傅里叶级数

合集下载

傅里叶级数公式傅里叶级数展开傅里叶级数收敛性的计算公式

傅里叶级数公式傅里叶级数展开傅里叶级数收敛性的计算公式

傅里叶级数公式傅里叶级数展开傅里叶级数收敛性的计算公式傅里叶级数公式的计算公式提供了一种将任意周期函数表示为一组正弦和余弦函数的和的方法。

这种表示方法在信号处理、图像处理等领域具有重要应用。

在本文中,将详细介绍傅里叶级数展开和收敛性的计算公式。

一、傅里叶级数展开傅里叶级数展开是将周期为T的函数f(t)表示为一组三角函数的和。

傅里叶级数展开的计算公式如下:f(t) = a0 + Σ (an*cos(nωt) + bn*sin(nωt)),其中a0、an和bn分别为系数,ω为角频率,n为正整数。

根据这个公式,我们可以将任意周期函数表示为一组正弦和余弦函数的和。

傅里叶级数展开的关键是计算系数a0、an和bn,这里不再赘述具体的推导过程。

二、傅里叶级数收敛性的计算公式傅里叶级数的收敛性是指在何种条件下,傅里叶级数能够无限接近原函数f(t)。

傅里叶级数的收敛性可以通过计算系数a0、an和bn来确定。

1. 正弦级数的收敛性对于奇函数,即满足f(-t)=-f(t)的函数,其傅里叶级数只包含正弦函数。

对于奇函数f(t),其傅里叶级数的计算公式为:f(t) = Σ (bn*sin(nωt)),其中bn的计算公式为:bn = (2/T) * ∫[0,T] {f(t)*sin(nωt)} dt。

当函数f(t)满足一定的条件时,傅里叶级数对奇函数收敛。

这些条件包括函数f(t)在一个周期内有有限个有界不连续点,并且在这些点上的左右极限存在。

2. 余弦级数的收敛性对于偶函数,即满足f(-t)=f(t)的函数,其傅里叶级数只包含余弦函数。

对于偶函数f(t),其傅里叶级数的计算公式为:f(t) = a0/2 + Σ (an*cos(nωt)),其中a0和an的计算公式为:a0 = (2/T) * ∫[0,T] {f(t)} dt,an = (2/T) * ∫[0,T] {f(t)*cos(nωt)} dt。

同样地,当函数f(t)满足一定的条件时,傅里叶级数对偶函数收敛。

傅里叶级数

傅里叶级数
m=1
− 2
n
T 2
= bn ∫ T sin nωt d t
2
− 2
T 2
2 即 bn = T
T = bn 2

T 2
T − 2
fT ( t )sin nω t d t
最后可得:
a0 fT (t) = + ∑(an cos mωt + bn sin nωt) (1.1) 2 n=1 T 2 2 其 中 a0 = ∫ T fT (t) dt T −2 T 2 2 an = ∫T fT (t) cos nωt dt (n =1,2,L ) T −2 T 2 2 bn = ∫T fT (t) sin nωt dt (n =1,2,L ) T −2
1= 12 dt = T ∫T
− 2 T 2 T 2 T 2
1+ cos 2nωt T cos nωt = ∫T cos nωt dt = ∫T dt = − − 2 2 2 2
2
1− cos 2nωt T sin nωt = ∫T sin nωt dt = ∫T dt = − − 2 2 2 2
T 2
f4 (t) =
n=−∞
∑ f (t + 4n),
+∞
2π 2π π nπ = = , ωn = nω = ω= T 4 2 2
f4(t)
−1
T=4
1
3
t

1 T 2 − jωnt cn = ∫ T fT (t )e dt T −2 1 2 1 1 − jωnt − jωnt = ∫ f4 (t )e dt = ∫ e dt T −2 T −1 1 1 1 − jωnt jωn − jωn = e = e −e −Tjωn Tjωn −1 2 sinωn 1 = ⋅ Sa(ωn ) (n = 0, ±1, ±2,L ) T =4 = T ωn 2

《傅里叶级数》课件

《傅里叶级数》课件
FFT基于分治策略,将大问题分解为小问题,从而显著提高了计算效率。
FFT的出现极大地促进了数字信号处理领域的发展,尤其在实时信号处理 和大数据分析方面。
小波变换与傅里叶级数的关系
01
小波变换是一种时间和频率的局部化分析方法,用于多尺度信 号处理和分析。
02
小波变换与傅里叶级数都是信号的频域表示方法,但小波变换
频域处理
傅里叶变换将图像从空间域转换到频域,使得图 像的频率特征更加明显,便于进行滤波、增强等 操作。
图像压缩
通过分析图像的频谱,可以去除不重要的频率成 分,从而实现图像的压缩,节省存储和传输资源 。
图像去噪
傅里叶变换在图像去噪中发挥了重要作用,通过 滤除噪声对应的频率成分,可以有效去除图像中 的噪声。
傅里叶级数提供了一种将 复杂信号分解为简单正弦 波的方法,有助于理解和 处理信号。
频谱分析
通过傅里叶变换,可以分 析信号的频率成分,这在 通信、音频处理等领域有 广泛应用。
滤波器设计
利用傅里叶级数或其变换 形式,可以设计各种滤波 器,用于提取特定频率范 围的信号或抑制噪声。
图像处理中的应用
1 2 3
数值分析中的应用
求解微分方程
傅里叶级数在数值分析中常用于 求解初值问题和偏微分方程,通 过离散化和变换,将复杂问题转 化为易于处理的简单问题。
数值积分与微分
傅里叶级数在数值积分和微分中 也有应用,可以将复杂的积分或 微分运算转换为易于计算的离散 形式。
插值与拟合
傅里叶级数可以用于多项式插值 和函数拟合,通过选取适当的基 函数,可以构造出精度较高的插 值函数或拟合模型。
04
傅里叶级数的扩展知识
离散傅里叶变换
离散傅里叶变换(DFT)是连续傅里叶变换的离 散化形式,用于将时域信号转换为频域信号。

什么是傅里叶傅里叶级数和傅里叶变换,并说明两者的区别与联系

什么是傅里叶傅里叶级数和傅里叶变换,并说明两者的区别与联系

什么是傅里叶级数和傅里叶变换,两者的区别与联系傅里叶级数和傅里叶变换都是将信号从时域转换到频域的数学工具。

傅里叶级数:傅里叶级数是针对周期函数的,它用一组正交函数将周期信号表示出来。

具体来说,所有周期信号都可以分解为不同频率的各次谐波分量。

这意味着周期波都可分解为n次谐波之和。

傅里叶变换:傅里叶变换则是用来处理非周期函数的,它可以用一组正交函数将非周期信号表示出来。

与傅里叶级数不同的是,非周期信号可以看作不同频率的余弦分量叠加,其中频率分量可以是从0到无穷大任意频率,而不是像傅里叶级数一样由离散的频率分量组成。

傅里叶级数和傅里叶变换都是数学工具,用于将信号从时域转换到频域。

但它们之间存在明显的区别和联系:1. 本质不同:傅里叶级数是周期信号的另一种时域表达方式,可以看作是正交级数,即不同频率的波形的叠加。

而傅里叶变换是完全的频域分析,它可以将非周期信号转换为频域表示。

简而言之,傅里叶级数是用一组正交函数将周期信号表示出来,而傅里叶变换是用一组正交函数将非周期信号表示出来。

2. 适用范围不同:傅里叶级数主要适用于对周期性现象做数学上的分析。

而傅里叶变换可以看作傅里叶级数的极限形式,也可以看作是对周期现象进行数学上的分析,同时也适用于非周期性现象的分析。

3. 周期性不同:傅里叶级数是一种周期变换,它以三角函数为基对周期信号的无穷级数展开。

而傅里叶变换是一种非周期变换,它可以将非周期信号转换为频域表示。

4. 联系:傅里叶级数可以视作傅里叶变换的特例。

当周期信号的周期趋于无穷大时,傅里叶级数可以取极限得到傅里叶变换。

此外,无论是傅里叶级数还是傅里叶变换,都是为了将信号从时域转到频域。

傅里叶级数和傅里叶变换都是强大的数学工具,用于分析和处理信号,但它们的应用范围和性质有所不同。

傅里叶数的定义式

傅里叶数的定义式

傅里叶数的定义式
傅里叶级数是一种非常重要的数学概念,它能准确描述事物的细微特征,一般
用来表达平滑的自变量函数。

傅里叶数,是指任意一个实函数f(x),当它可以展
开成一系列正弦函数和余弦函数的无穷级数形式,即
f(x) = a_0 + \sum_{k=1}^{\infty}\left(a_k \cos kx+b_k\sin kx \right),
称为这个函数的Fourier级数。

a_0为常数项,a_k和b_k称为系数,用来表
示正弦函数和余弦函数的幅度,k称为频率,表示周期的数量。

它不仅能准确的表
示出一个函数及它的特征,而且具有十分优美的美学感受。

傅里叶级数的准确度在各个研究领域都有着广泛的运用,在科学技术上准确性、廉价性、可靠性和多领域性都是值得它被广泛使用的补充。

比如经典力学1中引入了不惯性系统的分析和计算,2亚贝拉计算可以通过傅里叶级数来实现,有着重要
的创新意义;从基本物理装潢到地理、几何图形等,甚至医学诊断都是它的可实现的应用场景。

此外,傅立叶级数的可容纳量大,内容全面,支持大幅度计算,准确率高,可以作为大量、复杂功能的基础性计算工具。

总之,傅里叶级数是一种重要的数学概念,无论从准确性、廉价性、可靠性和
多领域性来讲,它都可以作为一种用于研究各种函数的表征。

它的实用性已经被成功的应用在科学计算领域,推荐给更多的读者快速和有效的理解、掌握傅里叶级数,发展自己的专业特长,让这种数学概念在我们的实践中实现更大的潜力。

傅里叶级数

傅里叶级数

∫πcos nxdx = 0,
π
π
∫πsin nxdx = 0,
π
( n = 1,2,3,L)
0, m ≠ n ∫ πsin mx sin nxdx = π, m = n, 0, m ≠ n ∫ πcos mx cos nxdx = π, m = n,
π
∫π
π
sin mx cos nxdx = 0.
右端级数收敛吗?若收敛是否收敛于 右端级数收敛吗?若收敛是否收敛于f(x)?
f ( x)在 a, b]光滑: f ′( x )在[a , b]连续. [ 光滑: 连续. f ( x)在 a, b]按段光滑: [ 按段光滑:
f ( x )在[a , b]有定义,且至多有有限 个第一类 有定义, 间断点, 间断点, f ′( x )在 [a , b] 除有限个点外有定义且 连续,在这有限个点上 f ′( x ) 左右极限存在. 左右极限存在. 连续,
第, 古今往来,众多数学家一直在寻找用简单函数较好 地近似代替复杂函数的途径,除了理论上的需要外, 地近似代替复杂函数的途径,除了理论上的需要外, 它对实际应用的领域的意义更是不可估量. 它对实际应用的领域的意义更是不可估量. 在微积分发明之前,这个问题一直没有本质上的 在微积分发明之前, 突破. 突破. 熟知的简单函数:幂函数,三角函数. 熟知的简单函数:幂函数,三角函数.
π π
1 π bn = ∫π f ( x)sinnxdx π
( n = 1,2,3,L)
f(x)的傅里叶系数 的傅里叶系数
1 π ) an = π ∫π f ( x)cos nxdx, (n = 0,1,2,L 1 π bn = ∫π f ( x)sinnxdx, (n = 1,2,L) π 1 2π ) an = π ∫0 f ( x)cos nxdx, (n = 0,1,2,L 或 2 bn = 1 π f ( x)sin nxdx, (n = 1,2,L ) ∫0 π

傅里叶级数

傅里叶级数

2. 三角级数的一般形式
一般的三角级数为
取 1, 由于
A A i n ( n x ) 0 ns n
n 1

s i n c o s n x c o s s i n n x s i n ( n x ) n n n
a0 设 A0 , 2
A s i n a , A c o s b n n n n n n
最简单的周期运动,可用正弦函数
y A s i n ( x )

( 1 )
来描写。 由(1)所表达的周期运动称为简谐振动
初 相 角 , 其 中 A 振 幅 , 角 频 率 ,
简谐振动(1)的周期为
2 T
对于较为复杂的周期运动,常可以用几个 简谐振动
f ( x )cos nxdx ,

1

n0,1,2,
f ( x )sin nxdx

1

, n 1 , 2 ,
2. Fourier系数和Fourier级数 Euler―Fourier公式:
如 f 是以2 为周期 的函数 , 则



可换为
c 2
c
设函数 f ( x ) 在区间[ , ] 上可积,称公式


1 , s i n k x sinkxdx 0 ,


k 1 , 2 , ;
k , h 1 , 2 ,
s i n k x c o s h x d x s i n, k x c o s h x 1 s i n ( kh ) x s i n ( kh ) x d x 0, 2

傅里叶级数的定理

傅里叶级数的定理

傅里叶级数的定理傅里叶级数是一种将周期函数表示为三角函数的级数展开形式的数学工具。

它是由法国数学家傅里叶在18世纪提出的,被广泛应用于物理学、工程学和信号处理等领域。

傅里叶级数的定理提供了一种将任意周期函数分解为正弦和余弦函数的方法,使得我们可以更好地理解和分析周期性的现象。

傅里叶级数的定理可以简单地表述为:任意一个周期为T的函数f(x)可以表示为一系列正弦和余弦函数的线性组合,即f(x) = a0 + Σ(an*cos(nωx) + bn*sin(nωx))其中an和bn是傅里叶系数,表示了函数f(x)中各个频率分量的振幅,ω=2π/T是角频率。

a0是直流分量,对应于频率为0的分量。

傅里叶级数的定理是基于正交函数的思想而来。

正交函数是指在某个区间上两两内积为0的函数。

在傅里叶级数中,正弦和余弦函数是互相正交的,因此可以通过内积运算来确定各个傅里叶系数的值。

傅里叶级数的定理在实际应用中具有重要意义。

首先,它可以将复杂的周期函数分解为一系列简单的正弦和余弦函数,使得我们能够更好地理解函数的频域特性。

其次,傅里叶级数的定理为信号处理提供了一种便捷的方法,可以对信号进行频谱分析和滤波处理。

此外,傅里叶级数还被广泛应用于图像处理、音频处理和通信系统等领域。

傅里叶级数的定理具有一些重要的性质。

首先,对于一个具有奇对称性或偶对称性的函数,其傅里叶级数只包含正弦函数或余弦函数。

其次,傅里叶级数的收敛性得到了严格的数学证明,即对于一个光滑的函数,其傅里叶级数可以收敛到原函数。

此外,傅里叶级数还满足线性性质,即两个函数的傅里叶级数之和等于它们的傅里叶级数之和。

傅里叶级数的定理虽然强大,但也有一些限制。

首先,傅里叶级数只适用于周期函数,对于非周期函数需要进行适当的处理才能使用傅里叶级数展开。

其次,傅里叶级数的展开系数需要通过积分计算,对于一些复杂的函数可能无法得到解析解,需要使用数值方法进行近似计算。

傅里叶级数的定理为我们理解和分析周期函数提供了一种有效的工具。

傅里叶级数

傅里叶级数


a0 dx an cos nxdx bn sin nxdx 2 n 1 n 1

a0 2 a0 2
1 a0 f ( x )dx
傅里叶级数
§9.4 傅里叶级数
(2) 求ak .



a0 f ( x )cos kxdx 2

cos kxdx




[an cos nx cos kxdx bn sin nx cos kxdx ]
n 1

ak cos 2 kxdx ak ,


ak
f ( x )cos kxdx

1

( k 1, 2, 3,)
傅里叶级数
傅里叶级数
§9.4 傅里叶级数
傅里叶级数:以傅里叶系数为系数的三角级数.
a0 (a n cos nx bn sin nx ) 2 n1
问题:
a0 f ( x ) 条件 ? (a n cos nx bn sin nx ) 2 n1
傅里叶级数
§9.4 傅里叶级数
3、收敛条件 定理:若 f ( x ) 是以 2 为周期的周期函数,且在一个 周期内连续或只有有限个第一类间断点,则 f ( x ) 的傅 里叶级数收敛,并且
(1) 当 x 是 f ( x ) 的连续点时,级数收敛于 f ( x ) .
f ( x 0) f ( x 0) (2)当 x是 f ( x ) 的间断点时,收敛于 . 2
f ( 0) f ( 0) (3) 当 x为端点 x 时,收敛于 . 2
傅里叶级数

信号与系统课件--§4.2 傅里叶级数

信号与系统课件--§4.2  傅里叶级数
f (t ) f (t )
an =0,展开为正弦级数。 例
▲ ■ 第 5页
3 .f(t)为奇谐函数——f(t) = –f(t±T/2)
此时 其傅里叶级数中 只含奇次谐波分量, 而不含偶次谐波分量 即 a0=a2=…=b2=b4=…=0
f(t)
0
T/2
T
t
4. f(t)为偶谐函数——f(t) = f(t±T/2) 此时 其傅里叶级数中 只含偶次谐波分量, 而不含奇次谐波分量 即 a1=a3=…=b1=b3=…=0
系数an , bn称为傅里叶系数
an 2 T
T

2 T 2
f (t ) cos( nt ) d t
bn
T
2
T 2 T 2
f (t ) sin( nt ) d t
可见, an 是n的偶函数, bn是n的奇函数。
▲ ■ 第 3页
其他形式
f (t ) A0 2
将上式同频率项合并,可写为n 1

1 2
An
2
n
| Fn |

2
直流和n次谐波分量在1电阻上消耗的平均功率之和。 n≥0时, |Fn| = An/2。 证明 这是Parseval定理在傅里叶级数情况下的具体体现。


第 9页
bn An sin n
bn n arctan a n

n的偶函数:an , An , |Fn | n的奇函数: bn ,n
▲ ■ 第 8页
四、周期信号的功率——Parseval等式
周期信号一般是功率信号,其平均功率为
1 T

T 0
f (t )dt (

傅里叶级数

傅里叶级数
a
b
则称ϕ 与 ψ 在 [a , b] 上是正交的, 或在 [a , b]上具有正 上具有正 上是正交 正交的 交性. 由此三角函数系(4)在 交性 由此三角函数系 在 [ − π, π ] 上具有正交性 上具有正交性 正交性. 或者说(5)是正交函数系. 或者说 是正交函数系. 是正交函数系
山西大同大学数计学院
二、以 2π 为周期的函数的傅里叶级数
现应用三角函数系(5)的正交性来讨论三角级数 现应用三角函数系 的正交性来讨论三角级数(4) 的正交性来讨论三角级数 之间的关系. 与级数(4)的系数 的和函数 f 与级数 的系数 a0 , an , bn 之间的关系 定理15.2 若在整个数轴上 定理 a0 ∞ f ( x ) = + ∑ (an cos nx + bn sin nx ) (9) 2 n=1 且等式右边级数一致收敛, 则有如下关系式: 且等式右边级数一致收敛, 则有如下关系式: 1 π an = ∫ f ( x )cos nxdx , n = 0,1,2,L , (10a ) π −π 1 π bn = ∫ f ( x )sin nxdx , n = 1,2,L , (10b ) π −π
所产生的一般形式的三角级数. 所产生的一般形式的三角级数. 容易验证,若三角级数( )收敛, 容易验证,若三角级数(4)收敛,则它的和一定是一 为周期的函数. 个以 2π 为周期的函数. 关于三角级数( )的收敛性有如下定理: 关于三角级数(4)的收敛性有如下定理:
山西大同大学数计学院
定理 15.1 若级数 | a0 | ∞ + ∑ (| an | + | bn |). 2 n =1 收敛,则级数(4)在整个数轴上绝对收敛且一致收敛. (4)在整个数轴上绝对收敛且一致收敛 收敛,则级数(4)在整个数轴上绝对收敛且一致收敛. 对任何实数x, 证 对任何实数 ,由于

傅里叶级数理解傅里叶级数的概念和计算方法

傅里叶级数理解傅里叶级数的概念和计算方法

傅里叶级数理解傅里叶级数的概念和计算方法傅里叶级数:理解傅里叶级数的概念和计算方法傅里叶级数是一种数学工具,用于将任意周期函数分解成一系列正弦和余弦函数的和。

它是由法国数学家傅里叶提出的,具有重要的物理和工程应用。

本文将介绍傅里叶级数的概念和计算方法。

一、傅里叶级数的概念傅里叶级数的核心思想是利用正弦和余弦函数的线性组合来表示周期函数。

对于一个周期为T的函数f(t),如果它满足一定条件(可积、狄利克雷条件等),则可以用以下公式表示:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))其中,a0、an、bn是待确定的系数,n表示正整数,ω=2π/T是角频率。

a0表示直流分量,即周期函数在一个周期内的平均值。

an和bn表示交流分量,分别代表正弦和余弦函数的振幅。

二、傅里叶级数的计算方法1. 计算a0:将周期函数在一个周期内的积分除以周期T即可得到a0。

2. 计算an和bn:将周期函数与正弦或余弦函数相乘后在一个周期内积分,最后除以周期T即可得到an或bn。

3. 根据需要确定级数的取舍:当n趋向于无穷大时,傅里叶级数能准确地还原原始函数。

但实际应用中,通常会根据需要截断级数,只考虑前几项的和来逼近原函数。

三、傅里叶级数的应用傅里叶级数在物理和工程领域有广泛的应用。

以下是一些常见的应用领域:1. 信号处理:傅里叶级数可以将信号分解成不同频率的分量,用于信号滤波、降噪等处理。

2. 电路分析:傅里叶级数可以将电路中的周期性电信号转化为频域上的分布,用于电路分析和设计。

3. 通信系统:傅里叶级数是调制和解调过程的基础,用于信号的传输和接收。

4. 图像处理:傅里叶级数在图像压缩、频域滤波和图像识别等方面有重要应用。

四、总结傅里叶级数是将任意周期函数分解成正弦和余弦函数的和的数学工具。

通过计算待确定的系数,可以将周期函数用傅里叶级数表示。

傅里叶级数在物理和工程领域的应用广泛,包括信号处理、电路分析、通信系统和图像处理等。

一般周期的傅里叶级数

一般周期的傅里叶级数

FFT具有高效性、稳定性和易于实现 等优点,是数字信号处理领域的重要 算法之一。
FFT广泛应用于语音识别、图像处理 、频谱分析、雷达和声呐信号处理等 领域。
小波变换(Wavelet Transform)
定义
小波变换是一种时频分析方法, 它通过小波基函数的伸缩和平移 来分析信号在不同尺度上的变化 特性。小波变换能够提供信号在 不同频率和时间尺度上的信息, 具有多分辨率分析的特点。
周期函数的傅里叶级数展开可以通过傅里叶变换来实现,傅里叶变换将 时域信号转换为频域信号,提供了一种分析信号频率成分的有效方法。
非周期函数的展开
非周期函数的特性
非周期函数没有固定的重复模式,其波形不具有周期性。
非周期函数的近似展开
对于非周期函数,傅里叶级数展开式中的正弦和余弦函数具有连续的频率,这些频率覆盖了整个频域。通过选取一定 数量的频率分量,可以对非周期函数进行近似展开。
三角恒等式
正弦和余弦函数的线性组合
对于任意的实数$a$和$b$,有$sin(a+b) = sin a cos b + cos a sin b$和$cos(a+b) = cos a cos b - sin a sin b$。
三角恒等式的应用
在傅里叶级数展开中,三角恒等式用于将一个复杂的周期函数表示为正弦和余弦函数的线性组合。
其中,a0、an和bn为常数,n为整数 ,Σ表示求和符号,x为自变量。
傅里叶级数的一般形式为:f(x) = a0 + Σ[(an * cos(nx)) + (bn * sin(nx))]
傅里叶级数的历史背景
傅里叶级数的起源可以追溯到18世纪 初,法国数学家让-巴蒂斯特·约瑟夫· 傅里叶在研究热传导问题时提出了该 理论。

傅里叶级数的理解

傅里叶级数的理解

傅里叶级数的理解
一、傅里叶级数的定义
傅里叶级数是一种将周期函数表示为无穷级数的方法,它是由法国数学家约瑟夫·傅里叶在19世纪初提出的。

傅里叶级数是将一个周期函数表示为无穷个正弦函数和余弦函数的线性组合,其中每个正弦函数和余弦函数都具有一定的幅度和相位。

二、傅里叶级数的展开
傅里叶级数的展开是将一个周期函数表示为无穷个正弦函数和余弦函数的线性组合的过程。

三、傅里叶级数的三角形式
傅里叶级数的另一种表示形式是三角形式,它将每个正弦和余弦函数合并为一个三角函数形式。

这种形式更加简洁,并且可以更容易地看出函数的对称性和周期性。

四、傅里叶系数的计算
傅里叶系数的计算是傅里叶级数展开的关键步骤,它可以通过对函数的积分来得出。

五、傅里叶级数的收敛性
傅里叶级数是一个无穷级数,因此需要满足一定的条件才能收敛到原函数。

傅里叶级数

傅里叶级数
§7 傅里叶级数
一、三角函数系的正交性 函数集合
{ 1, cos x , sin x , cos 2 x , sin 2 x ,..., cos nx , sin nx ,... }
称为三角函数系。 1、系中任意两个不同函数的乘积在区间[−π , π ] 上的积分为 0 , 这一性质称为三角函数系的 正交性。 2、 系中任一函数自己与自己的乘积在区间[−π , π ] 上的积分不为0。
ω
y 一列简谐振动, = An sin( nω t + ϕ n ) n = 0,1,2,... 2π 它们有公共周期 T = ω 2π 问: 给了一个复杂的波, 其周期为 , ω 能否将它表示为许多个简谐振动之和?
即:
f (t )
= ∑ An sin( nω t + ϕ n ) ?
n =0

这一展开的物理意义是: 一个复杂的周期运动 可以分解成许多不同频率的简谐振动的叠加。 电工学中, 将这种展开称为 谐波分析 A0 sin ϕ 0 : f ( t ) 的直流分量 A1 sin(ωt + ϕ1 ) : f ( t ) 的一次谐波(或基波)
f ( x ) 的傅里叶系数, 简称傅氏系数。
以傅氏系数构成的三角级数
a0 + ∑ (an cos nx + bn sin nx ) 2 n =1

称为函数 f ( x )的傅里叶级数, 简称傅氏级数。
说明
只要(2)(3)式中的积分存在, 就可求出
傅氏系数 a0、an、bn , ( n = 1,2,...) , 从而, 就得到函数 f ( x ) 的傅氏级数
2
( −1)n +1 cos nx + sin nx n

傅里叶级数

傅里叶级数

1
an
1
f ( x)cos nxdx
0
x
cos
nxdx
1
n2
2
(1
(1)n )
n 1, 2, 3, .... n0
1
bn f ( x)sin nxdx
1 0
(1)n1
x sin nxdx
n
(n 1, 2, 3, )
在 [ , )上应用收敛定理得:
当 x 时,
定义在[0, ]上的函数展开为Fourier级数: 设 f (x) 在[0, ]上有定义,
( 1 ) 要把 f ( x) 展成正弦级数 :
f ( x) x (0, ]
令 F ( x) 0
x0
---f ( x)的奇式延拓.
f ( x) x [ , 0)
则F( x)在[ , ]上为奇函数, F( x)的Fourier级数为
2
4x
例 6 把 f ( x) 2 x 在 (0, 2)内展成以4为周期的 2
正弦级数,并作出其和函数在[4, 4]上的图形.
解:把 f (x) 延拓成(2, 2)上的奇函数
an 0,
bn
2 l
l 0
f (x) sin n x dx
l
2
(1
x ) sin
n
x
dx
2
0
2
2
n
2 x 2 sin nx x (0, 2)
定理1 (Dirichlet(狄利克雷 )收敛定理)
设 f ( x)以2 为周期, 在[ , ]上满足:
1.连续或只有有限个第一类间断点, Dirichlet条件
2.只有有限个极值点,
则 f ( x) 的Fourier级数

傅里叶级数

傅里叶级数

得信号的傅立叶展开式为: 得信号的傅立叶展开式为:
f (t ) = 1 4 1 1 sin(Ωt ) + sin(3Ωt ) + sin(5Ωt ) + ⋯ + sin( nΩt ) + ⋯, n = 1,3,5,⋯ π 3 5 n
它只含一、 奇次谐波分量。 它只含一、三、五、…奇次谐波分量。
n
因为傅里叶系数 将
an b 和
n
Fn =
1 1 1 An e jϕn = ( An cos ϕ n + jAn sin ϕ n ) = (an + jbn ) 2 2 2
系数公式带入上式得
1 Fn = T

T 2
−T 2
1 f (t ) cos(nΩt )dt − j T

T 2
−T 2
f (t ) sin(nΩt )dt
0, 2 = [1 − cos(nπ )] = 4 nπ nπ ,
n = 2,4,6,⋯ n = 1,3,5,⋯
将系数代入下面的式子: 将系数代入下面的式子:
∞ a0 ∞ f (t ) = + ∑ an cos(nΩt ) + ∑ bn sin( nΩt ) 2 n =1 n =1
某函数是否为奇(或偶)函数不仅与周期函数 某函数是否为奇(或偶)函数不仅与周期函数 的波形有关 而且与时间坐标原点的选择 有关, 时间坐标原点的选择有关 的波形有关,而且与时间坐标原点的选择有关 如下图是三角波的偶函数。 。如下图是三角波的偶函数。 f (t )
T 1 − 2 T 2
0
f (t )
坐标原点左移
∑Aeϕe
n
n

傅里叶级数

傅里叶级数

法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称为傅里叶级数(法文:série de Fourier,或译为傅里叶级数)一种特殊的三角级数。

形如(1)的级数,其中αn(n=0,1,2,…)和b n(n=1,2,…)是与x无关的实数,称为三角级数。

特别,当(1)中的系数αn,b n可通过某个函数ƒ(x)用下列公式表示时,级数(1)称为ƒ的傅里叶级数:(2)式中ƒ是周期2π的可积函数,即ƒ∈l(-π,π)。

此时,由公式(2)得到的系数αn,b n称为ƒ的傅里叶系数。

ƒ的傅里叶级数记为。

(3)当然,ƒ的傅里叶级数并不一定收敛;即使收敛,也不一定收敛于ƒ(x)。

假如已知三角级数一致收敛于ƒ(x),即,那么双方都乘以cos nx或sin nx后,在(-π,π)上可以逐项积分,由三角函数系的正交性,即得公式(2)。

所以,如果三角级数(1)一致收敛于ƒ(x),级数(1)必为ƒ的傅里叶级数。

问题往往是,给定函数ƒ,需要把它表示成三角级数(1)。

J.-B.-J.傅里叶的建议是,利用公式(2),求出ƒ的傅里叶系数αn,b n,就得到傅里叶级数(3)。

可以证明,只要ƒ满足一定的条件,那么ƒ的傅里叶级数σ【ƒ】收敛于ƒ。

傅里叶级数的收敛判别法常用的判别法有:①迪尼判别法对固定的点x,如有数s,使得函数φx(u)/u=(ƒ(x+u)+ƒ(x-u)-2s)/u在【-π,π】上勒贝格可积,则σ【ƒ】在点x收敛于s。

由此可知,当ƒ在点x连续,并满足李普希茨条件,即(0<u≤h),那么σ【ƒ】在x收敛于ƒ(x),其中M ,h,α均为正数,且α≤1。

另外,当ƒ(x)具有连续的导函数ƒ┡(x)时,σ【ƒ】一致收敛于ƒ(x)。

②狄利克雷-若尔当判别法假设函数ƒ在含有点x的某区间,例如[x-h,x+h]上分段单调,则ƒ的傅里叶级数在点x收敛于(ƒ(x+0)+ƒ(x-0))/2。

傅里叶级数与离散傅里叶变换

傅里叶级数与离散傅里叶变换

傅里叶级数与离散傅里叶变换傅里叶级数和离散傅里叶变换是信号处理领域中重要的数学工具,它们在信号分析、滤波、频谱分析等方面有着广泛应用。

本文将介绍傅里叶级数和离散傅里叶变换的原理及其应用。

一、傅里叶级数傅里叶级数是将周期函数分解为多个正弦和余弦函数的和的方法,它基于傅里叶分析的思想,将一个周期T的函数f(t)展开为如下级数: f(t)= a0 + Σ(an*cos(nωt) + bn*sin(nωt))其中,a0、an、bn为系数,ω为角频率,n为谐波次数。

傅里叶级数的核心思想是,对于一个周期函数,我们可以通过调整不同频率的正弦和余弦函数的振幅和相位,将其准确地表示出来。

傅里叶级数展开使得我们能够分析周期信号的复杂性质,并且可以实现信号的合成和分解。

在实际应用中,傅里叶级数常常被用于信号的频谱分析。

通过计算每个谐波的振幅和相位,我们可以得到信号在频域上的分布情况,进而得到信号的频谱特征。

这对于识别信号的频率成分、滤波、信号合成等都有着重要作用。

二、离散傅里叶变换离散傅里叶变换(DFT)是傅里叶级数在离散信号分析中的推广,它适用于一般的非周期信号和有限序列的频谱分析。

离散傅里叶变换将一个有限长N的离散序列x(n)变换为一个频域上的离散序列X(k),变换过程如下所示:X(k) = Σ(x(n) * e^(-j*2πkn/N))其中,x(n)为原始序列,X(k)为变换后的频域序列,e为自然对数的底。

离散傅里叶变换为我们提供了一种在计算机上进行信号分析的有效方法。

通过对信号进行离散采样,我们可以得到一个离散序列,再通过离散傅里叶变换,我们可以获得信号的频域特征。

在数字音频、图像处理、通信系统等领域中,离散傅里叶变换得到了广泛应用。

三、傅里叶级数与离散傅里叶变换的应用傅里叶级数和离散傅里叶变换在信号处理领域有着广泛的应用。

以下是它们在几个典型领域中的应用示例:1.频谱分析:通过傅里叶级数和离散傅里叶变换,我们可以将一个信号分解为不同频率的谐波成分,并得到信号的频谱特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十五章 傅里叶级数§1 傅里叶级数教学目标 掌握三角级数和傅里叶级数定义,了解傅里叶级数的收敛定理. 教学要求(1) 基本要求:掌握三角级数和傅里叶级数定义,了解傅里叶级数的收敛定理;能够展开比较简单的函数的傅里叶级数.(2) 较高要求:有关傅里叶级数的逐项求导和逐项求积的问题,向学生介绍引入傅里叶级数的意义 (包括物理意义和数学意义). 教学建议(1) 向学生介绍引入傅里叶级数的意义(包括物理意义和数学意义). (2) 三角级数和傅里叶级数的展开计算量较大,可布置适量习题使学生了解展开的方法与步骤. 教学程序一、 Fourier 级数的定义背景:⑴ 波的分析:频谱分析 . 基频T1( ωπ2=T ) . 倍频.⑵ 函数展开条件的减弱 : 积分展开 .⑶ n R 中用Descartes 坐标系建立坐标表示向量思想的推广:调和分析简介: 十九世纪八十年代法国工程师Fourier 建立了Fourier 分析理论的基础.(一) 定义 设()f x 是(,)-∞+∞上以2π为周期的函数,且()f x 在[,]ππ-上绝对可积,称形如01(cos sin )2n n n a a nx b nx ∞=++∑ 的函数项级数为()f x 的 Fourier 级数或三角级数(()f x 的 Fourier 展开式),其中01()a f x dx πππ-=⎰,1()cos ,1,2,n a f x nxdx n πππ-==⎰,1()sin ,1,2,n b f x nxdx n πππ-==⎰称为()f x 的 Fourier 系数,记为01()~(cos sin )2n n n a f x a nx b nx ∞=++∑ 定理15.1 若级数∑∞=++10) |||| (2||n n n b a a 收敛 , 则级数 01(cos sin )2n n n a a nx b nx ∞=++∑ 在R 内绝对且一致收敛 . 证明: 用M 判别法. (二)说明1)在未讨论收敛性,证明01(cos sin )2n n n a a nx b nx ∞=++∑一致收敛到()f x 之前,不能将“~”改为“=”;此处“~”也不包含“等价”之意,而仅仅表示01(cos sin )2n n n a a nx b nx ∞=++∑是()f x 的 Fourier 级数,或者说()f x 的 Fourier 级数是01(cos sin )2n n n a a nx b nx ∞=++∑. 2) 要求[,]ππ-上()f x 的 Fourier 级数,只须求出Fourier 系数.例1 设()f x 是以2π为周期的函数,其在[,]ππ-上可表示为1,0()0,0x f x x ππ≤≤⎧=⎨-<<⎩, 求()f x 的 Fourier 展开式.3) 计算()f x 的 Fourier 系数的积分也可以沿别的长度为2π的去件来积.如2001()a f x dx ππ=⎰,201()cos ,1,2,n a f x nxdx n ππ==⎰,201()sin ,1,2,n b f x nxdx n ππ==⎰例 2 设()f x 是以2π为周期的函数,其在[0,2)π上等于x ,求()f x 的 Fourier 级数.4) 如果()f x 仅定义在长为2π的区间上,例如定义在[0,2)π上, 此时()f x 不是周期函数, 从而不能按上述方法展开为Fourier 级数.但可对()f x 在[0,2)π外补充定义,使其以2π为周期, 如定义~()(2)f x f x n π=-, (2,2(1))x n n ππ∈+它有下述性质: a) [0,2)x π∈时,~()()f x f x =; b) ~()f x 以2π为周期.例3 (),()x f x e x ππ=-≤<,求()f x 的 Fourier 级数. 内积和正交: 由R 3中的内积与正交概念引入.设函数f 和g 在区间] , [b a 上 ( R )可积 . 定义内积为 ⎰=><ba dx x g x f g f )()( , .当>< , g f =0时 , 称函数)(x f 和)(x g 在区间] , [b a 上正交函数的正交性与区间有关 . 例如函数)(x f =x -和2)(x x g =在区间] 1 , 0 [上并不正交 ( 因为>< , g f =41-) , 但在区间] 1 , 1 [-却是正交的 . 正交函数系统 : 标准正交系 ( 幺正系 ) , 完全系 二、 以π2为周期函数的Fourier 级数 定理15.2 若在整个数轴上)(x f =∑∞=++1, sin cos 2n n n nx b nx a a 且等式右端的级数一致收敛,则有如下关系式 π1=n a ⎰-ππnxdx x f cos )(, , 2 , 1 , 0=nπ1=n b ⎰-ππnxdx x f sin )( , , 2 , 1=n三、 收敛定理:(一) 按段光滑函数: .定义:若)(x f 的导函数)(x f '在区间] , [b a 上连续 , 则称函数)(x f 在区间] , [b a 上光滑. 若函数)(x f 在区间] , [b a 上至多有有限个第一类间断点, 且)(x f '仅在区间] , [b a 上有限个点处不连续且为第一类间断点, 则称)(x f 是区间] , [b a 上的按段光滑函数.按段光滑函数的性质: 设函数)(x f 在区间] , [b a 上按段光滑, 则 ⑴ )(x f 在区间] , [b a 上可积;⑵ 对∈∀x ] , [b a , )0(±x f 都存在 , 且有)0()0()(lim 0+'=+-++→x f tx f t x f t ,)0()0()(lim 0-'=----+→x f t x f t x f t . ( 用Lagrange 中值定理证明 )⑶ )(x f '在区间] , [b a 上可积 . (二)收敛定理:定理15.3 设函数)(x f 是以π2为周期的周期函数且在区间] , [ππ-上按段光滑 , 则在∀∈x ] , [ππ-, )(x f 的Fourier 级数∑∞=++1sin cos 2n n n nx b nx a a 收敛于)(x f 在点x 的左、右极限的算术平均值 , 即 =-++2)0()0(x f x f ∑∞=++10 sin cos 2n n n nx b nx a a 其中n a 和n b 为函数)(x f 的Fourier 系数. ( 证明放到以后进行 )推论 若)(x f 是以π2为周期的连续函数 , 在] , [ππ-上按段光滑,且则)(x f 的Fourier 级数在) , (∞+∞-内收敛于)(x f .四、 正弦级数和余弦级数 (一)定义 形如1sin nn bnx ∞=∑的三角级数(函数项级数)称为正弦级数;形如1cos 2n n a a nx ∞=+∑的三角级数(函数项级数称为余弦级数. (二) 如果()f x 是以2π为周期的函数,在[,]ππ-上绝对可积, 若()f x 是奇函数,则有1()~sin n n f x b nx ∞=∑;若()f x 是偶函数,则有01()~cos 2n n a f x a nx ∞=+∑. (三)设()f x 仅在[0,]π上有定义, 如果按奇函数的要求,补充定义()(),[,0)f x f x x π=--∈-,然后再作2π周期延拓,必得奇函数, 所得Fourier 级数必为正弦级数. 对应地, 补充定义()(),[,0)f x f x x π=-∈-后,再作2π周期延拓,必得偶函数, 所得Fourier 级数必为余弦级数.例4 1,0()0,x hf x h x π≤<⎧=⎨≤<⎩ (0h π<<),将()f x 展开成余弦函数.五、 一般周期函数的Fourier 级数设()f x 是周期为T 的函数,且在[0,]T 上绝对可积, 则有0122()~(cos sin )2n n n a n n f x a x b x T T ππ∞=++∑,其中002()Ta f x dx T =⎰,022()cos ,1,2,T n n a f x xdx n T T π==⎰022()sin ,1,2,T n n b f x xdx n T Tπ==⎰例5: 求(),11f x x x =-≤≤的Fourier 展开式. 六、 Fourier 级数的复数表示形式设01()~(cos sin )2n n n a f x a nx b nx ∞=++∑, 则其复数表示形式为 ()~inx n f x C e +∞-∞∑,其中, 复的Fourier 系数201()22inx n n n n a ib C f x e dx C ππ---===⎰.作业 教材P70:1,2,3,4,5,6,7,8.§2 以l 2为周期的函数的展开式教学目的 掌握以l 2为周期的函数的展开式,偶函数和奇函数的傅里叶级数的展开,正弦级数,余弦级数. 教学要求(1)掌握以l 2为周期的函数的傅里叶级数展开的基本方法.(2)掌握通过对函数做奇延拓或偶延拓并展开为正弦级数或余弦级数的基本 方法. 教学建议三角级数和傅里叶级数的展开计算量较大,可布置少量习题使学生了解展开 的方法与步骤. 教学程序一、 以l 2为周期的函数的Fourier 级数设函数)(x f 以l 2为周期 , 在区间] , [l l -上 (R )可积 . 作代换πtl x =,则函数)()(πltf t F =以π2为周期. 由πtl x =是线性函数, )(t F 在区间], [ππ-上(R )可积 .函数)(t F 的Fourier 系数为 ⎰-=πππntdt t F a n cos )(1, , 2 , 1 , 0=n⎰-=πππntdt t F b n sin )(1, , 2 , 1 =n)(t F ~ ∑∞=++10. sin cos 2n n n nt b nt a a还原为自变量x , 注意到l xt x f t l f t F , )() ()(ππ===, 就有 )()(t F x f =~∑∞=++10. sin cos 2n n n l x n b l x n a a ππ其中⎰-=πππntdt t F a n cos )(1⎰-=====l l l xt dx l x n x f l ππcos )(1, , 2 , 1 , 0=n=n b ⎰-l l dx l xn x f l πsin )(1, , 2 , 1 =n当函数)(x f 在区间] , [l l -上按段光滑时, )(x f 可展开为Fourie r 级数. 註明三角函数系 } , sin , cos, , sin, cos, 1 { l xn l x n lxlxππππ是区间], [l l -上的正交函数系统 .例1把函数⎩⎨⎧<≤<<-=50 , 3 , 05, 0 )(x x x f 展开成Fourier 级数. 二、 偶函数和奇函数的Fourier 级数(一)区间[ , ]l l -上偶函数和奇函数的Fourier 级数设f 是以2l 为周期的偶函数,或是定义在[],l l -上的偶函数,则()()()01cos 2cos ,0,1,2.,sin 0,1,2,.ln l l l n l n xa f x dxl ln x f x dx n l l n x b f x dx n l πππ--⎫=⎪⎪⎪⎪==⎬⎪⎪⎪===⎪⎭⎰⎰⎰ (6) 于是()01cos 2n n a n x f x a l π∞=+∑ (7)其中n a 如(6)所示,(7)的右边为余弦级数。

相关文档
最新文档