数值分析知识点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论(1-4)
一、误差来源及分类
二、误差的基本概念
1.绝对误差及绝对误差限
2.相对误差及相对误差限
3.有效数字
三、数值计算的误差估计
1.函数值的误差估计
2.四则运算的误差估计
四、数值计算的误差分析原则
第二章插值(1.2.4-8)
一、插值问题的提法(定义)、插值条件、插值多项式的存在唯一性
二、拉格朗日插值
1.拉格朗日插值基函数的定义、性质
2.用拉格朗日基函数求拉格朗日多项式
3.拉格朗日插值余项(误差估计)
三、牛顿插值
1.插商的定义、性质
2.插商表的计算
3.学会用插商求牛顿插值多项式
四、等距节点的牛顿插值
1.差分定义、性质及计算(向前、向后和中心)
2.学会用差分求等距节点下的牛顿插值公式
五、学会求低次的hermite插值多项式
六、分段插值
1.分段线性插值
2.分段三次hermite插值
3.样条插值
第三章函数逼近与计算(1-6)
一、函数逼近与计算的提法(定义)、常用两种度量标准(一范数、二范数\平方逼近)
二、基本概念
连续函数空间、最佳一次逼近、最佳平方逼近、内积、内积空间、偏差与最小偏差、偏差点、交错点值、平方误差
三、学会用chebyshev定理求一次最佳一致逼近多项式,并估计误差(最大偏差)
四、学会在给定子空间上通过解方程组求最佳平方逼近,并估计误差(平方误差)
五、正交多项式(两种)定义、性质,并学会用chebyshev多项式性质求特殊函数的(降阶)最佳一次逼近多项式
六、函数按正交多项式展开求最佳平方逼近多项式,并估计误差
七、一般最小二乘法(多项式拟合)求线性拟合问题
第四章数值分析(1-4)
一、数值求积的基本思想及其机械求积公式
二、代数精度的定义并学会判别求积公式的代数精度
三、插值型求积公式、定义及其性质
四、newton-cotes公式定义、余项及其代数精度
五、学会用几种低阶newton-cotes公式及其逼近公式方程求积分近似值
六、学会用龙贝格算法求积分近似值
七、高斯公式定义及其代数精度,并学会用guass-chebyshev公式求积分近似值
第五章常微分方程数值解法
一、掌握显式的欧拉法,隐式欧拉法,梯形方法,中点欧拉法和改进欧拉法,包括这些方法,公式的推导,解题和局部截断误差(是几阶的方程)
二、掌握runge-kutta方法的基本思想,以及二阶、三阶、四阶、五阶R-K方法的格式和局部截断误差
第六章方程求跟(1-5)
一、学会用二分法求解问题
二、一般迭代法的基本思想
三、局部收敛性定义、定理并学会用该定理判别迭代法的局部收敛性
四、牛顿迭代法公式的推导,局部收敛性与收敛速度,牛顿法的应用与解题
五、牛顿法的变形
第七章解线性方程组的直接截法(1-6)
一、学会用顺序高斯消去法,列主元素或完全主元素法,求解线性方程
二、学会用矩阵三角分解法,平方根法(改进平方根法),追赶法求解问题
三、掌握向量和矩阵的定义,性质,计算,应用
四、矩阵的谱半径,条件数,定义,计算,应用
五、线性方程组的误差分析
第八章线性方程组的迭代法(1-4)
一、一般方程组的一般迭代法思想,迭代格式,收敛性,一般误差分析
二、学会用雅各比迭代法解题,学会判别其收敛性
三、学会guass-seidel迭代法解题,学会判别其收敛性
四、学会SOR迭代法解题,学会判别其收敛性