简单数列递推题型
题型最全的递推数列求通项公式的习题[1]
高考递推数列题型分类归纳解析各种数列问题在很多情形下,就是对数列通项公式的求解。
特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。
我现在总结出几种求解数列通项公式的方法,希望能对大家有帮助。
类型1)(1n f a a nn解法:把原递推公式转化为)(1n f a a nn ,利用累加法(逐差相加法)求解。
例1. 已知数列na 满足211a ,nna a nn211,求n a 。
变式:已知数列1}{1a a n 中,且a 2k =a 2k -1+(-1)K,a 2k+1=a 2k +3k, 其中k=1,2,3,…….(I )求a 3, a 5;(II )求{ a n }的通项公式. 类型2nna n f a )(1解法:把原递推公式转化为)(1n f a a n n ,利用累乘法(逐商相乘法)求解。
例1:已知数列na 满足321a ,n na n na 11,求n a 。
例2:已知31a ,nna nna 23131)1(n,求n a 。
变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32nna na a a a (n ≥2),则{a n }的通项1___na 12n n类型3q paa nn1(其中p ,q 均为常数,)0)1((ppq )。
解法(待定系数法):把原递推公式转化为:)(1t a p ta nn,其中pq t1,再利用换元法转化为等比数列求解。
例:已知数列na 中,11a ,321n na a ,求n a .变式:(2006,重庆,文,14)在数列na 中,若111,23(1)nna a a n,则该数列的通项n a _______________变式:(2006.福建.理22.本小题满分14分)已知数列na 满足*111,21().nna a a n N (I )求数列na 的通项公式;(II )若数列{b n }滿足12111*444(1)(),n nb bb bna nN 证明:数列{b n }是等差数列;(Ⅲ)证明:*122311...().232n na a a n nn N a a a 类型4nnnq paa 1(其中p ,q 均为常数,)0)1)(1((q ppq )。
数列最值得做的12类题
高三数学数列最值得做的12类题题型一:递推问题1、已知数列{a n }中,a 1>0,且a n +1=3+a n2. (1)试求a 1的值,使得数列{a n }是一个常数数列;(2)试求a 1的取值范围,使得a n +1>a n 对任何自然数n 都成立;(3)若a 1=4,设b n =|a n +1-a n |(n =1,2,3…),并以S n 表示数列{b n }的前n 项的和,试证明:S n <52.解:(Ⅰ)欲使数列{a n }是一个常数数列,则a n +1=3+a n2=a n ,又依a 1>0,可以推得a n >0并解出:a n =32.即a 1=a 2=32(Ⅱ)研究a n +1-a n =3+a n2-3+a n-12=a n -a n-12(3+a n 2+3+a n-12)(n ≥2)注意到:2(3+a n2+3+a n-12)>0因此,a n +1-a n ,a n -a n -1,…,a 2-a 1有相同的符号.要使a n +1>a n 对任意自然数都成立,只须a 2-a 1>0即可.由3+a 12-a 1>0,解得:0<a 1<32. (Ⅲ)用与(Ⅱ)中相同的方法,可得当a 1>32时,a n +1<a n 对任何自然数n 都成立.因此当a 1=4时,a n +1-a n <0∴S n =b 1+b 2+…+b n .=|a 2-a 1|+|a 3-a 2|+…+|a n +1-a n |=a 1-a 2+a 2-a 3+…+a n -a n +1=a 1-a n +1=4-a n +1又:a n +2<a n +1 即3+a n+12<a n+1,可得a n +1>32,故S n <4-32=52.题型二:最值问题2、已知数列}{n a 满足:11=a ,a n +1=a n2a n +1(n ∈N ) )(N n ∈,数列}{n b 的前n 项和S n =12-12(23)n (n ∈N ). (1) 求数列}{n a 和{b n }的通项公式;(2) 设c n =b n a n,是否存在N m ∈,使c m ≥9成立?并说明理由.解答:(1)由2111211+=⇒=+++nn n na a a a n a ,∴12)1(211-=-+=n n na ,121-=n n a )(N n ∈.由n n S )(121232-=及1321)(1212---=n n S )2(≥n ,可得1321)(4--=-=n n n n S S b )2(≥n , 令1=n ,则412123211=⋅-==S b 也满足上式,∴132)(4-=n n b )(N n ∈. (2)132132)()12(4)(4)12(---=⋅-==n n a b n n n C nn,设m C 为数列}{n C 中的最大项,则 ⎪⎩⎪⎨⎧≥≤⇒⎪⎩⎪⎨⎧⋅+≥--≥⋅-⇒⎪⎩⎪⎨⎧+≥--≥-⇒⎩⎨⎧≥≥---+-252732323213223213211)12(1232)12()()12(4)()12(4)()32(4)()12(4m m m m m m m m m m C C C C m m m m m m m m ,∴3=m .即3C 为}{n C 中的最大项.∵9)(209802323<==C ,∴不存在N m ∈,使9≥m C 成立.题型三:公共项问题3、设A n 为数列{a n }的前n 项的和,A n =32(a n -1),数列{b n }的通项公式为b n =4n +3。
递推数列求通项公式-高考数学一题多解
递推数列求通项公式-高考数学一题多解一、攻关方略数列学习中难度较高的一个内容是递推数列,由递推关系求通项公式是一种十分重要的题型,解题方法丰富多彩,注重分析递推式的结构特点,合理构造得到等差或等比等常见数列是解题的重要策略.下面对一些常见的由递推关系求通项公式的求法做一些归纳.第一类:型如()1n n a a f n +=+的一阶递推式,可改写为()1n n a a f n +-=的形式,左端通过“累加”可以消项;右端()f n 是关于n 的函数,可以求和.故运用“累加法”必定可行,即()()()112132111()n n n n k a a a a a a a a a f k --==+-+-+⋅⋅⋅+-=+∑.第二类:型如1()n n a g n a +=的递推式,可改写为1()n na g n a +=的形式.左端通过“迭乘”可以消项;右端通常也可以化简,故运用“迭乘法”必定可行,即3211121(1)(2)(1)(2)n n n a a a a a a n n g g a a a -=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅-≥.第三类:型如1n n a pa q +=+(1p ≠,0q ≠)的递推式,可由下面两种构造法求通项公式.构造法一:由1n n a pa q +=+及1n n a pa q -=+,两式相减得()11n n n n a a p a a +--=-,得{}1n n a a +-是首项为21a a -,公比为p 的等比数列,先求{}1n n a a +-的通项公式,再利用“累加法”求{}n a 的通项公式.构造法二:若1p =,则显然是以1a 为首项、q 为公差的等差数列;若1p ≠,0p ≠,0q ≠,则构造数列{}n a λ+,满足()1n n a p a λλ++=+.运用待定系数法,解得1q p λ=-,则1n q a p ⎧⎫+⎨⎬-⎩⎭是首项为11q a p +-,公比为p 的等比数列.第四类:型如1nn n pa a a q+=+(0p ≠,0q ≠,0n a ≠)的递推式,运用取倒数,构造数列1n a ⎧⎫⎨⎬⎩⎭,满足111n n q a pa p +=+,运用换元法,即令1n n b a =,得11n n q b b p p +=+,从而转换为第三类.第五类:型如1rn n a pa +=(0p >,0r ≠,1r ≠)的递推式,运用两边取对数法得1lg lg lg n n a r a p +=+,令lg n n b a =,转化为1lg n n b rb p +=+型,即第三类,再运用待定系数法.第六类:型如1n n a pa qn r +=++(1p ≠,0p ≠,0q ≠)的递推式,可构造数列{}n a n λμ++,满足()1(1)n n a n p a n λμλμ++++=++,运用待定系数法解得1q p λ=-,21(1)r qp p μ=+--,从而由等比数列求通项公式;进一步推广,若递推式中包含n 的二次项、三次项,则构造的数列中也同样包含对应次数项.第七类:型如1()n n a pa f n +=+(1p ≠,0p ≠)的递推式,可在等式两边同除以1n p +,构造数列nn a p ⎧⎫⎨⎬⎩⎭,满足111()n n n n n a a f n p p p +++=+,令n n n a b p =,则转化为11()n n n f n b b p ++=+,即第一类,再利用“累加法”求通项公式.第八类:型如满足:11a m =,22a m =,21n n n a pa qa ++=+(p 、q 是常数)的递推式,则称数列{}n a 为二阶线性递推数列,可构造数列{}1n n a a λ+-,满足()11n n n n a a a a λμλ+--=-,则,,p q λμλμ+=⎧⎨=-⎩即λ,μ为方程20x px q --=的两个根,此方程称之为特征方程,则数列{}n a 的通项公式n a 均可用特征根求得(即转化为第七类进一步求解).第九类:型如1n n n ra sa pa q++=+(0p ≠,0q ≠,0r ≠,0s ≠)的递推式,利用不动点法,其中rx sx px q +=+的根为该数列的不动点,若该数列有两个相异的不动点μ,则n n a a v μ⎧⎫-⎨⎬-⎩⎭为等比数列;若该数列有唯一的不动点μ,即方程等根时,1n a μ⎧⎫⎨⎬-⎩⎭为等差数列,这就是不动点求递推数列通项公式的方法.除上述9种类型之外还有换元法、数学归纳法(归纳一猜想一论证)等.给出相类似的递推式必有相应的破解之道,这是模型思想的运用,对所给的递推式借助于变形、代换、运算等方法转化为等差数列、等比数列这两类基本数列(模型)而求解.切变形、代换、运算的手段都是构造法的体现,真可谓:递推数列变化无穷,变形、代换方法众多.模型思想是根主线,合理构造顿显坦途.【典例】(2021·全国甲卷T17)已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a是等差数列:②数列是等差数列;③213a a =.注:若选择不同的组合分别解答,则按第一个解答计分.选①②作条件证明③:(一)待定系数法解法一:【解析】待定系数法+n a 与n S 关系式(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b-=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.解法二:【解析】待定系数法设等差数列{}n a 的公差为d,等差数列的公差为1d ,1(1)n d =-,将1(1)2n n n S na d -=+1(1)n d -,化简得())2222211111222d d n a n d n d n d ⎛⎫+-=+-+⎪⎝⎭对于n +∀∈N 恒成立.则有21211112,240,d d a d d d ⎧=⎪⎪-=-⎨=,解得112d d a ==.所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列,所以公差2112d a a a =-=,所以()21112n n n S na d n a -=+==,)1n +-=所以是等差数列.选②③作条件证明①:(二)定义法解法一:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b-=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43ab =-;当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a =+-03a =-<不合题意,舍去.综上可知{}n a 为等差数列.解法二:求解通项公式因为213a a ===也为等差数列,所以公差1d =()11n d =-=,故21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意.【点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于n 的一次函数,直接(0)an b a =+>,平方后得到n S 的关系式,利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①②证明③的通式通法;法二:分别设出{}n a 与{}n S的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系1d =12d a =,进而得到213a a =;选①③时,按照正常的思维求出公差,表示出n S进而由等差数列定义进行证明;选②③时,法一:利用等差数列的通项公式是关于n 的一次函数,(0)an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a1d =11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论.【针对训练】(2022年全国高考乙卷)1.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则()A .15b b <B .38b b <C .62b b <D .47b b <2.设数列{an }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{an }的通项公式并加以证明;(2)求数列{2nan }的前n 项和Sn .3.已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.4.已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .(2022全国甲卷)5.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.6.记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.7.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.8.对负整数a ,数43a +、77a +、283a a ++依次成等差数列.(1)求a 的值;(2)若数列{}n a 满足()112n n n a aa n *++=-∈N ,1a m =,求{}n a 的通项公式;(3)在(2)的条件下,若对任意n *∈N ,有2121n n a a +-<,求m 的取值范围.9.设0b >,数列{}n a 满足1a b =,()1121n n n nba a n a n --=≥+-(1)求数列{}n a 的通项公式;(2)证明:对于一切正整数n ,121n n a b +≤+.10.设数列{}n a 满足:11a =,12n n n a a -=-+(2n ≥),数列{}n b 满足:1(1)3n n n b a +=-⋅.求数列{}n b 的通项公式.参考答案:1.D【分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【详解】[方法一]:常规解法因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误;178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.[方法二]:特值法不妨设1,n a =则1234567835813213455b 2,b b ,b b ,b b ,b 2358132134========,47b b <故D 正确.2.(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【分析】(1)方法一:(通性通法)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可;(2)方法一:(通性通法)根据通项公式的特征,由错位相减法求解即可.【详解】(1)[方法一]【最优解】:通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+.证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n ∈N ,都有21n a n =+成立;[方法二]:构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+.[方法三]:累加法由题意可得2134945a a =-=-=,32381587a a =-=-=.由134n n a a n +=-得1114333n n n n n a a n +++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯,……1114(1)(2)333n n nn n a a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n n n a a n ⎡⎤-=-⨯+⨯+-⨯⎢⎥⎣⎦ ,所以1(21)33n n n a n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+.[方法四]:构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211n n n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n nn a n ⋅=+⋅[方法一]:错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅ ,①23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅ ,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅ ()21121262(21)212n n n -+-=+⨯+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】:裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以231232222n n n S a a a a =++++ ()()()()2132431n n b b b b b b b b +=-+-+-++- 11n b b +=-1(21)22n n +=-+.[方法三]:构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122n n n pn q p S S ----=+,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22n n S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]:因为12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n nx x f x x x x x x x-=++++=≠- ,()121211(1)()1231(1)n n nn x x nx n x f x x x nxx x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦' ,所以12n b b b +++L 21122322n n -=+⋅+⋅++⋅ 1(2)12(1)2n n f n n +==+-+'⋅.故234(2)2222nn S f =++'+++ ()1212412(1)212n n n n n +-⎡⎤=+⋅-++⎣⎦-1(21)22n n +=-+.【整体点评】(1)方法一:通过递推式求出数列{}n a 的部分项从而归纳得出数列{}n a 的通项公式,再根据数学归纳法进行证明,是该类问题的通性通法,对于此题也是最优解;方法二:根据递推式134n n a a n +=-,代换得134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--,设1n n n b a a +=-,从而简化递推式,再根据构造法即可求出n b ,从而得出数列{}n a 的通项公式;方法三:由134n n a a n +=-化简得1114333n n n n n a a n +++-=-,根据累加法即可求出数列{}n a 的通项公式;方法四:通过递推式求出数列{}n a 的部分项,归纳得出数列{}n a 的通项公式,再根据待定系数法将递推式变形成()1(1)3n n a n a n λμλμ++++=++,求出,λμ,从而可得构造数列为常数列,即得数列{}n a 的通项公式.(2)方法一:根据通项公式的特征可知,可利用错位相减法解出,该法也是此类题型的通性通法;方法二:根据通项公式裂项,由裂项相消法求出,过程简单,是本题的最优解法;方法三:由2n ≥时,1(21)2nn n S S n -=++⋅,构造得到数列{}(42)2n n S n +-+⋅为常数列,从而求出;方法四:将通项公式分解成12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,利用分组求和法分别求出数列{}{}12,2n n n -⋅的前n 项和即可,其中数列{}12n n -⋅的前n 项和借助于函数()()231()0,11n nx x f x x x x x x x-=++++=≠- 的导数,通过赋值的方式求出,思路新颖独特,很好的简化了运算.3.(1)122,5,31n b b b n ===-;(2)300.【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可;(2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和.【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+,所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===,所以{}n b 是以2为首项,3为公差的等差数列,于是122,5,31n b b b n ===-.[方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=.由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知,数列从第一项起,若n 为奇数,则其后一项减去该项的差为1,若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N .所以11213(1)11222b a a -==++=+=,322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-.(2)[方法一]:奇偶分类讨论20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++ 1231012310(1111)b b b b b b b b =-+-+-++-+++++ 110()102103002b b +⨯=⨯-=.[方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+,所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列.从而数列{}n a 的前20项和为:201351924260()()S a a a a a a a a =+++++++++ 1091091013102330022⨯⨯=⨯++⨯+⨯=.【整体点评】(1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质;方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路.(2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择.4.(1)2n n a =;(2)100480S =.【分析】(1)利用基本元的思想,将已知条件转化为1,a q 的形式,求解出1,a q ,由此求得数列{}n a 的通项公式.(2)方法一:通过分析数列{}m b 的规律,由此求得数列{}m b 的前100项和100S .【详解】(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍),所以2n n a =,所以数列{}n a 的通项公式为2n n a =.(2)[方法一]:规律探索由于123456722,24,28,216,232,264,2128=======,所以1b 对应的区间为(0,1],则10b =;23,b b 对应的区间分别为(0,2],(0,3],则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为(0,4],(0,5],(0,6],(0,7],则45672b b b b ====,即有22个2;8915,,,b b b 对应的区间分别为(0,8],(0,9],,(0,15] ,则89153b b b ==== ,即有32个3;161731,,,b b b 对应的区间分别为(0,16],(0,17],,(0,31] ,则1617314b b b ==== ,即有42个4;323363,,,b b b 对应的区间分别为(0,32],(0,33],,(0,63] ,则3233635b b b ====L ,即有52个5;6465100,,,b b b L 对应的区间分别为(0,64],(0,65],,(0,100] ,则64651006b b b ====L ,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.[方法二]【最优解】:由题意,2n m ≤,即2log n m ≤,当1m =时,10b =.当)12,21k k m +⎡∈-⎣时,,m b k k *=∈N ,则()()()()1001234573233636465100S b b b b b b b b b b b b =++++++++++++++ 0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.[方法三]:由题意知)1,2,2k k m b k m +⎡=∈⎣,因此,当1m =时,10b =;[2,4)m ∈时,1m b =;[4,8)m ∈时,2m b =;[8,16)m ∈时,3m b =;[16,32)m ∈时,4m b =;[32,64)m ∈时,5m b =;[64,128)m ∈时,6m b =.所以1001234100S b b b b b =+++++ 0(11)(222)(666)=++++++++++ 0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.所以数列{}n b 的前100项和100480S =.【整体点评】(2)方法一:通过数列{}n a 的前几项以及数列{}m b 的规律可以得到12100,,,b b b 的值,从而求出数列{}m b 的前100项和,这是本题的通性通法;方法二:通过解指数不等式可得数列{}m b 的通项公式,从而求出数列{}m b 的前100项和,是本题的最优解;方法三,是方法一的简化版.5.(1)证明见解析;(2)78-.【分析】(1)依题意可得222n n S n na n +=+,根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)法一:由(1)及等比中项的性质求出1a ,即可得到{}n a 的通项公式与前n 项和,再根据二次函数的性质计算可得.【详解】(1)因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差的等差数列.(2)[方法一]:二次函数的性质由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭,所以,当12n =或13n =时,()min 78n S =-.[方法二]:【最优解】邻项变号法由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,即有1123210,0a a a a <<<<= .则当12n =或13n =时,()min 78n S =-.【整体点评】(2)法一:根据二次函数的性质求出n S 的最小值,适用于可以求出n S 的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.6.(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【分析】(1)由已知212n nS b +=得221n n n b S b =-,且0n b ≠,取1n =,得132b =,由题意得1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,消积得到项的递推关系111221n n n n b b b b +++=-,进而证明数列{}n b 是等差数列;(2)由(1)可得n b 的表达式,由此得到n S 的表达式,然后利用和与项的关系求得()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【详解】(1)[方法一]:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,所以111221n n n nb b b b +++=-,由于10n b +≠所以12121n n b b +=-,即112n n b b +-=,其中*n ∈N 所以数列{}n b 是以132b =为首项,以12d =为公差等差数列;[方法二]【最优解】:由已知条件知1231-⋅=⋅⋅⋅⋅ n n n b S S S S S ①于是11231(2)--=⋅⋅⋅⋅≥ n n b S S S S n .②由①②得1nn n b S b -=.③又212n nS b +=,④由③④得112n n b b --=.令1n =,由11S b =,得132b =.所以数列{}n b 是以32为首项,12为公差的等差数列.[方法三]:由212n nS b +=,得22=-n n n S b S ,且0n S ≠,0n b ≠,1n S ≠.又因为111--=⋅⋅=⋅ n n n n n b S S S S b ,所以1122-==-n n n n b b S S ,所以()1111(2)2222212---=-==≥---n n n n n n n S S b b n S S S .在212n n S b +=中,当1n =时,1132==b S .故数列{}n b 是以32为首项,12为公差的等差数列.[方法四]:数学归纳法由已知212n n S b +=,得221n n n b S b =-,132b =,22b =,352=b ,猜想数列{}n b 是以32为首项,12为公差的等差数列,且112n b n =+.下面用数学归纳法证明.当1n =时显然成立.假设当n k =时成立,即121,21+=+=+k k k b k S k .那么当1n k =+时,11112++⎛⎫==+ ⎪⎝⎭k k k b b S 331(1)1222k k k k ++⋅==+++.综上,猜想对任意的n ∈N 都成立.即数列{}n b 是以32为首项,12为公差的等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n nb n ∴=+-⨯=+,22211n n n b n S b n+==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【整体点评】(1)方法一从212n nS b +=得221n n n b S b =-,然后利用n b 的定义,得到数列{}n b 的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论;方法二先从n b 的定义,替换相除得到1nn n b S b -=,再结合212n n S b +=得到112n n b b --=,从而证得结论,为最优解;方法三由212n nS b +=,得22=-n n n S b S ,由n b 的定义得1122-==-n n n n b b S S ,进而作差证得结论;方法四利用归纳猜想得到数列112n b n =+,然后利用数学归纳法证得结论.(2)由(1)的结论得到112n b n =+,求得n S 的表达式,然后利用和与项的关系求得{}n a 的通项公式;7.(1)11()3n n a -=,3n nn b =;(2)证明见解析.【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==.(2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++ ,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S ,230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++=⎪ ⎪⎝⎭⎝⎭ 012111012222333---++++ 111233---+n n n n .设0121111101212222Γ3333------=++++ n n n ,⑧则1231111012112222Γ33333-----=++++ n n n .⑨由⑧-⑨得1121113312111113322Γ132********--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭- n n n n nn n .所以211312Γ432323----=--=-⨯⨯⨯n n n n n n .因此10232323--=-=-<⨯⨯n n n n nS n n nT .故2nn S T <.[方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n nT --=++++ ,①231112133333n n n n nT +-=++++ ,②①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(14323n n nn T =--⋅,所以2n n S T -=3131(1)(1043234323n nn n n n ----=-<⋅⋅,所以2nn S T <.[方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭nnn n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法设()231()1-=++++=- n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n n x x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦,则12121(1)()123(1)+-+-+=++++='- n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.8.(1)2a =-(2)()()()1212n nn a m n -=⋅-+-⋅-(3)163m <【分析】(1)根据等差中项的性质可出关于a 的等式,结合a 为负整数可得出a 的值;(2)推导出数列()2n n a ⎧⎫⎪⎪⎨-⎪⎪⎩⎭为等差数列,确定该数列的首项和公差,即可求得数列{}n a 的通项公式;(3)由2121n n a a +-<对*n ∈N 恒成立结合参变量分离法可得出1243n m +<,求出1243n +的最小值,可得出实数m 的取值范围.【详解】(1)解:由题意可得()21414383a a a a +=++++,整理可得2280a a --=,a 为负整数,解得2a =-.(2)解:因为()1122n n n a a ++=-+-,等式两边同时除以()12n +-可得()()11122n nn n a a ++-=--,所以,数列()2n n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭是首项为2m -,公差为1的等差数列,故()()122n n a m n =-+--,因此,()()()1212n n n a m n -=⋅-+-⋅-.(3)解:由2121n n a a +-<对*n ∈N 恒成立得()()()()()()22122212222222n n n n m n m n +--⋅-+-<⋅--⋅⋅+-对n *∈N 均成立.()2220n --> ,不等式两边同除()222n --,得()()()482222m n m n +-⋅<+-⋅-,得1243n m +<对n *∈N 恒成立,当1n =时,1243n +取最小值163,163m ∴<.9.(1)11(1)011n n n b a nb b b b b =⎧⎪=⎨->≠⎪-⎩且(2)证明见解析【分析】(1)由题设形式可以看出,题设中给出了关于数列a n 的面的一个方程,即一个递推关系,所以应该对此递推关系进行变形整理以发现其中所蕴含的规律,观察发现若对方程两边取倒数则可以得到一个类似等差数列的形式,对其中参数进行讨论,分类求其通项即可.(2)由于本题中条件较少,解题思路不宜用综合法直接分析出,故求解本题可以采取分析法的思路,由结论探究其成立的条件,再证明此条件成立,即可达到证明不等式的目的.【详解】(1)()1121n n n nba a n a n --=≥+- 1111(2)n n n n n a b b a --∴=+⨯≥当1b =时,11(2)1n n n n n a a -=+≥-,∴数列n n a ⎧⎫⎨⎬⎩⎭是以11a 为首项,以1为公差的等差数列,1(1)1n n n n a ∴=+-⨯=,即1n a =,当0b >,且1b ≠时,11111(2)11n n n n n a b b b a -⎛⎫-+=+≥ --⎝⎭即数列11n n a b ⎧⎫+⎨⎬-⎩⎭是以11111(1)a b b b +=--为首项,公比为1b 的等比数列,111111(1)(1)n n n n a b b b b b b -⎛⎫∴+=⨯= ⎪---⎝⎭即(1)1n n nnb b a b -=-,∴数列{}n a 的通项公式是()111011n n n b a nb b b b b =⎧⎪=⎨->≠⎪-⎩且(2)证明:当1b =时,不等式显然成立当0b >,且1b ≠时,(1)1n n nnb b a b -=-,要证对于一切正整数n ,121n n a b +≤+,只需证1(1)211n n n nb b b b+-⨯≤+-,即证()11121011n nn n b b nb b b b +--≤+⨯>--)()1111n n b bb +-+⨯- ()1111n n b b b +-=+⨯-()()11211n n n b b b b +--=+⨯++⋯++()()22121121n n n n n n b b b b b b b -++--=++⋯+++++⋯++()12211111n n n n n b b b b b b bb b --⎡⎤⎛⎫=++⋯+++++⋯++ ⎪⎢⎥⎝⎭⎣⎦(222)2n n b nb ≥++⋯+=∴不等式成立,综上所述,对于一切正整数n ,有121n n a b +≤+,【点睛】本题考点是数列的递推式,考查根据数列的递推公式求数列的通项,研究数列的性质的能力,本题中递推关系的形式适合用取倒数法将所给的递推关系转化为有规律的形式,两边取倒数,条件许可的情况下,使用此技巧可以使得解题思路呈现出来.数列中有请多成熟的规律,做题时要注意积累这些小技巧,在合适的情况下利用相关的技巧,可以简化做题.在(2)的证明中,采取了分析法的来探究解题的思路,通过本题希望能进一步熟悉分析法证明问题的技巧.10.223n n b =-⋅.【分析】利用辅助法,对于数列{}n a 的递推公式,两边同时除以2n ,根据数列构造法,可得答案.【详解】∵12n n n a a -+=,两边同时除以2n 得1111222n n n n a a --+⋅=.令2n n n a c =,则1112n n c c -=-+.两边同时加上23-得1212323n n c c -⎛⎫-=-⋅- ⎪⎝⎭.∴数列23n c ⎧⎫-⎨⎬⎩⎭是以123c -为首项,12-为公比的等比数列.∴112211133232n n n c c -⎛⎫⎛⎫⎛⎫-=-⋅-=⋅- ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴211332n n c ⎛⎫=+⋅- ⎪⎝⎭.∴2122(1)33n n n n n a c ==⋅+⋅-⋅.又∵1(1)3n n n b a +=-⋅,∴12(1)233n n n n b a =⋅--=-⋅,。
几类常见递推数列的解题方法
类型一:累加法 形如a 1+n =a n + f (n ), 其中f (n ) 为关于n 的多项式或指数形式(a n )或可裂项成差的分式形式.——可移项后叠加相消.类型二: 累积法 形如)(1n f a a n n =+.其中f (n ) =ppc mn b mn )()(++ (p ≠0,m ≠0,b –c = km ,k ∈Z )或 n n a a 1+=kn (k ≠0)或nn a a 1+= km n ( k ≠ 0, 0<m 且m ≠ 1).类型三:形如1+n n a a = 1++n n qa pa ,(pq ≠ 0).且0≠n a 的数列,——可通过倒数变形为基本数列问题.当p = -q 时,则有:p a a n n 1111=-+ 转化为等差数列; 当p ≠ -q 时,则有:p pa q a n n 111+-=+.同类型五转化为等比数列. 类型四:特征根法 形如a 1+n =pa n + q ,pq ≠0 ,p 、q 为常数.当p =1时,为等差数列;当p ≠1时,可在两边同时加上同一个数x ,即a 1+n + x = pa n + q + x⇒a 1+n + x = p (a n + p x q +), 令x =px q + ∴x =1-p q 时,有a 1+n + x = p (a n + x ), 从而转化为等比数列 {a n +1-p q } 求解. 类型五:形如a 1+n =pa n + f (n ),p ≠0且 p 为常数,f (n )为关于n 的函数.当p =1时,则 a 1+n =a n + f (n ) 即类型一.当p ≠1时,f (n )为关于n 的多项式或指数形式(a n)或指数和多项式的混合形式.⑴若f (n )为关于n 的多项式(f (n ) = kn + b 或kn 2+ bn + c ,k 、b 、c 为常数),——可用待定系数法转化为等比数列.⑵若f (n )为关于n 的指数形式(a n ).①当p 不等于底数a 时,可转化为等比数列;②当p 等于底数a 时,可转化为等差数列.。
数列的递推公式练习题
3.已知数列 an 中, a1 1 , an1 an 3 ,若 an 2008,则 n =( A.667 B.668 C.669 D.670
)
4.数列{ an }中, an1 an2 an , a1 2, a2 5 ,则 a5 为( A.-3 B.-11 C.-5 D.19
2 2 10.在数列 {an } 中,有 a1 1, an 1 an n 1, an 0 ,则通项 an =
.
11.已知数列 an 满足 an1 an n 2 ( n N )且 a1 1
*
(1)求 a2 , a3 , a4 的值 (2)求 an 的通项公式 (3)令 bn 4an 68n ,求 bn 的最小值及此时 n 的值 12.已知 an 满足 a1 3 , an1 2an 1 ,试写出该数列的前 5 项,并用观察法写出 这个数列的一个通项公式. 13.数列 an 中, a1 1, an
1.数列 an 满足 an 4an1 3 且 a1 0 ,则此数列第 5 项是 A.15 B.255 C.16 ) D.63
2.在数列 {an } 中,若 a1 1 , an1 an an1 1 0 ,则 a2012 ( A. 2 B. 1 C. 0.5 D. 1
2an 1 (n 2) ,求 a2 , a3 , a4 , a5 ,并归纳出 an . 2 an 1
试卷第 1 页,总 1 页
)
5.在数列 {a n } 中,Fra biblioteka1 2 ,且 a n 1 A.12 B.14
a n 2 (n为奇数) ,则 a 5 等于( (n为偶数) 2a n
C.20 D.22
常见递推数列通项公式的求法典型例题及习题
常见递推数列通项公式的求法典型例题及习题k=1,则an+1=an+f(n)为一阶线性递推数列,可用递推公式或特征方程求解。
例如已知a1=1,an+1=an+1/n,则有:an+1-an=1/nan-an-1=1/(n-1)an-a1=1+1/2+。
+1/n-1an=1+1/2+。
+1/n当k≠1时,设an+1+m=k(an+m),则有:an+1=kan+km-m比较系数得km-m=b,解得m=b/(k-1)an+m=b/(k-1)k^(n-1)+(a1-b/(k-1))k^n-1即为通项公式。
例2]an+1=kan+f(n)型。
当k=1时,an+1-an=f(n),若f(n)可求和,则可用累加消项的方法求得通项公式。
例如已知a1=1,an+1-an=1/(n(n+1)),则有:an+1-an=1/n-1/(n+1)an-an-1=1/1-1/2-1/2+1/3+。
+1/(n-1)-1/n-1/(n+1)an-a1=1-1/(n+1)an=2-1/n当k≠1且f(n)=an+b时,可设an+1+A(n+1)+B=k(an+An+B),解得A=a/(k-1),B=(2k-1)/(k-1)b-a,即可得通项公式。
例3]an+1=f(n)an型。
若f(n)=q(n+1)/n,则有:Cn=qCn-1Cn=q^nC0an=Cn/n!=q^nC0/n!即为通项公式。
1.已知数列 $\{a_n\}$ 中,$a_1=1$,$a_{n+1}=a_n+2a_{n-1}$,求 $a_n$。
解:根据递推式,可以列出 $a_2=3$,$a_3=7$,$a_4=15$,$a_5=31$,$a_6=63$,$a_7=127$,$\cdots$,可以猜测 $a_n=2^n-1$。
可以用数学归纳法证明:当 $n=1$ 时,$a_1=1=2^1-1$,假设 $a_k=2^k-1$,则 $a_{k+1}=a_k+2a_{k-1}=2^k-1+2\cdot 2^{k-1}-2=2^{k+1}-1$,所以 $a_n=2^n-1$。
数列的十种典型递推式
1 十大递推数列求通项:(1)等差数列:a n=a n-1+d例1:已知:数列{a n}中a1=1,a n=a n-1+3,(n≥2).求a n的通项公式. 答a n=3n-2.(2)等比数列: a n=a n-1q例2:已知:数列{a n}中a1=1,a n=2a n-1,(n≥2).求a n的通项公式. 答a n=12-n.(3)似等差数列: a n=a n-1+f(n) 用叠加法.例3:已知:数列{a n}中a1=1,a n=a n-1+3n+1,(n≥2).求a n的通项公式.答a n=265n3n2-+.(4)线性数列: a n=pa n-1+q 结构等比数列.例4:已知:数列{a n}中a1=3,a n=2a n-1-1,(n≥2).求a n的通项公式. 答a n=12+n.(5) 似等比数列: a n=a n-1f(n) 叠乘法.例5:已知:数列{a n}中a1=3,a n=na n-1,(n≥2).求a n的通项公式. 答a n=3n!.(6)三项递推: a n=pa n-1+qa n-2设a n+1-xa n =y(a n-xa n-1),结构一个或二个等比数列再经由过程等差数列或解方程组求出.例6:已知:数列{a n}中a1=1,a2=3,a n=3a n-1-2a n-2,(n≥3).求a n的通项公式. 答a n =2n-1.例7:已知:数列{a n }中a 1=1,a 2=3,a n =4a n-1-4a n-2,(n ≥3).求a n 的通项公式. 答a n =(n+1)2n-2.例8:已知:数列{a n }中a 1=1,a 2=4,a n =4a n-1-4a n-2,(n ≥3).求a n 的通项公式. 答a n =n2n-1.例9:已知:数列{a n }中a 1=2,a 2=3,a n =5a n-1-6a n-2,(n ≥3).求a n 的通项公式. 答a n =3×2n-1-3n-1.例10:已知:数列{a n }中a 1=a,a 2=b,a n =a n-1-a n-2,(n ≥3).求a n 的通项公式. 答周期为6.例11 (2006年通俗高级黉舍夏日招生测验数学(文史类)福建卷(新课程))(22)已知数列知足(I )证实:数列是等比数列;(II )求数列的通项公式;(Ⅲ)若数列知足证实是等差数列.(7)似线性数列:a n+1=pa n +f(n) , 变成111)(++++=n n n n n pn f p a p a ,即化为(3)型. 特殊地①1n n a pa bn c +=++型,还可以令1(1)()n n a x n y p a xn y +-+-=--,待定系数x,y,结构等比数列,要比通法简略.②1n n n a pa q b +=++型,还可以令11()n n n n a xq y p a xq y ++--=--,待定系数x,y,结构等比数列,要比通法简略.例12:已知:数列{a n }中a 1=5,a n =3a n-1+3n-1,(n ≥2).求a n 的通项公式.答213)21(+⋅+=n n n a (8)指数数列:a n+1=pa n k,取对数,化为(4)型. 例13:已知:数列{a n }中a 1=4,a n =3)1(4-n n a n-13,(n ≥2).求a n 的通项公式. 答a n =1322-⋅n n .道理:设cba r a s r a n n n +-=-+)(1,先待定s,r 的值,再取倒数.得:sb r a sc br ra n n +-+=-+)(11,令111++=-n n b r a ,化为:b n+1=ab n +c型,下略.求法:在上述道理中,称r 为cba mda a n n n ++=+1的特点根.特点根的求法除了按上述办法慢慢进行外,也可令cbx mdx x ++=,解关于x 的方程,得出方程的根x 1,x 2即为特点根r 1,r 2.至此法(ⅰ)令cba x a s x a n n n +-=-+)(111,再依据原式平分子的n a 的系数待定出s,既可求解.法(ⅱ)令n 1n x 1b a =-,得a n =1nx b 1+,将该式代入已知等式即得b n的递推关系.先求出b n ,再求a n . 注:该法更轻易用.例14(2006年奥林匹克比赛山东省赛区预选赛19题,即最后一题)已知:数列{a n }知足a n+1a n +3a n+1+a n +4=0,(n ≥2). (1)当a 1=-1时, 求a n 的通项公式.(2)当a 1=-2.03时,求a n 的最小值和最大值. (3)当a 2006是{a n }中的最小项时,求a 1的取值规模. 答(1)a n =-2+n1.(2)a 34最小为-5;a 35最大为-21.(3)20064013200540111-<<-a . 例15 在数列{a n }中,a 1=4,且a n+1=423++n n a a ,求a n .答:21112525-----+=n n n n n a .例16 已知曲线C :1xy =,过C 上一点(,)n n n A x y 作斜率12n n k x =-+为的直线交曲线C 于另一点111(,)n n n A x y +++,点列(1,2,3,)n A n =的横坐标组成数列{}n x ,个中1117x =. (Ⅰ)求n x 与1n x +的关系式; (Ⅱ)求证:1123n x ⎧⎫+⎨⎬-⎩⎭是等比数列;(Ⅲ)求证:23*123(1)(1)(1)(1) 1.(,1)n n x x x x n N n -+-+-++-<∈≥. 答案:(Ⅰ)121n nx x +=+,(Ⅱ)1111122323n n x x +⎧⎫⎧⎫+=-+⎨⎬⎨⎬--⎩⎭⎩⎭,(Ⅲ)由(Ⅱ)知121(2)3n n a =+--,∴(ⅰ)当n 为偶数时,11112111132(1)(1)111122223339n n nn n n n n n x x ------⋅-+-=+=+-+⋅-121323.22n n n --⋅<= ∴23123243331(1)(1)(1)(1)112222n n n nx x x x -+-+-++-<+++=-<. (ⅱ)当n 为奇数时,综上所述:23*123(1)(1)(1)(1) 1.(,1)n n x x x x n N n -+-+-++-<∈≥. (10)f(a n ,S n )=0 结构f(a n-1,S n-1)=0,两式相减. (11)两个数列的递推.若数列{a n },{b n }知足⎩⎨⎧+=+=----1n 21n 1n 1n 21n 1n b m a m b b k a k a (n ≥2).结构a n +xb n =y(a n-1+xb n-1)求解.例16 已知:数列{a n },{b n }知足⎩⎨⎧+=+=----1n 1n n1n 1n n 4b 3a b b 2a a (n ≥2)且a 1=2,b 1=3,求a n ,b n 的通项公式.答:)15(43b ,43541a n n n n -⋅=+⋅= .例17 已知:数列{a n },{b n }知足⎪⎩⎪⎨⎧+=+=----1n 1n n 1n 1n n b 32a 31b b 31a 32a (n ≥2)且a 1=10,b 1=8,求a n ,b n 的通项公式.答:a n =9+1n 31- ,b n =1n 319--.(12) 周期数列例18 已知:数列{a n }中a 1=a,a 2=b,a n =a n-1-a n-2,(n ≥3).求a n 的通项公式.答:a 1=a,a 2=b,a 3=b-a,a 4=-a,a 5=-b,a 6=a-b,a 7=a,a 8=b,故a n 是周期为6的数列.例19 已知:数列{a n }中a 1=a, a n =1a 33a 1n 1-n +--,(n ≥2).求a n 的通项公式.答:.a a ,1a 33-a -a ,1a 33a a ,a a 4321=-=+-==故a n 是周期为3的数列.注:特殊地,a 1=0时,常为考题. 例20 已知:数列{a n }中a 1=1, a n =3a 1a 31n 1-n +--,(n ≥2).求a n 的通项公式.答:a 1=1,1a ,32a ,32a ,1a ,23a ,32a 765432=+=--=-=-=-= . 故a n 是周期为6的数列.例21 已知:数列{a n }中a 1=a, a n =1a 1a 1n 1-n +--,(n ≥2).求a n 的通项公式. 答:a a ,a1a1a ,a 1a ,1a 1a a ,a a 54321=-+=-=+-==.故a n 是周期为4的数列.2 数列乞降中经常应用的拆裂项办法.(1)若a n 成等差数列,则)11(1111++-=n n n n a a d a a .)11(21121121+++++-=n n n n n n n a a a a d a a a .(2))(11b a ba b a --=+ (3)C n m =C 11++n m -C n m+1 n ×n != (n+1)!-n !mC n m =nC 11--n m , m(m-1)C n m =n(n-1)C 22--n m , n 2=2 C n 2+n, n 3=6 C n 3+6 C n 2+n,(4))n11n 1(4114n 4n 1)12n (122--<+-=-。
高中数学选择性必修二 4 1 2数列的递推公式(知识梳理+例题+变式+练习)(含答案)
4.1.2 数列的递推公式知识点一数列的递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式.数列递推公式与通项公式的关系:递推公式表示a n 与它的前一项a n -1(或前n 项)之间的关系,而通项公式表示a n 与n 之间的关系. 要点二 a n 与S n 的关系1.前n 项和S n :把数列{a n }从第1项起到第n 项止的各项之和,称为数列{a n }的前n 项和,记作S n ,即S n =12n a a a +++ 2.a n 与S n 的关系:a n =11,1,2n n S n S S n -=⎧⎨-≥⎩【基础自测】1.判断正误(正确的画“√”,错误的画“×”) (1)根据通项公式可以求出数列的任意一项.( ) (2)有些数列可能不存在最大项.( ) (3)递推公式是表示数列的一种方法.( ) (4)所有的数列都有递推公式.( ) 【答案】(1)√(2)√(3)√(4)×2.数列{a n }中,a n +1=a n +2-a n ,a 1=2,a 2=5,则a 5=( ) A .-3 B .-11 C .-5 D .19 【答案】D【解析】a 3=a 2+a 1=5+2=7,a 4=a 3+a 2=7+5=12,a 5=a 4+a 3=12+7=19,故选D. 3.数列{a n }中,a n =2n 2-3,则125是这个数列的第几项( ) A .4 B .8 C .7 D .12 【答案】B【解析】令2n 2-3=125得n =8或n =-8(舍),故125是第8项.故选B. 4.已知数列{a n }的前n 项和为S n =n 2,则a n =________. 【答案】2n -1【解析】当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=n 2-n 2+2n -1=2n -1.当n =1时,a 1=S 1=1满足上式,所以{a n }的通项公式为a n =2n -1.题型一 数列中项与项数关系的判断(1)写出数列的一个通项公式,并求出它的第20项;(2)判断42和10是不是该数列中的项?若是,指出是数列的第几项,若不是,请说明理由.【解析】(1)由于22=8,所以该数列前4项中,根号下的数依次相差3,所以它的一个通项公式为a n =3n -1;a 20=3×20-1=59.(2)令3n -1=42,两边平方得3n =33,解得n =11,是正整数令3n -1=10,两边平方得n =1013,不是整数.∴42是数列的第11项,10不是数列中的项. 【方法归纳】(1)由通项公式写出数列的指定项,主要是对n 进行取值,然后代入通项公式,相当于函数中,已知函数解析式和自变量的值求函数值.(2)判断一个数是否为该数列中的项,其方法是可由通项公式等于这个数求方程的根,根据方程有无正整数根便可确定这个数是否为数列中的项.(3)在用函数的有关知识解决数列问题时,要注意它的定义域是N *(或它的有限子集{1,2,3,…,n })这一约束条件.【跟踪训练1】已知数列{a n }的通项公式为a n =3n 2-28n . (1)写出此数列的第4项和第6项;(2)问-49是否是该数列的一项?如果是,应是哪一项?68是否是该数列的一项呢? 【解析】(1)a 4=3×42-28×4=-64, a 6=3×62-28×6=-60.(2)由3n 2-28n =-49解得n =7或n =73(舍去),所以-49是该数列的第7项.由3n 2-28n =68解得n =-2或n =343,所以68不是该数列的一项.题型二 已知S n 求a n例2 设S n 为数列{a n }的前n 项和,S n =2n 2-30n .求a n . 【解析】当n ≥2时,a n =S n -S n -1=2n 2-30n -[2(n -1)2-30(n -1)]=4n -32 当n =1时,a 1=S 1=-28,适合上式, 所以a n =4n -32.借助a n =⎩⎪⎨⎪⎧S 1,(n =1)S n -S n -1(n ≥2)【变式探究1】将本例中的“S n =2n 2-30n ”换为“S n =2n 2-30n +1”,求a n . 【解析】当n =1时,a 1=S 1=2×1-30×1+1=-27. 当n ≥2时,a n =S n -S n -1=2n 2-30n +1-[2(n -1)2-30(n -1)+1] =4n -32.验证当n =1时,上式不成立∴a n =⎩⎪⎨⎪⎧-27,n =14n -32,n ≥2.方法归纳已知数列{a n }的前n 项和公式S n ,求通项公式a n 的步骤: (1)当n =1时,a 1=S 1.(2)当n ≥2时,根据S n 写出S n -1,化简a n =S n -S n -1.(3)如果a 1也满足当n ≥2时,a n =S n -S n -1的通项公式,那么数列{a n }的通项公式为a n =S n -S n -1;如果a 1不满足当n ≥2时,a n =S n -S n -1的通项公式,那么数列{a n }的通项公式要分段表示为a n =⎩⎪⎨⎪⎧S 1,n =1S n -S n -1,n ≥2.【跟踪训练2】已知数列:a 1+3a 2+32a 3+…+3n -1a n =n 3,求a n .【解析】当n ≥2时,由a 1+3a 2+32a 3+…+3n -1a n =n 3,得a 1+3a 2+32a 3+…+3n -2a n -1=n -13,两式相减得3n -1a n =n 3-n -13=13,则a n =13n .当n =1时,a 1=13,满足a n =13n ,所以a n =13n .题型三 由数列递推公式求通项公式【例3】已知数列{a n }中,a 1=1,a n +1=a n +n +1,则a n =________.【答案】n (n +1)2【解析】∵a n +1=a n +n +1,a 1=1,∴a n +1-a n =n +1, ∴a n -a n -1=n ,a n -1-a n -2=n -1,…,a 2-a 1=2 以上式子相加得: a n -a 1=2+3+…+n∴a n =1+2+3+…+n =n (n +1)2.变形为:a n +1-a n =n +1,照此递推关系写出前n 项中任意相邻两项的关系,这些式子两边分别相加可求. 【变式探究2】若将“a n +1=a n +n +1”改为“a n +1=nn +1a n”,则a n =________.【答案】1n【解析】∵a n +1=n n +1a n ,a 1=1,∴a n +1a n =nn +1,∴a n a n -1=n -1n ,a n -1a n -2=n -2n -1,…,a 2a 1=12,以上式子两边分别相乘得:a n a 1=n -1n ×n -2n -1×…×12=1n∴a n =1n a 1=1n .【方法归纳】由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=g (n )·a n ,则可以分别通过累加法或累乘法求得通项公式,即:(1)累加法:当a n =a n -1+f (n )时,常用a n =a n -a n -1+a n -1-a n -2+…+a 2-a 1+a 1求通项公式.(2)累乘法:当a n a n -1=g (n )时,常用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1求通项公式.【跟踪训练3】在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n 【答案】A【解析】∵在数列{a n }中,a n +1-a n =ln ⎝⎛⎭⎫1+1n =ln n +1n∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=ln n n -1+ln n -1n -2+…+ln 21+2=ln ⎝⎛⎭⎪⎫n n -1·n -1n -2·…·21+2=2+ln n .故选A.【易错辨析】数列中忽视n 的限制条件致误【例4】设S n 为数列{a n }的前n 项和,log 2(S n +1)=n +1,则a n =________.【答案】⎩⎪⎨⎪⎧3,n =12n ,n ≥2【解析】由log 2(S n +1)=n +1得S n +1=2n +1,∴S n =2n +1-1当n ≥2时a n =S n -S n -1=2n +1-1-2n +1=2n .当n =1时,a 1=S 1=3.经验证不符合上式.∴a n =⎩⎪⎨⎪⎧3,n =12n ,n ≥2.【易错警示】1. 出错原因忽视n =1的情况致错,得到错误答案:a n =2n . 2. 纠错心得已知a n 与S n 的关系求a n 时,常用a n =S n -S n -1(n ≥2)来求a n ,但一定要注意n =1的情况.一、单选题1.设数列{}n a 的前n 项和为n S ,11a =,2(1)nn S a n n =+-,(*n N ∈),若()22112n S S S n n+++--2013=,则n 的值为( ). A .1007 B .1006 C .2012 D .2014【答案】A 【分析】根据数列n a 与n S 的关系证得数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列,利用等差数列的前n 项和公式求出题中的式子,化简计算即可. 【解析】2(1)nn S a n n=+-, 12(1)(2)nn n S S S n n n-∴-=+-, 整理可得,1(1)2(1)n n n S nS n n ---=-, 两边同时除以(1)n n -可得12(2)1n n S S n n n --=-,又111S = ∴数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列,2321(1)23nS S S S n n∴++++-- 2(1)12(1)2n n n n -=⨯+⨯-- 22(1)n n =--21n =-,由题意可得,212013n -=, 解得1007n =. 故选:A .2.南宋数学家杨辉在《解析九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .171 B .190 C .174 D .193【答案】C 【分析】根据题意可得数列3,4,6,9,13,18,24,⋯,满足:11(2)n n a a n n --=-,13a =,从而利用累加法即可求出n a ,进一步即可得到19a 的值. 【解析】3,4,6,9,13,18,24,后项减前项可得1,2,3,4,5,6,所以()1112,3n n a a n n a --=-≥=, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()1213n n =-+-+++()()()111133,222n n n n n -+⋅--=+=+≥.所以19191831742a ⨯=+=. 故选:C3.在数列{}n a 中,11a =,121nn n a a +-=-,则9a =( )A .512B .511C .502D .503【答案】D 【分析】利用累加法先求出通项即可求得答案. 【解析】因为11a =,121nn n a a +-=-,所以()()()121321n n n a a a a a a a a -=+-+-++-=()()()21211(21)21211222(1)2n n n n n --+-+-++-=++++--=-,所以9929503a =-=.故选:D. 4.数列23,45,69,817,1033,…的一个通项公式为( )A .221n n n a =+ B .2221n n n a +=+ C .1121n n n a ++=-D .12222n n n a ++=+【答案】A 【分析】根据数列中项的规律可总结得到通项公式. 【解析】1221321⨯=+,2422521⨯=+,3623921⨯=+,48241721⨯=+,510253321⨯=+, ∴一个通项公式为:221n nna =+. 故选:A.5.下列命题不正确的是( )A 的一个通项公式是n aB .已知数列{},3n n a a kn =-,且711a =,则1527a =C .已知数列{}n a 的前n 项和为()*,25n n n S S n N =-∈,那么123是这个数列{}n a 的第7项D .已知()*1n n a a n n N +=+∈,则数列{}n a 是递增数列【答案】C 【分析】A:根据被开方数的特征进行判断即可;B:运用代入法进行求解判断即可;C:根据前n项和与第n项之间的关系进行求解判断即可;D:根据递增数列的定义进行判断即可.【解析】对于A31⇒⨯na⇒=A正确;对于B,3na kn=-,且7151122327na k a n a=⇒=⇒=-⇒=,B正确;对于C,()*25nnS n N=-∈,13a=-,当2,n n N*≥∈时,111222n n nn n na S S---=-=-=,12127n-=,无正整数解,所以123不是这个数列{}n a的第7项,C错误;对于D.由()*11,0n n n na a n n N a a n++=+∈-=>,易知D正确,故选:C.6.已知数列{}n a的前n项和2nS n=,则数列11n na a+⎧⎫⎨⎬⎩⎭的前99项和为()A.1168B.1134C.198199D.99199【答案】D【分析】先根据11,2,1n nnS S naS n--≥⎧=⎨=⎩,求出21na n=-,然后利用裂项相消求和法即可求解.【解析】解:因为数列{}n a的前n项和2nS n=,2121nS n n-=-+,两式作差得到21(2)na n n=-≥,又当1n=时,21111a S===,符合上式,所以21na n=-,111111(21)(21)22121n na a n n n n+⎛⎫==-⎪-+-+⎝⎭,所以12233411111n na a a a a a a a+++++=111111111111233557212122121n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 所以12233499100111199992991199a a a a a a a a ++++==⨯+. 故选:D.7.数列{}n a 中的前n 项和22nn S =+,数列{}2log n a 的前n 项和为n T ,则20T =( ).A .190B .192C .180D .182【答案】B 【分析】根据公式1n n n a S S -=-计算通项公式得到14,12,2n n n a n -=⎧=⎨≥⎩,故2,11,2n n b n n =⎧=⎨-≥⎩,求和得到答案.【解析】当1n =时,111224a S ==+=;当2n ≥时,()11112222222n n n n n n n n a S S ----=-=+-+=-=,经检验14a =不满足上式,所以14,12,2n n n a n -=⎧=⎨≥⎩, 2log n n b a =,则2,11,2n n b n n =⎧=⎨-≥⎩,()201911921922T ⨯+=+=. 故选:B.8.已知数列{}n a 满足11a =,()()()11*12n n n n a a a a n N n n ++-=∈++,则10a 的值为( )A .1231B .2231C .1D .2【答案】B 【分析】首先根据已知条件得到1111112n n a a n n +-=-++,再利用累加法求解即可. 【解析】 因为()()()*1112n n n n a a n n n N a a ++++=∈-,所以()()()*11112nn n n a a n N a a n n ++-=∈++, 所以()()111111212n n n n a a a a n n n n ++-==-++++,即1111112n n a a n n +-=-++,当2n ≥时,11221111111n n n n a a a a a a ---⎛⎫⎛⎫⎛⎫-+-+⋯+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111123n n n n ⎛⎫⎛⎫⎛⎫=-+-+⋯+- ⎪⎪+ ⎪ ⎝⎭⎝⎭-⎝⎭, 1111121n a a n -=-+,解得()11131122122n n n a n n +=-+=≥++ 当1n =时,上式成立,故2231n n a n +=+,故102022230131a +==+. 故选:B二、多选题9.数列{a n }的前n 项和为S n ,()*111,2N n n a a S n +==∈,则有( )A .S n =3n -1B .{S n }为等比数列C .a n =2·3n -1D .21,123,2n n n a n -=⎧=⎨⋅≥⎩【答案】ABD 【分析】根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求得n a ,进而求得n S 以及判断出{}n S 是等比数列.【解析】依题意()*111,2N n n a a S n +==∈,当1n =时,2122a a ==, 当2n ≥时,12n n a S -=,11222n n n n n a a S S a +--=-=,所以13n n a a +=,所以()2223232n n n a a n --=⋅=⋅≥,所以21,123,2n n n a n -=⎧=⎨⋅≥⎩. 当2n ≥时,1132n n n a S -+==;当1n =时,111S a ==符合上式,所以13n n S -=.13n nS S +=,所以数列{}n S 是首项为1,公比为3的等比数列. 所以ABD 选项正确,C 选项错误.故选:ABD10.已知数列{}n a 的前n 项和22n n nS +=,数列{}n b 满足1n n b a =,若n b ,2n b +,n k b +(k *∈N ,2k >)成等差数列,则k 的值不可能是( ) A .4 B .6 C .8 D .10【答案】AD 【分析】利用n a 与n S 的关系,求得n a ,进而求得n b ,然后根据n b ,2n b +,n k b +(k *∈N ,2k >)成等差数列,得到n 与k 的关系,进而求得答案.【解析】当1n =时,11212a S ===,当2n ≥时,()()2211122n n n n n n n a S S n --+++=-=-=,故n a n =(N n *∈),11n n b a n ==(N n *∈).因为n b ,2n b +,n k b +(N k *∈,2k >)成等差数列,所以22n n n k b b b ++=+,即2112n n n k=+++,所以48422n k n n ==+--,(2k >,N k *∈),从而2n -的取值为1,2,4,8,则对应的k 的值为12,8,6,5,所以k 的值不可能是4,10, 故选:AD .第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题11.数列{}n a 的前n 项的和231n S n n =++,n a =________.【分析】利用2n 时,1n n n a S S -=-求n a ,同时注意11a S =. 【解析】解析:由题可知,当2n 时,1n n n a S S -=-22313(1)(1)1n n n n ⎡⎤=++--+-+⎣⎦62n =-,当1n =时,113115a S ==++=,故答案为:5,162,2n n n =⎧⎨-⎩.12.设数列{a n }的前n 项和为S n =2n -3,则a n =________.【答案】【解析】解析 当n ≥2时,a n =S n -S n -1=(2n -3)-[2(n -1)-3]=2,又a 1=S 1=2×1-3=-1,故a n =13.已知数列{}n a 的前n 项和为n S ,若n n a b S +=,2414a a =,则数列{}n a 的通项公式为___________. 【答案】212n -⎛⎫ ⎪⎝⎭或212n -⎛⎫- ⎪⎝⎭【分析】 由n n a b S +=可得数列{}n a 是公比为12的等比数列,然后根据2414a a =求出21a =即可. 【解析】因为n n a b S +=,所以当1n =时,1112b a S a +==,即12b a = 当2n ≥时,11n n b a S --+=,然后可得10n n n a a a --+=,即()1122n n a a n -=≥ 所以数列{}n a 是公比为12的等比数列 所以21124b a a ==,4111816a a b ==, 因为22411644a ab ==,所以4b =±, 当4b =时, 21a =,2221122n n n a a --⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭当4b =-时, 21a =-,2221122n n n a a --⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭故答案为:212n -⎛⎫ ⎪⎝⎭或212n -⎛⎫- ⎪⎝⎭四、解答题 14.已知数列{}n a 的前n 项和()2*2n S n kn k N =-+∈,且n S 的最大值为4.(1)求常数k 及n a ;(2)设()17n n b n a =-,求数列{}n b 的前n 项和n T . 【答案】(1)2k =,25n a n =-+ (2)2(1)n n T n =+ 【分析】(1)由于()222*2()n S n kn n k k k N =-+=--+∈,则可得24k =,从而可求出2k =,然后利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出n a , (2)由(1)可得11121n b n n ⎛⎫=- ⎪+⎝⎭,然后利用裂项相消求和法求解即可 (1)因为()222*2()n S n kn n k k k N =-+=--+∈,所以当n k =时,n S 取得最大值2k , 所以24k =,因为*k N ∈,所以2k =,所以24n S n n =-+,当1n =时,11143a S ==-+=,当2n ≥时,2214[(1)4(1)]25n n n a S S n n n n n -=-=-+---+-=-+,13a =满足上式,所以25n a n =-+(2)由(1)可得()()11111177252(1)21n n b n a n n n n n n ⎛⎫====- ⎪-+-++⎝⎭, 所以1111111112222321n T n n ⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⋅⋅⋅+⨯- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭ 111212(1)n n n ⎛⎫=-= ⎪++⎝⎭ 15.已知数列{}n a 满足()23*1232222n n a a a a n n N ++++=∈,求数列{}n a 的通项公式.【答案】12n na =【分析】 先根据前n 项和与通项的关系得12n n a =,再检验1n =时也满足条件即可求得答案. 【解析】因为23*1232222()n n a a a a n n N ++++=∈①, 所以()2311231222212n n a a a x a n n --++++=-≥②, ①-②得21(2)n n a n =≥,即 12n n a =, 当1n =时,112a =,满足12n n a =, 所以12n na = 16.已知数列{}n a 的前n 项和112n n S ⎛⎫=+ ⎪⎝⎭,求数列{}n a 的通项公式. 【答案】312122n n n a n ⎧=⎪⎪=⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩ 【分析】根据n S 与n a 的关系式,求解数列的通项公式即可.需要注意验证首项.【解析】()111111222n n n n S S n --⎛⎫⎛⎫=+∴=+≥ ⎪ ⎪⎝⎭⎝⎭①②-①②得()122n n a n ⎛⎫=-≥ ⎪⎝⎭ 根据题意,1111311222a S ⎛⎫==+=≠- ⎪⎝⎭ 所以数列的通项公式为312122n n n a n ⎧=⎪⎪=⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩。
高中数学《数列的递推公式》习题(含解析)
第8课时数列的递推公式知识点一利用数列的递推公式求数列的项1.已知数列{a n}满足a n=4a n-1+3,且a1=0,则此数列第5项是() A.15B.255C.16D.63答案B解析a2=3,a3=15,a4=63,a5=255.2.已知a1=1,a n+1=a n3a n+1,则数列{a n}的第4项是()A.116B.117C.110D.125答案C解析a2=a13a1+1=13+1=14,a3=a23a2+1=1434+1=17,a4=a33a3+1=1737+1=110.3.已知数列{a n}满足a1=1,a n+1=2a n-1(n∈N*),则a1000=()A.1B.1999C.1000D.-1答案A解析a1=1,a2=2×1-1=1,a3=2×1-1=1,a4=2×1-1=1,…,可知a n=1(n∈N*).4.已知数列{a n}对任意的p,q∈N*满足a p+q=a p+a q,且a2=-6,那么a10等于()A.-165B.-33C.-30D.-21答案C解析由已知得a2=a1+a1=2a1=-6,∴a1=-3.∴a10=2a5=2(a2+a3)=2a2+2(a1+a2)=4a2+2a1=4×(-6)+2×(-3)=-30.5.已知数列{a n},a n=a n+m(a<0,n∈N*),满足a1=2,a2=4,则a3=________.答案2解析=a +m ,=a 2+m ,=-1,=3,∴a n =(-1)n +3,∴a 3=(-1)3+3=2.6.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2011=________;a 2018=________.答案01解析∵a 2011=a 503×4-1=0,∴a 2018=a 2×1009=a 1009=a 4×253-3=1.7.数列{a n }满足递推公式a 1=5,a n =nn +1a n -1(n ≥2,n ∈N *),则数列{a n }的前四项依次为________,它的通项公式为________.答案5,103,52,2a n =10n +1解析由a n a n -1=nn +1(n ≥2,n ∈N *),得a 2a 1=23,a 3a 2=34,…,a n a n -1=n n +1(n ≥2,n ∈N *),将以上各式两两相乘得a n a 1=23·34·…·n n +1=2n +1,所以a n =10n +1(n ≥2,n ∈N *),又a 1=5符合上式,所以其通项为a n =10n +1.所以a 1=5,a 2=103,a 3=52,a 4=2.8.已知数列{a n }满足a 1=1,a n -a n -1=1n (n -1)(n ≥2),求数列{a n }的通项公式.解累加法:a n -a n -1=1n (n -1)=1n -1-1n,a 2-a 1=1-12,a 3-a 2=12-13,a 4-a 3=13-14,…,a n -a n -1=1n -1-1n,累加可得a n-a1=1-1 n.又a1=1,所以a n=2-1 n.9.在数列{a n}中,若a1=2,且对所有n∈N*满足a n=a n+1+2,则a2016=________.易错分析本题求通项公式时采用累加法易漏掉a1错解a n=-2n+2致a2016=-4030.答案-4028解析由题意知a n+1-a n=-2,所以a n=(a n-a n-1)+(a n-1-a n-2)+(a n-2-a n-3)+…+(a2-a1)+a1=-2(n-1)+2=-2n+4,所以a2016=-2×2016+4=-4028.10.已知数列{a n}满足a1a2a3…a n=n2(n∈N*),求a n.易错分析本题易忽略式子a1a2a3…a n-1=(n-1)2仅适用于n∈N*且n≥2时的情况,因此两式相除得到a n=n2(n-1)2也仅适用于n≥2时的情况,从而错误断定a n=n2(n-1)2是数列的通项.解当n=1时,a1=1.由条件知a1a2a3…a n=n2(n∈N*),当n≥2时a1a2a3…a n-1=(n-1)2,两式相除得a n=n2(n-1)2(n≥2,n∈N*),故a n,n≥2,n∈N*.一、选择题1.已知a n=3n-2,则数列{a n}的图象是() A.一条直线B.一条抛物线C.一个圆D.一群孤立的点答案D解析∵a n=3n-2,n∈N*,∴数列{a n}的图象是一群孤立的点.2.在数列{a n}中,a1=13,a n=(-1)n·2a n-1(n≥2),则a5等于()A.-163B.163C.-83D.83答案B解析∵a1=13,a n=(-1)n·2a n-1,∴a2=(-1)2×2×13=23,a3=(-1)3×2×23=-4 3,a4=(-1)4×2×-43=-8 3,a5=(-1)5×2×-83=16 3.3.函数f(x)满足f(1)=1,f(n+1)=f(n)+3(n∈N*),则f(n)是()A.递增数列B.递减数列C.常数列D.不能确定答案A解析∵f(n+1)-f(n)=3(n∈N*),∴f(2)>f(1),f(3)>f(2),f(4)>f(3),…,f(n+1)>f(n),….∴f(n)是递增数列.4.数列{a n}的构成法则如下:a1=1,如果a n-2为自然数且之前未出现过,则用递推公式a n+1=a n-2,否则用递推公式a n+1=3a n,则a6=() A.-7B.3C.15D.81答案C解析由a1=1,a1-2=-1∉N,得a2=3a1=3.又a2-2=1=a1,故a3=3a2=9.又a3-2=7∈N,故a4=a3-2=7.又a4-2=5∈N,则a5=a4-2=5.又a5-2=3=a2,所以a6=3a5=15.故选C.5.设数列{a n }满足a 1=1,a 2=3,且2na n =(n -1)a n -1+(n +1)a n +1,则a 20的值是()A .415B .425C .435D .445答案D解析由题知:a n +1=2na n -(n -1)a n -1n +1,a 3=2×2×3-13=113,a 4=2×3×113-2×34=4,a 5=2×4×4-3×1135=215,a 6=2×5×215-4×46=266,故a n =5n -4n .所以a 20=5×20-420=245=445.故选D .二、填空题6.在数列{a n }中,a n =2n +1,对于数列{b n },b 1=a 1,当n ≥2时,b n =ab n-1,则b 4=________,b 5=________.答案3163解析由a n =2n +1,知b 2=ab 1=a 3=7,b 3=ab 2=a 7=15,b 4=ab 3=a 15=31,b 5=ab 4=a 31=63.7.已知F (x )=1是R 上的奇函数.a n =f (0)+f (1)(n ∈N *).则数列{a n }的通项公式为________.答案a n =n +1解析因为F (x )+F (-x )=0,所以x 2,即若a +b =1,则f (a )+f (b )=2.于是由a n =f (0)+…+f (1)(n ∈N *),得2a n =[f (0)+f (1)]…[f (1)+f (0)]=2n +2,所以a n =n +1.8.函数f (x )定义如下表,数列{x n }满足x 0=5,且对任意的自然数均有x n +1=f (x n ),则x 2019=________.x 12345f (x )51342答案5解析由题意可得x 1,x 2,x 3,x 4,x 5,…的值分别为2,1,5,2,1,…故数列{x n }为周期为3的周期数列.∴x 2019=x 3×673=x 3=5.三、解答题9.数列{a n }中a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2.(1)求a 3,a 5;(2)探究256225是否为此数列中的项;若是,是第多少项?(3)试比较a n 与a n +1(n ≥2)的大小.解(1)∵对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2,∴a 1·a 2=22,a 1·a 2·a 3=32,a 1·a 2·a 3·a 4=42,a 1·a 2·a 3·a 4·a 5=52.∴a 3=94,a 5=2516.(2)∵a 1·a 2·a 3·…·a n =n 2,∴n ≥3时,a 1·a 2·a 3·…·a n -1=(n -1)2,∴n ≥3时,∴a n ,且a 1=1,a 2=4,而256225=,∴256225是数列中的项,是第16项.(3)∵a na n+1=>1,∴a n>a n+1(n≥2).10.已知数列{a n}满足a1=1,a n+1=2a na n+2n∈N*),试探究数列{a n}的通项公式.解解法一:将n=1,2,3,4依次代入递推公式得a2=23,a3=24,a4=25,又a1=2 2,∴可猜想a n=2n+1.应有a n+1=2n+2,将其代入递推关系式验证成立,∴a n=2n+1.解法二:∵a n+1=2a na n+2,∴a n+1a n=2a n-2a n+1.两边同除以2a n+1a n,得1a n+1-1a n=12.∴1a2-1a1=12,1a3-1a2=12,…,1a n-1a n-1=12.把以上各式累加得1a n-1a1=n-12.又a1=1,∴a n=2n+1.故数列{a n}的通项公式为a n=2n+1(n∈N*).。
高中递推数列经典题型全面解析
高中数学:《递推数列》经典题型全面解析类型1)(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
例:已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
解:由条件知:111)1(1121+-=+=+=-+n n n n n n a a n n分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之,即)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a)111()4131()3121()211(nn --+⋅⋅⋅⋅⋅⋅+-+-+-=所以na a n 111-=- 211=a ,nn a n 1231121-=-+=∴ 类型2n n a n f a )(1=+解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。
例:已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。
解:由条件知11+=+n na a nn ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即1342312-∙⋅⋅⋅⋅⋅⋅∙∙∙n n a a a a a a a a n n 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒又321=a ,na n 32=∴ 例:已知31=a ,n n a n n a 23131+-=+ )1(≥n ,求n a 。
123132231232)2(31)2(32)1(31)1(3a n n n n a n +-∙+⨯-⨯∙⋅⋅⋅∙+---∙+---=3437526331348531n n n n n --=⋅⋅⋅⋅=--- 。
类型3q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。
数列递推求通项15类(解析版)
第17讲 数列递推求通项15类【题型一】通过“累加法”学通项思想1:基础型【典例分析】已知数列{}n a 中,已知12a =,12n n a a n +-=,则50a 等于( ) A .2451 B .2452C .2449D .2450【答案】B【详解】由12n n a a n +-=得:()121n n a a n --=-,()1222n n a a n ---=-,……,3222a a -=⨯,2121a a -=⨯,各式相加可得:()()()112121212n n n a a n n n --=⨯++⋅⋅⋅+-=⨯=-⎡⎤⎣⎦, 又12a =,()2212n a n n n n ∴=+-=-+,5025005022452a ∴=-+=.故选:B.【变式演练】1.已知数列{}n a 满足12a =,12nn n a a +-=,则9a =( )A .510B .512C .1022D .1024【答案】B【详解】由12a =,12n n n a a +-=得212a a -=,2322a a -=,3432a a ,…112n n n a a ---=,以上各式相加得,()21112122122222n n nn a a ---==+--=++-,所以1222n nn a a =-+=,所以991252a ==.故选:B.2.已知数列{a n }满足11a =-,111+1n n a a n n +=-+,n ∈N *,求数列的通项公式a n . 【答案】1n a n=-; 【详解】(1)111=1+--+n n a a n n ,213243*********,,,,(2)1223341n n a a a a a a a a n n n-∴-=--=--=-⋯-=-≥-,将以上1n -个式子相加,得()()()()2132431n n a a a a a a a a --+-+-+⋯+-11111111+223341n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-⋯+- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭,即()1112,n a a n n N n *-=-≥∈.()11111112,n a a n n N n n n*∴=+-=-+-=-≥∈. 又当n=1时,11a =-也符合上式,1n a n=-. 3.数列{a n }中,a 1=0,a n+1−a n =√n+√n+1且a n =9,则n =_________【答案】100【详解】∵a n+1−a n =√n−√n+1=√n +1−√n ,∵a n =a n −a n−1+a n−1−a n−2+⋯+a 2−a 1+a 1=√n −√n −1+√n −1−√n −2+⋯+√2−√1+0=√n −1 ∵a n =9,即√n −1=9,解得n=100故填:100【题型二】 通过“累加法”学通项思想2:换元型与同除型【典例分析】已知数列{}n a 满足:113a =,1(1)21n n n a na n ++-=+,*n N ∈,则下列说法正确的是( ) A .1n n a a +≥ B .1n n a a +≤ C .数列{}n a 的最小项为3a 和4a D .数列{}n a 的最大项为3a 和4a 【答案】C 【详解】令n n b na =,则121n n b b n +-=+,又113a =,所以113b =,213b b -=,325b b -=, ,121n n b b n --=-, 所以累加得()()213+2113++122nn n b n --==,所以2+1212+n nb n an n n n===, 所以()()()()+13+41212+1+++1+1n n n n a a n n n n n n -⎛⎫-=-= ⎪⎝⎭,所以当3n <时,+1n n a a <,当3n =时,+1n n a a =,即34a a =,当>3n 时,+1>n n a a , 即12345>>n a a a a a a =<<<,所以数列{}n a 的最小项为3a 和4a ,故选:C.【变式演练】1.在数列{}n a 中,12a =,11ln 11n n a a n n n +⎛⎫⎪⎝+++⎭=,则n a =( ) A .8a B .()21ln n n +-C .1ln n n ++D .2ln n n n +【答案】D【详解】由题意得,11ln 1n n a a n n n n ++=++,则1ln 11n n a a n n n n -=+--,121ln 122n n a a n n n n ---=+---…,212ln 211a a =+, 由累加法得,112ln ln ln1121n a a n n n n n -=+++--,即112ln 121n a n n a n n n -⎛⎫=+⋅⋅⋅ ⎪--⎝⎭, 则2ln na n n=+,所以2ln n a n n n =+,故选:D 2.已知数列{}n a 满足132a =,112n n n n na a n -=--. (1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为n S ,求满足12n S <的所有正整数n 的取值集合. 【答案】(1)2n n n a n =+;(2){}1,2,3,4. 【详解】(1)因为112n n n n n a a n -=--,所以1112n n n a a n n --=--.因为2121212a a -=-,3231322a a -=-,…,1112n n n a a n n --=--,所以112321111111121122222212n n n n a a n -⎛⎫- ⎪⎛⎫⎝⎭-=-+++=-=-⎪⎝⎭-,于是2n n n a n =+. 当1n =时,113122a =+=,所以2n n na n =+. (2)因为102n n n nnS S a n --==+>,所以{}n S 是递增数列. 因为113122a =+=,225242a =+=,33327328a =+=,44417424a =+=,5555165232a ==+, 所以132S =,24S =,3598S =,493128S =<,55371232S =>, 于是所有正整数n 的取值集合为{}1,2,3,4.3.已知数列{a n }满足a 1=1,a n ﹣a n +1=()*1(1)n n a a n N n n +∈+,则a 10的值是( ) A .23B .12C .1019D .52【答案】C解:由11(1)n n n n a a a a n n ++-=+可得:111111(1)1n n a a n n n n +-==-++, 则:101099821111111111a a a a a a a a ⎛⎫⎛⎫⎛⎫=-+-++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=11111191191089210⎛⎫⎛⎫⎛⎫-+-++-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则101019a =.故选:C . 【题型三】 通过“累加法”学通项思想3:复杂“同除换元型”【典例分析】 已知数列{}n a 满足112a =,()11(1)n n n n n n a a a a +++-=,则数列{}n a 的通项公式n a =____. 【答案】()*1nn N n ∈+ 【详解】易知0n a ≠,由()11(1)n n n n n n a a a a +++-=,得111(1)n n n n a a a a n n ++-=+,∵111111n n a a n n +-=-+,∵11111(2)1n n n a a n n--=--. ∵当2n 时,有12111112a a -=-,23111123a a -=-,......111111n n a a n n--=--, 将以上1n -个等式相加得,111111(2)n n n a a n n --=-=又112a =, ∵1112(2)n n n n a n n-+=-=,经验证,当1n =时符合上式,∵)*(1n na n N n =∈+【变式演练】1.已知数列{}n a 满足*13(1)1(),2n n na n a n N a +-+=∈=,则2021a =______.【答案】2020【详解】因为1(1)1n n na n a +-+=,所以1(1)1n n na n a n n +-+=+-, 式子两端除以()1n n +,整理得:1111n n a a n n +++=+,即1n a n +⎧⎫⎨⎬⎩⎭为常数列. 因为32a =,所以31121133n a a n +++===,所以1n a n =-,所以2021202112020a =-=.故答案为:20202.已知数列{}n a 中,12a =,()11n n n n a a a +-=+,*N n ∈,则na n的取值范围是_____________. 【答案】[)2,3【详解】由题意得,11n n n a a a n n +-=+,即()111n n n a a n n++=+,则()1111n n a a n n n n +=+++,即11111n n a a n n n n +-=-++, 所以2111122a a -=-,32113223a a -=-,34114334a a -=-,…,11111n n a a n n n n--=---, 相加得,1111n a a n n -=-,故11213n a n n n=+-=-, 因为函数13y x=-在0,上单调递增,且当x →+∞时,133x-→, 所以1233n≤-<,即n a n 的取值范围是[)2,3.故答案为:[)2,3.【题型四】 累积法【典例分析】已知数列{}n a 满足1(1)n n n a a n ++=+,12a =,则31a -的值为 ___,2021a 的值为_ ____. 【答案】16112021!+ 解:令1n =,则21213a a =+=,232a =,令2n =,则323732222a a =+=+=,所以376a =,所以3116a -=, 因为1(1)n n n a a n ++=+,所以1(1)(11)n n n a a +-+=-,即11111n n a a n +-=-+,当2n ≥时,有1321122111111(1)1111n n n n n a a a a a a a a a a --------=⋅⋅⋅⋅⋅⋅-----,1111(1)12a n n =⋅⋅⋅⋅⋅--,因为12a =,所以11!n a n -=,所以11!n a n =+,所以2021112021!a =+,故答案为:16,112021!+【变式演练】1.已知数列{}n a 满足110,1,(2)2n n n n a a n a a a +≠=-=.(1)求数列{}n a 的通项公式;(2)求数列35n a n n ⎧⎫+-⎨⎬⎩⎭的前n 项和n S .【答案】(1) 12n n a n -=⋅ (2) 237212nn n-+-试题解析:(∵)因为()122n n n n a a a +-=,故()121n n n a a n++=,得121n n a an n+=⋅+;(也可以累积法) 设n n a b n =,所以12n n b b +=,0a ≠,0b ∴≠,12n n b b +∴=又因为1111ab ==, 所以数列{}n b 是以1为首项,公比为2的等比数列,故11122n n n n a b n--=⋅==,故12n n a n -=⋅. (∵)略.2.已知数列{}n a 的前n 项和为()2*1,1,Nn n n S a S n a n ==∈,则数列{}na 的通项公式为___________.【答案】()21n a n n =+【详解】由2n n S n a =,可得当2n ≥时,()2111n n S n a --=-,则2211(1)n n n n n a S S n a n a --=-=--,即221(1)(1)n n n a n a --=-,故111n n a n a n --=+, 所以123211232112321211143(1)n n n n n n n a a a a a n n n a a a a a a a n n n n n --------=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⨯⨯=+-+. 当11,1n a ==满足2(1)n a n n =+.故数列{}n a 的通项公式为2(1)n a n n =+.故答案为:2(1)n a n n =+3.数列{}n a 满足:112a =,212n n a a a n a ++⋯+=⋅,则数列{}n a 的通项公式n a =___________. 【答案】21n n+解:因为212n n a a a n a ++⋯+=⋅∵;当2n ≥时,()212111n n a a a n a --++⋯+=-⋅∵;∵减∵得()2211n n n a n a n a -=⋅-⋅-,即()()22111n n n a n a -⋅-⋅-=,所以()()()21111n n n n a n a --+=⋅-⋅,所以()()111n n n a n a -⋅-⋅+=,所以111n n a n a n --=+所以2113a a =,3224a a =,4335a a =,……,111n n a n a n --=+, 所以324211312313451n n a a a a n a a a a n --⋅⋅⋅⨯⨯⨯=⨯+,所以()121n a a n n =+,又112a =,所以()11n a n n =+,当1n =时()11n a n n =+也成立,所以()11n a n n =+故答案为:()11n n +【题型五】 周期数列【典例分析】已知数列{}n a 满足1130,31n n n a a a +==+2017a =A .0B .3-C 3D .32【答案】A【详解】112130331a a a ===-+,,223233331a a a =-==+,,334333031a a a ===+,,由上述可知,数列{}n a 是每三项一次循环的数列,则有201710a a ==,故选A .【变式演练】1.数列{}n a 中,11a =,23a =,*11(2,)n n n a a a n n N +-=-≥∈,那么2019a =A .1B .2C .3D .-3【答案】B 【详解】由题意,得32a =,41a =-,53a =-,62a =-,71a =,…,由此发现数列{}n a 是以6为周期的数列,又201933663=⨯+,所以201932a a ==,故正确答案为B.2.在数列{}n a 中,若121,2a a ==,并有11=n n n a a a +-对1n >且*n N ∈恒成立;则20202021a a +=_______________.【答案】32解:由条件11n n n a a a +-=及12n n n a a a ++=,得1121111n n n n n n n a a a a a a a ++++--===, 即211n n a a +-=(1n >且*n N ∈),则()*631n n n a a n N a ++==∈,从而知6是数列{}n a 的一个周期; 由121,2a a ==,及12n n n a a a ++=,得34561 2,1,2a a a a ====;故20202021a a +=4513122a a +=+=⋅故答案为:32. 另解:由121,2a a ==,又11n n n a a a +-=即11nn n a a a +-=对1n >且*n N ∈,可得34567812,1,,1,2,,2a a a a a a ======从而知6是数列{}n a 的一个周期;故202020214513122a a a a +=+=+=.故答案为:323.设数列{}n a 满足12a =,且对任意正整数n ,总有()()1112n n n a a a +--=成立,则数列{}n a 的前2019项的乘积为 A .12B .1C .2D ..3【答案】D【详解】由题意可得:1211n n n a a a +=+-,故:12a =,1212131a a a =+=--,23221112a a a =+=--,34321113a a a =+=-,45142121a a a a =+==-,据此可得数列{}n a 是周期为4T =的周期数列,注意到201943MOD =,且:12341a a a a =,故数列{}n a 的前2019项的乘积为:()12332⎛⎫⨯-⨯-= ⎪⎝⎭. 故选D.【题型六】 构造二阶等比数列型(待定系数型)【典例分析】已知数列{}n a 满足:*121()n n a a n n N +=-+∈,13a =.(1)证明数列*()n n b a n n N =-∈是等比数列,并求数列{}n a 的通项;(2)设11n nn n n a a c a a ++-=,数列{}n c 的前n 项和为{}n S ,求证:1n S <.【答案】(1)2nn a n =+;(2)略试题解析:(1)解:由n n b a n =-知n n a b n =+,代入得:()()1121n n b n b n n +++=+-+,化简得:12n n b b +=,即{}n b 是等比数列,又111312b a =-=-=,则2n n b =,进而有2nn a n =+.(2)证明:由于11111n n n n n n n a a c a a a a +++-==-,所以121223111111111111111n n n n n n S c c c a a a a a a a a a +++⎛⎫⎛⎫⎛⎫=+++=-+-++-=-=-< ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭【变式演练】1.数列{}n a 满足112,21n n a a a +==-则6a = A .33 B .32 C .31 D .34【答案】A【详解】数列{}n a 满足112,21n n a a a +==-,{}112(1),1n n n a a a +-=--是以2为公比的等比数列,首项为1,得到11122 1.n n n n a a ---=⇒=+633.a =故答案为A .2.已知数列{}n a 中,11a =,134n n a a -=+(n *∈N 且2n ≥),则数列{}n a 通项公式n a 为( ) A .13n - B .132n +-C .32n -D .3n【答案】C 【详解】由11a =,134n n a a -=+知:27a =且1232n n a a -+=+(2n ≥),而123a +=,229a +=,∵{2}n a +是首项、公比都为3的等比数列,即32nn a =-,故选:C【题型七】 分式递推【典例分析】在数列{}n a 中,11a =,12()2nn n a a n a +=∈+*N ,则22019是这个数列的第________________项. 【答案】2018【分析】同取倒数,得到关于1{}na 是等差数列;进而求得n a 的通项公式即可求出项数.详解】由已知得11112n n a a +=+,所以1{}n a 是以111a =为首项,12d =为公差的等差数列, 所以()1111122n n n a +=+-=,所以21n a n =+,令2212019n a n ==+,解得2018n =【变式演练】1.数列{}n a 满足:113a =,且*1121(,2)n n n a n n n N n a a --+-=∈≥ ,则数列{}n a 的通项公式是n a =_____. 【答案】21n na n =+ 【详解】原等式可化简为:112n n n n a a --=+,所以数列n n a ⎧⎫⎨⎬⎩⎭为以3为首项,2公差的等差数列, 则()32121n nn n a =+-=-,所以21n n a n =-. 2.已知在数列{}n a 中,11a =,132nn na a a +=+,则数列{}n a 的通项公式为n a =______.【答案】11231n -⨯-【详解】由题意,132n n n a a a +=+,取倒数得132132n n n n a a a a ++==+,即111131n n a a +⎛⎫+=+ ⎪⎝⎭, 又11120a +=≠,所以,数列11n a ⎧⎫+⎨⎬⎩⎭是公比为3的等比数列,故11123n na -+=⨯, 所以11231n n a -=⨯-.故答案为:11231n -⨯-. 3.已知数列{}n a 满足111221,(2)311n n n a a n a a ---==≥--.(1)求数列{}n a 的通项公式; (2)设数列{}n a 的前n 项和为n S ,用数学归纳法证明:13ln 22n n S n +⎛⎫<+- ⎪⎝⎭.【答案】(1)12n n a n +=+.(2)答案见解析 【详解】(1)1121,(2)11n n n a n a a ---=≥--,11111111111n n n n a a a a ----+∴==-+---111111n n a a -∴-=---∴11n a ⎧⎫⎨⎬-⎩⎭是首项为3-,公差为1-的等差数列.13(1)21n n n a ∴=---=---12n n a n +∴=+【题型八】构造二阶等差数列【典例分析】数列{}n a 满足:113a =,且()()*113n n n n a a n N a n ++=∈+,则数列{}n a 的前n 项和n s =__________. 【答案】3n【解析】∵()()*113n n n n a a n N a n++=∈+∵131n n n a n n a a +++=,即113n nn na a ++=+ ∵n n a ⎧⎫⎨⎬⎩⎭是以3为首项,3为公差的等差数列∵()13313n 3n n n n a a =+-==,即∵数列{}n a 的前n 项和3n ns =【变式演练】1.数列{}n a 满足11a =,1(1)0n n n a a a ++-=(*n N ∈),则2018a =__________. 【答案】12018【解析】数列{}n a 满足11a =,()110n n n a a a ++-=,变形得到1111111=11,,n n n n n a a a a a n+-==∴=, 则2018a =12018。
数列的递推
数列的递推(一)数列问题的核心是通项,而通项的求解主要是研究递推关系。
一、常见的递推方法:(一)迭(叠)加法: 若数列}{n a 满足)(,11n f a a a a n n =-=+,则可迭加法:在前式中分别令n 取1,2,3…)1(-n 所得1-n 个式子累加起来得:a m f a n m n ∑-=+=11)((二)迭乘法: 若数列}{n a 满足)(,11n f a a a a n n==- 则可使用迭乘法:同理可得: a m f a a a a a a a a a a n m n n n n n n n ⋅∏=⋅⋅⋅=-=-----)( (1111)232211 (注:∏为连乘号)(三)待定系数法: 若数列}{n a 满足βα+⋅==+n n a a a a 11,, 则可使用待定系数法:设)(1x a x a n n +=++αx a a n n )1(1-+⋅=⇔+αα,从而有1)1(-=⇒=⋅-αββαx x 为常数由}{x a n +是以α为公比的等比数列可得:1)1()(111--⋅-+=∴⋅+=+--αβααβαn n n n a a x a x a (四)特征方程法:若数列}{n a 满足0,,1221=⋅+⋅+==++n n n a a a b a a a βα,则可先解方程: 02=+⋅+βαx x ,(21,0x x 得两根>∆,由韦达定理可证得下列结论成立)(21x x ≠) ⇔⋅-=⋅-+++)(211122n n n n a x a x a x a 012=⋅+⋅+++n n n a a a βα)(112112n n n n a x a x a x a ⋅-=⋅-⇔+++上式说明121}{x a x a n n 是以⋅-+为公比的等比数列(211}{x a x a n n 是以⋅-+为公比的等比数列) 从而得1112221)(-+⋅⋅-=⋅-n n n x a x a a x a 再由等式两边除以12+n x 得:1212222121)()(-++⋅⋅-=-n nn n n x x x x a b x a x a 迭加法可求出121++n n x a 进上步可得}{n a 的通项必有形状: n nx p x m a ⋅+⋅=解方程求出也可由其中b a a a p m ==,,()(注意:特征方程法的结论在大题中不能使用,但可利用它进行分解转化成等比数列)以上四种方法对应的递推关系,我们习惯上称之为:象等差型(迭加法)、象等比型(迭乘法)、一阶线性递推(待定系数)、二阶线性递推(特征方程)(五)归纳法:先计算...,,321a a a 猜想通项,再用数学归纳法证明,归纳法适用于任何递推关系。
递推法(迭代法)求数列通项
1 高二数学递推法(迭代法)求数列通项例1、设数列{}n a 是首项为1的正项数列,且()()22*11n+10n n n n a na a a n N ++-+=∈,求数列的通项公式.解:由题意知11,0n a a =>,将条件变形,得()()1110n n n n a a n a na ++++-=⎡⎤⎣⎦,又0n a >,得10n n a a ++≠,所以11n n n a a n +=+,即11n n a n a n +=+,到此可采用: 法一(递推法):121112121112n n n n n n n n a a a a n n n n n -------==⋅==⋅⋅⋅--,从而1n a n =. 法二(叠成法):12121121,12n n n n a a a n n a a a n n -----⋅⋅⋅=⋅⋅⋅-所以1n a n= . 法三(构造法):由11n n a n a n +=+,得()1n+11n na na +=,故{}n na 是常数列,1111,n n na a a n =⨯=∴=. 点拨:解法一是迭代法,这是通法;解法二是叠乘法,适合由条件()1n n a f n a -=求通项的题型;解法三是构造法(简单+经典),根据条件特点构造特殊数列求通项,技巧性较强,体现了转化思想.例2、已知数列}a {n 满足3a 132a 3a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式.解:由已知,得(两边除以1n 3+),得1n n n 1n 1n 31323a 3a +++++=,即1n n n 1n 1n 31323a 3a ++++=-, 故11221122111()()()333333n n n n n n n n n n a a a a a a a a a a ------=-+-++-+122121213()()()3333333n n -=+++++++ 1)3131313131(3)1n (222n 1n n n +++++++-=-- , ∴n 1n n n n 321213n 2131)31(313)1n (23a ⋅-+=+--⋅+-=-,即213213n 32a n n n -⋅+⋅⋅= 练习:已知数列{}n a 中,111,n n a a a n +=-=,求通项公式n a .(尝试叠加法)解:由已知,得()()()12112n n n a a n a n n --=+-=+-+-()()()21n n-1n n+2121122a n n -==+-+-++=+=.。
数列的递推关系求解练习题
数列的递推关系求解练习题数列是数学中常见的概念,它由一系列有序的数字组成。
在数列中,每个数字都有一个位置,我们可以通过递推关系来找到数列中每个数字之间的规律。
本文将提供一些数列的递推关系求解练习题,帮助读者加深对数列的理解和运用。
一、斐波那契数列斐波那契数列是一种经典的数列,它的递推关系可以表示为:F(n)= F(n-1) + F(n-2),其中F(n)表示第n个数字。
题目1:求斐波那契数列的第10个数字。
解答:根据递推关系,我们可以依次计算得到斐波那契数列的前10个数字如下:F(1) = 1F(2) = 1F(3) = F(2) + F(1) = 1 + 1 = 2F(4) = F(3) + F(2) = 2 + 1 = 3F(5) = F(4) + F(3) = 3 + 2 = 5F(6) = F(5) + F(4) = 5 + 3 = 8F(7) = F(6) + F(5) = 8 + 5 = 13F(8) = F(7) + F(6) = 13 + 8 = 21F(9) = F(8) + F(7) = 21 + 13 = 34F(10) = F(9) + F(8) = 34 + 21 = 55所以斐波那契数列的第10个数字为55。
二、等差数列等差数列是指数列中任意两个相邻数字之间的差值都相等的数列。
题目2:已知等差数列的首项为a,公差为d,求该数列的前n项和Sn。
解答:根据等差数列的性质,我们可以得到数列的递推关系:an = a + (n-1)d,其中an表示第n个数字。
首先,我们可以计算数列的第n个数字:an = a + (n-1)d然后,我们可以计算数列的前n项和Sn:Sn = (a + an) * n / 2= (a + (a + (n-1)d)) * n / 2= (2a + (n-1)d) * n / 2题目3:已知等差数列的首项为3,公差为4,求该数列的前6项和Sn。
解答:根据题目给出的数据,代入等差数列的递推关系和前n项和的公式,我们可以得到:a = 3d = 4n = 6an = a + (n-1)d= 3 + (6-1)4= 3 + 20= 23Sn = (2a + (n-1)d) * n / 2= (2*3 + (6-1)*4) * 6 / 2= (6 + 20) * 3= 26 * 3= 78所以该等差数列的前6项和Sn为78。
高考中常见的递推数列问题及解题策略
高考中常见的递推数列问题及解题策略数列是高考数学中考查的重点,在高考解答题中,求数列的通项公式,是考查的一个热点。
然而,已知条件中,往往是以递推数列的形式给出,通过递推数列形式,考查学生方程思想、化归思想,观察能力、整理能力及待定系数法等思想方法。
那么,高考中的常见递推数列的模型有哪些呢?相应的模型又有怎样的解决策略呢?现归纳总结如下:一、形如αn+1=αn+f(n)(n∈n*)型这类问题实质上是将等差数列的递推模型(即αn+1=αn+d(n∈n*)一般化。
解决这类问题的一般策略是:累加法,即αn=α1+(α2-α1)+(α3-α2)+…+(αn-αn-1)=α1+[f(1)+f(2)+f(3)+…+f(n-1) ](其中,α1已知,f(n)可求和)例1、(2009年全国卷ⅰ理)在数列 {αn}中α1=1,。
设,求数列{bn}的通项公式。
分析:由已知有利用累加法即可求出数列{bn}的通项公式: (n∈n*)。
二、形如αn+1=f(n)·αn(n∈n*)型这类问题实质上是将等比数列的递推模型(即αn+1=q·αn(n∈n*)一般化。
解决问题的一般策略是:累乘法,即(其中α1已知)例2、(2004年全国卷ⅰ理)已知数列{αn}满足α1=1,αn=α1+2α2+3α3+…+(n-1)αn-1(n≥2),则{αn}的通项。
解析:∵αn=α1+2α2+3α3+…+(n-1)αn-1(n≥2)①∴αn+1=α1+2α2+3α3+…+nαn(n≥2)②②-①得:αn+1-αn=nαn,即三、形如αn+1=p·αn+q(p,q为常数,且p≠0,1,q≠0,n∈n*)型这类问题实质上是等差、等比数列递推公式的综合与一般化。
解决问题的策略是:待定系数法,即αn+1=pαn+q一定可化为:αn+1-t=p(αn-t)(t为参数,可用待定系数法求得),从而数列{αn-t}是首项为α1-t,公比为p的等比数列,然后利用等比数列的通项公式求出数列{αn}的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单的递推数列
类型一 )(1n f a a n n +=+ 把原递推公式转化为)(1n f a a n n =-+,利用迭加法求解
1.已知数列{}n a 中,*
111,3,1N n a a a n n n ∈+==-+,则n a =
2.在数列{}n a 中,12a =, 11ln(1)n n a a n
+=++,则n a =
类型二 n n a n f a ⋅=+)(1 把原递推公式转化为)(1
n f a a n
n =+,利用累乘法求解 1.已知数列{}n a 满足321=a ,n n a n n a 11+=+,则n a = 2.已知31=a ,n n a n n a 2
3131+-=+ )1(≥n ,则n a =
类型三 周期型解法:由递推式计算出前几项,寻找周期 1.已知数列}{n a 满足)(1
33,0*11N n a a a a n n n ∈+-=
=+,则2014a =( )
A .0
B .3-
C .3
D .
2
3 2.已知数列}{n a 满足=⋅⋅-+==+52012111,11,2a a a a a a a n
n
n Λ则
类型四. q pa a n n +=+1(其中q p ,均为常数,)0)1((≠-p pq
1.已知数列{}n a 中,11=a ,231+=+n n a a ,则n a =
2.在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则n a =
3.已知数列{}n a 满足*
111,21().n n a a a n N +==+∈则n a =
(长春市普通高中2016届高三质量监测(二)理科数学)设等差数列{}n a 的前n 项和为n S ,
10a >且
659
11
a a =,当n S 取最大值时,n 的值为 A. 9
B. 10
C. 11
D. 12
(辽宁省沈阳市2015届高三教学质量监测(一)数 学(理)试题)设等差数列{}n a 满足
27a =,43a =,n S 是数列{}n a 的前n 项和,则使得n S 0>最大的自然数n 是( )
A .9 B.10 C.11 D.12
(辽宁省沈阳市2016届高三教学质量监测(一)数 学(理)试题)设数列{}n a 的前n 项和为n S ,且11a =,123n n a S +=+,则4S =____________.
(新疆乌鲁木齐地区2017年高三年级第一次诊断性测试数学(理)试题)等差数列{}n a 中,
365,S 36,a ==则9S = ( )
A. 17
B. 19
C. 81
D. 100
(新疆乌鲁木齐地区2016年高三年级第一次诊断性测试数学(理)试题)设数列{}n a 的各项均为正数,其前n 项和n S 满足21
=346
n n n S a a +-(),则=n a . (甘肃省定西市通渭县榜罗中学2016届高三上学期期末数学(理)试题)已知数列{a n }是递增等比数列,a 2=2,a 4﹣a 3=4,则此数列的公比q=( ) A .﹣1 B .2
C .﹣1或2
D .﹣2或1
(甘肃省张掖市2016届高三第一次诊断考试数学(理科)试题)等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log log a a a +++=L
A .5
B .9
C .3log 45
D .10
(山东省临沂市2013届高三上学期期中数学(理)试题)数列{a n }的前n 项和S n 满足S n =2a n ﹣a 1,且a 1,a 2+1,a 3成等差数列. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)设b n =
,求数列{b n }的前n 项和T n .
(甘肃省定西市通渭县榜罗中学2017届高三上学期期末数学(理)试题)已知等差数列{a n }满足a 2=2,a 6+a 8=14 (1)求数列{a n }的通项公式 (2)求数列{
}的前n 项和S n .
【辽宁朝阳三校协作体2015届高三下学期第一次联合模拟文18】(本小题满分12分)
已知数列}{n a 满足)(3)1)(1(11++-=--n n n n a a a a ,21=a ,令1
1
-=n n a b . (Ⅰ)证明:数列}{n b 是等差数列; (Ⅱ)求数列}{n a 的通项公式.
【甘肃天水第一中学2015届高三5月中旬仿真考试文17】(本小题满分12分)已知各项都不相等的等差数列{a n }的前7项和为70,且a 3为a 1和a 7的等比中项. (I )求数列{a n }的通项公式;
(II )若数列{b n }满足1,(n N )n n n b b a *+-=∈且b 1=2,求数列}1
{n
b 的前n 项和T n 。
(广东省广州市荔湾区2016届高三调研测试、文、17)已知数列{}n a 满足:0n a ≠,113
a =,
11
2n n n n a a a a ++-=⋅,(n N *
∈).
(1)求证:1n a ⎧⎫⎨⎬⎩⎭
是等差数列,并求出n a ;(2)证明:12231
1
...6n n a a a a a a ++++<.。