率,最后相加得到已乙球员参加比赛时,球队输球的概率;2)利用乙球员担任前锋时输球的概率P(A 1|B)除以球队输球的概率P(B)即可得出答案;3)分别计算出乙队员在担任“前锋”,“中锋”,“后卫”,“守门员”时输球的概率,以输球概率最小时,乙球员担任的角色,作为教练员使用乙队员的依据. 【解答】b =8,c =8,d =20,e =20,n =50,K 2=50×(22×12−8×8)230×20×30×20≈5.556>5.024,∴有97.5%的把握认为球队胜利与甲球员参赛有关;1)设A 1表示“乙球员担当前锋”;A 2表示“乙球员担当中锋”;A 3表示“乙球员担当后卫”;A 4表示“乙球员担当守门员”;B 表示“球队输掉某场比赛”,则P(B)=P(A 1)P(B|A 1)+P(A 2)P(B|A 2)+P(A 3)P(B|A 3)+P(A 4)P(B|A 4)=0.2×0.4+0.5×0.2+0.2×0.6+0.1×0.2=0.32; 2)P(A 1|B)=P(A 1B)P(B)=0.2×0.40.32=0.25.3)因为P(A 1|B):P(A 2|B):P(A 3|B):P(A 4|B)=0.08:0.10:0.12:0.02,所以,应该多让乙球员担任守门员,来扩大赢球场次. 已知椭圆x 2a2+y 2b 2=1(a >b >1)的离心率为12,左、右焦点分别为F 1,F 2,且|F 1F 2|=2c ,⊙F 2:(x −c)2+y 2=1与该椭圆有且只有一个公共点. (1)求椭圆标准方程;(2)过点P(4c, 0)的直线与⊙F 2相切,且与椭圆相交于A ,B 两点,求证:F 2A ⊥F 2B ;(3)过点P(4c, 0)的直线l 与⊙F 1:(x +1)2+y 2=r 2(r >1)相切,且与椭圆相交于A ,B 两点,试探究k F 2A ,k F 2B 的数量关系. 【答案】∵ ⊙F 2与椭圆有且只有一个公共点,∴ 公共点为(a, 0)或(−a, 0),若公共点为(−a, 0)时,则a +c =1,又ca =12,解得a =23<1,与a >1矛盾,故公共点为(a, 0).∴ a −c =r =1,又e =ca =12,∴ a =2,c =1.b 2=a 2−c 2=3. 反之,当c =1时,联立{(x −1)2+y 2=1x 24+y 23=1,解得{x =2y =0满足条件.∴ 椭圆标准方程为x 24+y 23=1.证明:∵ P(4, 0),设过P(4, 0)的直线l:x =my +4, 联立{x =my +4x 24+y 23=1,得(4+3m 2)y 2+24my +36=0.设A(x 1, y 1),B(x 2, y 2),则y 1+y 2=−24m4+3m 2,y 1y 2=364+3m 2,又F 2(1, 0), ∴ F 2A →⋅F 2B →=(x 1−1)(x 2−1)+y 1y 2=(1+m 2)y 1y 2+3m(y 1+y 2)+9=36(1+m 2)4+3m 2−72m 24+3m 2+9=72−9m 24+3m 2.由l:x =my +4与⊙F 2:(x −1)2+y 2=1相切得:2=1,m 2=8, ∴ F 2A →⋅F 2B →=0,∴ F 2A →⊥F 2B →.即:F 2A ⊥F 2B . 猜:k F 2A +k F 2B =0.证明如下: 由(2)得k F 2A +k F 2B =y 1x1−1+y 2x 2−1=2my 1y 2+3(y 1+y 2)m 2y 1y 2+3m(y 1+y 2)+9.∵ 2my 1y 2+3(y 1+y 2)=2m ×364+3m 2−72m4+3m 2=0,∴ k F 2A +k F 2B =0. 【考点】 椭圆的离心率 【解析】(1)由⊙F 2与椭圆有且只有一个公共点,可得公共点为(a, 0)或(−a, 0),若公共点为(−a, 0)时,得出矛盾,故公共点为(a, 0).因此a −c =r =1,又e =ca =12,b 2=a 2−c 2.即可得出.(2)P(4, 0),设过P(4, 0)的直线l:x =my +4,联立{x =my +4x 24+y 23=1 ,得(4+3m 2)y 2+24my +36=0.设A(x 1, y 1),B(x 2, y 2),又F 2(1, 0),利用数量积运算性质与根及其系数的关系可得:F 2A →⋅F 2B →=(x 1−1)(x 2−1)+y 1y 2=(1+m 2)y 1y 2+3m(y 1+y 2)+9.由l:x =my +4与⊙F 2:(x −1)2+y 2=1相切得:2=1,解得m 2=8,即可得出F 2A →⋅F 2B →=0.(3)猜:k F 2A +k F 2B =0.分析如下:利用斜率计算公式、根与系数的关系即可得出.【解答】∵ ⊙F 2与椭圆有且只有一个公共点,∴ 公共点为(a, 0)或(−a, 0),若公共点为(−a, 0)时,则a +c =1,又ca =12,解得a =23<1,与a >1矛盾,故公共点为(a, 0).∴ a −c =r =1,又e =ca =12,∴ a =2,c =1.b 2=a 2−c 2=3. 反之,当c =1时,联立{(x −1)2+y 2=1x 24+y 23=1,解得{x =2y =0满足条件.∴ 椭圆标准方程为x 24+y 23=1.证明:∵ P(4, 0),设过P(4, 0)的直线l:x =my +4, 联立{x =my +4x 24+y 23=1,得(4+3m 2)y 2+24my +36=0.设A(x 1, y 1),B(x 2, y 2),则y 1+y 2=−24m4+3m 2,y 1y 2=364+3m 2,又F 2(1, 0), ∴ F 2A →⋅F 2B →=(x 1−1)(x 2−1)+y 1y 2=(1+m 2)y 1y 2+3m(y 1+y 2)+9=36(1+m 2)4+3m 2−72m 24+3m 2+9=72−9m 24+3m 2.由l:x =my +4与⊙F 2:(x −1)2+y 2=1相切得:2=1,m 2=8, ∴ F 2A →⋅F 2B →=0,∴ F 2A →⊥F 2B →.即:F 2A ⊥F 2B . 猜:k F 2A +k F 2B =0.证明如下: 由(2)得k F 2A +k F 2B =y 1x1−1+y 2x 2−1=2my 1y 2+3(y 1+y 2)m 2y 1y 2+3m(y 1+y 2)+9.∵ 2my 1y 2+3(y 1+y 2)=2m ×364+3m 2−72m4+3m 2=0, ∴ k F 2A +k F 2B =0.已知函数f(x)=√xax .(1)讨论函数f(x)的零点个数;(2)已知g(x)=(2−x)e √x ,证明:当x ∈(0, 1)时,g(x)−f(x)−ax −2>0. 【答案】√xf(x)=lnx −a √x ⋅x .令x 32=t ,∴ x =t 23(t >0).令ℎ(t)=lnt −32at ,则函数y =ℎ(t)与y =f(x)的零点个数情况一致 .ℎ(t)=1t−32a .(i)a ≤0时,ℎ′(t)>0.∴ ℎ(t)在(0, +∞)上单调递增. 又ℎ(1)=−32a ≥0,ℎ(ea+1a)=a +1a−32aea+1a≤a +1a−32a ⋅1e 2=(1−32e 2)a +1a<0,∴ 有1个零点.(ii)a >0时,ℎ(t)在(0,23a )上单调递增,(23a ,+∞)上单调递减. ∴ ℎ(t)max =ℎ(23a )=ln 23a −1.①ln 23a <1即a >23e 时,ℎ(23a )<0,无零点. ②ln 23a =1即a =23e 时,ℎ(23a )=0,1个零点.③ln 23a >1即0<a <23e 时,ℎ(23a )>0,又23a >e >1,ℎ(1)=−32a <0.又23a −49a 2=23a (1−23a )<23a (1−e)<0,ℎ(49a 2)=ln(23a )2−32a ⋅49a 2=21n 23a −23a , 令φ(a)=21n 23a −23a ,φ′(a)=2⋅3a 2(−23⋅1a 2)+23a 2=2−6a 3a 2>0,∴ φ(a)在(0,23e )上单调递增,∴ φ(a)<φ(23e )=2−e <0, ∴ 两个零点.综上:当a≤0或a=23e 时,1个零点;当0<a<23e时,2个零点;当a>23e时,0个零点.证明要证g(x)−f(x)−ax−2>0,只需证√x+2<(2−x)e√x.令√x=m∈(0,1),只需证:21nmm+2<(2−m2)e m.令l(m)=(2−m2)e m,l′(m)=(−m2−2m+2)e m,∴l(m)在(0,√3−1)上单调递增,在(√3−1,1)上单调递减,∴l(m)>l(1)=e且l(m)>l(0)=2.令t(m)=lnmm ,t′(m)=1−lnmm2>0,∴t(m)在(0, 1)上单调递增,∴t(m)<t(2)=0,∴21nmm+2<2,故g(x)−f(x)−ax−2>0.【考点】利用导数研究函数的单调性函数零点的判定定理【解析】(1)√xf(x)=lnx−a√x⋅x.令x32=t,问题转化为求函数令ℎ(t)=lnt−32at,零点的个数问题,先求导,再分类讨论,根据函数零点存在定理即可求出,(2)利用分析法,和构造函数法,借用导数,即可证明.【解答】√xf(x)=lnx−a√x⋅x.令x32=t,∴x=t23(t>0).令ℎ(t)=lnt−32at,则函数y=ℎ(t)与y=f(x)的零点个数情况一致.ℎ(t)=1t −32a.(i)a≤0时,ℎ′(t)>0.∴ℎ(t)在(0, +∞)上单调递增.又ℎ(1)=−32a≥0,ℎ(e a+1a)=a+1a−32ae a+1a≤a+1a−32a⋅1e2=(1−32e2)a+1a<0,∴有1个零点.(ii)a>0时,ℎ(t)在(0,23a )上单调递增,(23a,+∞)上单调递减.∴ℎ(t)max=ℎ(23a )=ln23a−1.①ln23a <1即a>23e时,ℎ(23a)<0,无零点.②ln 23a =1即a =23e 时,ℎ(23a )=0,1个零点.③ln 23a >1即0<a <23e 时,ℎ(23a )>0,又23a >e >1,ℎ(1)=−32a <0.又23a −49a 2=23a (1−23a )<23a (1−e)<0,ℎ(49a 2)=ln(23a )2−32a ⋅49a 2=21n 23a −23a , 令φ(a)=21n 23a −23a ,φ′(a)=2⋅3a 2(−23⋅1a2)+23a2=2−6a 3a 2>0,∴ φ(a)在(0,23e)上单调递增,∴ φ(a)<φ(23e )=2−e <0, ∴ 两个零点.综上:当a ≤0或a =23e 时,1个零点;当0<a <23e 时,2个零点;当a >23e 时,0个零点. 证明要证g(x)−f(x)−ax −2>0, 只需证√x+2<(2−x)e √x .令√x =m ∈(0,1), 只需证:21nm m+2<(2−m 2)e m .令l(m)=(2−m 2)e m ,l ′(m)=(−m 2−2m +2)e m ,∴ l(m)在(0,√3−1)上单调递增,在(√3−1,1)上单调递减, ∴ l(m)>l(1)=e 且l(m)>l(0)=2. 令t(m)=lnm m,t ′(m)=1−lnm m 2>0,∴ t(m)在(0, 1)上单调递增, ∴ t(m)<t(2)=0, ∴21nm m+2<2,故g(x)−f(x)−ax −2>0.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以原点为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 的参数方程为{x =2cosθy =sinθ(θ为参数),直线l 的极坐标方程为ρ=2cosθ−2sinθ.(1)求曲线C 和直线l 的直角坐标方程,并求出曲线C 上到直线l 的距离最大的点的坐标,(2)求曲线C 的极坐标方程,并设A ,B 为曲线C 上的两个动点,且OA ∗OB →=0,求|AB →|2的取值范围. 【答案】∵ 曲线C 的参数方程为{x =2cosθy =sinθ(θ为参数),∴曲线C的直角坐标方程为:x24+y2=1,∵直线l的极坐标方程为ρ=2cosθ−2sinθ.∴直线l的普通方程为:x−2y−2=0,则曲线C上点到直线l的距离:d=√5=√5=√5√2sin(θ−π4)+1brack,当θ=3π4时,d最大,此时,P(−√2,√22).曲线C的极坐标方程为ρ2cos2θ+4ρ2sin2θ=4,即ρ2=4cos2θ+4sin2θ=43sin2θ+1.设A(ρ1,θ),B(ρ2,θ+π2),则|AB|2=ρ12+ρ22=43sin2θ+1+43cos2θ+1=2094sin22θ+4∈[165,5].∴|AB→|2的取值范围是[165, 5].【考点】圆的极坐标方程【解析】(1)曲线C的参数方程消去参数,能求出曲线C的直角坐标方程;由直线l的极坐标方程能求出直线l的普通方程,由此能求出曲线C上点到直线l的距离最大的点的坐标.(2)曲线C的极坐标方程转化为ρ2=4cos2θ+4sin2θ=43sin2θ+1.设A(ρ1,θ),B(ρ2,θ+π2),能求出|AB→|2的取值范围.【解答】∵曲线C的参数方程为{x=2cosθy=sinθ(θ为参数),∴曲线C的直角坐标方程为:x24+y2=1,∵直线l的极坐标方程为ρ=2cosθ−2sinθ.∴直线l的普通方程为:x−2y−2=0,则曲线C上点到直线l的距离:d=√5=√5=√5√2sin(θ−π4)+1brack,当θ=3π4时,d最大,此时,P(−√2,√22).曲线C的极坐标方程为ρ2cos2θ+4ρ2sin2θ=4,即ρ2=4cos2θ+4sin2θ=43sin2θ+1.设A(ρ1,θ),B(ρ2,θ+π2),则|AB|2=ρ12+ρ22=43sin2θ+1+43cos2θ+1=2094sin22θ+4∈[165,5].∴|AB→|2的取值范围是[16, 5].5[选修4-5:不等式选讲]已知函数g(x)=|2x+1|−|x−m|.(1)当m=3时,求不等式g(x)>4的解集;(2)若g(x)≥|x−4|的解集包含[3, 5],求实数m的取值范围.【答案】解:(1)当m=3时,g(x)>4,即|2x+1|−|x−3|>4.①当x≥3时,不等式化为2x+1−x+3>4,解得x≥3.≤x<3时,不等式化为2x+1+x−3>4,②当−12解得2<x<3.③当x<−1时,不等式化为−2x−1+x−3>4,2解得x<−8.综上,不等式的解集为{x|x<−8或x>2}.(2)g(x)≥|x−4|的解集包含[3, 5]⇔g(x)≥|x−4|在[3, 5]上恒成立⇔|2x+1|−|x−m|≥|x−4|在[3, 5]上恒成立.①当3≤x≤4时,g(x)≥|x−4|恒成立⇔2x+1≥|x−m|+4−x恒成立⇔3−3x≤x−m≤3x−3恒成立,解得−3≤m≤9.②当4<x≤5时,g(x)≥|x−4|恒成立⇔|2x+1|≥|x−m|+x−4恒成立⇔−x−5≤x−m≤x+5恒成立,解得−5≤m≤11.所以,实数m的取值范围为{m|−3≤m≤9}.【考点】绝对值不等式的解法与证明【解析】(1)分段去绝对值,分别求出每个不等式组的解集,再取并集即得所求.(2)g(x)≥|x−4|的解集包含[3, 5]⇔g(x)≥|x−4|在[3, 5]上恒成立⇔|2x+1|−|x−m|≥|x−4|在[3, 5]上恒成立.1)当3≤x≤4时,⇔3−3x≤x−m≤3x−3恒成立,解得m.2)当4<x≤5时,⇔|2x+1|≥|x−m|+x−4恒成立解得−m.【解答】解:(1)当m=3时,g(x)>4,即|2x+1|−|x−3|>4.①当x≥3时,不等式化为2x+1−x+3>4,解得x≥3.≤x<3时,不等式化为2x+1+x−3>4,②当−12解得2<x<3.③当x<−1时,不等式化为−2x−1+x−3>4,2解得x<−8.综上,不等式的解集为{x|x<−8或x>2}.(2)g(x)≥|x−4|的解集包含[3, 5]⇔g(x)≥|x−4|在[3, 5]上恒成立⇔|2x+1|−|x−m|≥|x−4|在[3, 5]上恒成立.①当3≤x≤4时,g(x)≥|x−4|恒成立⇔2x+1≥|x−m|+4−x恒成立⇔3−3x≤x−m≤3x−3恒成立,解得−3≤m≤9.②当4<x≤5时,g(x)≥|x−4|恒成立⇔|2x+1|≥|x−m|+x−4恒成立⇔−x−5≤x−m≤x+5恒成立,解得−5≤m≤11.所以,实数m的取值范围为{m|−3≤m≤9}.。
2018年安徽省合肥市第一中学冲刺高考最后1卷理科数学试卷(word版)

2018年安徽省合肥市第一中学冲刺高考最后1卷理科数学试卷(word版)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{||3|2},{|43}A x x x Bx x,则()R C A B ()A .(4,1] B.[3,3) C.[3,1] D.(4,3)2.已知i 是虚数单位,若2z i ,则z z的虚部是()A .45i B.45C.45i D .453.已知0w ,函数()cos()3f x wx 在(,)32上单调递增,则w 的取值范围是()A .210(,)33B .210[,]33C .10[2,]3D.5[2,]34.《九章算术》之后,人们学会了用等差数列的知识来解决问题,《张丘建算经》卷上有叙述为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),如图是源于其思想的一个程序框图,如果输出的S 是60,则输入的x 是()A .4B .3 C.2 D .15.已知,分别满足24,(ln2)e e e ,则的值为()A .e B.2e C.3e D.4e6.某空间凸多面体的三视图如图所示,其中俯视图和侧(左)视图中的正方形的边长为1,正(主)视图和俯视图中的三角形均为等腰直角三角形,则该几何体的表面积为()A .3222B .73222C.222 D.227.ABC 中,,,A B C 的对边分别为,,a b c .已知222222cba2sin1cos 22A BC ,则sin()BA 的值为()A .12B .34C.23D .458.某班级有男生32人,女生20人,现选举4名学生分别担任班长、副班长、团支部书记和体育班委.男生当选的人数记为,则的数学期望为()A .1613B.2013C.3213D.40139.已知函数()y f x 单调递增,函数(2)y f x的图像关于点(2,0)对称,实数,x y 满足不等式22(2)(2)0f xx f yy ,则226414zx yxy 的最小值为()A .32B.23C.322D.2210.一个正四面体的四个面上分别标有数字1,2,3,4.掷这个四面体四次,令第i 次得到的数为i a ,若存在正整数k 使得14kii a 的概率m p n,其中,m n 是互质的正整数,则54log log m n 的值为()A .1B .1 C.2 D.211.已知抛物线22(0)ypx p ,过定点(,0)M m (0m,且2p m)作直线AB 交抛物线于,A B 两点,且直线AB 不垂直x 轴,在,A B 两点处分别作该抛物线的切线12,l l ,设12,l l 的交点为Q ,直线AB 的斜率为k ,线段AB 的中点为P ,则下列四个结论:①2A Bx x m ;②当直线AB 绕着M 点旋转时,点Q的轨迹为抛物线;③当,08p mk时,直线PQ 经过抛物线的焦点;④当8,0mp k时,直线PQ 垂直y 轴.其中正确的个数有()A .0个 B.1个 C.2个 D .3个12.设函数()f x 在R 上存在导函数()f x ,对任意的xR 有2()()2f x f x x ,且当[0,)x时,()2f x x .若(2)()4(),()xf e a f a e e ag x eax 的零点有()A .0个B .1个 C.2个 D.3个第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.平行四边形ABCD 中,3,5,||4AB ADDA DC ,则BA AD.14.271(21)(2)xx x的展开式中含7x 的项的系数是.15.棱长为1的正方体ABCD EFGH 如图所示,,M N 分别为直线,AF BG 上的动点,则线段MN 长度的最小值为.16.如图所示,已知直线AB 的方程为1x y ab,⊙C ,⊙D 是相外切的等圆.且分别与坐标轴及线段AB相切,||AB c ,则两圆半径r(用常数,,a b c 表示).三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 设数列{}n a 的前n 项和为n S ,已知22nS nn .(1)求{}n a 的通项公式;(2)若数列{}n b 满足2na nn b a ,求{}n b 前n 项和n T .18. 底面OABC 为正方形的四棱锥P OABC ,且PO底面OABC ,过OA 的平面与侧面PBC 的交线为DE ,且满足:1:4PDE PBCS S.(1)证明://PA 平面OBD ;(2)当223POBSS四边形OABC时,求二面角B OE C 的余弦值.19. 深受广大球迷喜爱的某支欧洲足球队.在对球员的使用上总是进行数据分析,为了考察甲球员对球队的贡献,现作如下数据统计:球队胜球队负总计甲参加22b 30甲未参加c12d总计30en(1)求,,,,b c d e n 的值,据此能否有97.5%的把握认为球队胜利与甲球员参赛有关;(2)根据以往的数据统计,乙球员能够胜任前锋、中锋、后卫以及守门员四个位置,且出场率分别为:0.2,0.5,0.2,0.1,当出任前锋、中锋、后卫以及守门员时,球队输球的概率依次为:0.1,0.2,0.6,0.2.则:1)当他参加比赛时,求球队某场比赛输球的概率;2)当他参加比赛时,在球队输了某场比赛的条件下,求乙球员担当前锋的概率;3)如果你是教练员,应用概率统计有关知识.该如何使用乙球员?附表及公式:2()P Kk 0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.82822()()()()()n ad bc Ka b c d a c b d .20. 已知椭圆22221(1)x y a b ab的离心率为12,左、右焦点分别为12,F F ,且12||2F F c ,⊙222:()1F x c y与该椭圆有且只有一个公共点.(1)求椭圆标准方程;(2)过点(4,0)P c 的直线与⊙2F 相切,且与椭圆相交于,A B 两点,求证:22F A F B ;(3)过点(4,0)P c 的直线l 与⊙2221:(1)(1)F x yr r相切,且与椭圆相交于,A B 两点,试探究22,F A F B k k 的数量关系.21. 已知函数ln ()x f x ax x.(1)讨论函数()f x 的零点个数;(2)已知()(2)xg x x e ,证明:当(0,1)x时,()()20g x f x ax .请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以原点为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 的参数方程为2cos sinx y(为参数),直线l 的极坐标方程为2cos2sin.(1)求曲线C 和直线l 的直角坐标方程,并求出曲线C 上到直线l 的距离最大的点的坐标,(2)求曲线C 的极坐标方程,并设,A B 为曲线C 上的两个动点,且0OA OB,求2||AB 的取值范围.23.选修4-5:不等式选讲已知函数()|21|||g x x x m .(1)当3m时,求不等式()4g x 的解集;(2)若()|4|g x x 的解集包含[3,5],求实数m 的取值范围.试卷答案一、选择题1-5:ABCCD 6-10:CBCAB 11、12:CC二、填空题。
安徽省合肥市第一中学2018届高考数学冲刺最后1卷试题文20180613015

安徽省合肥市第一中学2018届高考数学冲刺最后1卷试题文第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合S {x|x 2},T {x|x2 3x 4 0},则(C S) T ()RA.( ,1]B.( , 4]C.( 2,1]D.[1, )2.已知a R,i是虚数单位,复数z的共轭复数为z,若z a 3i,z z 4,则a ()A.3B. 3C.7或 7D.1或 13.阅读下面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为()A.0B.1C.2D.3|a b| |a ||b|a //b4.设a,b为向量,则“”是“”的()A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件5.函数y sin x(1 cos2x)在区间[ 2,2]内的图像大致为()- 1 -A.B.C. D.6.在正方形网格中,某四面体的三视图如图所示.如果小正方形网格的边长为1,那么该四面体的体积是()6432A.B. C. D.1632337.观察下图:则第()行的各数之和等于20172.A.2010B.2018 C. 1005D.10098.已知S,A,B,C是球O表面上的点,SA 平面ABC,AB BC,SA AB 1,BC 2,则球O的表面积等于()- 2 -A.4 B.3 C. 2 D.9.如图所示,点A,B分别在x轴与y轴的正半轴上移动,且AB 2,若点A从(3,0)移动到(2,0),则AB的中点D经过的路程为()A.B. C. D.3461210.设集合A {(x,y)||x| |y| 1},B {(x,y)|(y x)(y x) 0},M A B,若动点P(x,y) M x2 (y 1)2,则的取值范围是()1102101525A.B. C. D.[,][,][,][,]222222222 2 1, 2x x x11.已知函数,若函数存在零点,则实f(x)g(x) f(x) ax ae,x0x数a的取值范围为()A.[ 1,2]B.( , 1] [2, ) C. [1,1]e e333e1D.( , ] [e, )312.点P在直线l:y x 1上,若存在过P的直线交抛物线y x2于A,B两点,且|PA| 2|AB|P,则称点为“点”.下列结论中正确的是()A.直线l上的所有点都是“ 点”B.直线l上仅有有限个点是“ 点”C. 直线l上的所有点都不是“ 点”D.直线l上有无穷多个点(点不是所有的点)是“ 点”第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)- 3 -13. 为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10y x名学生,根据测量数据的散点图可以看出与之间有线性相关关系,设其回归直线方程1010为yˆ bˆx aˆ已知.该班某学生的脚长为,据此估计其身高 ˆ24x 225,y 1600,b 4i ii 1i 1为.14.从区间[0,2]随机抽取2n个数1,2,...,n,1,2,...,n,构成个数对x x x y y y n(x,y),(x,y),...,(x,y)1m,其中两数的平方和小于的数对共有个,则用随机模拟的方法1122n n得到的圆周率 的近似值为.15.如图所示,B地在A地的正东方向4km处,C地在B地的北偏东30 方向2km处,河流的沿岸PQ(曲线)上任意一点到A的距离比到B的距离远2km.现要再曲线PQ上任一处M B,C M B M C a 建一座码头,向两地转运货物.经测算,从到和到修建公路的费用均为万元/km,那么修建这两条公路的总费用最低是万元.n116.已知数列{}满足a1 3,(3 a n 1)(6 a n) 18(n N),则的值是.a*ni a i1三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. ABC的内角A,B,C的对边分别为a,b,c,已知2c os B(a cos B b cos A) 3c. (1)求B;(2)若a,b,c成等差数列,且 ABC的周长为35,求 ABC的面积.18. 在如图所示的几何体ACBFE中,AB BC,AE EC,D为AC的中点,EF//DB. (1)求证:AC FB;(2)若AB BC,AB 4,AE 3,BF 3,BD 2EF,求该几何体的体积.- 4 -19. 某企业生产的某种产品被检测出其中一项质量指标存在问题. 该企业为了检查生产该产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(195,210]内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,如图所示是乙流水线样本的频率分布直方图.表1 甲流水线样本的频数分布表质量指标值频数(190,195]2(195,200]13(200,205]23(205,210]8(210,215]4(1)若将频率视为概率,某个月内甲、乙两条流水线均生产了6万件产品,则甲、乙两条流水线分别生产出不合格品约多少件?(2)在甲流水线抽取的样本的不合格品中随机抽取两件,求两件不合格品的质量指标值均偏大的概率;(3)根据已知条件完成下面2 2列联表,并判断在犯错误概率不超过0.1的前提下能否认为“该企业生产的这种产品的质量指标值与甲、乙两条流水线的选择有关”?甲生产线乙生产线合计合格品不合格品- 5 -合计2n(ad bc)2附:(其中为样本容量)K n a b c d(a b)(c d)(a c)(b d)P K k0.150.100.050.0250.0100.0050.001 ()2k 2.072 2.706 3.841 5.024 6.6357.87910.828x y2220. 如图所示,在平面直角坐标系xOy中,已知椭圆C: 1(a b 0)的离心率为a b222 2,短轴长为.42(1)求椭圆C的标准方程;(2)设A为椭圆C的左顶点,P为椭圆C上位于x轴上方的点,直线PA交y轴于点M,点N在y轴上,且MF FN 0,设直线AN交椭圆C于另一点Q,求 APQ的面积的最大值.21. 已知函数f(x) x ln x,g(x) (x2 1)( 为常数).(1)若函数y f(x)与函数y g(x)在x 1处有相同的切线,求实数 的值;(2)当x 1时,f(x) g(x),求实数 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程xcos已知曲线的参数方程为 (为参数),在同一平面直角坐标系中,将曲线C C113siny3x x23上的点按坐标变换 得到曲线,以原点为极点、轴的正半轴为极轴,建立2C x2y3y2- 6 -极坐标系.(1)求曲线的极坐标方程和曲线的直角坐标方程;C C12(2)若直线 ( R)与曲线C交于M,N两点,与曲线C交于P,Q两点,求123|MN||PQ|的值.23.选修4-5:不等式选讲已知函数f(x) |x a| |x 2|.(1)当a 1时,解不等式f(x) 4;(2),求的取值范围.x0 R,f(x0) |2a 1|a试卷答案一、选择题1-5:ADCCB 6-10:BDADC 11、12:BA二、填空题16m(27 2)a1(212) 13. 16614. 15. 16.n3三、解答题17.解:(1)已知2cos B(a cos B b cos A) 3c,由正弦定理得2cos B(sin A cos B sin B cos A) 3sin C2cos B sin(A B) 3sin C,,即3cos B , B ABC B为的内角,.26(2) a,b,c成等差数列, 2b a c,又 ABC的周长为35,即a b c 35, b 5,由余弦定理知b ac ac B a c ac a c ac15, 2222cos223()2(23), ac2 3.11115(23)S ac Bsin15(23)ABC2224- 7 -18.(1)证明: EF//BD, EF与BD确定平面EFBD.连接DE, AE EC,D的为AC 的中点, DE AC.同理可得BD AC,又 BD DE D,BD 平面EFBD,DE 平面EFBD, AC 平面BDEF, FB 平面EFBD, AC FB.(2)由(1)可知AC 平面,1,BDEF V V V S ACABCEF A BDEF C BDEF BDEF3AB BC,AB BC,AB 4, BD 22,AC 42,又AE 3, DE AE2 AD2 1BDEF BD M MF.在梯形中,取的中点,连接,则EF//DM EF DM, FMDE FM//DE FM DE 且四边形为平行四边形,且.又BF BF2 FM2 BM23,,.132132FM BM,S (2 22) 1 , V42 4梯形BDEF ABCEF223219. (1)由甲、乙两条流水线各抽取的50件产品可得,甲流水线生产的不合格品有6件,则63甲流水线生产的产品为不合格品的概率,乙流水线生产的产品为不合格品的概P甲5025 6率.于是,若某个月内甲、乙两条流水线均生产了万件产品,P乙 (0.016 0.32) 5 625360000 720025则甲、乙两条流水线生产的不合格品件数分别为(件),660000 1440025(件).(2)在甲流水线抽取的样本中,不合格品共有6件,其中质量指标值偏小的有2件,记为A,B4C,D,E,F2;质量指标值偏大的有件,记为,则从中任选件有AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF156共种结果,其中质量指标值都偏大有种结果.故所求概率为62.P155(3)2 2列联表如下:甲生产线乙生产线合计合格品443882不合格品61218- 8 -合计5050100 2100 (44 12 38 6)2则,所以在犯错误概率不超过的前提下不K 2.439 2.7060.150 50 82 18能认为“该企业生产的这种产品的质量指标值与甲、乙两条流水线的选择有关”.c24aa220.解:(1)由题意得 ,解得 ,所以椭圆的标准方程为2b42b 22Ca b c c22222x y221.168(2)由题可设直线PA的方程为y k(x 4),k 0,则M(0,4k),又F(22,0)且N(0,2) MF FN FN22(22)MF FN0y x ,所以,所以直线的方程为,则,4k k( 4)y k x14y(1 2k2)x2 16k2x 32k2 16 0x联立消去并整理得,解得或x 2y 16224 8kx24 8k8k12,则,直线的方程为,同理可得2 212k P(,)AN y (x 4) 1 2k1 2k2k228k48k2Q(,) 12k12k22,所以关于原点对称,即过原点,所以的面积P,Q PQ APQ116k32S OA |y y| 2 82P Q21 212k2kk21,当且仅当,即时,等号成2k kk2立,所以 APQ的面积的最大值为82.21.解:(1)由题意得f (x) ln x 1,g (x) 2 x,又f(1) g(1) 0,且函数y f(x)与y g(x)在x 1处有相同的切线, f (1) g (1),则2 1,即1.2(2)设h(x) x ln x (x2 1),则h(x) 0对 x [1, )恒成立.h(1) 0, h (1) 01 2 0, 11 h x x x()1ln2,且,即.另一方面,当22- 9 -时,记 (x ) h (x ) ,则 (x ) 1 2 1 2 x .当 x [1, )时, (x )0, (x ) 在xx[1, ) x [1, )(x ) (1) 1 2 0h (x ) 0, h (x )内为减函数, 当时,,即在[1, )x [1, )h (x ) h (1) 01内为减函数, 当时,恒成立,符合题意.当时,①2若 0 ,则 h (x ) 1 ln x 2 x 0对 x [1, ) 恒成立, h (x ) 在[1, ) 内为增函数,x [1, )h (x ) h (1) 00 1当时,恒成立,不符合题意.②若,令,则(x ) 0211 x , (x ) x(x ) (1) 1 2 0(1, 1 )(1, 1 )在内为增函数, 当时,,即2 2 2h x h x (1, 1 )(1, 1 )( ) 0,( )xh (x ) h (1) 0在内为增函数, 当时,,不符合题意,221 2综上所述.2 cosx22.解:(1)已知曲线 的参数方程为( 为参数),消去参数 得C1y 3 sinx yx cos , y sin ,2213 2 cos 24 2 sin 2 12.又,即曲线的极坐标C14 323 x (x 2 3)2 3 x x 3x y22143方程为 2(3 sin2 ) 12.又由已知2得代入1y(y2)y3y23(23)(2)x 2y 2得曲线的直角坐标方程为.1, C(x 23)2 (y 2)2 9299(2)将代入,得.又直线的2(3 sin2 ) 12216,45,||85MN 35551x t2参数方程为 (为参数),代入,整理得t(x 23)2 (y 2)29 3y t2t2 43t 7 0P,Q t1,t2,分别记两点对应的参数为,则.t t43 |MN| 4|PQ||t t|(t t)4t t25,122121212t t 7|PQ|512- 10 -x22x1x 1 23.解:(1)当a 1时,f(x) 4,即或或解得2x14342x14x52或x 或x 3,故此不等式的解集为(,5][3,).222(2)因为f(x) |x a| |x 2| |(x a) (x 2)| |a 2|,因为 x R,有f(x) |2a 1||a 2| |2a 1|a2 1 0a 1a 1成立,所以只需,化简得,解得或,0所以a的取值范围为( , 1] [1, ).- 11 -。
2018年高考理科数学模拟试卷(共三套)(含答案)

2018年高考理科数学模拟试卷(一)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知集合S={1,2},设S的真子集有m个,则m=()A.4 B.3 C.2 D.12.已知i为虚数单位,则的共轭复数为()A.﹣+i B. +i C.﹣﹣i D.﹣i3.已知、是平面向量,如果||=3,||=4,|+|=2,那么|﹣|=()A. B.7 C.5 D.4.在(x﹣)10的二项展开式中,x4的系数等于()A.﹣120 B.﹣60 C.60 D.1205.已知a,b,c,d都是常数,a>b,c>d,若f(x)=2017﹣(x﹣a)(x﹣b)的零点为c,d,则下列不等式正确的是()A.a>c>b>d B.a>b>c>d C.c>d>a>b D.c>a>b>d6.公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率π,他从圆内接正六边形算起,令边数一倍一倍地增加,即12,24,48,…,192,…,逐个算出正六边形,正十二边形,正二十四边形,…,正一百九十二边形,…的面积,这些数值逐步地逼近圆面积,刘徽算到了正一百九十二边形,这时候π的近似值是3.141024,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽这种想法的可贵之处在于用已知的、可求的来逼近未知的、要求的,用有限来逼近无穷,这种思想及其重要,对后世产生了巨大影响,如图是利用刘徽的“割圆术”思想设计的一个程序框图,若运行改程序(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305),则输出n的值为()A.48 B.36 C.30 D.247.在平面区域内随机取一点(a,b),则函数f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数的概率为()A. B.C.D.8.已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.12 B.18 C.24 D.3010.已知常数ω>0,f(x)=﹣1+2sinωxcosωx+2cos2ωx图象的对称中心得到对称轴的距离的最小值为,若f(x0)=,≤x0≤,则cos2x0=()A.B.C.D.11.已知三棱锥P﹣ABC的所有顶点都在表面积为16π的球O的球面上,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,设二面角P﹣AB﹣C的大小为θ,则sinθ=()A. B.C.D.12.抛物线M的顶点是坐标原点O,抛物线M的焦点F在x轴正半轴上,抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,设A是抛物线M上的一点,若•=﹣4,则点A的坐标是()A.(﹣1,2)或(﹣1,﹣2)B.(1,2)或(1,﹣2)C.(1,2) D.(1,﹣2)二、填空题(共4小题,每小题5分,满分20分)13.某校1000名高三学生参加了一次数学考试,这次考试考生的分数服从正态分布N(90,σ2),若分数在(70,110]内的概率为0.7,估计这次考试分数不超过70分的人数为人.14.过双曲线﹣=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥|CD|,则双曲线离心率的取值范围为.15.计算=(用数字作答)16.已知f(x)=,若f (x﹣1)<f(2x+1),则x的取值范围为.三、解答题(共5小题,满分60分)17.设数列{a n}的前n项和为S n,a1=1,当n≥2时,a n=2a n S n﹣2S n2.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k对一切正整数n都成立?若存在,求k的取值范围,若不存在,请说明理由.18.云南省20XX年高中数学学业水平考试的原始成绩采用百分制,发布成绩使用等级制,各登记划分标准为:85分及以上,记为A等,分数在[70,85)内,记为B等,分数在[60,70)内,记为C等,60分以下,记为D等,同时认定等级分别为A,B,C都为合格,等级为D为不合格.已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分别作出甲校如图1所示样本频率分布直方图,乙校如图2所示样本中等级为C、D的所有数据茎叶图.(1)求图中x的值,并根据样本数据比较甲乙两校的合格率;(2)在选取的样本中,从甲、乙两校C等级的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中甲校的学生人数,求随机变量X的分布列和数学期望.19.如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,平面ABCD⊥平面SBC,SB=SC,M是BC的中点,AB=1,BC=2.(1)求证:AM⊥SD;(2)若二面角B﹣SA﹣M的正弦值为,求四棱锥S﹣ABCD的体积.20.已知椭圆E的中心在原点,焦点F1、F2在y轴上,离心率等于,P 是椭圆E上的点,以线段PF1为直径的圆经过F2,且9•=1.(1)求椭圆E的方程;(2)做直线l与椭圆E交于两个不同的点M、N,如果线段MN被直线2x+1=0平分,求l的倾斜角的取值范围.21.已知e是自然对数的底数,实数a是常数,函数f(x)=e x﹣ax﹣1的定义域为(0,+∞).(1)设a=e,求函数f(x)在切点(1,f(1))处的切线方程;(2)判断函数f(x)的单调性;(3)设g(x)=ln(e x+x3﹣1)﹣lnx,若∀x>0,f(g(x))<f(x),求a 的取值范围.[选修4-4:坐标系与参数方程选讲]22.已知直线L的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=.(Ⅰ)直接写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)过曲线C上任意一点P作与L夹角为的直线l,设直线l与直线L的交点为A,求|PA|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵集合S={1,2},∴S的真子集的个数为:22﹣1=3.故选:B.2.解:∵=,∴的共轭复数为.故选:C.3.解:根据条件:==4;∴;∴=9﹣(﹣21)+16=46;∴.故选:A.==(﹣1)r x10﹣2r,4.解:通项公式T r+1令10﹣2r=4,解得r=3.∴x4的系数等于﹣=﹣120.故选:A5.解:由题意设g(x)=(x﹣a)(x﹣b),则f(x)=2017﹣g(x),所以g(x)=0的两个根是a、b,由题意知:f(x)=0 的两根c,d,也就是g(x)=2017 的两根,画出g(x)(开口向上)以及直线y=2017的大致图象,则与f(x)交点横坐标就是c,d,f(x)与x轴交点就是a,b,又a>b,c>d,则c,d在a,b外,由图得,c>a>b>d,故选D.6.解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:D.7.解:作出不等式组对应的平面区域如图:对应的图形为△OAB,其中对应面积为S=×4×4=8,若f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数,则满足a>0且对称轴x=﹣≤1,即,对应的平面区域为△OBC,由,解得,∴对应的面积为S1=××4=,∴根据几何概型的概率公式可知所求的概率为=,故选:B.8.解:由正弦定理得到:sinA=sinCsinB+sinBcosC,∵在△ABC中,sinA=sin[π﹣(B+C)]=sin(B+C),∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,∴cosBsinC=sinCsinB,∵C∈(0,π),sinC≠0,∴cosB=sinB,即tanB=1,∵B∈(0,π),∴B=,=acsinB=ac=1+,∵S△ABC∴ac=4+2,由余弦定理得到:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac≥2ac﹣ac=4,当且仅当a=c时取“=”,∴b的最小值为2.故选:A.9.解:由已知中的三视图可得该几何体是一个以俯视图为底面的三棱锥,切去一个三棱锥所得的组合体,其底面面积S=×3×4=6,棱柱的高为:5,棱锥的高为3,故组合体的体积V=6×5﹣×6×3=24,故选:C10.解:由f(x)=﹣1+2sinωxcosωx+2cos2ωx,化简可得:f(x)=sin2ωx+cos2ωx=2sin(2ωx+)∵对称中心得到对称轴的距离的最小值为,∴T=π.由,可得:ω=1.f(x0)=,即2sin(2x0+)=∵≤x0≤,∴≤2x0+≤∴sin(2x0+)=>0∴cos(2x0+)=.那么:cos2x0=cos(2x0+﹣)=cos(2x0+)cos+sin(2x0+)sin=故选D11.解:如图所示:由已知得球的半径为2,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,△ABC为等腰直角三角形,P在面ABC上的射影为圆心O,过圆心O作OD⊥AB于D,连结PD,则∠PDO为二面角P﹣AB﹣C的平面角,在△ABC△中,PO=2,OD=BC=,∴,sinθ=.故选:C12.解:x2+y2﹣6x+4y﹣3=0,可化为(x﹣3)2+(y+2)2=16,圆心坐标为(3,﹣2),半径为4,∵抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,∴3+=4,∴p=2.∴F(1,0),设A(,y0)则=(,y0),=(1﹣,﹣y0),由•=﹣4,∴y0=±2,∴A(1,±2)故选B.二、填空题(共4小题,每小题5分,满分20分)13.解:由X服从正态分布N(90,σ2)(σ>0),且P(70≤X≤110)=0.35,得P(X≤70)=(1﹣0.35)=.∴估计这次考试分数不超过70分的人数为1000×=325.故答案为:325.14.解:设双曲线﹣=1(a>0,b>0)的右焦点为(c,0),当x=c时代入双曲线﹣=1得y=±,则A(c,),B(c,﹣),则AB=,将x=c代入y=±x得y=±,则C(c,),D(c,﹣),则|CD|=,∵|AB|≥|CD|,∴≥•,即b≥c,则b2=c2﹣a2≥c2,即c2≥a2,则e2=≥,则e≥.故答案为:[,+∞).15.解:由===.故答案为:.16.解:∵已知f(x)=,∴满足f(﹣x)=f(x),且f(0)=0,故f(x)为偶函数,f(x)在[0,+∞)上单调递增.若f(x﹣1)<f(2x+1),则|x﹣1|<|2x+1|,∴(x﹣1)2<(2x+1)2,即x2+2x>0,∴x>0,或x<﹣2,故答案为:{x|x>0,或x<﹣2}.三、解答题(共5小题,满分60分)17.解:(1)∵当n≥2时,a n=2a n S n﹣2S n2,∴a n=,n≥2,∴(S n﹣S n﹣1)(2S n﹣1)=2S n2,∴S n﹣S n﹣1=2S n S n﹣1,∴﹣2,n≥2,∴数列{}是以=1为首项,以2为公差的等差数列,∴=1+2(n﹣1)=2n﹣1,∴S n=,∴n≥2时,a n=S n﹣S n﹣1=﹣=﹣,∵a1=S1=1,∴a n=,(2)设f(n)=,则==>1,∴f(n)在n∈N*上递增,要使f(n)≥k恒成立,只需要f(n)min≥k,∵f(n)min=f(1)=,∴0<k≤18.解:(1)由频率分布直方图可得:(x+0.012+0.056+0.018+0.010)×10=1,解得x=0.004.甲校的合格率P1=(1﹣0.004)×10=0.96=96%,乙校的合格率P2==96%.可得:甲乙两校的合格率相同,都为96%.(2)甲乙两校的C等级的学生数分别为:0.012×10×50=6,4人.X=0,1,2,3.则P(X=k)=,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.∴X的分布列为:X0123PE(X)=0+1×+2×+3×=.19.证明:(1)∵SB=SC,M是BC的中点,∴SM⊥BC,∵平面ABCD⊥平面SBC,平面ABCD∩平面SBC=BC,∴SM⊥平面ABCD,∵AM⊂平面ABCD,∴SM⊥AM,∵底面ABCD是矩形,M是BC的中点,AB=1,BC=2,∴AM2=BM2==,AD=2,∴AM2+BM2=AD2,∴AM⊥DM,∵SM∩DM=M,∴AM⊥平面DMS,∵SD⊂平面DMS,∴AM⊥SD.解:(2)∵SM⊥平面ABCD,∴以M为原点,MC为x轴,MS为y轴,过M作平面BCS的垂线为z轴,建立空间直角坐标系,设SM=t,则M(0,0,0),B(﹣1,0,0),S(0,t,0),A(﹣1,0,1),=(0,0,1),=(1,t,0),=(﹣1,0,1),=(0,t,0),设平面ABS的法向量=(x,y,z),则,取x=1,得=(1,﹣,0),设平面MAS的法向量=(a,b,c),则,取a=1,得=(1,0,1),设二面角B﹣SA﹣M的平面角为θ,∵二面角B﹣SA﹣M的正弦值为,∴sinθ=,cosθ==,∴cosθ===,解得t=,∵SM⊥平面ABCD,SM=,∴四棱锥S﹣ABCD的体积:V S﹣=== ABCD.20.解:(1)由题意可知:设题意的方程:(a>b>0),e==,则c=a,设丨PF1丨=m,丨PF2丨=n,则m+n=2a,线段PF1为直径的圆经过F2,则PF2⊥F1F2,则n2+(2c)2=m2,9m•n×cos∠F1PF2=1,由9n2=1,n=,解得:a=3,c=,则b==1,∴椭圆标准方程:;(2)假设存在直线l,依题意l交椭圆所得弦MN被x=﹣平分,∴直线l的斜率存在.设直线l:y=kx+m,则由消去y,整理得(k2+9)x2+2kmx+m2﹣9=0∵l与椭圆交于不同的两点M,N,∴△=4k2m2﹣4(k2+9)(m2﹣9)>0,即m2﹣k2﹣9<0①设M(x1,y1),N(x2,y2),则x1+x2=﹣∴=﹣=﹣,∴m=②把②代入①式中得()2﹣(k2+9)<0∴k>或k<﹣,∴直线l倾斜角α∈(,)∪(,).21.解:(1)a=e时,f(x)=e x﹣ex﹣1,f(1)=﹣1,f′(x)=e x﹣e,可得f′(1)=0,故a=e时,函数f(x)在切点(1,f(1))处的切线方程是y=﹣1;(2)f(x)=e x﹣ax﹣1,f′(x)=e x﹣a,当a≤0时,f′(x)>0,则f(x)在R上单调递增;当a>0时,令f′(x)=e x﹣a=0,得x=lna,则f(x)在(﹣∞,lna]上单调递减,在(lna,+∞)上单调递增.(3)设F(x)=e x﹣x﹣1,则F′(x)=e x﹣1,∵x=0时,F′(x)=0,x>0时,F′(x)>0,∴F(x)在[0,+∞)递增,∴x>0时,F(x)>F(0),化简得:e x﹣1>x,∴x>0时,e x+x3﹣1>x,设h(x)=xe x﹣e x﹣x3+1,则h′(x)=x(e x﹣ex),设H(x)=e x﹣ex,H′(x)=e x﹣e,由H′(x)=0,得x=1时,H′(x)>0,x<1时,H′(x)<0,∴x>0时,H(x)的最小值是H(1),x>0时,H(x)≥H(1),即H(x)≥0,∴h′(x)≥0,可知函数h(x)在(0,+∞)递增,∴h(x)>h(0)=0,化简得e x+x3﹣1<xe x,∴x>0时,x<e x+x3﹣1<xe x,∴x>0时,lnx<ln(e x+x3﹣1)<lnx+x,即0<ln(e x+x3﹣1)﹣lnx<x,即x>0时,0<g(x)<x,当a≤1时,由(2)得f(x)在(0,+∞)递增,得f(g(x))<f(x)满足条件,当a>1时,由(2)得f(x)在(0,lna)递减,∴0<x≤lna时,f(g(x))>f(x),与已知∀x>0,f(g(x))<f(x)矛盾,综上,a的范围是(﹣∞,1].[选修4-4:坐标系与参数方程选讲]22.解:(Ⅰ)直线L的参数方程为(t为参数),普通方程为2x+y﹣6=0,极坐标方程为2ρcosθ+ρsinθ﹣6=0,曲线C的极坐标方程为ρ=,即ρ2+3ρ2cos2θ=4,曲线C 的普通方程为=1;(Ⅱ)曲线C上任意一点P(cosθ,2sinθ)到l的距离为d=|2cosθ+2sinθ﹣6|.则|PA|==|2sin(θ+45°)﹣6|,当sin(θ+45°)=﹣1时,|PA|取得最大值,最大值为.[选修4-5:不等式选讲]23.解:(Ⅰ)当a=5时,关于x的不等式f(x)>9,即|x+5|+|x﹣2|>9,故有①;或②;或③.解①求得x<﹣6;解②求得x∈∅,解③求得x>3.综上可得,原不等式的解集为{x|x<﹣6,或x>3}.(Ⅱ)设关于x的不等式f(x)=|x+a|+|x﹣2|≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3}={x|﹣1≤x≤2 },如果A∪B=A,则B⊆A,∴,即,求得﹣1≤a≤0,故实数a的范围为[﹣1,0].2018年高考理科数学模拟试卷(二)(考试时间120分钟满分150分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.复数z满足方程=﹣i(i为虚数单位),则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|x2+x﹣2<0},集合B={x|(x+2)(3﹣x)>0},则(∁R A)∩B 等于()A.{x|1≤x<3}B.{x|2≤x<3}C.{x|﹣2<x<1}D.{x|﹣2<x≤﹣1或2≤x<3}3.下列函数中,在其定义域内,既是奇函数又是减函数的是()A.f(x)=B.f(x)=C.f(x)=2﹣x﹣2x D.f(x)=﹣tanx 4.已知“x>2”是“x2>a(a∈R)”的充分不必要条件,则a的取值范围是()A.(﹣∞,4)B.(4,+∞)C.(0,4]D.(﹣∞,4]5.已知角α是第二象限角,直线2x+(t anα)y+1=0的斜率为,则cosα等于()A. B.﹣C.D.﹣6.执行如图所示的程序框图,若输入n的值为8,则输出s的值为()A.16 B.8 C.4 D.27.(﹣)8的展开式中,x的系数为()A.﹣112 B.112 C.56 D.﹣568.在△ABC中,∠A=60°,AC=3,面积为,那么BC的长度为()A.B.3 C.2D.9.记曲线y=与x轴所围成的区域为D,若曲线y=ax(x ﹣2)(a<0)把D的面积均分为两等份,则a的值为()A.﹣B.﹣C.﹣D.﹣10.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m e,众数为m0,平均值为,则()A.m e=m0=B.m e=m0<C.m e<m0<D.m0<m e<11.已知矩形ABCD的顶点都在半径为5的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的侧面积为()A.20+8B.44 C.20 D.4612.函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后关于y轴对称,则以下判断不正确的是()A.是奇函数 B.为f(x)的一个对称中心C.f(x)在上单调递增D.f(x)在(0,)上单调递减二、填空题:本大题共4小题,每小题5分,共20分.13.若变量x,y满足约束条件,则z=2x﹣y的最大值为.14.如图所示是一个几何体的三视图,则这个几何体的体积为.15.已知抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,点P是抛物线y2=8x上的一动点,P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,则该双曲线的方程为.16.已知向量,的夹角为θ,|+|=2,|﹣|=2则θ的取值范围为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知S n为等差数列{a n}的前n项和,S6=51,a5=13.(1)求数列{a n}的通项公式;(2)数列{b n}的通项公式是b n=,求数列{b n}的前n项和S n.18.袋中有大小相同的四个球,编号分别为1、2、3、4,从袋中每次任取一个球,记下其编号.若所取球的编号为偶数,则把该球编号改为3后放同袋中继续取球;若所取球的编号为奇数,则停止取球.(1)求“第二次取球后才停止取球”的概率;(2)若第一次取到偶数,记第二次和第一次取球的编号之和为X,求X的分布列和数学期望.19.在三棱椎A﹣BCD中,AB=BC=4,AD=BD=CD=2,在底面BCD内作CE ⊥CD,且CE=.(1)求证:CE∥平面ABD;(2)如果二面角A﹣BD﹣C的大小为90°,求二面角B﹣AC﹣E的余弦值.20.在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1).(1)求椭圆C的方徎;(2)若动点P在直线l:x=﹣2上,过P作直线交椭圆C于M,N两点,使得PM=PN,再过P作直线l′⊥MN,直线l′是否恒过定点,若是,请求出该定点的坐标;若否,请说明理由.21.已知函数f(x)=m(x﹣1)2﹣2x+3+lnx(m≥1).(1)求证:函数f(x)在定义域内存在单调递减区间[a,b];(2)是否存在实数m,使得曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值;若不存在,请说明理由.[选修4-1:几何证明选讲]22.选修4﹣1:几何证明选讲如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B、C两点,D是OC 的中点,连接AD并延长交⊙O于点E,若PA=2,∠APB=30°.(Ⅰ)求∠AEC的大小;(Ⅱ)求AE的长.[选修4-4:极坐标与参数方程]23.选修4﹣4:坐标系与参数方程在平面直角坐标系x0y中,动点A的坐标为(2﹣3sinα,3cosα﹣2),其中α∈R.在极坐标系(以原点O为极点,以x轴非负半轴为极轴)中,直线C的方程为ρcos (θ﹣)=a.(Ⅰ)判断动点A的轨迹的形状;(Ⅱ)若直线C与动点A的轨迹有且仅有一个公共点,求实数a的值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣a|.(1)若a=2,解不等式f(x)≥2;(2)若a>1,∀x∈R,f(x)+|x﹣1|≥1,求实数a的取值范围.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.解:由=﹣i,得,即z=1+i.则复数z在复平面内对应的点的坐标为(1,1).位于第一象限.故选:A.2.解:∵集合A={x|x2+x﹣2<0}={x|﹣2<x<1},集合B={x|(x+2)(3﹣x)>0}={x|﹣2<x<3},∴(C R A)∩B={x|x≤﹣2或x≥1}∩{x|﹣2<x<3}={x|1≤x<3}.故选:A.3.解:A中,f(x)=是奇函数,但在定义域内不单调;B中,f(x)=是减函数,但不具备奇偶性;C中,f(x)2﹣x﹣2x既是奇函数又是减函数;D中,f(x)=﹣tanx是奇函数,但在定义域内不单调;故选C.4.解:由题意知:由x>2能得到x2>a;而由x2>a得不出x>2;∵x>2,∴x2>4;∴a≤4;∴a的取值范围是(﹣∞,4].故选:D.5.解:由题意得:k=﹣=,故tanα=﹣,故cosα=﹣,故选:D.6.解:开始条件i=2,k=1,s=1,i<8,开始循环,s=1×(1×2)=2,i=2+2=4,k=1+1=2,i<8,继续循环,s=×(2×4)=4,i=6,k=3,i<8,继续循环;s=×(4×6)=8,i=8,k=4,8≥8,循环停止,输出s=8;故选B:=(﹣2)r C8r x4﹣r,7.解:(﹣)8的展开式的通项为T r+1令4﹣r=1,解得r=2,∴展开式中x的系数为(﹣2)2C82=112,故选:B.8.解:在图形中,过B作BD⊥ACS△ABC=丨AB丨•丨AC丨sinA,即×丨AB丨×3×sin60°=,解得:丨AB丨=2,∴cosA=,丨AD丨=丨AB丨cosA=2×=1,sinA=,则丨BD丨=丨AB丨sinA=2×=,丨CD丨=丨AC丨﹣丨AD丨=3﹣1=2,在△BDC中利用勾股定理得:丨BC丨2=丨BD丨2+丨CD丨2=7,则丨BC丨=,故选A.9.解:由y=得(x﹣1)2+y2=1,(y≥0),则区域D表示(1,0)为圆心,1为半径的上半圆,而曲线y=ax(x﹣2)(a<0)把D的面积均分为两等份,∴=,∴(﹣ax2)=,∴a=﹣,故选:B.10.解:根据题意,由题目所给的统计图可知:30个得分中,按大小排序,中间的两个得分为5、6,故中位数m e=5.5,得分为5的最多,故众数m0=5,其平均数=≈5.97;则有m0<m e<,故选:D.11.解:由题意可知四棱锥O﹣ABCD的侧棱长为:5.所以侧面中底面边长为6和2,它们的斜高为:4和2,所以棱锥O﹣ABCD的侧面积为:S=4×6+2=44.故选B.12.解:把函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后,得到y=2sin(2x++φ+π)=﹣2sin(2x++φ)的图象,再根据所得关于y轴对称,可得+φ=kπ+,k∈Z,∴φ=,∴f(x)=2sin(2x++φ)=2cos2x.由于f(x+)=2cos(2x+)=﹣sin2x是奇函数,故A正确;当x=时,f(x)=0,故(,0)是f(x)的图象的一个对称中心,故B正确;在上,2x∈(﹣,﹣),f(x)没有单调性,故C不正确;在(0,)上,2x∈(0,π),f(x)单调递减,故D正确,故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.解:由约束条件作出可行域如图,联立,解得A(4,2),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过点A时,直线在y 轴上的截距最小,z有最大值为6.故答案为:6.14.解:由三视图得到几何体如图:其体积为;故答案为:15.解:抛物线y2=8x的焦点F(2,0),双曲线C:﹣=1(a>0,b >0)一条渐近线的方程为ax﹣by=0,∵抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,∴,∴2b=a,∵P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,∴FF1=3,∴c2+4=9,∴c=,∵c2=a2+b2,a=2b,∴a=2,b=1,∴双曲线的方程为﹣x2=1.故答案为:﹣x2=1.16.解:由|+|=2,|﹣|=2,可得:+2=12,﹣2=4,∴=8≥2,=2,∴cosθ=≥.∴θ∈.故答案为:.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.解:(1)设等差数列{a n}的公差为d,则∵S6=51,∴×(a1+a6)=51,∴a1+a6=17,∴a2+a5=17,∵a5=13,∴a2=4,∴d=3,∴a n=a2+3(n﹣2)=3n﹣2;(2)b n==﹣2•8n﹣1,∴数列{b n}的前n项和S n==(8n﹣1).18.解:(1)记“第二次取球后才停止取球”为事件A.∴第一次取到偶数球的概率为=,第二次取球时袋中有三个奇数,∴第二次取到奇数球的概率为,而这两次取球相互独立,∴P(A)=×=.(2)若第一次取到2时,第二次取球时袋中有编号为1,3,3,4的四个球;若第一次取到4时,第二次取球时袋中有编号为1,2,3,3的四个球.∴X的可能取值为3,5,6,7,∴P(X=3)=×=,P(X=5)=×+×=,P(X=6)=×+×=,P(X=7)=×=,∴X的分布列为:X3567P数学期望EX=3×+5×+6×+7×=.19.(1)证明:∵BD=CD=2,BC=4,∴BD2+CD2=BC2,∴BD⊥CD,∵CE⊥CD,∴CE∥BD,又CE⊄平面ABD,BD⊂平面ABD,∴CE∥平面ABD;(2)解:如果二面角A﹣BD﹣C的大小为90°,由AD⊥BD得AD⊥平面BDC,∴AD⊥CE,又CE⊥CD,∴CE⊥平面ACD,从而CE⊥AC,由题意AD=DC=2,∴Rt△ADC中,AC=4,设AC的中点为F,∵AB=BC=4,∴BF⊥AC,且BF=2,设AE中点为G,则FG∥CE,由CE⊥AC得FG⊥AC,∴∠BFG为二面角B﹣AC﹣E的平面角,连接BG,在△BCE中,∵BC=4,CE=,∠BCE=135°,∴BE=,在Rt△DCE中,DE==,于是在Rt△ADE中,AE==3,在△ABE中,BG2=AB2+BE2﹣AE2=,∴在△BFG中,cos∠BFG==﹣,∴二面角B﹣AC﹣E的余弦值为﹣.20.解:(1)∵椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1),∴,解得a2=12,b2=4,∴椭圆C的方程为.(2)∵直线l的方程为x=﹣2,设P(﹣2,y0),,当y0≠0时,设M(x1,y1),N(x2,y2),由题意知x1≠x2,联立,∴,∴,又∵PM=PN,∴P为线段MN的中点,∴直线MN的斜率为,又l′⊥MN,∴l′的方程为,即,∴l′恒过定点.当y0=0时,直线MN为,此时l′为x轴,也过点,综上,l′恒过定点.21.(1)证明:令f′(x)=0,得mx2﹣(m+2)x+1=0.(*)因为△=(m+2)2﹣4m=m2+4>0,所以方程(*)存在两个不等实根,记为a,b (a<b).因为m≥1,所以a+b=>0,ab=>0,所以a>0,b>0,即方程(*)有两个不等的正根,因此f′(x)≤0的解为[a,b].故函数f(x)存在单调递减区间;(2)解:因为f′(1)=﹣1,所以曲线C:y=f(x)在点P(1,1)处的切线l为y=﹣x+2.若切线l与曲线C只有一个公共点,则方程m(x﹣1)2﹣2x+3+lnx=﹣x+2有且只有一个实根.显然x=1是该方程的一个根.令g(x)=m(x﹣1)2﹣x+1+lnx,则g′(x)=.当m=1时,有g′(x)≥0恒成立,所以g(x)在(0,+∞)上单调递增,所以x=1是方程的唯一解,m=1符合题意.当m>1时,令g′(x)=0,得x1=1,x2=,则x2∈(0,1),易得g(x)在x1处取到极小值,在x2处取到极大值.所以g(x2)>g(x1)=0,又当x→0时,g(x)→﹣∞,所以函数g(x)在(0,)内也有一个解,即当m>1时,不合题意.综上,存在实数m,当m=1时,曲线C:y=f(x)在点P(1,1)处的切线l与C 有且只有一个公共点.[选修4-1:几何证明选讲]22.解:(Ⅰ)连接AB,因为:∠APO=30°,且PA是⊙O的切线,所以:∠AOB=60°;∵OA=OB∴∠AB0=60°;∵∠ABC=∠AEC∴∠AEC=60°.(Ⅱ)由条件知AO=2,过A作AH⊥BC于H,则AH=,在RT△AHD中,HD=2,∴AD==.∵BD•DC=AD•DE,∴DE=.∴AE=DE+AD=.[选修4-4:极坐标与参数方程]23.解:(Ⅰ)设动点A的直角坐标为(x,y),则,利用同角三角函数的基本关系消去参数α可得,(x﹣2)2+(y+2)2=9,点A的轨迹为半径等于3的圆.(Ⅱ)把直线C方程为ρcos(θ﹣)=a化为直角坐标方程为+=2a,由题意可得直线C与圆相切,故有=3,解得a=3 或a=﹣3.[选修4-5:不等式选讲]24.解:(1)当a=2时,,由于f(x)≥2,则①当x<1时,﹣2x+3≥2,∴x≤;②当1≤x≤1时,1≥2,无解;③当x>2时,2x﹣3≥2,∴x≥.综上所述,不等式f(x)≥2的解集为:(﹣∞,]∪[,+∞);(2)令F(x)=f(x)+|x﹣1|,则,所以当x=1时,F(x)有最小值F(1)=a﹣1,只需a﹣1≥1,解得a≥2,所以实数a的取值范围为[2,+∞).2018年高考理科数学模拟试卷(三)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知复数z满足z(1﹣i)2=1+i(i为虚数单位),则z=()A. +i B.﹣i C.﹣+i D.﹣﹣i2.已知集合A={x|(x﹣1)2≤3x﹣3,x∈R},B={y|y=3x+2,x∈R},则A∩B=()A.(2,+∞)B.(4,+∞)C.[2,4]D.(2,4]3.甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,σ12)及N(μ2,σ22),其正态分布的密度曲线如图所示,则下列说法错误的是()A.乙类水果的质量服从的正态分布的参数σ2=1.99B.甲类水果的质量比乙类水果的质量更集中C.甲类水果的平均质量μ1=0.4kgD.甲类水果的平均质量比乙类水果的平均质量小4.已知数列{a n}的前n项和S n满足S n+S m=S n(n,m∈N*)且a1=5,则a8=()+mA.40 B.35 C.12 D.55.设a=(),b=(),c=ln,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.b>c>a D.a>c>b6.执行如图所示的程序框图,则输出b的值为()A.2 B.4 C.8 D.167.若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,则k的值为()A.﹣1 B.﹣C.﹣D.﹣38.某同学在运动场所发现一实心椅子,其三视图如图所示(俯视图是圆的一部分及该圆的两条互相垂直的半径,有关尺寸如图,单位:m),经了解,建造该类椅子的平均成本为240元/m3,那么该椅子的建造成本约为(π≈3.14)()A.94.20元 B.240.00元C.282.60元D.376.80元9.当函数f(x)=sinx+cosx﹣t(t∈R)在闭区间[0,2π]上,恰好有三个零点时,这三个零点之和为()A.B. C. D.2π10.有5位同学排成前后两排拍照,若前排站2人,则甲不站后排两端且甲、乙左右相邻的概率为()A.B.C.D.11.某工厂拟生产甲、乙两种实销产品.已知每件甲产品的利润为0.4万元,每件乙产品的利润为0.3万元,两种产品都需要在A,B两种设备上加工,且加工一件甲、乙产品在A,B设备上所需工时(单位:h)分别如表所示.甲产品所需工时乙产品所需工时A设备23B设备41若A设备每月的工时限额为400h,B设备每月的工时限额为300h,则该厂每月生产甲、乙两种产品可获得的最大利润为()A.40万元B.45万元C.50万元D.55万元12.若函数g(x)满足g(g(x))=n(n∈N)有n+3个解,则称函数g(x)为“复合n+3解”函数.已知函数f(x)=(其中e是自然对数的底数,e=2.71828…,k∈R),且函数f(x)为“复合5解”函数,则k的取值范围是()A.(﹣∞,0)B.(﹣e,e)C.(﹣1,1)D.(0,+∞)二、填空题(共4小题,每小题5分,满分20分)13.在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,则•=.14.有下列四个命题:①垂直于同一条直线的两条直线平行;②垂直于同一条直线的两个平面平行;③垂直于同一平面的两个平面平行;④垂直于同一平面的两条直线平行.其中正确的命题有(填写所有正确命题的编号).15.若等比数列{a n}的公比为2,且a3﹣a1=2,则++…+=.16.设抛物线C:y2=2px(p>0)的焦点为F,点A在C上,若|AF|=,以线段AF为直径的圆经过点B(0,1),则p=.三、解答题(共5小题,满分60分)17.在△ABC中,设内角A,B,C所对边分别为a,b,c,且sin(A﹣)﹣cos(A+)=.(1)求角A的大小;(2)若a=,sin2B+cos2C=1,求△ABC的面积.18.某大学有甲、乙两个图书馆,对其借书、还书的等待时间进行调查,得到下表:甲图书馆12345借(还)书等待时间T1(分钟)频数1500 1000 500 500 1500乙图书馆12345借(还)书等待时间T2(分钟)频数100050020001250250以表中等待时间的学生人数的频率为概率.(1)分别求在甲、乙两图书馆借书的平均等待时间;(2)学校规定借书、还书必须在同一图书馆,某学生需要借一本数学参考书,并希望借、还书的等待时间之和不超过4分钟,在哪个图书馆借、还书更能满足他的要求?19.如图所示,在Rt△ABC中,AC⊥BC,过点C的直线VC垂直于平面ABC,D、E分别为线段VA、VC上异于端点的点.(1)当DE⊥平面VBC时,判断直线DE与平面ABC的位置关系,并说明理由;(2)当D、E、F分别为线段VA、VC、AB上的中点,且VC=2BC时,求二面角B ﹣DE﹣F的余弦值.20.已知椭圆+=1(a>b>0)过点P(2,1),且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设O为坐标原点,在椭圆短轴上有两点M,N满足=,直线PM、PN分别交椭圆于A,B.(i)求证:直线AB过定点,并求出定点的坐标;(ii)求△OAB面积的最大值.21.已知函数f(x)=lnx﹣2ax(其中a∈R).(Ⅰ)当a=1时,求函数f(x)的图象在x=1处的切线方程;(Ⅱ)若f(x)≤1恒成立,求a的取值范围;(Ⅲ)设g(x)=f(x)+x2,且函数g(x)有极大值点x0,求证:x0f(x0)+1+ax02>0.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,双曲线E的参数方程为(θ为参数),设E的右焦点为F,经过第一象限的渐进线为l.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求直线l的极坐标方程;(2)设过F与l垂直的直线与y轴相交于点A,P是l上异于原点O的点,当A,O,F,P四点在同一圆上时,求这个圆的极坐标方程及点P的极坐标.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|﹣2a,其中a∈R.(1)当a=﹣2时,求不等式f(x)≤2x+1的解集;(2)若x∈R,不等式f(x)≤|x+1|恒成立,求a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵z(1﹣i)2=1+i,∴,故选:C.2.解:集合A={x|(x﹣1)2≤3x﹣3,x∈R}={x|(x﹣1)(x﹣4)≤0}={x|1≤x ≤4}=[1,4];B={y|y=3x+2,x∈R}={y|y>2}=(2,+∞),则A∩B=(2,4].故选:D.3.解:由图象可知,甲类水果的平均质量μ1=0.4kg,乙类水果的平均质量μ2=0.8kg,故B,C,D正确;乙类水果的质量服从的正态分布的参数σ2=,故A 不正确.故选:A.4.解:数列{a n}的前n项和S n满足S n+S m=S n+m(n,m∈N*)且a1=5,令m=1,则S n+1=S n+S1=S n+5.可得a n+1=5.则a8=5.故选:D.5.解:b=()=>()=a>1,c=ln<1,∴b>a>c.故选:B.6.解:第一次循环,a=1≤3,b=2,a=2,第二次循环,a=2≤3,b=4,a=3,第三次循环,a=3≤3,b=16,a=4,第四次循环,a=4>3,输出b=16,故选:D.7.解:圆C:x2+y2﹣2x+4y=0的圆心(1,﹣2),若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,可知直线经过圆的圆心,可得﹣2=k﹣1,解得k=﹣1.故选:A.8.解:由三视图可知:该几何体为圆柱的.∴体积V=.∴该椅子的建造成本约为=×240≈282.60元.故选:C.9.解:f(x)=2sin(x+)﹣t,令f(x)=0得sin(x+)=,做出y=sin(x+)在[0,2π]上的函数图象如图所示:∵f(x)在[0,2π]上恰好有3个零点,∴=sin=,解方程sin(x+)=得x=0或x=2π或x=.∴三个零点之和为0+2π+=.故选:B.10.解:由题意得:p===,故选:B.11.C解:设甲、乙两种产品月的产量分别为x,y件,约束条件是目标函数是z=0.4x+0.3y由约束条件画出可行域,如图所示的阴影部分由z=0.4x+0.3y,结合图象可知,z=0.4x+0.3y在A处取得最大值,由可得A(50,100),此时z=0.4×50+0.3×100=50万元,故选:C.12.解:函数f(x)为“复合5解“,∴f(f(x))=2,有5个解,设t=f(x),∴f(t)=2,∵当x>0时,f(x)=,∴f(x)=,当0<x<1时,f′(x)<0,函数f(x)单调递减,当x>1时,f′(x)>0,函数f(x)单调递增,∴f(x)min=f(1)=1,∴t≥1,∴f(t)=2在[1,+∞)有2个解,当x≤0时,f(x)=kx+3,函数f(x)恒过点(0,3),当k≤0时,f(x)≥f(0)=3,∴t≥3∵f(3)=>2,∴f(t)=2在[3,+∞)上无解,当k>0时,f(x)≤f(0)=3,∴f(t)=2,在(0,3]上有2个解,在(∞,0]上有1个解,综上所述f(f(x))=2在k>0时,有5个解,故选:D二、填空题(共4小题,每小题5分,满分20分)13.解:在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,可得AD=BD=5,即AB=10,由勾股定理可得AC==8,则•=﹣•=﹣||•||•cosA=﹣5×8×=﹣32.14.解:如图在正方体ABCD﹣A′B′C′D′中,对于①,AB⊥BB′,BC⊥BB′,AB、BC不平行,故错;对于②,两底面垂直于同一条侧棱,两个底面平面平行,故正确;对于③,相邻两个侧面同垂直底面,这两个平面不平行,故错;对于④,平行的侧棱垂直底面,侧棱平行,故正确.故答案为:②④15.解:∵等比数列{a n}的公比为2,且a3﹣a1=2,∴=2,解得a1=.∴a n==.∴=.则++…+=3×==1﹣.故答案为:1﹣.16.解:由题意,可得A(,),AB⊥BF,∴(,﹣1)•(,﹣1)=0,∴﹣+1=0,∴p(5﹣p)=4,∴p=1或4.三、解答题(共5小题,满分60分)17.解:(1)sin(A﹣)﹣cos(A+)=sin(A﹣)﹣cos(2π﹣A)=sin(A﹣)﹣cos(A+)=sinA﹣cosA﹣cosA﹣sinA=即cosA=,∵0<A<π,∴A=.(2)由sin2B+cos2C=1,可得sin2B=2sin2C,由正弦定理,得b2=2c2,即.a=,cosA==,解得:c=1,b=∴△ABC的面积S=bcsinA=.18.解:(1)根据已知可得T1的分布列:T1(分钟)12345P0.30.20.10.10.3T1的数学期望为:E(T1)=1×0.3+2×0.2+3×0.1+4×0.1+5×0.3=2.9.T2(分钟)12345P0.20.10.4 0.250.05T2的数学期望为:E(T1)=1×0.2+2×0.1+3×0.4+4×0.25+5×0.05=2.85.因此:该同学甲、乙两图书馆借书的平均等待时间分别为:2.9分钟,2.85分钟.(2)设T11,T12分别表示在甲图书馆借、还书所需等待时间,设事件A为“在甲图书馆借、还书的等待时间之和不超过4分钟”.T11+T12≤4的取值分别为:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).。
安徽省合肥市第一中学2018冲刺高考最后1卷文科数学试题(解析版)

2018冲刺高考最后1卷文科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. D.【答案】A【解析】分析:求出集合的补集,利用一元二次不等式的解法化简集合,利用并集的定义可得结果.详解:因为,所以,又因为,,故选A.点睛:本题主要考查解一元二次不等式,求集合的补集与并集,属于容易题,在解题过程中要注意在求补集与并集时要考虑端点是否可以取到,这是一个易错点,同时将不等式与集合融合,体现了知识点之间的交汇.2. 已知是虚数单位,复数的共轭复数为,若,则()A. B. C. 或 D. 或【答案】D【解析】分析:由求出,利用可得结果.详解:由,可得,,故选D.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3. 阅读下面的程序框图,运行相应的程序,若输入的值为,则输出的值为()A. B. C. D.【答案】C【解析】第一次,能被3整除,不成立,第二次,8不能被3整除,不成立,第三次,不能被3整除成立,输出故选C4. 设为向量,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】分析:“”可得,由“”可得向量夹角为或,利用充分不必要的定义可得结果.详解:由,得,即或,,由,得向量与同向或反向,或,,“”是“”的充分必要条件,故选C.点睛:判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.5. 函数在区间内的图像大致为()A. B.C. D.【答案】B【解析】分析:根据奇偶性排除;根据时函数值为正排除;根据函数零点排除,从而可得结果. 详解:函数定义域为,其关于原点对称,且,则为奇函数,又图象关于原点对称,排除;当时,,排除;又,可得或,排除,故选B.点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.6. 在正方形网格中,某四面体的三视图如图所示. 如果小正方形网格的边长为,那么该四面体的体积是()A. B. C. D.【答案】B【解析】分析:由三视图可得该几何体为三棱锥,底面为等腰直角三角形,一个侧面与底面垂直,结合三视图中数据,利用棱锥的体积公式可得结果.详解:由三视图还原的几何体如图所示,该几何体为三棱锥,侧面为等腰三角形,且平面平面,,底面为直角三角形,,棱锥的高为,该四面体的体积,故选B.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.7. 观察下图:则第()行的各数之和等于.A. B. C. D.【答案】D【解析】分析:根据图形中数据,归纳可得第行各数之和,从而可得结果.详解:由图形知,第一行各数和为;第二行各数和为;第三行各数和为;第四行各数和为,第行个数之和为,令,解得,故选D.点睛:归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.8. 已知是球表面上的点,平面,则球的表面积等于()A. B. C. D.【答案】A【解析】试题分析:由题意得,因为平面,,所以四面体的外接球半径等于以长宽高分别为三边长的长方体的外接球的半径,又因为,所以,所以球的表面积为,故选A.考点:球的内接多面体;球的表面积公式.【方法点晴】本题主要考查了球的内接多面体,球的表面积公式的应用,其中根据已知条件求出球的直径(半径)是解答本题的关键,属于中档试题,着重考查了转化与化归的思想方法及空间想象能力,本题的解答中由平面,,转化为四面体的外接球半径等于以长宽高分别为三边长的长方体的外接球的半径,从而求解球的半径,即可求解球的表面积.9. 如图所示,点分别在轴与轴的正半轴上移动,且,若点从移动到,则的中点经过的路程为()A. B. C. D.【答案】D【解析】分析:设的中点,由,可得,根据的变化规律求出从变到,从而可得结果. 详解:设的中点,,,当点从移动到时,从变到,圆心角变化经过的路程为,故选D.点睛:本题主要考查直接法求轨迹方程、弧长公式的应用,属于难题.求轨迹方程的常见方法有:①直接法,设出动点的坐标,根据题意列出关于的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把分别用第三个变量表示,消去参数即可;④逆代法,将代入.10. 设集合,若动点,则的取值范围是( )A.B.C. D.【答案】C【解析】分析:利用线性规划知识,画出所表示的区域,就是区域内点到距离的平方,根据平面几何知识可得结果. 详解:在同一直角坐标系中画出集合所在区域,取交集后可得所表示的区域如图中阴影部分所示, 而表示的是中的点到的距离,由图可知,到直线的距离最小,为;到的距离最大,为,所以范围是,故选C.点睛:本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.11. 已知函数,若函数存在零点,则实数的取值范围为()A. B. C. D.【答案】B【解析】分析:函数存在零点,等价于方程存在实数根,即函数与的图象有交点,画出函数图象,利用数形结合可得结果.详解:函数存在零点,即方程存在实数根,即函数与的图象有交点,如图所示,直线恒过定点,过点与的直线的斜率,设直线与相切于,则切点处的导数值为,则过切点的直线方程为,又切线过,则,,得,此时切线的斜率为,由图可知,要使函数存在零点,则实数的取值范围是或,故选B.点睛:函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数有零点函数在轴有交点方程有根函数与有交点.12. 点在直线上,若存在过的直线交抛物线于两点,且,则称点为“点”.下列结论中正确的是()A. 直线上的所有点都是“点”B. 直线上仅有有限个点是“点”C. 直线上的所有点都不是“点”D. 直线上有无穷多个点(点不是所有的点)是“点”【答案】A【解析】分析:设,由,可得,由在上,可得关于的方程,证明方程恒有解即可得结论详解:如图所示,设,因为,直线与抛物线相离,所以,,可得,在上,,消去,整理得,关于的方程,恒成立,方程恒有实数解,点在直线上,总存在过的直线交抛物线于两点,且,所以,直线上的所有点都是“点”,故选A.点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题定义“点”达到考查共线向量、直线与抛物线的位置关系的目.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 为了研究某班学生的脚长(单位:厘米)和身高(单位:厘米)的关系,从该班随机抽取名学生,根据测量数据的散点图可以看出与之间有线性相关关系,设其回归直线方程为已知.该班某学生的脚长为,据此估计其身高为__________.【答案】【解析】分析:由,利用平均值公式求得样本中心点坐标,将其代入,可得的值,将再代人所求方程即可的结果.详解:由,利用平均值公式求得,因为,,从而当时,,故答案为.点睛:求回归直线方程的步骤:①确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.14. 从区间随机抽取个数,构成个数对,其中两数的平方和小于的数对共有个,则用随机模拟的方法得到的圆周率的近似值为__________.【答案】【解析】分析:根据随机模拟试验的性质以及几何概型概率公式列方程求解即可.详解:利用几何概型,可得四分之一圆形的面积和正方形的面积比为,故答案为.点睛:本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时, 忽视验证事件是否等可能性导致错误.15. 如图所示,地在地的正东方向处,地在地的北偏东方向处,河流的沿岸(曲线)上任意一点到的距离比到的距离远.现要再曲线上任一处建一座码头,向两地转运货物.经测算,从到和到修建公路的费用均为万元,那么修建这两条公路的总费用最低是__________万元.【答案】【解析】分析:以所在的直线为轴,的中垂线为轴,建立平面直角坐标系,可得的轨迹方程为,根据双曲线的定义,结合平面几何知识,即可得结果.详解:以所在的直线为轴,的中垂线为轴,建立平面直角坐标系,则,由知点的轨迹,即曲线的方程为,,修建这两条公路的总费用最低是万元,故答案为.点睛:本题主要考查利用定义求双曲线方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.16. 已知数列满足,则的值是__________.【答案】【解析】分析:设可得,数列是公比为的等比数列,从而可求得,利用分组求和,结合等比数列求和公式求解即可.详解:设,则,即,,故数列是公比为的等比数列,则,,,故答案为.点睛:本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:(1)等差数列、等比数列(先根据条件判定出数列是等差、等比数列);(2)累加法,相邻两项的差成等求和的数列可利用累加求通项公式;(3)累乘法,相邻两项的商是能求出积的特殊数列时用累乘法求通项;(4)构造法,形如的递推数列求通项往往用构造法,即将利用待定系数法构造成的形式,再根据等比数例求出的通项,进而得出的通项公式.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 的内角的对边分别为,已知.(1)求;(2)若成等差数列,且的周长为,求的面积.【答案】(1)(2)【解析】分析:(1)由,利用正弦定理可得,再由两角和的正弦公式结合诱导公式可得,从而可得结果;(2)由成等差数列,的周长为,可得,由余弦定理利用三角形面积公式可得结果.详解:(1)已知,由正弦定理得,即为的内角,.(2)成等差数列,,又的周长为,即,由余弦定理知.点睛:以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心. 18. 在如图所示的几何体中,为的中点,.(1)求证:;(2)若,求该几何体的体积.【答案】(1)见解析(2)4【解析】分析:(1)由可得共面,根据等腰三角形的性质可得,,由线面垂直的判定定理可得平面进而可得结果;(2)由(1)可知平面由勾股定理可得,从而可求出梯形的面积,利用棱锥的体积公式可得结果.详解:(1)与确定平面.连接的为的中点,.同理可得,又平面平面平面平面.(2)由(1)可知平面,又.在梯形中,取的中点,连接,则且四边形为平行四边形,且.又.点睛:解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.19. 某企业生产的某种产品被检测出其中一项质量指标存在问题. 该企业为了检查生产该产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在内,则为合格品,否则为不合格品.表 1是甲流水线样本的频数分布表,如图所示是乙流水线样本的频率分布直方图.表1 甲流水线样本的频数分布表(1)若将频率视为概率,某个月内甲、乙两条流水线均生产了万件产品,则甲、乙两条流水线分别生产出不合格品约多少件?(2)在甲流水线抽取的样本的不合格品中随机抽取两件,求两件不合格品的质量指标值均偏大的概率;(3)根据已知条件完成下面列联表,并判断在犯错误概率不超过的前提下能否认为“该企业生产的这种产品的质量指标值与甲、乙两条流水线的选择有关”?附:(其中为样本容量)【答案】(1)7200,14400(2)(3)不能认为【解析】分析:(1)由甲流水线样本的频数分布表求得甲不合格品的概率,由乙流水线样本的频率分布直方图可得乙不合格品的概率,根据概率与总产品数的乘积可得结果;(2)在甲流水线抽取的样本中,不合格品共有件,其中质量指标值偏小的有件,利用列举法,根据古典概型概率公式可得两件不合格品的质量指标值均偏大的概率;(3)完成列联表,根据列联表中数据,利用公式求得,从而可得结果.详解:(1)由甲、乙两条流水线各抽取的件产品可得,甲流水线生产的不合格品有件,则甲流水线生产的产品为不合格品的概率,乙流水线生产的产品为不合格品的概率.于是,若某个月内甲、乙两条流水线均生产了万件产品,则甲、乙两条流水线生产的不合格品件数分别为(件),(件).(2)在甲流水线抽取的样本中,不合格品共有件,其中质量指标值偏小的有件,记为;质量指标值偏大的有件,记为,则从中任选件有共种结果,其中质量指标值都偏大有种结果.故所求概率为.(3)列联表如下:则,所以在犯错误概率不超过的前提下不能认为“该企业生产的这种产品的质量指标值与甲、乙两条流水线的选择有关”.点睛:本题主要考查频率分布直方图、古典概型概率公式以及独立性检验,属于难题.独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3) 查表比较与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)20. 如图所示,在平面直角坐标系中,已知椭圆的离心率为,短轴长为.(1)求椭圆的标准方程;(2)设为椭圆的左顶点,为椭圆上位于轴上方的点,直线交轴于点,点在轴上,且,设直线交椭圆于另一点,求的面积的最大值.【答案】(1)(2)【解析】分析:(1)根据离心率为,短轴长为,结合性质,列出关于、、的方程组,求出、、,即可求得椭圆的标准方程;(2)联立消解得或,则,同理可得,的面积.详解:(1)由题意得,解得,所以椭圆的标准方程为.(2)由题可设直线的方程为,则,又且,所以,所以直线的方程为,则,联立消去并整理得,解得或,则,直线的方程为,同理可得,所以关于原点对称,即过原点,所以的面积,当且仅当,即时,等号成立,所以的面积的最大值为.点睛:求椭圆标准方程的方法一般为待定系数法,根据条件确定关于的方程组,解出,从而写出椭圆的标准方程.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.21. 已知函数(为常数).(1)若函数与函数在处有相同的切线,求实数的值;(2)当时,,求实数的取值范围.【答案】(1)(2)【解析】分析:(1)求出,根据,即可得,即;(2)设,则对恒成立.,,且,即符合题意,当时,分两种情况讨论①,②,分别利用导数研究函数的单调性,可得到不合题意,从而可得结果.详解:(1)由题意得,又,且函数与在处有相同的切线,,则,即.(2)设,则对恒成立. ,且,即.另一方面,当时,记,则.当时,在内为减函数,当时,,即在内为减函数,当时,恒成立,符合题意.当时,①若,则对恒成立,在内为增函数,当时,恒成立,不符合题意.②若,令,则在内为增函数,当时,,即在内为增函数,当时,,不符合题意,综上所述.点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程已知曲线的参数方程为(为参数),在同一平面直角坐标系中,将曲线上的点按坐标变换得到曲线,以原点为极点、轴的正半轴为极轴,建立极坐标系.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若直线与曲线交于两点,与曲线交于两点,求的值.【答案】(1)(2)【解析】分析:(1)曲线的参数方程消去参数可得其普通方程,利用可得极坐标方程,由得代入得从而可得曲线的直角坐标方程;(2)将代入,可得,直线的参数方程为(为参数),代入,根据韦达定理以及直线参数方程的几何意义可得,从而可得结果.详解:(1)已知曲线的参数方程为(为参数),消去参数得.又,即曲线的极坐标方程为.又由已知得代入得曲线的直角坐标方程为.(2)将代入,得.又直线的参数方程为(为参数),代入,整理得,分别记两点对应的参数为,则.点睛:参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式,等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.23. 选修4-5:不等式选讲已知函数.(1)当时,解不等式;(2),求的取值范围.【答案】(1)(2)【解析】分析:(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;(2)因为,所以可得,从而可得结果.详解:(1)当时,,即或或解得或或,故此不等式的解集为.(2)因为,因为,有成立,所以只需,化简得,解得或,所以的取值范围为.点睛:绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。
安徽省合肥一中2018届高三冲刺高考最后1卷数学文

2018年安徽省合肥市第一中学冲刺高考最后
1卷文科数学试卷
第Ⅰ卷(共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合
2{|2},{|340}S x x T x x x ,则()R C S T ()A .(,1] B .(,4] C .(2,1] D .[1,)
2.已知,a
R i 是虚数单位,复数z 的共轭复数为z ,若3,4z a i z z ,则a ()A .3 B .3 C .7或7 D
.1或13.阅读下面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为()
A .0
B .1
C .2
D .3
4.设,a b 为向量,则“
||||||a b a b ”是“//a b ”的()A .充分不必要条件
B .必要不充分条件 C.充分必要条件 D .既不充分也不必要条件
5.函数sin (1cos 2)y x x 在区间[2,2]内的图像大致为(
)
A. B.
C. D.
6.在正方形网格中,某四面体的三视图如图所示. 如果小正方形网格的边长为1,那么该四面体的体积是()
A.64
3
B.
32
3
C.16 D.32
7.观察下图:
则第()行的各数之和等于2
2017.
A.2010 B.2018 C.1005 D.1009。
2018届安徽省合肥市高三下学期冲刺模拟卷理数试题Word版含解析

2018届安徽省合肥市高三下学期冲刺模拟卷理数试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的. 1.已知集合{{}2,20A x y B x x x ===-<,则( )A .AB =∅ B .A B R =C .B A ⊆D .A B ⊆【答案】C考点:集合运算及关系【名师点睛】本题重点考查集合间关系,容易出错的地方是审错题意,由求函数定义域改为函数值域,错求集合A.属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合题要关注区间端点开与闭,强化对集合关系正确的理解. 2.复数1cossin66z i ππ=-的共轭复数z 是( )A.12+ B.12 C12i + D12i - 【答案】D 【解析】试题分析:1122cossin66z i i ππ===+-,所以z 12i =,选D. 考点:复数运算及概念【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)+∈a bi a b R 的实部为a 、虚部为b.-a bi 3.在等差数列{}n a 中,1328,3a a a ==,则公差d =( )A .1B .1-C .1±D .2± 【答案】C考点:等差数列公差【名师点睛】本题考查等差数列基本量,对于特殊数列,一般采取待定系数法,即列出关于首项及公差的两个独立条件即可.为使问题易于解决,往往要利用等差数列相关性质,如*1()(),(1,)22n m t n n a a n a a S m t n m t n N ++==+=+∈、、及等差数列广义通项公式().n m a a n m d =+- 4.在平面直角坐标系中,不等式组040x y x y x a +≥⎧⎪-+≥⎨⎪≤⎩(a 为常数)表示的平面区域面积是9,那么实数a 的值为( )A.2 B.2- C .5- D .1 【答案】D 【解析】试题分析:由题意得平面区域为一个等腰直角三角形ABC ,其中(2,2),(,),(,4),(2)A B a a C a a a --+>-,因此1(2)2(2)92312a a a a +⋅+=⇒+=⇒=,选D. 考点:线性规划【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围. 5.如图给出了一个算法流程图,该算法流程图的功能是( ) A .求,,a b c 三数的最大数 B .求,,a b c 三数的最小数C .将,,a b c 按从小到大排列D .将,,a b c 按从大到小排列【答案】B考点:循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.6.设函数()()()ln 0310x x x f x x ⎧<⎪=⎨-≥⎪⎩,若()00f x >,则0x 的取值范围是( ) A .()(),11,-∞-+∞ B .()(),10,-∞-+∞C .()()1,00,1-D .()()1,00,-+∞【答案】B 【解析】试题分析:由题意得000010ln 010310x x x x x x x x x x <<≥≥⎧⎧⎧⎧⇒⇒<->⎨⎨⎨⎨>>>->⎩⎩⎩⎩或或或,因此0x 的取值范围是()(),10,-∞-+∞,选B.考点:分段函数不等式【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么.函数周期性质可以将未知区间上的自变量转化到已知区间上.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处函数值.7.设M 是ABC ∆内任一点,且23,30AB AC BAC =∠=︒,设,,MBC MAC MAB ∆∆∆的面积分别为,,x y z ,且12z =,则在平面直角中坐标系中,以,x y 为坐标的点(),x y 的轨迹图形是( )A .B .C .D . 【答案】A考点:向量数量积8.函数32362y x x x =+-+在其对称中心处的切线方程为( ) A .91y x =-+ B .91y x =+ C .0y = D .9y x =-+【答案】A 【解析】试题分析:因为323362(1)9(1)10y x x x x x =+-+=+-++,所以对称中心为(1,10)-,又21366,|9x y x x k y =-''=+-==-,故切线方程为109(1),91y x y x -=-+=-+,选A.考点:导数几何意义9.已知函数()sin f x x π=和函数()cos g x x π=在区间[]1,2-上的图象交于A 、B 、C 三点,则ABC ∆的面积是( ) ABC【答案】C考点:三角函数求值10.3位男生和 3位女生共6位同学站成一排,则男生甲不站两端,3位女生中有且只有两位女生相邻的概率是( ) A .12 B .47180 C .25 D .215【答案】C 【解析】试题分析:3位男生和 3位女生共6位同学站成一排共有66A 种不同排法,其中男生甲不站两端,3位女生中有且只有两位女生相邻有2322233422(6)A A A A A -种不同排法,因此所求概率为232223342266(6)2=.5A A A A A A -选C.考点:排列组合11.某几何体的三视图如图所示,则该几何体的表面积为( )A .4B .21.12+.6【答案】C考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图. 2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据. 12.已知向量α、β、γ满足()()4,2,0ααβαγβγ==--=,若对于每一个确定的,βγ的最大值和最小值分别为m 、n ,则对于任意的β,m n -的最小值为( ) A .3 B .52 C .72 D .92【答案】C 【解析】试题分析:不妨设(4,0)α=,(,)m n β''=,(,)x y γ=,则142,2m m ''==;1(4)()()02x x y y n '--+-=,222949()()42416n n x y ''-+-=+2n γ≤'≤+7,2m n ≥-=选C.考点:向量坐标表示,圆中最值【名师点睛】直线与圆中三个定理:切线的性质定理,切线长定理,垂径定理;两个公式:点到直线距离公式及弦长公式,其核心都是转化到与圆心、半径关系上,这是解决直线与圆的根本思路.对于多元问题,也可先确定主元,如本题以n '为主元,揭示(,)x y γ=在动圆上运动,从而转化为原点到动圆上点距离最值,这也是解决直线与圆问题的一个思路,即将问题转化为直线与圆、圆与圆位置关系. 二、填空题(每题4分,满分20分,将答案填在答题纸上)13.()5221x x +- 的展开式中,3x 的系数为 .( 用数字填写答案) 【答案】30-考点:二项式定理【名师点睛】1.求特定项系数问题可以分两步完成:第一步是根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r );第二步是根据所求的指数,再求所求解的项.2.有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解.14.双曲线()222210,0x y a b a b-=>>的左、右焦点分别是12,F F ,过1F 作倾斜角为45︒的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为 .【答案】1【解析】试题分析:由题意得22222222222(2)(2)12210c c c b ac c a e e a b b a-=⇒=⇒=-⇒--=,因为1e >,所以1e =考点:双曲线离心率15.已知空间四面体ABCD 中,2AC AD BC BD ====,且四面体ABCD 的外接球的表面积为7π,如果AB CD a ==,则a = .考点:四面体外接球【名师点睛】1.解答本题的关键是确定球心、圆锥底面圆心与两圆锥顶点之间的关系,这需要根据球的对称性及几何体的形状来确定.2.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.16.设1220,...,a a a 是首项为1,公比为2的等比数列,对于满足019k ≤≤的整数k ,数列1220,,...,b b b 由20n k n n k a b a ++-⎧=⎨⎩202020n k k n ≤≤--<≤当1时当时确定,记201n n n M a b ==∑.则M 取最小值时,k 等于 . 【答案】10 【解析】试题分析:因为数列以几何级数递增,所以M 的最值决定于和式中的最大数,因为0,1,2,,19k =时,M和式中的最大数依次为220192018201120102011201920a a a a a a a a a a a a a ⋅⋅⋅,,,,,,,,, 而220192018201020a a a a a a a >>>>⋅,因此M 取最小值时,k 等于10.考点:数列三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)如图在平面四边形ABCD 中,75,75,120,4A B C BC ∠=︒∠=︒∠=︒=. (1)求AB 的取值范围;(2)若8AD =,求AB 及DC 的长.【答案】(1)()+∞(2)AB =8CD =+(2)延长AD 与BC 交于E 点, 则90,30ADC AEB ∠=∠=.设,CD x AB m ==,则2,EC x ED ==,由余弦定理,()()()()22228242824cos30AB m x x ==++-+①.222281624cos75AC x m m ︒=+=+-⨯⨯②.由①②解得AB m ==8CD =+考点:正余弦定理【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是: 第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.18.(本小题满分12分)如图,在四棱锥P ABCD -中,等边 PAD ∆所在的平面与正方形ABCD 所在的平面互相垂直,O 为AD 的中点,E 为DC 的中点,且2AD =. (1)求证:PO ⊥平面ABCD ;(2)在线段AB 上是否存在点M ,使线段PM 与PAD ∆所在平面成30︒角,若存在,求出AM 的长,若不存在,请说明理由.【答案】(1)详见解析(2)3AM =∴在线段AB上存在点M ,当线段3AM =时,与PAD ∆所在平PM 面成30︒角.考点:面面垂直性质定理,线面角【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.19.(本小题满分12分)为了对2015年合肥市中考成绩进行分析,在60分以上的全体同学中随机抽出8 位,他们的数学分数(已折算为百分制) 从小到大排是60、65、70、75、80、85、90、95,物理分数从小到大排是72、77、80、84、88、90、93 、95.(1)若规定85分(包括85分) 以上为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;(2)若这8位同学的数学、物理、化学分数事实上对应如下表:①用变量y 与x 、z 与x 的相关系数说明物理与数学、化学与数学的相关程度;②求y 与x 、z 与x 的线性回归方程(系数精确到0.01),并用相关指数比较所求回归模型的效果.参考公式:相关系数1()()(niiii x x y y r y y =--=-∑∑回归直线方程是:^y bx a =+,其中^121()()()niii nii x x y y b x x ==--=-∑∑a y bx =-相关指数22121()1()niii nii y y R y y ==-=--∑∑,其中i y 是,i x 对应的回归估计值.参考数据:()()22881177.5,85,81,1050,456ii i i x y z x x y y=====-≈-≈∑∑,()()()28811550,688,ii i i i z z x x y y ==-≈--≈∑∑()()()88211755,7iiii i x x z z y y ==--≈-≈∑∑,()82194ii z z =-≈∑23.5≈≈≈.【答案】(1)114(2)①正相关②回归模型0.6534.63y x =+比回归模型0.7225.20z x =+的拟合的效果好.试题解析:解:(1)这8位同学中恰有3位同学的数学和物理分数均为优秀,则需要先从物理的4个优秀分数中选出3个与数学优秀分数对应,种数是3343C A (或34A ),然后剩下的5个数学分数和物理分数任意对应,种数是55A .根据乘法原理,满足条件的种数是335435C A A .这8位同学的物理分数和数学分数分别对应种数共有88A .故所求的概率33543588114C A A P A ==.考点:回归直线方程,古典概型概率20.(本小题满分12分)在平面直角坐标系xOy 中,F 是抛物线()2:20C x py p =>的焦点,M 是抛物线C 上位于第一象限内的任意一点,过,,M F O 三点的圆的圆心为N ,点N 到抛物线C 的准线的距离为34. (1)求抛物线C 的方程;(2)当过点()4,1P 的动直线l 与抛物线C 相交于不同点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB =,证明:点Q 总在某定直线上.【答案】(1)22x y =(2)总在定直线41y x =-上. 【解析】试题分析:(1)求抛物线方程,就是确定的p 值.由于点N 在FO 中垂线上,所以4N px =,从而31424p p p +=⇒=(2)由于线段成比例,因此考虑设比值:,0AP AQ PB QB λλ==>,结合图形有,AP PB AQ QB λλ=-=,利用向量坐标关系可得:设()()()1122,,,,,Q x y A x y B x y ,121212124,1,,1111x x y y x x y y x y λλλλλλλλ--++====--++,由于,A B 在抛物线上,所以2211222,2x y x y ==,因此等价变形得2222121222224,111x x y y x y λλλλ--==+--,即41y x =-考点:抛物线方程,直线与抛物线位置关系21.(本小题满分12分)设函数()(),ln xf x e axg x x ax =-=-,其中a 为实数.(1)若()g x 在()1,e 上是单调减函数,且()f x 在()1,+∞上有最小值,求a 的取值范围; (2)若()g x 在1,e ⎛⎫+∞ ⎪⎝⎭上是单调减函数,试求()f x 的零点个数,并证明你的结论.【答案】(1)a e >(2)a e =时,()f x 在R 上只有一个零点; a e >时,()f x 在R 上有2个零点. 【解析】试题分析:(1)先利用导数表示()g x 单调性:()()1'0,1,g x a x e x=-≤∈恒成立,即1a ≥;再利用导数研究函数()f x 最值,开区间有最值必存在极点:由()'0f x =得ln 1x a =>,因此a e >(2)先利用导数表示()g x 单调性:()11'0,,g x a x x e ⎛⎫=-≤∈+∞ ⎪⎝⎭恒成立,即a e ≥;再利用导数研究函数()f x 零点:a e =时,()min ln 0f x a a a =-= ()f x 在R 上只有一个零点. a e >时,()min 0,f x <结合零点存在定理得()f x 在R 上有2个零点.试题解析:解:(1)a e >. (2)()11'0,,g x a x a e x e ⎛⎫=-≤∈+∞∴≥ ⎪⎝⎭,()'x f x e a =-,由()'0f x =得ln 1x a =≥()()min ln 1ln 0f x a a a a a =-=-≤ .a e =时,()min ln 0f x a a a =-= ()f x 在R 上只有一个零点.考点:利用导数研究函数单调性、最值、零点【名师点睛】对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-1:几何证明选讲如图,在直角ABC ∆中,,AB BC D ⊥为BC 边上异于,B C 的一点,以AB 为直径作圆O ,并分别交,AC AD 于点,E F .(1)证明:,,,C E F D 四点共圆;(2)若D 为BC 的中点,且3,1AF FD ==,求AE 的长.【答案】(1)详见解析(2)AE =考点:四点共圆,切割线定理,相交弦定理【名师点睛】1.解决与圆有关的成比例线段问题的两种思路(1)直接应用相交弦、切割线定理及其推论;(2)当比例式(等积式)中的线段分别在两个三角形中时,可转化为证明三角形相似,一般思路为“相似三角形→比例式→等积式”.在证明中有时还要借助中间比来代换,解题时应灵活把握.2.应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等.23.(本小题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系xOy 中,已知直线l 的参数方程为cos (sin x t t y t αα=⎧⎨=⎩为参数,0απ<<),以原点O 为极点,以x 轴正半轴建立极坐标系,曲线C 的极坐标系方程为()01cos pp ρθ=>-.(1)写出直线l 的极坐标方程和曲线C 的直角坐标方程; (2)若直线l 与曲线C 相交于,A B 两点,求11OA OB+的值. 【答案】(1)直线l 的极坐标方程为:θα=和θαπ=+,曲线C 的直角坐标方程222p y p x ⎛⎫=+⎪⎝⎭(2)2.p【解析】试题分析:(1)由直线参数方程几何意义得直线倾斜角为α,故直线l 的极坐标方程为:()R θαρ=∈,利用222,cos ,sin x y x y ρρθρθ=+==将极坐标方程()01cos pp ρθ=>-化为直角坐标方程222p y p x ⎛⎫=+ ⎪⎝⎭(2)由极坐标极径含义:121111OA OB ρρ+=+,因此只需联立直线与曲线极坐标方程即可:11cos p ρα=-,21cos p ρα=+,代入化简得11OA OB +1cos 1cos 2.p p p αα-+=+=考点:直线参数方程几何意义,极坐标方程化为直角坐标方程 24.(本小题满分10分)选修4-5:不等式选讲 已知函数()()3f x x a x a R =++-∈.(1)当1a =时,求不等式()8f x x ≥+的解集; (2)若函数()f x 的最小值为5 ,求a 的值. 【答案】(1)(][),210,.-∞-⋃+∞(2)8a =-或2. 【解析】义,含绝对值三角不等式【名师点睛】利用绝对值三角不等式求最值时,可借助绝对值三角不等式性质定理:||a|-|b||≤|a±b|≤|a|+|b|,通过适当的添、拆项来放缩求解,但一定要注意取等号的条件.将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。
2018届合肥市高三一模试题-理科答案

一、选择题:本大题共 12 小题,每小题 5 分,共 60 分. 1 2 3 4 5 6 7 8 A C B C C D D A 9 C 10 B 11 B 12 D
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分. 13.-1 14.3 15.(4,4) 16.
高三数学试题(理科)答案 第 2 页(共 6 页)
所以,直线 AE 与平面 BDM 所成角的正弦值为 20.(Ⅰ)由已知可得,椭圆 E 的焦点在 x 轴上.
4 5 . 15
……12 分
x2 y2 + = 1 (a > b > 0) ,焦距为 2c ,则 b = c , a2 b2 x2 y 2 2 2 2 2 ∴ a = b + c = 2b ,∴椭圆 E 的标准方程为 2 + 2 = 1 . 2b b 1 2 1 又∵椭圆 E 过点 (1 , ) ,∴ 2 + 2 = 1 ,解得 b 2 = 1 . 2 2 2b b 2 x ∴椭圆 E 的标准方程为 + y 2 = 1. ……5 分 2 (Ⅱ)由于点 (−2,0) 在椭圆 E 外,所以直线 l 的斜率存在. 设直线 l 的斜率为 k ,则直线 l : y = k ( x + 2) ,设 M ( x1,y1 ), N ( x2,y2 ) .
21 3
三、解答题: 17.(Ⅰ)根据正弦定理,由已知得: (sin A − 2sin B ) cos C + sin C cos A = 0 , ……1 分 即 sin A cos C + sin C cos A = 2sin B cos C , ∴ sin( A + C ) = 2sin B cos C , ∵ A + C = π − B ,∴ sin( A + C ) = sin(π − B ) = sin B > 0 , ∴ sin B = 2sin B cos C ,从而 cos C = ∵ C ∈ (0,π ) ,∴ C =
【全国百强校】安徽省合肥市第一中学2018冲刺高考最后1卷文科数学试卷【PDF版】

2018冲刺高考最后1卷文科数学试题(考试时间:120分钟满分:150分)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,其中第I I卷第22、23题为选考题,其他题为必考题.第I卷一、选择题【本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.11.设集合 5二丨2|:2:〉一2丨,了二丨2122+31 —4=^0丨,则〔八I(―⑵“] 技(一⑵,一4〕(^. (―2,1〕13.〔1,十00〉1.已知26只,;是虚数单位,复数2的共轭复数为[,若2=2+7^,” 3=4,则\^73压一々0.77^-770.1或一13^阅读下面的程序框图,运行相应的程序,若输入乂的值为24,则输出#的值为〔\八.04丨设为向量,则“丨0八.充分不必要条件匸.充分必要条件13. 8’ 12’ &1二 |0丨丨&丨’’是”的〔^).压必要不充分条件13.既不充分也不必要条件1=^12(1 + 003 2工)在区间[—2,2〕内的图像大致为^6丨在正方形网格中,某四面体的三视图如图所示.如果小正方形网格的边长为1,那么该四面体的体积是〔\64八.IX 32第6题图7丨观察下图:12334 45567678910则第〔〉行的各数之和等于2017夂八.2010 压 2018 1005 13. 10098丨已知3,八,是球0表面上的点,3八丄平面八丑;二人6丄八二人6二1,50二乃,则球0的表面积等于〔X八.4713210^ 2-7113. 21久如图所示,点儿5分别在2轴与7轴的正半轴上移动,且八5=2,若点八从移动到仍刈,八.13.1210.设集合八二[(^,^)||X |十|31I^1|^[(^,^)|(乂一工。
(乂十工财二八05,若动点尸(工,306财,则工2十匕一17的取值范围是〔\―/10-八.11.已知函数/(工):的取值范围为^八.「-“.'/2涯―了,了―2^+1,一2《工〈0,IX8’ (―⑵,—7。
2018年安徽省合肥市第一中学冲刺高考最后1卷理科综合能力测试【PDF版】

选项 A B C D
试剂 a M n O a C l 2 和 N 蔗糖 F e S
紫色石蕊溶液 澄清石灰水 溴水 品红溶液
试剂 c
实验目的 验证 C l 2 的漂白性 验证非金属性 : B r >S 验证 S O2 的漂白性 验证 C O 2 的生成
锌溴液流电池用溴化锌溶液作电解液 , 并在电池间不断循环 ㊂ 下列有关说法正确的是 1 1.
N a S O 2 3
3 0
6. 6 8ʃ2. 0 7
6. 1 0ʃ0. 4 4
本试卷分第 Ⅰ 卷 ( 选择题 ) 和第 Ⅱ 卷 ( 非选择题 ) 两部分 ㊂ 满分 3 0 0 分 ㊂ 考试用时 1 5 0 分钟 ㊂ C r 5 2 F e 5 6 Z n 6 5
可能用到的相对原子质量 : H 1 B 1 1 C 1 2 N 1 4 O 1 6 N a 2 3 P 3 1 C l 3 5. 5
一㊁ 选择题 : 本题共 1 每 小 题 6 分㊂ 在 每 小 题 给 出 的 四 个 选 项 中, 只有一项是符合题目要 3小 题, 求的 ㊂ 下列关于细胞结构与成分的叙述 , 错误的是 1. 硅肺是矿工常见的职业病 , 与溶酶体缺乏分解硅尘的酶有关 A. 人体肌肉细胞膜上肾上腺素 ㊁ 胰岛素的受体都是在核糖体上合成的 B. ㊁ 细胞骨架与细胞的分裂 分化以及物质运输等生命活动密切相关 C. 一个 mR 相邻两个碱基之间依次由磷酸 核糖 磷酸连接 D. NA 分子中 , 下表是丽藻细胞液与池水中 以下相关说法正确的是 2. 4 种离子浓度比 ,
‘ , ( ) : ) 草业科学 “ 2 0 1 6, 3 3 1 6 1-6 6 I AA 对蓝叶忍冬扦插生根的影响 ( 根数 根长 生根率/% 处理时间/ ( ㊃L-1 ) 浓度/ m i n m g ( ) 0C K 0 6 3. 3 3ʃ5. 7 7 5. 3 6ʃ0. 7 9 7. 6 0ʃ0. 5 0 5 0 1 0 0 3 0 6 0 6 0 6 3. 3 3ʃ1 2. 5 8 6 1. 6 7ʃ2. 8 9 7 8. 3 3ʃ2. 8 9 5 1. 6 7ʃ7. 6 4 7. 8 5ʃ1. 6 4 7. 1 5ʃ0. 5 5 6. 2 4ʃ0. 2 5 7. 6 0ʃ2. 1 0 6. 3 6ʃ0. 7 8 6. 9 6ʃ0. 9 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年安徽省合肥市第一中学冲刺高考最后1卷理科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{||3|2},{|43}A x x x B x x =-<=-<<,则()R C A B ⋂=( ) A .(4,1]- B .[3,3)- C .[3,1]- D .(4,3)-2. 已知i 是虚数单位,若2z i =+,则zz的虚部是( ) A .45i B .45 C .45i - D .45-3. 已知0w >,函数()cos()3f x wx π=+在(,)32ππ上单调递增,则w 的取值范围是( )A .210(,)33B .210[,]33C .10[2,]3D .5[2,]34. 《九章算术》之后,人们学会了用等差数列的知识来解决问题,《张丘建算经》卷上有叙述为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),如图是源于其思想的一个程序框图,如果输出的S 是60,则输入的x 是( )A .4B .3 C. 2 D .15. 已知,αβ分别满足24,(ln 2)e e e ααββ⋅=-=,则αβ的值为( )A .eB .2e C. 3e D .4e6. 某空间凸多面体的三视图如图所示,其中俯视图和侧(左)视图中的正方形的边长为1,正(主)视图和俯视图中的三角形均为等腰直角三角形,则该几何体的表面积为( )A .22+B .722+ C. 2+.2+7. ABC ∆中,,,A B C 的对边分别为,,a b c .已知222222c b a =-⋅2sin1cos 22A BC +=+,则sin()B A -的值为( )A .12 B C. 23 D .45 8. 某班级有男生32人,女生20人,现选举4名学生分别担任班长、副班长、团支部书记和体育班委.男生当选的人数记为ξ,则ξ的数学期望为( ) A .1613 B .2013 C. 3213D .4013 9. 已知函数()y f x =单调递增,函数(2)y f x =-的图像关于点(2,0)对称,实数,x y 满足不等式22(2)(2)0f x x f y y -+--≤,则226414z x y x y =+-++的最小值为( )A .32 B .23 C. D 10. 一个正四面体的四个面上分别标有数字1,2,3,4.掷这个四面体四次,令第i 次得到的数为i a ,若存在正整数k 使得14ki i a -=∑的概率mp n=,其中,m n 是互质的正整数,则54log log m n -的值为( ) A .1 B .1- C. 2 D .2-11. 已知抛物线22(0)y px p =>,过定点(,0)M m (0m >,且2pm ≠)作直线AB 交抛物线于,A B 两点,且直线AB 不垂直x 轴,在,A B 两点处分别作该抛物线的切线12,l l ,设12,l l 的交点为Q ,直线AB 的斜率为k ,线段AB 的中点为P ,则下列四个结论:①2A B x x m ⋅=;②当直线AB 绕着M 点旋转时,点Q 的轨迹为抛物线;③当,08pm k =>时,直线PQ 经过抛物线的焦点;④当8,0m p k =<时,直线PQ 垂直y 轴.其中正确的个数有( )A .0个B .1个 C. 2个 D .3个12. 设函数()f x 在R 上存在导函数()f x ',对任意的x R ∈有2()()2f x f x x +-=,且当[0,)x ∈+∞时,()2f x x '>.若(2)()4(),()x f e a f a e e a g x e ax --<-=-的零点有( )A .0个B .1个 C. 2个 D .3个第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 平行四边形ABCD 中,3,5,||4AB AD DA DC →→==+=,则BA AD →→⋅= .14. 271(21)(2)x x x--的展开式中含7x 的项的系数是 .15. 棱长为1的正方体ABCD EFGH -如图所示,,M N 分别为直线,AF BG 上的动点,则线段MN 长度的最小值为 .16. 如图所示,已知直线AB 的方程为1x ya b+=,⊙C ,⊙D 是相外切的等圆.且分别与坐标轴及线段AB 相切,||AB c =,则两圆半径r = (用常数,,a b c 表示).三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 设数列{}n a 的前n 项和为n S ,已知22n S n n =++.(1)求{}n a 的通项公式;(2)若数列{}n b 满足2n an n b a =⋅,求{}n b 前n 项和n T .18. 底面OABC 为正方形的四棱锥P OABC -,且PO ⊥底面OABC ,过OA 的平面与侧面PBC 的交线为DE ,且满足:1:4PDE PBC S S ∆∆=. (1)证明://PA 平面OBD ; (2)当223POB SS ∆=四边形OABC时,求二面角B OE C --的余弦值.19. 深受广大球迷喜爱的某支欧洲足球队.在对球员的使用上总是进行数据分析,为了考察甲球员对球队的贡献,现作如下数据统计:(1)求,,,,b c d e n 的值,据此能否有97.5%的把握认为球队胜利与甲球员参赛有关;(2)根据以往的数据统计,乙球员能够胜任前锋、中锋、后卫以及守门员四个位置,且出场率分别为:0.2,0.5,0.2,0.1,当出任前锋、中锋、后卫以及守门员时,球队输球的概率依次为:0.1,0.2,0.6,0.2.则:1)当他参加比赛时,求球队某场比赛输球的概率;2)当他参加比赛时,在球队输了某场比赛的条件下,求乙球员担当前锋的概率; 3)如果你是教练员,应用概率统计有关知识.该如何使用乙球员? 附表及公式:22()()()()()n ad bc K a b c d a c b d -=++++. 20. 已知椭圆22221(1)x y a b a b+=>>的离心率为12,左、右焦点分别为12,F F ,且12||2F F c =,⊙222:()1F x c y -+=与该椭圆有且只有一个公共点. (1)求椭圆标准方程;(2)过点(4,0)P c 的直线与⊙2F 相切,且与椭圆相交于,A B 两点,求证:22F A F B ⊥;(3)过点(4,0)P c 的直线l 与⊙2221:(1)(1)F x y r r ++=>相切,且与椭圆相交于,A B 两点,试探究22,F A F B k k 的数量关系. 21. 已知函数()f x ax=. (1)讨论函数()f x 的零点个数;(2)已知()(2)g x x =-(0,1)x ∈时,()()20g x f x ax --->.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以原点为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 的参数方程为2cos sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的极坐标方程为2cos 2sin ρθθ=-.(1)求曲线C 和直线l 的直角坐标方程,并求出曲线C 上到直线l 的距离最大的点的坐标, (2)求曲线C 的极坐标方程,并设,A B 为曲线C 上的两个动点,且0OA OB →→⋅=,求2||AB →的取值范围.23.选修4-5:不等式选讲已知函数()|21|||g x x x m =+--.(1)当3m =时,求不等式()4g x >的解集;(2)若()|4|g x x ≥-的解集包含[3,5],求实数m 的取值范围.试卷答案一、选择题1-5:ABCCD 6-10:CBCAB 11、12:CC二、填空题13. 9- 14. 1024 15.316. ()2()c a b c a b +-+三、解答题17.解:(1)2211112,(1)(1)2(2),2(2),4n n n n n S n n S n n n a S S n n a S --=++=-+-+≥∴=-=≥==.故*4(1)2(2,)n n a n n n N =⎧=⎨≥∈⎩.(2)*42224(2,)24264(1)n na n a n n n n n n Nb a n ⎧⋅=⋅≥∈⎪=⋅=⎨⋅==⎪⎩,当2n ≥时,2312...642(2434...4)n n n T b b b n =+++=+⨯+⨯++⨯,令233412434...4,42434...(1)44n n n n nP n P n n +=⨯+⨯++⨯∴=⨯+⨯++-⨯+⨯, 32234114(41)32444432441n n n n P n n -++--=⨯++-⨯=+-⨯-,13132444393n n n n P ++-⨯∴=--+,故1*(62)4512643(2,)9n n n n T P n n N +-⋅+=+=≥∈, 又164T =满足上式,1*(62)4512()9n n n T n N +-⋅+∴=∈. 18.解:(1)由题知四边形OABC 为正方形,//OA BC ∴,又BC ⊂平面,PBC OA ⊄平面PBC ,//OA ∴平面PBC ,又OA ⊂平面OAED ,平面OAED ⋂平面PBC DE =,//DE OA ∴,又//OA BC , //DE BC ∴.由PDEPCB ∆∆且:1:4PDE PBC S S ∆∆=,知,E D 分别为,PB PC 的中点.连接AC 交OB 于F 点,连DF .//,DF PA DF ⊂平面,OBD PA ⊄平面OBD ,//PA ∴平面OBD .(2)底面OABC 为正方形,且PO ⊥底面OABC ,,,PO OA OC ∴两两垂直,建立如图所示的空间直角坐标系O xyz -,设2,2OA OC a OP b ===,则(0,0,0),(0,2,0),(2,2,0),O C a B a a (,,0),(0,0,2),(,,)F a a P b E a a b .PO ⊥底面,OABC CF ⊂底面,OABC CF PO ∴⊥.四边形OABC 为正方形,,AC OB CF ∴⊥∴⊥平面OBE ,∴平面OBE 的一个法向量为(,,0)CF a a →=-.设平面OEC 的一个法向量为(,,)m x y z →=,而(0,2,0),(,,)OC a OE a a b →→==.由00m OC m OE →→→→⎧⋅=⎪⎨⎪⋅=⎩得02000x a y z ax ay bz ⋅+⋅+⋅=⎧⎨++=⎩,取得z a =-可得(,0,)m b a →=-为平面OCE 的一个法向量.设二面角B OE C --的大小为θ, 由22=2POB OABCSS ∆四边形得3PO =,所以b a =,故cos ||||||CF m CF m θ→→→→⋅===⋅, ∴二面角B OE C --19.解:(1)2250(221288)8,8,20,20,50, 5.556 5.024********b c m e n K ⨯⨯-⨯======≈>⨯⨯⨯, ∴有97.5%的把握认为球队胜利与甲球员参赛有关.(2)1)设1A 表示“乙球员担当前锋”;2A 表示“乙球员担当中锋 ”;3A 表示“乙球员担当后卫”;4A 表示“乙球员担当守门员”;B 表示“球队输掉某场比赛”,则1122()()(|)()(|)P B P A P B A P A P B A =++3344()(|)()(|)P A P B A P A P B A +0.20.40.50.20.20.60.10.20.32=⨯+⨯+⨯+⨯=.2)11()0.20.4(|)0.25()0.32P A B P A B P B ⨯===.3)因为1234(|):(|):(|):(|)0.08:0.10:0.12:0.02P A B P A B P A B P A B =,所以应该多让乙球员担当守门员,来扩大赢球场次. 20.解:(1)⊙2F 与椭圆有且只有一个公共点,∴公共点为(,0)a 或(,0)a -,若公共点为(,0)a -时,则1a c +=,又12c a =,解得213a =<,与1a >矛盾,故公共点为(,0)a . 1a c r ∴-==,又12,12c e a c a ==∴==. 反之,当1c =时,联立2222(1)1143x y x y ⎧-+=⎪⎨+=⎪⎩解得20x y =⎧⎨=⎩满足条件.∴椭圆标准方程为22143x y +=. (2)(4,0)P ,设过(4,0)P 的直线:4l x my =+,联立22143x y +=,得22(43)24360m y my +++=.设1122(,),(,)A x y B x y ,则1212222436,4343m y y y y m m +=-=++,又2(1,0)F , 22211221212(1,)(1,)(1)3()9F A F B x y x y m y y m y y →→∴⋅=-⋅-=++++22222236(1)727299434343m m m m m m+-=-+=+++. 由:4l x my =+与⊙222:(1)1F x y -+=相切得2228,0m F A F B →→=∴⋅=,即22F A F B →→⊥. (3)猜:220F A F B k k +=.证明如下:由(2)得22121212212121223()113()9F A F B y y my y y y k k x x m y y m y y +++=+=--+++. 22121222367223()20,04343F A F B mmy y y y m k k m m ++=⨯-=∴+=++.21.解:(1()ln x x x =-.令2332,(0)x t x t t =∴=>. 令3()ln 2h t t at =-,则函数()y h t =与()y f x =的零点个数情况一致. 13()2h t a t '=-. 1)0a ≤时,()0.()h t h t '>∴在(0,)+∞上单调递增.又112231313131(1)0,()(1)0,12222a a a a h a h e a ae a a a a a e e a++=-≥=+-≤+-⋅=-+<∴个零点.2)0a >时,()h t 在2(0,)3a 上单调递增,2(,)3a+∞上单调递减. max 22()()ln 133h t h a a∴==-.①2ln 13a <即23a e >时,2()03h a <,无零点. ②2ln 13a =即23a e =时,2()0,13h a =个零点. ③2ln 13a >即203a e <<时,2()03h a >,又231,(1)032e h a a >>=-<. 又224222(1)(1)039333e a a a a a -=-<-<, 222423422()ln()2ln 932933h a a a a a a=-⋅=-, 令22222321226()2ln ,()2()0332333a a a a a a a a a ϕϕ-'=-=⋅-⋅+=>, ()a ϕ∴在2(0,)3e 上单调递增,2()()20,3a e eϕϕ∴<=-<∴两个零点.综上:当0a ≤或23a e =时,1个零点;当203a e <<时,2个零点;当23a e>时,0个零点.(2)要证()()20g x f x ax --->2(2)x <-(0,1)m =∈,只需证:22ln 2(2)m m m e m+<-.令22()(2),()(22)m m l m m e l m m m e '=-=--+,()l m ∴在1)上单调递增,在1,1)上单调递减,()(1)l m l e ∴>=且()(0)2l m l >=.令ln (),m t m m =21ln ()0,()m t m t m m -'=>∴在(0,1)上单调递增,2ln ()(1)0,22m t m t m∴<=∴+<,故()()20g x f x ax --->. 22.解:(1)曲线22:14x C y +=,直线:220l x y --=, 则曲线C 上点到直线l的距离)1]4d πθ===-+, 当34πθ=时,d最大,此时,(P . (2)曲线C 的极坐标方程为2222cos 4sin 4ρθρθ+=,即222244cos 4sin 3sin 1ρθθθ==++. 设12(,),(,)2A B πρθρθ+,则22212222442016||[,593sin 13cos 15sin 244AB ρρθθθ=+=+=∈+++]. 23.解:(1)当3m =时,()4g x >,即|21||3|4x x +-->.当3x ≥时,不等式化为2134x x +-+>,解得3x ≥. 当132x -≤<时,不等式化为2134x x ++->,解得23x <<. 当12x <-时,不等式化为2134x x --+->,解得8x <-. 综上,不等式的解集为{|8x x <-或2}x >.(2)()|4|g x x ≥-的解集包含[3,5]()|4|g x x ⇔≥-在[3,5]上恒成立|21||||4|x x m x ⇔+--≥-在[3,5]上恒成立.1)当34x ≤≤时,()|4|g x x ≥-恒成立21||+4x x m x ⇔+≥--恒成立3333x x m x ⇔-≤-≤-恒成立,解得39m -≤≤.2)当45x <≤时,()|4|g x x ≥-恒成立|21|||+4x x m x ⇔+≥--恒成立55x x m x ⇔--≤-≤+恒成立,解得513m -≤≤.所以,实数m 的取值范围为{|39}m m -≤≤.。