【新课标】备战高考数学专题复习测试题_立体几何(文科)

合集下载

立体几何测试题(文科).docx

立体几何测试题(文科).docx

立体几何文科试题一、选择题:本大题共12 小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1、设有直线m、n和平面、 . 下列四个命题中,正确的是( )A. 若m∥ , n∥ , 则m∥nB. 若m, n, m∥ , n∥ , 则∥C. 若, m, 则mD. 若, m, m, 则m∥2、已知直线 l , m与平面,,满足I l,l //, m和 m,则有A.且 l m B.且 m //C. m // 且 l m D. // 且r0,1,r r r r3.若a 1 , b1,1,0 ,且a b a ,则实数的值是()A .- 1 B.0 C.1 D.- 24、已知平面α⊥平面β,α∩β= l ,点 A∈α, A l,直线 AB∥ l ,直线 AC⊥l,直线 m∥α, m∥β,则下列四种位置关系中,不一定成立的是()...A. AB∥ mB. AC⊥ mC. AB∥βD. AC⊥β5一个几何体的三视图及长度数据如图,则几何体的表面积与体积分别为8、某几何体的三视图如图所示,当 a b 取最大值时,这个几何体的体积为(A.1B.1C.2D.163329、已知A, B,C , D在同一个球面上 , AB平面 BCD, BC CD , 若 AB6, AC球面距离是()A. B.4253C. D.33310、四面体ABCD的外接球球心在CD 上,且 CD 2,AB 3 ,在外接球面上AππC.2πD.5πA.B.633611、半径为 2cm的半圆纸片做成圆锥放在桌面上,一阵风吹倒它,它的最高处距桌面(A. 4cm B. 2cm C.23cm D.3cm12、有一正方体,六个面上分别写有数字1、 2、 3、 4、 5、 6,有三个人从不同的角3 的对面的数字为 m,4 的对面的数字为 n,那么 m+n 的值为()A.3B. 7C. 8D. 11A 72,3B 82,3C 73D 832,2,22二.填空题:本大题共 4 个小题。

高考文科数学专题5 立体几何 高考文科数学 (含答案)

高考文科数学专题5 立体几何 高考文科数学 (含答案)

专题五 立体几何第一讲 空间几何体1.棱柱、棱锥 (1)棱柱的性质侧棱都相等,侧面是平行四边形;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形;直棱柱的侧棱长与高相等且侧面与对角面是矩形. (2)正棱锥的性质侧棱相等,侧面是全等的等腰三角形,斜高相等;棱锥的高、斜高和斜高在底面内的射影构成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也构成一个直角三角形;某侧面的斜高、侧棱及底面边长的一半也构成一个直角三角形;侧棱在底面内的射影、斜高在底面内的射影及底面边长的一半也构成一个直角三角形. 2.三视图(1)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高; (2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样. 3.几何体的切接问题(1)解决球的内接长方体、正方体、正四棱柱等问题的关键是把握球的直径即棱柱的体对角线长.(2)柱、锥的内切球找准切点位置,化归为平面几何 问题.4.柱体、锥体、台体和球的表面积与体积(不要求记忆) (1)表面积公式①圆柱的表面积 S =2πr (r +l ); ②圆锥的表面积S =πr (r +l );③圆台的表面积S =π(r ′2+r 2+r ′l +rl ); ④球的表面积S =4πR 2. (2)体积公式①柱体的体积V =Sh ;②锥体的体积V =13Sh ;③台体的体积V =13(S ′+SS ′+S )h ;④球的体积V =43πR 3.1. (2013·广东)某四棱台的三视图如图所示,则该四棱台的体积是( )A .4 B.143C.163D .6答案 B解析 由三视图知四棱台的直观图为由棱台的体积公式得:V =13(2×2+1×1+2×2×1×1)×2=143.2. (2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是( )答案 D解析由三视图可知上部是一个圆台,下部是一个圆柱,选D.3. (2013·江西)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=( )A.8 B.9 C.10 D.11答案 A解析取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EF平行,其余4个平面与EF相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.4. (2013·新课全国Ⅱ)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为( )答案 A解析根据已知条件作出图形:四面体C1-A1DB,标出各个点的坐标如图(1)所示,可以看出正视图为正方形,如图(2)所示.故选A.5. (2013·福建)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.答案12π解析由三视图知,该几何体为正方体和球组成的组合体,正方体的对角线为球的直径.所以2R=23,即R=3,球的表面积为S=4πR2=12π.题型一空间几何体的三视图例1(1)(2012·广东)某几何体的三视图如图所示,它的体积为( )A.12πB.45πC.57πD.81π(2)(2012·陕西)将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的左(侧)视图为( )审题破题根据三视图先确定原几何体的直观图和形状,然后再解题.答案(1)C (2)B解析 (1)由三视图知该几何体是由圆柱、圆锥两几何体组合而成,直观图如图所示. 圆锥的底面半径为3,高为4,圆柱的底面半径为3,高为5,∴V =V 圆锥+V 圆柱=13Sh 1+Sh 2=13×π×32×4+π×32×5=57π.(2)还原正方体后,将D 1,D ,A 三点分别向正方体右侧面作垂线.D 1A 的射影为C 1B ,且为实线,B 1C 被遮挡应为虚线.反思归纳 将三视图还原成直观图是解答该类问题的关键,其解题技巧是对常见简单几何体及其组合体的三视图,特别是正方体、长方体、圆柱、圆锥、棱柱、棱锥、球等几何体的三视图分别是什么图形,数量关系有什么特点等都应该熟练掌握,会画出其直观图,然后由三视图验证.变式训练1 若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是________ cm 3.答案 18解析 由几何体的三视图可知,该几何体由两个直四棱柱构成,其直观图如图所示.上底面直四棱柱的长是3 cm ,宽是3 cm ,高是1 cm ,故其体积为9 cm 3,下底面直四棱柱的高是3 cm ,长是1 cm ,宽是3 cm ,其体积为9 cm 3.故该几何体的体积为V =18 cm 3. 题型二 空间几何体的表面积和体积例2 如图所示,已知E 、F 分别是棱长为a 的正方体ABCD —A 1B 1C 1D 1的棱A 1A 、CC 1的中点,求四棱锥C 1—B 1EDF 的体积.审题破题 本题可从两个思路解题:思路一:先求出四棱锥C 1—B 1EDF 的高及其底面积,再利用棱锥的体积公式求出其体积; 思路二:先将四棱锥C 1—B 1EDF 化为两个三棱锥B 1—C 1EF 与D —C 1EF ,再求四棱锥C 1—B 1EDF 的体积.解 方法一 连接A 1C 1,B 1D 1交于点O 1,连接B 1D ,过O 1作。

高考数学压轴专题新备战高考《空间向量与立体几何》基础测试题附答案

高考数学压轴专题新备战高考《空间向量与立体几何》基础测试题附答案

【高中数学】数学《空间向量与立体几何》高考复习知识点一、选择题1.三棱锥D ABC -中,CD ⊥底面,ABC ABC ∆为正三角形,若//,2AE CD AB CD AE ===,则三棱锥D ABC -与三棱锥E ABC -的公共部分构成的几何体的体积为( ) A .39B .33C .13D .3【答案】B 【解析】根据题意画出如图所示的几何体:∴三棱锥D ABC -与三棱锥E ABC -的公共部分构成的几何体为三棱锥F ABC - ∵ABC 为正三角形,2AB = ∴132232ABC S ∆=⨯⨯⨯= ∵CD ⊥底面ABC ,//AE CD ,2CD AE == ∴四边形AEDC 为矩形,则F 为EC 与AD 的中点 ∴三棱锥F ABC -的高为112CD = ∴三棱锥F ABC -的体积为13313V =⨯⨯=故选B.2.如图,直三棱柱ABC A B C '''-的侧棱长为3,AB BC ⊥,3AB BC ==,点E ,F 分别是棱AB ,BC 上的动点,且AE BF =,当三棱锥B EBF '-的体积取得最大值时,则异面直线A F '与AC 所成的角为( )A .2πB .3π C .4π D .6π 【答案】C【解析】 【分析】设AE BF a ==,13B EBF EBF V S B B '-'=⨯⨯V ,利用基本不等式,确定点 E ,F 的位置,然后根据//EF AC ,得到A FE '∠即为异面直线A F '与AC 所成的角,再利用余弦定理求解. 【详解】设AE BF a ==,则()()23119333288B EBFa a V a a '-+-⎡⎤=⨯⨯⨯-⨯≤=⎢⎥⎣⎦,当且仅当3a a =-,即32a =时等号成立, 即当三棱锥B EBF '-的体积取得最大值时,点E ,F 分别是棱AB ,BC 的中点, 方法一:连接A E ',AF ,则352A E '=,352AF =,2292A F AA AF ''=+=,13222EF AC ==, 因为//EF AC ,所以A FE '∠即为异面直线A F '与AC 所成的角,由余弦定理得222819452424cos 93222222A F EF A E A FE A F EF +-''+-'∠==='⋅⋅⨯⨯,∴4A FE π'∠=.方法二:以B 为坐标原点,以BC 、BA 、BB '分别为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,3,0A ,()3,0,0C ,()0,3,3A ',3,0,02F ⎛⎫⎪⎝⎭, ∴3,3,32A F ⎛⎫'=-- ⎪⎝⎭u u u u r ,()3,3,0AC =-u u u r ,所以9922cos ,92322A F AC A F AC A F AC +'⋅'==='⋅⨯u u u u r u u u r u u u u r u u u r u u u u r u u u r ,所以异面直线A F '与AC所成的角为4π. 故选:C 【点睛】本题主要考查异面直线所成的角,余弦定理,基本不等式以及向量法求角,还考查了推理论证运算求解的能力,属于中档题.3.如图,网格纸是由边长为1的小正方形构成,若粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .920π+B .926π+C .520π+D .526π+【答案】C 【解析】 【分析】根据三视图还原为几何体,结合组合体的结构特征求解表面积. 【详解】由三视图可知,该几何体可看作是半个圆柱和一个长方体的组合体,其中半圆柱的底面半圆半径为1,高为4,长方体的底面四边形相邻边长分别为1,2,高为4,所以该几何体的表面积2112141222S ππ=⨯+⨯⨯⨯+⨯⨯14224520π+⨯⨯+⨯=+,故选C. 【点睛】本题主要考查三视图的识别,利用三视图还原成几何体是求解关键,侧重考查直观想象和数学运算的核心素养.4.在正方体1111ABCD A B C D -中,点E ∈平面11AA B B ,点F 是线段1AA 的中点,若1D E CF ⊥,则当EBC V 的面积取得最小值时,EBCABCDS S =△( ) A 25B .12C 5D 5 【答案】D 【解析】 【分析】根据1D E CF ⊥分析出点E 在直线1B G 上,当EBC V 的面积取得最小值时,线段EB 的长度为点B 到直线1B G 的距离,即可求得面积关系. 【详解】先证明一个结论P :若平面外的一条直线l 在该平面内的射影垂直于面内的直线m ,则l ⊥m ,即:已知直线l 在平面内的射影为直线OA ,OA ⊥OB ,求证:l ⊥OB . 证明:直线l 在平面内的射影为直线OA ,不妨在直线l 上取点P ,使得PA ⊥OB ,OA ⊥OB ,OA ,PA 是平面PAO 内两条相交直线, 所以OB ⊥平面PAO ,PO ⊂平面PAO , 所以PO ⊥OB ,即l ⊥OB .以上这就叫做三垂线定理. 如图所示,取AB 的中点G ,正方体中:1111A C D B ⊥,CF 在平面1111D C B A 内的射影为11A C , 由三垂线定理可得:11CF D B ⊥,CF 在平面11A B BA 内的射影为FB ,1FB B G ⊥由三垂线定理可得:1CF B G ⊥,1B G 与11D B 是平面11B D G 内两条相交直线, 所以CF ⊥平面11B D G ,∴当点E 在直线1B G 上时,1D E CF ⊥,设BC a =,则1122EBC S EB BC EB a =⨯⨯=⨯⨯△, 当EBC V 的面积取最小值时,线段EB 的长度为点B 到直线1B G 的距离,∴线段EB 5,2152510EBCABCDaaSS a⨯⨯∴==△.故选:D.【点睛】此题考查立体几何中的轨迹问题,通过位置关系讨论面积关系,关键在于熟练掌握线面垂直关系的判定和平面图形面积的计算.5.已知一个几何体的三视图如图所示(正方形边长为1),则该几何体的体积为()A.34B.78C.1516D.2324【答案】B【解析】【分析】【详解】由三视图可知:该几何体为正方体挖去了一个四棱锥A BCDE-,该几何体的体积为1111711132228⎛⎫-⨯⨯+⨯⨯=⎪⎝⎭故选B点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.6.如图,在底面边长为4,侧棱长为6的正四棱锥P ABCD -中,E 为侧棱PD 的中点,则异面直线PB 与CE 所成角的余弦值是( )A .34 B .234C .517D .317【答案】D 【解析】 【分析】首先通过作平行的辅助线确定异面直线PB 与CE 所成角的平面角,在PCD ∆中利用余弦定理求出cos DPC ∠进而求出CE ,再在GFH ∆中利用余弦定理即可得解. 【详解】如图,取PA 的中点F ,AB 的中点G ,BC 的中点H ,连接FG ,FH ,GH ,EF ,则//EF CH ,EF CH =,从而四边形EFHC 是平行四边形,则//EC FH , 且EC FH =.因为F 是PA 的中点,G 是AB 的中点,所以FG 为ABP ∆的中位线,所以//FG PB ,则GFH ∠是异面直线PB 与CE 所成的角.由题意可得3FG =,1222HG AC ==. 在PCD ∆中,由余弦定理可得2223636167cos 22669PD PC CD DPC PD PC +-+-∠===⋅⨯⨯,则2222cos 17CE PC PE PC PE DPC =+-⋅∠=,即17CE =在GFH ∆中,由余弦定理可得222cos 2FG FH GH GFH FG FH +-∠=⋅==. 故选:D 【点睛】本题考查异面直线所成的角,余弦定理解三角形,属于中档题.7.在三棱锥P ABC -中,PA ⊥平面ABC ,且ABC ∆为等边三角形,2AP AB ==,则三棱锥P ABC -的外接球的表面积为( ) A .272π B .283π C .263π D .252π 【答案】B 【解析】 【分析】计算出ABC ∆的外接圆半径r,利用公式R =可得出外接球的半径,进而可得出三棱锥P ABC -的外接球的表面积. 【详解】ABC ∆的外接圆半径为32sin3AB r π==,PA ⊥Q 底面ABC ,所以,三棱锥P ABC -的外接球半径为3R ===, 因此,三棱锥P ABC -的外接球的表面积为22284433R πππ⎛=⨯= ⎝⎭. 故选:B. 【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,选择合适的公式计算外接球的半径,考查计算能力,属于中等题.8.已知正方体1111A B C D ABCD -的棱1AA 的中点为E ,AC 与BD 交于点O ,平面α过点E 且与直线1OC 垂直,若1AB =,则平面α截该正方体所得截面图形的面积为( ) A.4B.2C.2D.4【答案】A 【解析】【分析】根据正方体的垂直关系可得BD ⊥平面11ACC A ,进而1BD OC ⊥,可考虑平面BDE 是否为所求的平面,只需证明1OE OC ⊥即可确定平面α. 【详解】如图所示,正方体1111ABCD A B C D -中,E 为棱1AA 的中点,1AB =,则2113122OC =+=,2113424OE =+=,2119244EC =+=,∴22211OC OE EC +=,1OE OC ∴⊥;又BD ⊥平面11ACC A ,1BD OC ∴⊥,且OE BD O =I ,1OC ∴⊥平面BDE ,且1136222BDE S BD OE ∆==⨯⨯=g , 即α截该正方体所得截面图形的面积为64. 故选:A .【点睛】本题考查线面垂直的判定,考查三角形面积的计算,熟悉正方体中线面垂直关系是解题的关键,属于中档题.9.设三棱锥V ﹣ABC 的底面是A 为直角顶点的等腰直角三角形,VA ⊥底面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A ﹣VC ﹣B 为γ,则( ) A .2παββγ+<,> B .2παββγ+<,<C .2παββγ+>,>D .2παββγ+>,<【答案】C 【解析】 【分析】由最小角定理得αβ>,由已知条件得AB ⊥平面VAC ,过A 作AN VC ⊥,连结BN ,得BNA γ=∠,推导出BVA γ>∠,由VA ⊥平面ABC ,得VMA β=∠,推导出MVA γ>∠,从而2πβγ+>,即可得解.【详解】由三棱锥V ABC -的底面是A 为直角顶点的等腰直角三角形,VA ⊥平面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A VC B --为γ,由最小角定理得αβ>,排除A 和B ; 由已知条件得AB ⊥平面VAC ,过A 作AN VC ⊥,连结BN ,得BNA γ=∠, ∴tan tan ABBNA ANγ=∠=, 而tan ABBVA AV∠=,AN AV <,∴tan tan BNA BVA ∠>∠, ∴BVA γ>∠,∵VA ⊥平面ABC ,∴VMA β=∠, ∴2MVA πβ+∠=,∵tan AMMVA AV∠=,AB AM >,∴tan tan BVA MVA ∠>∠,∴MVA γ>∠,∴2πβγ+>.故选:C .【点睛】本题查了线线角、线面角、二面角的关系与求解,考查了空间思维能力,属于中档题.10.在正四面体A BCD -中,P 是AB 的中点,Q 是直线BD 上的动点,则直线PQ 与AC 所成角可能为( )A .12πB .4π C .512π D .2π 【答案】C【解析】 【分析】根据题意,取BC 的中点M ,连接MQ ,则//AC MQ ,所以QPM ∠为异面直线PQ 与AC 所成角,在利用余弦定理可得242MQ x x =+-,易知PQ MQ =,所以在等腰三角形PMQ 中()2cos 0442QPM x x x∠=≤≤+-,,即可求出33cos 123QPM ⎡⎤∠∈⎢⎥⎣⎦,,进而求出结果.【详解】取BC 的中点M ,连接MQ ,则//AC MQ ,所以QPM ∠为异面直线PQ 与AC 所成角,如下图所示:设正四面体A BCD -的棱长为4,()04BQ x x =≤≤,,在BMQ ∆中,22222cos 6042MQ BM BQ BM BQ x x =+-⋅︒=+-, 在正四面体A BCD -中,易知PQ MQ =, 所以在等腰三角形PMQ 中,()2cos 0442QPM x x x∠=≤≤+-所以33cos QPM ∠∈⎣⎦,,所以异面直线PQ 与AC 所成角可能为512π. 故选:C. 【点睛】本题主要考查了异面直线成角,余弦定理的应用,考查了空间几何中的动态问题,考查学生的应用能力和空间想象能力,属于中档题.11.如图长方体中,过同一个顶点的三条棱的长分别为2、4、6,A 点为长方体的一个顶点,B 点为其所在棱的中点,则沿着长方体的表面从A 点到B 点的最短距离为( )A 29B .35C 41D .213【答案】C【解析】【分析】 由长方体的侧面展开图可得有3种情况如下:①当B 点所在的棱长为2;②当B 点所在的棱长为4;③当B 点所在的棱长为6,分别再求出展开图AB 的距离即可得最短距离.【详解】由长方体的侧面展开图可得:(1)当B 点所在的棱长为2,则沿着长方体的表面从A 到B 的距离可能为()22461101++=()2241661++=()2246165++= (2)当B 点所在的棱长为4,则沿着长方体的表面从A 到B 的距离可能为()22226213++=()22262217++=()22262217++= (3)当B 点所在的棱长为6,则沿着长方体的表面从A 到B 的距离可能为()2223441++=()2224335++=()2223453++= 综上所述,沿着长方体的表面从A 点到B 41.故选:C .【点睛】本题考查长方体的展开图,考查空间想象与推理能力,属于中等题.12.在三棱锥P ABC -中,PA ⊥平面ABC ,2π,43BAC AP ∠==,23AB AC ==P ABC -的外接球的表面积为( ) A .32πB .48πC .64πD .72π 【答案】C【解析】【分析】先求出ABC V 的外接圆的半径,然后取ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==,由于PA ⊥平面ABC ,故点O 为三棱锥P ABC -的外接球的球心,OA 为外接球半径,求解即可.【详解】在ABC V 中,23AB AC ==,23BAC π∠=,可得6ACB π∠=, 则ABC V 的外接圆的半径2323π2sin 2sin 6AB r ACB ===,取ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==, 因为PA ⊥平面ABC ,所以点O 为三棱锥P ABC -的外接球的球心,则222OA OG AG =+,即外接球半径()222234R =+=,则三棱锥P ABC -的外接球的表面积为24π4π1664πR =⨯=.故选C.【点睛】本题考查了三棱锥的外接球表面积的求法,考查了学生的空间想象能力,属于中档题.13.在正方体1111ABCD A B C D -中,E 为棱1CC 上一点且12CE EC =,则异面直线AE 与1A B 所成角的余弦值为( )A .1144B 11C .1144D .1111【答案】B【解析】【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线AE 与1A B 所成角的余弦值.【详解】解:以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系, 设3AB =,则()3,0,0A ,()0,3,2E ,()13,0,3A ,()3,3,0B,()3,3,2AE =-u u u r ,()10,3,3A B =-u u u r ,设异面直线AE 与1A B 所成角为θ,则异面直线AE 与1A B 所成角的余弦值为: 11311cos222218AE A B AE A B θ⋅===⋅⋅u u u r u u u r u u u r u u u r . 故选:B .【点睛】本题考查利用向量法求解异面直线所成角的余弦值,难度一般.已知1l 的方向向量为a r ,2l 的方向向量为b r ,则异面直线12,l l 所成角的余弦值为a b a b⋅⋅r r r r .14.三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ︒∠=∠=,则异面直线1AB 与1BC 所成角的余弦值为( )A 3B 6C 3D .36【答案】B【解析】【分析】 设1AA c=u u u v v ,AB a =u u u v v ,AC b =u u u v v ,根据向量线性运算法则可表示出1AB u u u v 和1BC u u u u v ;分别求解出11AB BC ⋅u u u v u u u u v 和1AB u u u v ,1BC u u u u v ,根据向量夹角的求解方法求得11cos ,AB BC <>u u u v u u u u v ,即可得所求角的余弦值.【详解】 设棱长为1,1AA c =u u u v v ,AB a =u u u v v ,AC b =u u u v v 由题意得:12a b ⋅=v v ,12b c ⋅=v v ,12a c ⋅=v v 1AB a c =+u u u v v v Q ,11BC BC BB b a c =+=-+u u u u v u u u v u u u v v v v()()22111111122AB BC a c b a c a b a a c b c a c c ∴⋅=+⋅-+=⋅-+⋅+⋅-⋅+=-++=u u u v u u u u v v v v v v v v v v v v v v v v 又1AB ===u u u v1BC ===u u u u v111111cos ,AB BC AB BC AB BC ⋅∴<>===⋅u u u v u u u u v u u u v u u u u v u u u v u u u u v 即异面直线1AB 与1BC本题正确选项:B【点睛】 本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.15.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .B .12πC .D .10π【答案】B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积.详解:根据题意,可得截面是边长为的圆,且高为,所以其表面积为22212S πππ=+=,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.16.在空间中,下列命题为真命题的是( ).A .对于直线,,a b c ,若,a c b c ⊥⊥则//a bB .对任意直线a ,在平面α中必存在一条直线b 与之垂直C .若直线a ,b 与平面α所成的角相等,则a ∥bD .若直线a ,b 与平面α所成的角互余,则a ⊥b【答案】B【解析】【分析】通过空间直线与直线的位置关系判断选项的正误即可。

2024年高考数学总复习立体几何测试卷及答案解析

2024年高考数学总复习立体几何测试卷及答案解析

2024年高考数学总复习立体几何测试卷及答案(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.下列说法正确的是()A.空间中,两不重合的平面若有公共点,则这些点一定在一条直线上B.空间中,三角形、四边形都一定是平面图形C.空间中,正方体、长方体、四面体都是四棱柱D.用一平面去截棱锥,底面与截面之间的部分所形成的多面体叫棱台答案A解析空间四边形不是平面图形,故B错;四面体不是四棱柱,故C错;平行于底面的平面去截棱锥,底面和截面之间的部分所形成的多面体才叫棱台,故D错;根据公理2可知A正确,故选A.2.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是() A.α∩β=n,m⊂α,m∥β⇒m∥nB.α⊥β,α∩β=m,m⊥n⇒n⊥βC.m⊥n,m⊂α,n⊂β⇒α⊥βD.m∥α,n⊂α⇒m∥n答案A解析对于A,根据线面平行的性质定理可得A选项正确;对于B,当α⊥β,α∩β=m时,若n⊥m,n⊂α,则n⊥β,但题目中无条件n⊂α,故B不一定成立;对于C,若m⊥n,m ⊂α,n⊂β,则α与β相交或平行,故C错误;对于D,若m∥α,n⊂α,则m与n平行或异面,则D错误,故选A.3.如图,在三棱柱ABC-A1B1C1中,D是CC1的中点,F是A1B的中点,且DF→=αAB→+βAC→,则()A.α=12,β=-1B.α=-12,β=1C .α=1,β=-12D .α=-1,β=12答案A解析根据向量加法的多边形法则以及已知可得,DF →=DC →+CB →+BF →=12C 1C →+CB →+12BA →1=12A 1A →+AB →-AC →+12BA →+12AA →1=12AB →-AC →,∴α=12,β=-1,故选A.4.平行六面体ABCD -A 1B 1C 1D 1中,AB →=(1,2,0),AD →=(2,1,0),CC →1=(0,1,5),则对角线AC 1的边长为()A .42B .43C .52D .12答案C解析因为AC →1=AA →1+A 1B 1→+B 1C 1→=CC →1+AB →+AD →=(0,1,5)+(1,2,0)+(2,1,0)=(3,4,5),所以|AC →1|=32+42+52=52,故选C.5.(2019·凉山诊断)如图,在四棱柱ABCD -A 1B 1C 1D 1中,E ,F 分别是AB 1,BC 1的中点,下列结论中,正确的是()A .EF ⊥BB 1B .EF ⊥平面BCC 1B 1C .EF ∥平面D 1BC D .EF ∥平面ACC 1A 1答案D解析连接B 1C 交BC 1于F ,由于四边形BCC 1B 1是平行四边形,对角线互相平分,故F 是B 1C 的中点.因为E 是AB 1的中点,所以EF 是△B 1AC 的中位线,故EF ∥AC ,所以EF ∥平面ACC 1A 1.故选D.6.(2019·湖北黄冈中学、华师附中等八校联考)《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径”.“开立圆术”相当于给出了已知球的体积V ,求球的直径d 的公式d =13169V ⎛⎫⎪⎝⎭.若球的半径为r =1,根据“开立圆术”的方法计算该球的体积为()A.43πB.916C.94D.92答案D 解析根据公式d =13169V ⎛⎫⎪⎝⎭得,2=13169V ⎛⎫ ⎪⎝⎭,解得V =92.故选D.7.已知棱长为2的正方体ABCD -A 1B 1C 1D 1,球O 与该正方体的各个面相切,则平面ACB 1截此球所得的截面的面积为()A.8π3B.5π3C.4π3D.2π3答案D 解析因为球与各面相切,所以直径为2,且AC ,AB 1,CB 1的中点在所求的切面圆上,所以所求截面为此三点构成的边长为2的正三角形的外接圆,由正弦定理知,R =63,所以截面的面积S =2π3,故选D.8.已知向量n =(2,0,1)为平面α的法向量,点A (-1,2,1)在α内,则P (1,2,-2)到α的距离为()A.55B.5C .25D.510答案A解析∵PA →=(-2,0,3),∴点P 到平面α的距离为d =|PA ,→·n ||n |=|-4+3|5=55.∴P (1,2,-2)到α的距离为55.故选A.9.正方体ABCD -A 1B 1C 1D 1中,点P 在A 1C 上运动(包括端点),则BP 与AD 1所成角的取值范围是()A.π4,π3 B.π4,π2C.π6,π2 D.π6,π3答案D解析以点D 为原点,DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系,设正方体棱长为1,设点P 坐标为(x ,1-x ,x )(0≤x ≤1),则BP →=(x -1,-x ,x ),BC 1→=(-1,0,1),设BP →,BC 1→的夹角为α,所以cos α=BP ,→·BC 1→|BP →||BC 1→|=1(x -1)2+2x 2×2=x =13时,cos α取得最大值32,α=π6.当x =1时,cos α取得最小值12,α=π3.因为BC 1∥AD 1.故选D.10.(2019·淄博期中)在直三棱柱ABC -A 1B 1C 1中,CA =CB =4,AB =27,CC 1=25,E ,F 分别为AC ,CC 1的中点,则直线EF 与平面AA 1B 1B 所成的角是()A .30°B .45°C .60°D .90°答案A 解析连接AC 1,则EF ∥AC 1,直线EF 与平面AA 1B 1B 所成的角,就是直线EF 与平面AA 1B 1B 所成的角,AC 1与平面AA 1B 1B 所成的角;作C 1D ⊥A 1B 1于D ,连接AD ,因为直三棱柱ABC -A 1B 1C 1中,CA =CB =4,所以底面是等腰三角形,则C 1D ⊥平面AA 1B 1B ,可知∠C 1AD 就是直线EF 与平面AA 1B 1B 所成的角,CA =CB =4,AB =27,CC 1=25,可得C 1D =42-(7)2=3,AD =(7)2+(25)2=33,所以tan ∠C 1AD =C 1D AD =33,所以∠C 1AD =30°.故选A.11.(2019·陕西汉中中学月考)点A ,B ,C ,D ,E 是半径为5的球面上五点,A ,B ,C ,D 四点组成边长为42的正方形,则四棱锥E -ABCD 体积的最大值为()A.2563B .256 C.643D .64答案A解析正方形ABCD 对角线长为(42)2+(42)2=8.则球心到正方形中心的距离d =52-42=3.则E 到正方形ABCD 的最大距离为h =d +5=8.则V E -ABCD =13×42×42×8=2563.故选A.12.(2019·四省联考诊断)如图所示,四边形ABCD 为边长为2的菱形,∠B =60°,点E ,F 分别在边BC ,AB 上运动(不含端点),且EF ∥AC ,沿EF 把平面BEF 折起,使平面BEF ⊥底面ECDAF ,当五棱锥B -ECDAF 的体积最大时,EF 的长为()A .1 B.263C.3D.2答案B解析由EF ∥AC 可知△BEF 为等边三角形,设EF =x ,等边△BEF 的高为32x ,面积为34x 2,所以五边形ECDAF 的面积为2×34×22-34x 2=23-34x 2,故五棱锥的体积为13×23-34x 2×32x =x -18x 3(0<x <2).令f ′(x )=x -18x 3′=1-38x 2=0,解得x =263,且当0<x <263时,f (x )单调递增,当263x <2时,f (x )单调递减,故在x =263时取得极大值也即最大值.故选B.二、填空题(本大题共4小题,每小题5分,共20分)13.设m ,n 为空间两条不同的直线,α,β为空间两个不同的平面,给出下列命题:①若m ∥α,m ∥β,则α∥β;②若m ⊥α,m ∥β,则α⊥β;③若m ∥α,m ∥n ,则n ∥α;④若m ⊥α,α∥β,则m ⊥β.其中正确的命题序号是________.答案②④解析对于①,若m ∥α,m ∥β,则α与β可能相交,故①错误;对于②,若m ⊥α,m ∥β,根据线面垂直和线面平行的性质定理以及面面垂直的判定定理得到α⊥β,故②正确;对于③,若m ∥α,m ∥n ,则n 可能在α内,故③错误,对于④,若m ⊥α,α∥β,则根据线面垂直的性质定理以及面面平行的性质定理得到m ⊥β,故④正确.故答案为②④.14.如图,在三棱柱A 1B 1C 1-ABC 中,已知D ,E ,F 分别为AB ,AC ,AA 1的中点,设三棱锥A -FED 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2的值为________.答案124解析设三棱柱的高为h ,∵F 是AA 1的中点,则三棱锥F -ADE 的高为h2,∵D ,E 分别是AB ,AC 的中点,∴S △ADE =14S △ABC ,∵V 1=13S △ADE ·h2,V 2=S △ABC ·h ,∴V 1V 2=16S △ADE ·h S △ABC ·h =124.15.如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为________.答案2解析由题意知,球心在正方形的中心上,球的半径为1,则正方形的边长为 2.∵三棱柱ABC —A 1B 1C 1为直三棱柱,∴平面ABC ⊥平面BCC 1B 1,∴BC 为截面圆的直径,∴∠BAC =90°.∵AB =AC ,∴AB =1,∴侧面ABB 1A 1的面积为2×1=2.16.(2019·陕西四校联考)直三棱柱ABC-A1B1C1的底面是直角三角形,侧棱长等于底面三角形的斜边长,若其外接球的体积为32π3,则该三棱柱体积的最大值为____________.答案42解析设三棱柱底面直角三角形的直角边为a,b,则棱柱的高h=a2+b2,设外接球的半径为r,则43πr3=32π3,解得r=2,∵上、下底面三角形斜边的中点连线的中点是该三棱柱的外接球的球心,∴2h=2r=4.∴h =22,∴a2+b2=h2=8≥2ab,∴ab≤4.当且仅当a=b=2时“=”成立.∴三棱柱的体积V=Sh=12abh=2ab≤42.三、解答题(本大题共70分)17.(10分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,AC与BD交于点O,PC⊥底面ABCD,点E为侧棱PB的中点.求证:(1)PD∥平面ACE;(2)平面PAC⊥平面PBD.证明(1)连接OE.因为O为正方形ABCD对角线的交点,所以O为BD的中点.因为E为PB的中点,所以PD∥OE.又因为OE⊂平面ACE,PD⊄平面ACE,所以PD∥平面ACE.(2)在四棱锥P-ABCD中,因为PC ⊥底面ABCD ,BD ⊂底面ABCD ,所以BD ⊥PC .因为O 为正方形ABCD 对角线的交点,所以BD ⊥AC .又PC ,AC ⊂平面PAC ,PC ∩AC =C ,所以BD ⊥平面PAC .因为BD ⊂平面PBD ,所以平面PAC ⊥平面PBD .18.(12分)(2019·广州执信中学测试)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC ,△PAD 是等边三角形,已知BD =2AD =8,AB =2DC =45.(1)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ;(2)求四棱锥P -ABCD 的体积.(1)证明在△ABD 中,由于AD =4,BD =8,AB =45,所以AD 2+BD 2=AB 2.故AD ⊥BD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BD ⊂平面ABCD ,所以BD ⊥平面PAD ,又BD ⊂平面MBD ,故平面MBD ⊥平面PAD .(2)解如图,过P 作PO ⊥AD 交AD 于O ,由于平面PAD ⊥平面ABCD ,所以PO ⊥平面ABCD .因此PO 为四棱锥P -ABCD 的高,又△PAD 是边长为4的等边三角形.因此PO =32×4=2 3.在四边形ABCD 中,AB ∥DC ,AB =2DC ,所以四边形ABCD 是梯形,在Rt △ADB 中,斜边AB 边上的高为4×845=855,此即为梯形ABCD 的高,所以四边形ABCD 的面积为S =25+452×855=24.故V P -ABCD =13×24×23=16 3.19.(12分)(2019·化州模拟)如图所示,在四棱锥E -ABCD 中,ED ⊥平面ABCD ,AB ∥CD ,AB ⊥AD ,AB =AD =12CD =2.(1)求证:BC ⊥BE ;(2)当几何体ABCE 的体积等于43时,求四棱锥E -ABCD 的侧面积.(1)证明连接BD ,取CD 的中点F ,连接BF ,则直角梯形ABCD 中,BF ⊥CD ,BF =CF=DF ,∴∠CBD =90°,即BC ⊥BD .∵DE ⊥平面ABCD ,BC ⊂平面ABCD ,∴BC ⊥DE ,又BD ∩DE =D ,∴BC ⊥平面BDE .由BE ⊂平面BDE 得,BC ⊥BE .(2)解∵V ABCE =V E -ABC =13×DE ×S △ABC=13×DE ×12×AB ×AD =23DE =43,∴DE =2,∴EA =DE 2+AD 2=22,BE =DE 2+BD 2=23,又AB =2,∴BE 2=AB 2+AE 2,∴AB ⊥AE ,∴四棱锥E -ABCD 的侧面积为12×DE ×AD +12×AE ×AB +12×BC ×BE +12×DE ×CD =6+22+2 6.20.(12分)(2019·青岛调研)如图,在长方形ABCD 中,AB =π,AD =2,E ,F 为线段AB 的三等分点,G ,H 为线段DC 的三等分点.将长方形ABCD 卷成以AD 为母线的圆柱W 的半个侧面,AB ,CD 分别为圆柱W 上、下底面的直径.(1)证明:平面ADHF ⊥平面BCHF ;(2)求二面角A -BH -D 的余弦值.(1)证明因为H 在下底面圆周上,且CD 为下底面半圆的直径,所以DH ⊥CH ,又因为DH ⊥FH ,且CH ∩FH =H ,所以DH ⊥平面BCHF .又因为DH ⊂平面ADHF ,所以平面ADHF ⊥平面BCHF .(2)解以H 为坐标原点,分别以HD ,HC ,HF 所在直线为x ,y ,z 轴建立空间直角坐标系.设下底面半径为r ,由题意得πr =π,所以r =1,CD =2.因为G ,H 为DC 的三等分点,所以∠HDC =30°,所以在Rt △DHC 中,HD =3,HC =1,所以A (3,0,2),B (0,1,2),D (3,0,0),设平面ABH 的法向量为n =(x ,y ,z ),因为n ·HA →=(x ,y ,z )·(3,0,2)=0,n ·HB →=(x ,y ,z )·(0,1,2)=0,+2z =0,2z =0,所以平面ABH 的法向量n =(-2,-23,3).设平面BHD 的法向量m =(x ,y ,z ).因为m ·HD →=(x ,y ,z )·(3,0,0)=0,m ·HB →=(x ,y ,z )·(0,1,2)=0,=0,+2z=0,所以平面BHD的法向量m=(0,-2,1),由图形可知,二面角A—BH—D的平面角为锐角,设为θ,所以二面角A-BH-D的余弦值为cosθ=|m·n||m||n|=28519.21.(12分)(2019·成都七中诊断)如图,在多面体ABCDE中,AC和BD交于一点,除EC以外的其余各棱长均为2.(1)作平面CDE与平面ABE的交线l,并写出作法及理由;(2)求证:平面BDE⊥平面ACE;(3)若多面体的体积为2,求直线DE与平面BCE所成角的正弦值.(1)解过点E作AB(或CD)的平行线,即为所求直线l.∵AC和BD交于一点,∴A,B,C,D四点共面.又∵四边形ABCD边长均相等,∴四边形ABCD为菱形,从而AB∥DC.又AB⊄平面CDE,且CD⊂平面CDE,∴AB∥平面CDE.∵AB⊂平面ABE,且平面ABE∩平面CDE=l,∴AB∥l.(2)证明取AE的中点O,连接OB,OD.∵AB=BE,DA=DE,∴OB⊥AE,OD⊥AE.又OB∩OD=O,∴AE⊥平面OBD,∵BD⊂平面OBD,故AE⊥BD.又四边形ABCD为菱形,∴AC⊥BD.又AE∩AC=A,∴BD⊥平面ACE.又BD⊂平面BDE,∴平面BDE ⊥平面ACE .(3)解由V E -ABCD =2V E -ABD =2V D -ABE =2,即V D -ABE =1.设三棱锥D -ABE 的高为h ,h =1,解得h = 3.又∵DO= 3.∴DO ⊥平面ABE .以点O 为坐标原点,OB ,OE ,OD 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),D (0,0,3),E (0,1,0).∴BC →=AD →=(0,1,3),BE →=(-3,1,0).设平面BCE 的一个法向量为n =(x ,y ,z ),+3z =0,-y =0得,平面BCE 的一个法向量为n =(1,3,-1).又DE →=(0,1,-3),于是cos 〈DE →,n 〉=235·2=155.故直线DE 与平面BCE 所成角的正弦值为155.22.(12分)如图,△ABC 的外接圆⊙O 的半径为5,CD ⊥⊙O 所在的平面,BE ∥CD ,CD =4,BC=2,且BE =1,tan ∠AEB =2 5.(1)求证:平面ADC⊥平面BCDE;(2)试问线段DE上是否存在点M,使得直线AM与平面ACD所成角的正弦值为27若存在,确定点M的位置,若不存在,请说明理由.(1)证明∵CD⊥平面ABC,BE∥CD,∴BE⊥平面ABC,∴BE⊥AB.∵BE=1,tan∠AEB=25,∴AE=21,从而AB=AE2-BE2=2 5.∵⊙O的半径为5,∴AB是直径,∴AC⊥BC,又∵CD⊥平面ABC,BC⊂平面ABC,∴CD⊥BC,故BC⊥平面ACD.∵BC⊂平面BCDE,∴平面ADC⊥平面BCDE.(2)解方法一假设点M存在,过点M作MN⊥CD于N,连接AN,作MF⊥CB于F,连接AF.∵平面ADC⊥平面BCDE,平面ADC∩平面BCDE=DC,MN⊂平面BCDE,∴MN⊥平面ACD,∴∠MAN为MA与平面ACD所成的角.设MN=x,计算易得,DN=32x,MF=4-32x,故AM=AF2+MF2=AC2+CF2+MF2=sin∠MAN=MNAM==2 7,解得x=-83(舍去),x=43,故MN=23CB,从而满足条件的点M存在,且DM=23DE.方法二以点C为坐标原点,CA,CB,CD所在直线分别为x轴,y轴,z轴,建立如图所示空间直角坐标系,则A (4,0,0),B (0,2,0),D (0,0,4),E (0,2,1),C (0,0,0),则DE →=(0,2,-3).易知平面ACD 的法向量为BC →=(0,-2,0),假设M 点存在,设M (a ,b ,c ),则DM →=(a ,b ,c -4),再设DM →=λDE →,λ∈(0,1],=0,=2λ,-4=-3λ=0,=2λ,=4-3λ,即M (0,2λ,4-3λ),从而AM →=(-4,2λ,4-3λ).设直线AM 与平面ACD 所成的角为θ,则sin θ=|cos 〈AM →,BC →〉|=|2λ×(-2)|216+4λ2+(4-3λ)2=27,解得λ=-43或λ=23,其中λ=-43应舍去,而λ=23∈(0,1],故满足条件的点M 存在,且点M ,43,。

2023年新高考数学临考题号押题第6题 立体几何(新高考)(解析版)

2023年新高考数学临考题号押题第6题 立体几何(新高考)(解析版)

押新高考卷6题立体几何考点3年考题考情分析立体几何2022年新高考Ⅰ卷第8题2022年新高考Ⅱ卷第7题2021年新高考Ⅰ卷第3题2021年新高考Ⅱ卷第5题2020年新高考Ⅰ卷第16题2020年新高考Ⅱ卷第13题立体几何会以单选题、多选题、填空题、解答题4类题型进行考查,单选题难度一般或较难,纵观近几年的新高考试题,分别考查棱锥的体积问题,圆锥的母线长问题,球体的内切外接及表面积体积问题,棱台的体积问题。

可以预测2023年新高考命题方向将继续以表面积体积问题、球体等问题展开命题.1.立体几何基础公式(1)所有椎体体积公式:sh V 31=(2)所有柱体体积公式:shV =(3)球体体积公式:334R V π=(4)球体表面积公式:24R S π=(5)圆柱:rh r s s s sh V ππ22,2+=+==侧底表(6)圆锥:rl r s s s sh V ππ+=+==2,31侧底表2.长方体(正方体、正四棱柱)的体对角线的公式(1)已知长宽高求体对角线:2222c b a l ++=(2)已知共点三面对角线求体对角线:22322212l l l l ++=3.棱长为a 的正四面体的内切球的半径为612a ,外接球的半径为64a .4.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =;(2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =.[方法一]:导数法设正四棱锥的底面边长为2a ,高为则2222l a h =+,2232(3a =+所以26h l =,2222a l h =-所以正四棱锥的体积13V Sh =3.(2021·新高考Ⅰ卷高考真题)已知圆锥的底面半径为长为()A.2B.22C.4【答案】B【分析】设圆锥的母线长为l,根据圆锥底面圆的周长等于扇形的弧长可求得【详解】设圆锥的母线长为l,由于圆锥底面圆的周长等于扇形的弧长,则故选:B.4.(2021·新高考Ⅱ卷高考真题)正四棱台的上、下底面的边长分别为A.20123+B.282C.56 3【答案】D【分析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解【详解】作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为所以该棱台的高()2222222h =--=,下底面面积116S =,上底面面积24S =,所以该棱台的体积()12121133V h S S S S =++=故选:D.5.(2020·新高考Ⅰ卷高考真题)已知直四棱柱5为半径的球面与侧面BCC 1B 1的交线长为________【答案】22π.【分析】根据已知条件易得1D E 3=,1D E ⊥离为2,可得侧面11B C CB 与球面的交线是扇形取11B C 的中点为E ,1BB 的中点为因为BAD ∠=60°,直四棱柱ABCD 111D E B C ⊥,又四棱柱1111ABCD A B C D -为直四棱柱,所以因为1111BB B C B = ,所以1D E【详解】因为正方体ABCD -A 1B 1C 1D 1的棱长为111111232NMD D AMN V -==⨯⨯⨯⨯=故答案为:13【点睛】在求解三棱锥的体积时,要注意观察图形的特点,看把哪个当成顶点好计算一些A .10πB .20π【答案】A【分析】新几何体的表面积比原几何体的表面积多了原几何体的轴截面面积,列出方程求解即可【详解】显然新几何体的表面积比原几何体的表面积多了原几何体的轴截面面积,设圆柱的底面半径为r ,高为h ,则所以圆柱的侧面积为2π10πrh =.故选:A.3.(2023·浙江台州·统考二模)如图所示的粮仓可以看成圆柱体与圆锥体的组合体圆柱部分的高为2米,底面圆的半径为A .3π立方米B .2π立方米【答案】C+A.241639+C.12839【答案】B【分析】过点P作底面ABCQ Q Q QP ABC与平面123-P【详解】因为三棱锥-===.2AB AC BCP ABC为正三棱锥,因此过点又因为-过B作AC的垂线于H.由三角形在直角三角形AHO中,AOPO=,在直角三角形又因为2P ABC为正三棱锥,因此因为三棱锥-又M到平面ABC距离为点Q Q AC交PC于过点M作12//【详解】3A D CD '===.()2222229C CD A C CD A C CD A D A C CD ''''⋅=+--=--=-.3,5CD BD ===.222222()99257CD CB CD CB CD CB CD DB ⋅=+--=+-=+-=- .()97822CD A C CB CD A C CD CB CD ''⋅=+⋅=⋅+⋅=--=- .A .15,66⎛⎫ ⎪⎝⎭B .13⎛ ⎝【答案】A【分析】找到水最多和水最少的临界情况,如图分别为多面体答案.【详解】将该容器任意放置均不能使水平面呈三角形,则如图,水最少的临界情况为,水面为面水最多的临界情况为多面体ABCDA 因为111111132A A BD V -=⨯⨯⨯⨯=11111111ABCDA B D ABCD A B C D C B V V V --=-所以1566V <<,即15,66V ⎛∈ ⎝故选:A.故选:C9.(2023·江苏连云港·统考模拟预测)线MN与平面BCD所成角的正切值是(A.2147B【答案】C【分析】作出图形,找出直线【详解】如图,过点A向底面作垂线,垂足为过点M作⊥MG OC于G由题意可知://MG AO且MG因为AO⊥平面BCD,所以则MNG∠即为直线MN与平面设正四面体的棱长为2,则所以222AO AN ON=-=在MNC中,由余弦定理可得:A .2B .12【答案】B【分析】连接PO ,O 为AD 的中点,再由面面垂直性质定理证明CPD ∠,解三角形求其正切值【详解】取AD 的中点O ,连接由已知PAD 为等边三角形,所以又平面PAD ⊥平面ABCD ,平面PO ⊂平面PAD ,所以PO ⊥平面ABCD ,设PD x =,则32PO x =,所以矩形ABCD 的面积ABCD S 所以四棱锥P ABCD -的体积11.(2023·山东潍坊·统考模拟预测)111ABC A B C -的体积为32,则该三棱柱外接球表面积的最小值为(A .12πB .24π【答案】C【分析】设ABC 为等腰直角三角形的直角边为的体积得264a h ⋅=,根据直三棱柱外接球半径的求法可求出最小值,即可得到该三棱柱外接球表面积的最小值【详解】设ABC 为等腰直角三角形的直角边为则111212ABC A B C ABC V S h a -=⋅=⋅故选:A13.(2023·湖北武汉·统考模拟预测)当过A ,C ,P 三点的平面截球O A .()222a +C .()23a +【答案】A【分析】由球的截面性质结合条件确定截面的位置,的截线的长度.【详解】设底面正方形ABCD 的中心为当过A ,C ,P 三点的平面截球O 的截面面积最大时,截面圆为大圆,截面过球心O ,故点P ,O ,1O 三点共线,因为1OO ⊥平面ABCD ,所以1PO ⊥平面ABCD ,此平面截正方体的截面即为正方体的面所以()222L a =+.故选:A .14.(2023·湖北·荆门市龙泉中学校联考二模)【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,求出球心的位置,再求球的半径15.(2023·湖南·校联考模拟预测)《九章算术》卷五《商功》中描述几何体直于底面的四棱锥”,现有阳马P ABCD -在,AB BC 上,当空间四边形PEFD 的周长最小时,三棱锥A .9πB .11π【答案】B【分析】把,AP PB 剪开,使得PAB P ,E ,F ,M 在同一条直线上时,PE 122CF PD ==,∴1BF =.∴点E 为AB 利用勾股定理进而得出结论.【详解】如图所示,把,AP PB 剪开,使得延长DC 到M ,使得CM DC =,则四点间四边形PEFD 的周长取得最小值.可得如图所示,设AFD △的外心为1O ,外接圆的半径为则210sin45==︒AFr .设三棱锥P ADF -外接球的半径为R ,球心为O ,连接1OO ,则则22210111224R ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭.∴三棱锥P ADF -外接球的表面积故选:B.16.(2023·湖南益阳·统考模拟预测)金刚石的成分为纯碳,是自然界中天然存在的最坚硬物质,它的结构是由8个等边三角形组成的正八面体,如图,某金刚石的表面积为则可雕刻成的最大球体积是()A .18πB .92πC .6π【答案】D【分析】先利用条件求出正多形的边长,再将求最大球的体积转化成求金刚石的内切球体积,进而转化成求截面EMFH 内切圆的半径,从而求出结果.【详解】如图,设底面ABCD EM ,设金刚石的边长为a ,则由题知,在等边EBC 中,BC 边上的高在Rt EOH △中,EO EH =由题可知,最大球即为金刚石的内切球,由对称性易知球心在球的半径即为截面EMFH 内切圆的半径,设内切圆半径为17.(2023·广东深圳·统考二模)设表面积相等的正方体、正四面体和球的体积分别为A .123V V V <<B .21<<V V 【答案】B 【分析】设正方体棱长为a ,正四面体棱长为出,,a b R ,进而求出体积的平方,比较体积的平方大小,然后得出答案【详解】设正方体棱长为a ,正四面体棱长为正方体表面积为26S a =,所以2a =所以,()()3232321216S V a a ===;则三棱锥A M BC -的外接球的球心由题意可得3sin 60CO = 直线CM 与平面ABC 故N 的轨迹是以C 为圆心,当球心H 到CM 的距离最大时,三棱锥所以N 在O C 延长线上时,三棱锥设CM 的中点为G ,连接又3CO =,OH OC ⊥所以Rt Rt HOC HGC ≌∴223HC OC ==,∴三棱锥A M BC -的外接球体积最大为故选:C .19.(2023·浙江·统考二模)MN 折起,使点A 到达点球O 表面积的最小值为(A .8π3B 【答案】D【分析】由题设,,B C M如上图,△ANM 、△BNM 、△由平面图到立体图知:MN A N ⊥'又面A MN '⊥面BCMN ,面A MN '所以A N '⊥面BCMN ,同理可得将AMN 翻折后,,A M BM '的中点过D 作DO ⊥面A NM ',过E 作EO 再过D 作DF ⊥面BCMN ,交NM 综上,//DF A N ',//DO BN ,则所以12DO EF BN ==,而A C '=令A N x '=且01x <≤,则BN =所以球O 半径2()2A M r DO =+'当23x =时,min 13r =,故球O点H 恰好是正DAC △的中心(外心),故球心O 必在BH 上,Rt BAC 的外心为E ,连接OE ,则OE ⊥平面ABC ,OE BE ⊥,设三棱锥在Rt BEO △中,由射影定理可得2BE BH BO =⨯,即2323R =,解得∴三棱锥D ABC -外接球的表面积24π12πS R ==.故选:B.。

高考文科数学练习测试题第七章 立体几何

高考文科数学练习测试题第七章  立体几何

第七章立体几何第一节空间几何体的结构特征及三视图与直观图对应学生用书P99基础盘查一空间几何体的结构特征(一)循纲忆知认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(二)小题查验1.判断正误(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱()(2) 有一个面是多边形,其余各面都是三角形的几何体是棱锥()(3)用一个平面去截一个球,截面是一个圆面()答案:(1)×(2)×(3)√2.(人教A版教材习题改编)如图,长方体ABCD-A′B′C′D′被截去一部分,其中EH∥A′D′,则剩下的几何体是________,截去的几何体是________.答案:五棱柱三棱柱基础盘查二空间几何体的三视图(一)循纲忆知1.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型.2.会用平行投影与中心投影两种方法画出简单空间图形的三视图,了解空间图形的不同表示形式.3.会画出某些建筑物的三视图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).(二)小题查验1.判断正误(1)正方体、球、圆锥各自的三视图中,三视图均相同()(2)圆锥的俯视图是一个圆()(3)圆台的正视图和侧视图是两个全等的等腰梯形()答案:(1)×(2)√(3)√2.(北师大版教材例题改编)已知空间几何体的三视图如图,则该几何体是由__________________组合而成.答案:圆柱和正四棱柱3.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆;④椭圆.其中正确的是________.答案:②③基础盘查三空间几何体的直观图(一)循纲忆知1.会用斜二测画法画出几何体的直观图.2.会用平行投影与中心投影画出简单空间图形的直观图.了解空间图形的不同表示形式.3.会画某些建筑物的直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).(二)小题查验1.判断正误(1)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=45°()(2)斜二测画法中,平行于x轴y轴的线段平行性不变,且长度也不变()(3)斜二测画法中,原图形中的平行垂直关系在直观图中不变()答案:(1)×(2)×(3)×2.(2015·东北三校第一次联考)利用斜二测画法可以得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形; ④菱形的直观图是菱形. 以上结论正确的是________. 答案:①②对应学生用书P100考点一 空间几何体的结构特征(基础送分型考点——自主练透)[必备知识]1.多面体的结构特征(1)棱柱⎩⎪⎨⎪⎧底面:互相平行侧面:都是四边形,且每相邻两个面的交线都平行且相等(2)棱锥⎩⎪⎨⎪⎧底面:是多边形侧面:都是有一个公共顶点的三角形(3)棱台 棱锥被平行于棱锥底面的平面所截,截面与底面之间的部分. 2.旋转体的结构特征(1)圆柱可以由矩形绕其任一边旋转得到.(2)圆锥可以由直角三角形绕其一条直角边旋转得到.(3)圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到.(4)球可以由半圆面或圆面绕直径旋转得到. [提醒](1)认识棱柱、棱锥、棱台、圆柱、圆锥、圆台的结构特征时,易忽视定义,可借助于几何模型强化对空间几何体的结构特征的认识.(2)台体可以看成是由锥体截得的,但一定强调截面与底面平行.[题组练透]1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( ) A .圆柱 B .圆锥C .球体D .圆柱、圆锥、球体的组合体解析:选C 截面是任意的且都是圆面,则该几何体为球体. 2.下列结论正确的是( )A .各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D A错误,如图1是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B错误,如图2,若△ABC不是直角三角形,或△ABC 是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.图1易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.图23.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③四棱锥的四个侧面都可以是直角三角形;④棱台的相对侧棱延长后必交于一点;⑤直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥.其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;③正确,如图1,PD⊥平面ABCD,其中底面ABCD为矩形,可证明∠P AB,∠PCB为直角,这样四个侧面都是直角三角形;命题④由棱台的定义知是正确的;⑤错误,当以斜边为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥.如图2所示,它是由两个同底圆锥形成的.答案:①③④[类题通法]解决与空间几何体结构特征有关问题的技巧(1)要想真正把握几何体的结构特征,必须多角度、全面地去分析,多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定;(3)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.考点二空间几何体的三视图(重点保分型考点——师生共研)[必备知识](1)空间几何体的三视图包括正(主)视图、侧(左)视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;③看不到的线画虚线.[提醒]若相邻两物体的表面相交,则表面的交线是它们的分界线,在三视图中,要注意实、虚线的区别.[典题例析]1.(2014·江西高考)一几何体的直观图如图,下列给出的四个俯视图中正确的是()解析:选B由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形.2.(2014·新课标全国卷Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析:选B将三视图还原为几何体即可.如图,几何体为三棱柱.[类题通法]1.对于简单几何体的组合体,在画其三视图时首先应分清它是由哪些简单几何体组成的,然后再画其三视图.2.由三视图还原几何体时,要遵循以下三步:(1)看视图,明关系;(2)分部分,想整体;(3)综合起来,定整体.[演练冲关]1.(2015·南阳三模)已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()解析:选C当正视图为等腰三角形时,则高应为2,且应为虚线,排除A,D;当正视图是直角三角形,由条件得一个直观图如图所示,中间的线是看不见的线P A形成的投影,应为虚线,故答案为C.2.如图由若干个相同的小立方体组成的几何体的俯视图,其中小立方体中的数字表示相应位置的小立方体的个数,则该几何体的侧视图为()解析:选C由俯视图知侧视图从左到右能看到的小立方体个数分别为2,3,1.考点三空间几何体的直观图(重点保分型考点——师生共研)[必备知识]1.在斜二测画法中,要确定关键点及关键线段.“平行于x轴的线段平行性不变,长度不变;平行于y轴的线段平行性不变,长度减半.”2.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S直观图=24S原图形,S原图形=22S直观图.[典题例析](2015·福州模拟)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()解析:选A由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.[类题通法]用斜二测画法画直观图的技巧在原图形中与x轴或y轴平行的线段在直观图中与x′轴或y′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出.[演练冲关]用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为()A.4 cm2B.4 2 cm2C.8 cm2D.8 2 cm2解析:选C依题意可知∠BAD=45°,则原平面图形为直角梯形,上下底面的长与BC,AD相等,高为梯形ABCD的高的22倍,所以原平面图形的面积为8 cm2.对应B本课时跟踪检测(四十)一、选择题1.(2014·福建高考)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱解析:选A圆柱的正视图是矩形,则该几何体不可能是圆柱.2.(2015·青岛模拟)将长方体截去一个四棱锥后,得到的几何体的直观图如图所示,则该几何体的俯视图为()解析:选C 长方体的侧面与底面垂直,所以俯视图是C.3.(2015·烟台一模)若一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为( )A .1B .2C .3D .4解析:选D 观察三视图,可得直观图如图所示.该三棱锥A -BCD的底面BCD 是直角三角形,AB ⊥平面BCD ,CD ⊥BC ,侧面ABC ,ABD 是直角三角形;由CD ⊥BC ,CD ⊥AB ,知CD ⊥平面ABC ,CD ⊥AC ,侧面ACD 也是直角三角形,故选D.4.(2015·淄博一模)把边长为1的正方形ABCD 沿对角线BD 折起,形成的三棱锥A -BCD 的正视图与俯视图如图所示,则其侧视图的面积为( )A.22 B.12 C.24D.14解析:选D 由正视图与俯视图可得三棱锥A -BCD 的一个侧面与底面垂直,其侧视图是直角三角形,且直角边长均为22,所以侧视图的面积为S =12×22×22=14,选D. 5.(2015·武昌调研)已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是( )解析:选D 易知该三棱锥的底面是直角边分别为1和2的直角三角形,注意到侧视图是从左往右看得到的图形,结合B 、D 选项知,D 选项中侧视图方向错误,故选D.6.如图,在正方体ABCD -A 1B 1C 1D 1中,点P 是上底面A 1B 1C 1D 1内一动点,则三棱锥P -ABC 的正(主)视图与侧(左)视图的面积的比值为( )A.12 B .1 C .2D .不确定,与点P 的位置有关解析:选B 如题图所示,设正方体的棱长为a ,则三棱锥P -ABC 的正(主)视图与侧(左)视图都是三角形,且面积都是12a 2,故选B.二、填空题7.(2015·西城区期末)已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为________.解析:由正三棱柱三视图还原直观图可得正(主)视图是一个矩形,其中一边的长是侧(左)视图中三角形的高,另一边是棱长.因为侧(左)视图中三角形的边长为2,所以高为3,所以正视图的面积为2 3.答案:2 38.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6,O ′C ′=2,则原图形OABC 的面积为________.解析:由题意知原图形OABC 是平行四边形,且OA =BC =6,设平行四边形OABC 的高为OE ,则OE ×12×22=O ′C ′,∵O ′C ′=2,∴OE =42, ∴S ▱OABC =6×42=24 2. 答案:24 29.(2015·昆明、玉溪统考)如图,三棱锥V -ABC 的底面为正三角形,侧面VAC 与底面垂直且VA =VC ,已知其正(主)视图的面积为23,则其侧(左)视图的面积为________.解析:设三棱锥V -ABC 的底面边长为a ,侧面VAC 边AC 上的高为h ,则ah =43,其侧(左)视图是由底面三角形ABC 边AC 上的高与侧面三角形VAC 边AC 上的高组成的直角三角形,其面积为12×32a ×h =12×32×43=33.答案:3310.给出下列命题:①在正方体上任意选择4个不共面的顶点,它们可能是正四面体的4个顶点;②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;③若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中正确命题的序号是________.解析:①正确,正四面体是每个面都是等边三角形的四面体,如正方体ABCD-A1B1C1D1中的四面体A-CB1D1;②错误,反例如图所示,底面△ABC为等边三角形,可令AB=VB=VC=BC=AC,则△VBC为等边三角形,△VAB和△VCA均为等腰三角形,但不能判定其为正三棱锥;③错误,必须是相邻的两个侧面.答案:①三、解答题11.已知:图①是截去一个角的长方体,试按图示的方向画出其三视图;图②是某几何体的三视图,试说明该几何体的构成.解:图①几何体的三视图为:图②所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体.12.如图,在四棱锥P-ABCD中,底面为正方形,PC与底面ABCD垂直,下图为该四棱锥的正视图和侧视图,它们是腰长为6 cm的全等的等腰直角三角形.(1)根据图所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求P A.解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm的正方形,如图,其面积为36 cm2.(2)由侧视图可求得PD=PC2+CD2=62+62=6 2.由正视图可知AD=6,且AD⊥PD,所以在Rt△APD中,P A=PD2+AD2=(62)2+62=6 3 cm.第二节空间几何体的表面积与体积对应学生用书P101基础盘查一柱体、锥体、台体的表面积(一)循纲忆知了解柱体、锥体、台体的表面积的计算公式.(二)小题查验1.判断正误(1)几何体的表面积就是其侧面积与底面积的和()(2)几何体的侧面积是指各个侧面积之和()答案:(1)√(2)√2.(人教A版教材例题改编)已知棱长为a,各面均为等边三角形的四面体S-ABC,它的表面积为________.解析:过S作SD⊥BC,∵BC=a,∴SD=3 2a∴S△SBC=34a2,∴表面积S=4×34a2=3a2.答案:3a23.(2015·北京石景山一模)正三棱柱的侧(左)视图如图所示,则该正三棱柱的侧面积为________.解析:由侧(左)视图知:正三棱柱的高(侧棱长)为2,底边上的高为3,所以底边边长为2,侧面积为3×2×2=12.答案:12基础盘查二 柱体、锥体、台体的体积 (一)循纲忆知了解柱体、锥体、台体的体积的计算公式. (二)小题查验 1.判断正误(1)等底面面积且等高的两个同类几何体的体积相等( ) (2)在三棱锥P -ABC 中,V P -ABC =V A -PBC =V B -P AC =V C -P AB ( ) 答案:(1)√ (2)√2.(人教B 版教材例题改编)如图,在长方体ABCD -A ′B ′C ′D ′中,用截面截下一个棱锥C -A ′DD ′,则棱锥C -A ′DD ′的体积与剩余部分的体积之比为________.答案:1∶53.(2015·海淀高三练习)已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该四棱锥的侧视图为直角三角形,则它的体积为________.解析:由俯视图可知,四棱锥顶点在底面的射影为O (如图),又侧视图为直角三角形,则直角三角形的斜边为BC =2,斜边上的高为SO =1,此高即为四棱锥的高,故V =13×2×2×1=43.答案:43基础盘查三 球的表面积与体积 (一)循纲忆知了解球的表面积与体积的计算公式. (二)小题查验 1.判断正误(1)球的表面是曲面,不能展开在一平面上,故没有展开图( ) (2)正方体的内切球中其直径与棱长相等( )答案:(1)√ (2)√2.(人教A 版教材例题改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱体积之比为________,球的表面积与圆柱的侧面积之比为________.答案:2∶3 1∶13.已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.解析:依题意得,该几何体是球的一个内接正方体,且该正方体的棱长为2.设该球的直径为2R ,则2R =22+22+22=23,所以该几何体的表面积为4πR 2=4π(3)2=12π.答案:12π对应学生用书P102考点一 空间几何体的表面积(基础送分型考点——自主练透)[必备知识]当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得:S 圆柱侧=2πrl =r r'←−−−S 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl [提醒] 组合体的表面积应注意重合部分的处理.[题组练透]1.(2014·陕西高考)将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π解析:选C 由几何体的形成过程知所得几何体为圆柱,底面半径为1,高为1,其侧面积S =2πrh =2π×1×1=2π.2.(2014·安徽高考)一个多面体的三视图如图所示,则该多面体的表面积为( )A .21+ 3B .18+ 3C .21D .18解析:选A 由三视图可知该几何体的直观图如图所示,其是棱长为2的正方体从后面右上角和前面左下角分别截去一个小三棱锥后剩余的部分,其表面积为S =6×4-12×6+2×34×(2)2=21+ 3.3.已知某几何体的三视图的正视图和侧视图是全等的等腰梯形,俯视图是两个同心圆,如图所示,则该几何体的表面积为________.解析:由三视图知该几何体为上底直径为2,下底直径为6,高为23的圆台,则几何体的表面积S =π×1+π×9+π×(1+3)×(23)2+22=26π.答案:26π[类题通法]求几何体的表面积的方法(1)求表面积问题的思路是将立体几何问题转化为平面问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得几何体的表面积.考点二 空间几何体的体积(重点保分型考点——师生共研)[必备知识]1.柱体V 柱体=Sh ;V 圆柱=πr 2h . 2.锥体V 锥体=13Sh ;V 圆锥=13πr 2h .3.台体V 台体=13(S +SS ′+S ′)h ;V 圆台=13πh (r 2+rr ′+r ′2).[提醒](1)求一些不规则几何体的体积常用割补的方法将几何体转化成已知体积公式的几何体进行解决.(2)与三视图有关的体积问题需注意几何体还原的准确性及数据的准确性.[典题例析]1.(2014·辽宁高考)某几何体三视图如图所示,则该几何体的体积为( )A .8-2πB .8-πC .8-π2D .8-π4解析:选B 直观图为棱长为2的正方体割去两个底面半径为1的14圆柱,所以该几何体的体积为23-2×π×12×2×14=8-π.2.(2014·山东高考)三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2=________.解析:如图,设点C 到平面P AB 的距离为h ,三角形P AB 的面积为S ,则V 2=13Sh ,V 1=V E -ADB =13×12S ×12h =112Sh ,所以V 1V 2=14.答案:14[类题通法]1.计算柱、锥、台的体积关键是根据条件找出相应的底面积和高.2.注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.3.求以三视图为背景的几何体的体积.应先根据三视图得到几何体的直观图,然后根据条件求解.[演练冲关]1.(2015·唐山统考)某几何体的三视图如图所示,则该几何体的体积为()A .8π+16B .8π-16C .8π+8D .16π-8解析:选B 由三视图可知:几何体为一个半圆柱去掉一个直三棱柱.半圆柱的高为4,底面半圆的半径为2,直三棱柱的底面为斜边是4的等腰直角三角形,高为4,故几何体的体积V =12π×22×4-12×4×2×4=8π-16.2.(2015·苏州测试)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,点E ,F 分别在AA 1,CC 1上,且AE =34AA 1,CF =13CC 1,点A ,C 到BD 的距离之比为3∶2,则三棱锥E -BCD 和F -ABD 的体积比V E -BCDV F -ABD=________.解析:由题意可知点A ,C 到BD 的距离之比为3∶2,所以S △BCDS △ABD=23,又直四棱柱ABCD -A 1B 1C 1D 1中,AE =34AA 1,CF =13CC 1,所以AE CF =94,于是V E -BCDV F -ABD=13S △BCD ·AE 13S △ABD·CF=23×94=32. 答案:32考点三 与球有关的切、接问题(常考常新型考点——多角探明)[必备知识]1.球的表面积公式:S =4πR 2; 球的体积公式V =43πR 32.与球有关的切、接问题中常见的组合:(1)正四面体与球:如图,设正四面体的棱长为a ,内切球的半径为r ,外接球的半径为R ,取AB 的中点为D ,连接CD ,SE 为正四面体的高,在截面三角形SDC 内作一个与边SD 和DC 相切,圆心在高SE 上的圆.因为正四面体本身的对称性,内切球和外接球的球心同为O .此时,CO =OS =R ,OE =r ,SE = 23a ,CE =33a ,则有R +r = 23a ,R 2-r 2=|CE |2=a 23,解得R =64a ,r =612a . (2)正方体与球:①正方体的内切球:截面图为正方形EFHG 的内切圆,如图所示.设正方体的棱长为a ,则|OJ |=r =a2(r 为内切球半径).②与正方体各棱相切的球:截面图为正方形EFHG 的外接圆,则|GO |=R =22a . ③正方体的外接球:截面图为正方形ACC 1A 1的外接圆,则|A 1O |=R ′=32a . (3)三条侧棱互相垂直的三棱锥的外接球:①如果三棱锥的三条侧棱互相垂直并且相等,则可以补形为一个正方体,正方体的外接球的球心就是三棱锥的外接球的球心.即三棱锥A 1-AB 1D 1的外接球的球心和正方体ABCD -A 1B 1C 1D 1的外接球的球心重合.如图,设AA 1=a ,则R =32a . ②如果三棱锥的三条侧棱互相垂直但不相等,则可以补形为一个长方体,长方体的外接球的球心就是三棱锥的外接球的球心.R 2=a 2+b 2+c 24=l 24(l 为长方体的体对角线长).[多角探明]与球相关的切、接问题是高考命题的热点,也是考生的难点、易失分点.命题角度多变.归纳起来常见的命题角度有:(1)正四面体的内切球; (2)直三棱柱的外接球; (3)正(长)方体的外接球; (4)四棱锥的外接球.角度一:正四面体的内切球1.(2015·长春模拟)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.解析:设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π. 答案:63π角度二:直三棱柱的外接球2.(2015·唐山统考)如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为( )A .2B .1 C. 2D.22解析:选C 由题意知,球心在侧面BCC 1B 1的中心O 上,BC 为截面圆的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中心.设正方形BCC 1B 1的边长为x ,Rt △OMC 1中,OM =x 2,MC 1=x2,OC 1=R =1(R 为球的半径),∴⎝⎛⎭⎫x 22+⎝⎛⎭⎫x 22=1,即x =2,则AB =AC =1,∴S 矩形ABB 1A 1=2×1= 2.角度三:正方体的外接球3.一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.解析:依题意可知,新的几何体的外接球也就是原正方体的外接球,要求的直径就是正方体的体对角线;∴2R =23(R 为球的半径),∴R =3,∴球的体积V =43πR 3=43π.答案:43π角度四:四棱锥的外接球4.(2014·大纲卷)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9πD.27π4解析:选A 如图所示,设球半径为R ,底面中心为O ′且球心为O ,∵正四棱锥P -ABCD 中AB =2,∴AO ′= 2.∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2,∴R 2=(2)2+(4-R )2,解得R =94,∴该球的表面积为4πR 2=4π×⎝⎛⎭⎫942=81π4,故选A.[类题通法]“切”“接”问题的处理规律 1.“切”的处理解决与球的内切问题主要是指球内切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.2.“接”的处理把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.对应A 本课时跟踪检测(四十一)一、选择题1.(2015·云南一检)如果一个空间几何体的正视图、侧视图、俯视图都是半径等于5的圆,那么这个空间几何体的表面积等于( )A .100π B.100π3C .25πD.25π3解析:选A 易知该几何体为球,其半径为5,则表面积为S =4πR 2=100π.2.(2014·陕西高考)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3 B .4π C .2πD.4π3解析:选D 因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r =1212+12+(2)2=1,所以V 球=4π3×13=4π3.故选D.3.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的底面边长为6时,其高的值为( )A .3 3 B. 3 C .2 6D .2 3解析:选D 设正六棱柱的高为h ,则可得(6)2+h 24=32,解得h =2 3.4.(2015·遵义模拟)一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( )A.3+ 6B.3+ 5C.2+ 6D.2+ 5解析:选C 由三视图还原为空间几何体,如图所示,则有OA =OB =1,AB = 2.又PB ⊥平面ABCD , ∴PB ⊥BD ,PB ⊥AB ,∴PD =22+1=5,P A =2+12=3,。

立体几何(文科专用)(解析版)

立体几何(文科专用)(解析版)

专题09 立体几何1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ⊂⊂∥,则αβ∥”此类的错误.2.【2019年高考全国Ⅲ卷文数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则()A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线【答案】B【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知3,12EO ON EN ===,,35,,722MF BF BM ==∴=,BM EN ∴≠,故选B .【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.3.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD的体积是 ▲ .【答案】10【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【名师点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.4.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18.【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1,故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C . (2)由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E , 所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==.作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==. 所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=. 【名师点睛】本题主要考查线面垂直的判定,以及四棱锥的体积的求解,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.一、考向分析:二、考向讲解考查内容解 题 技 巧 几何 体表 面积 与体 积1、空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量。

专题23 立体几何(文科)解答题20题-备战高考数学冲刺横向强化精练精讲(解析版)

专题23 立体几何(文科)解答题20题-备战高考数学冲刺横向强化精练精讲(解析版)

立体几何(文科)解答题20题1.(2021年全国高考乙卷数学(文)试题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.【答案】(1)证明见解析;(22 【分析】(1)由PD ⊥底面ABCD 可得PD AM ⊥,又PB AM ⊥,由线面垂直的判定定理可得AM ⊥平面PBD ,再根据面面垂直的判定定理即可证出平面PAM ⊥平面PBD ; (2)由(1)可知,AM BD ⊥,由平面知识可知,~DAB ABM ,由相似比可求出AD ,再根据四棱锥P ABCD -的体积公式即可求出.【详解】(1)因为PD ⊥底面ABCD ,AM ⊂平面ABCD ,所以PD AM ⊥,又PB AM ⊥,PB PD P =,所以AM ⊥平面PBD ,而AM ⊂平面PAM ,所以平面PAM ⊥平面PBD .(2)由(1)可知,AM ⊥平面PBD ,所以AM BD ⊥,从而~DAB ABM ,设BM x =,2AD x =,则BM AB AB AD =,即221x =,解得2x =,所以2AD 因为PD ⊥底面ABCD ,故四棱锥P ABCD -的体积为(121213V =⨯⨯=. 【点睛】本题第一问解题关键是找到平面PAM 或平面PBD 的垂线,结合题目条件PB AM ⊥,所以垂线可以从,PB AM 中产生,稍加分析即可判断出AM ⊥平面PBD ,从而证出;第二问关键是底面矩形面积的计算,利用第一问的结论结合平面几何知识可得出~DAB ABM ,从而求出矩形的另一个边长,从而求得该四棱锥的体积.2.(2021年全国高考甲卷数学(文)试题)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥.【答案】(1)13;(2)证明见解析. 【分析】(1)首先求得AC 的长度,然后利用体积公式可得三棱锥的体积;(2)将所给的几何体进行补形,从而把线线垂直的问题转化为证明线面垂直,然后再由线面垂直可得题中的结论.【详解】(1)如图所示,连结AF ,由题意可得:22415BF BC CF =+=+=,由于AB ⊥BB 1,BC ⊥AB ,1BB BC B =,故AB ⊥平面11BCC B ,而BF ⊂平面11BCC B ,故AB BF ⊥,从而有22453AF AB BF =+=+=,从而229122AC AF CF =-=-=,则222,AB BC AC AB BC +=∴⊥,ABC 为等腰直角三角形,111221222BCE ABC S s ⎛⎫==⨯⨯⨯= ⎪⎝⎭△△,11111333F EBC BCE V S CF -=⨯⨯=⨯⨯=△. (2)由(1)的结论可将几何体补形为一个棱长为2的正方体1111ABCM A B C M -,如图所示,取棱,AM BC 的中点,H G ,连结11,,A H HG GB ,正方形11BCC B 中,,G F 为中点,则1BF B G ⊥,又111111,BF A B A B B G B ⊥=,故BF ⊥平面11A B GH ,而DE ⊂平面11A B GH ,从而BF ⊥DE .【点睛】求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.对于空间中垂直关系(线线、线面、面面)的证明经常进行等价转化.3.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求点C 到平面C 1DE 的距离.【答案】(1)见解析;(2417【分析】(1)利用三角形中位线和11//A D B C 可证得//ME ND ,证得四边形MNDE 为平行四边形,进而证得//MN DE ,根据线面平行判定定理可证得结论;(2)根据题意求得三棱锥1C CDE -的体积,再求出1C DE ∆的面积,利用11C CDE C C DE V V --=求得点C 到平面1C DE 的距离,得到结果.【详解】(1)连接ME ,1B CM ,E 分别为1BB ,BC 中点 ME ∴为1B BC ∆的中位线1//ME B C ∴且112ME B C = 又N 为1A D 中点,且11//A D B C 1//ND B C ∴且112ND B C = //ME ND ∴ ∴四边形MNDE 为平行四边形//MN DE ∴,又MN ⊄平面1C DE ,DE ⊂平面1C DE//MN ∴平面1C DE(2)在菱形ABCD 中,E 为BC 中点,所以DE BC ⊥, 根据题意有3DE =117C E因为棱柱为直棱柱,所以有DE ⊥平面11BCC B ,所以1DE EC ⊥,所以113172DEC S ∆= 设点C 到平面1C DE 的距离为d ,根据题意有11C CDE C C DE V V --=,则有11113171343232d ⨯=⨯⨯, 解得41717d == 所以点C 到平面1C DE 417【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用等积法求点到平面的距离是文科生常考的内容.4.(2018年全国普通高等学校招生统一考试文数(全国卷II ))如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.【答案】(1)详见解析(2)455. 【详解】 分析:(1)连接OB ,欲证PO ⊥平面ABC ,只需证明,PO AC PO OB ⊥⊥即可;(2)过点C 作CH OM ⊥,垂足为M ,只需论证CH 的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =23. 连结OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由222OP OB PB +=知,OP ⊥OB .由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM . 故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC 42,∠ACB =45°.所以OM =253,CH =sin OC MC ACB OM ⋅⋅∠=455. 所以点C 到平面POM 的距离为455. 点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.5.(2018年全国卷Ⅲ文数高考试题文档版)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【答案】(1)证明见解析(2)存在,理由见解析【详解】分析:(1)先证AD CM ⊥,再证CM MD ⊥,进而完成证明.(2)判断出P 为AM 中点,,证明MC ∥OP ,然后进行证明即可.详解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC ∩CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点.连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .点睛:本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.6.(2020年全国统一高考数学试卷(文科)(新课标Ⅲ))如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥;(2)点1C 在平面AEF 内.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)根据正方形性质得AC BD ⊥,根据长方体性质得1AC BB ⊥,进而可证AC ⊥平面11BB D D ,即得结果;(2)只需证明1//EC AF 即可,在1CC 上取点M 使得12CM MC =,再通过平行四边形性质进行证明即可.【详解】(1)因为长方体1111ABCD A B C D -,所以1BB ⊥平面ABCD ∴1AC BB ⊥,因为长方体1111,ABCD A B C D AB BC -=,所以四边形ABCD 为正方形AC BD ∴⊥ 因为11,BB BD B BB BD =⊂、平面11BB D D ,因此AC ⊥平面11BB D D ,因为EF ⊂平面11BB D D ,所以AC EF ⊥;(2)在1CC 上取点M 使得12CM MC =,连,DM MF ,因为111112,//,=D E ED DD CC DD CC =,所以11,//,ED MC ED MC =所以四边形1DMC E 为平行四边形,1//DM EC ∴因为//,=,MF DA MF DA 所以M F A D 、、、四点共面,所以四边形MFAD 为平行四边形,1//,//DM AF EC AF ∴∴,所以1E C A F 、、、四点共面,因此1C 在平面AEF 内【点睛】本题考查线面垂直判定定理、线线平行判定,考查基本分析论证能力,属中档题. 7.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷精编版))如图,在四棱锥P ABCD -中,AB CD ∥,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【答案】(1)证明见解析;(2)623+. 【详解】试题分析:(1)由90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.从而得AB PD ⊥,进而而AB ⊥平面PAD ,由面面垂直的判定定理可得平面PAB ⊥平面PAD ;(2)设PA PD AB DC a ====,取AD 中点O ,连结PO ,则PO ⊥底面ABCD ,且22,2AD a PO a ==,由四棱锥P ABCD -的体积为83,求出2a =,由此能求出该四棱锥的侧面积.试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD .又AB 平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD .设AB x =,则由已知可得2AD x =,2PE =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =. 从而2PA PD ==,22AD BC ==22PB PC ==可得四棱锥P ABCD -的侧面积为111222PA PD PA AB PD DC ⋅+⋅+⋅ 21sin606232BC +︒=+ 8.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷精编版))如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比. 【答案】(1)见解析;(2)1:1. 【详解】试题分析:(1)取AC 的中点O ,由等腰三角形及等边三角形的性质得AC OD ⊥,AC OB ⊥,再根据线面垂直的判定定理得AC ⊥平面OBD ,即得AC ⊥BD ;(2)先由AE ⊥EC ,结合平面几何知识确定12EO AC =,再根据锥体的体积公式得所求体积之比为1:1.试题解析:(1)取AC 的中点O ,连结DO ,BO . 因为AD =CD ,所以AC ⊥DO .又由于ABC 是正三角形,所以AC ⊥BO . 从而AC ⊥平面DOB ,故AC ⊥BD . (2)连结EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt AOB 中,222BO AO AB +=. 又AB =BD ,所以222222BO DO BO AO AB BD +=+==,故∠DOB =90°. 由题设知AEC 为直角三角形,所以12EO AC =.又ABC 是正三角形,且AB =BD ,所以12EO BD =.故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:1.【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型: (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.9.(2016年高考数学(文)全国1卷)如图,已知正三棱锥P-ABC 的侧面是直角三角形,PA=6,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连结PE 并延长交AB 于点G .(Ⅰ)证明:G 是AB 的中点;(Ⅱ)在图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.【答案】(Ⅰ)见解析;(Ⅱ)作图见解析,体积为43.【详解】试题分析:证明.AB PG ⊥由PA PB =可得G 是AB 的中点.(Ⅱ)在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.根据正三棱锥的侧面是直角三角形且6PA =,可得2, 2.==DE PE 在等腰直角三角形EFP 中,可得2.==EF PF 四面体PDEF 的体积114222.323=⨯⨯⨯⨯=V试题解析:(Ⅰ)因为P 在平面ABC 内的正投影为D ,所以.AB PD ⊥因为D 在平面PAB 内的正投影为E ,所以.AB DE ⊥ 所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得,PA PB =,从而G 是AB 的中点.(Ⅱ)在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥,PB PC ⊥,又//EF PB ,所以EF PA EF PC ,⊥⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连结CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(Ⅰ)知,G 是AB 的中点,所以D 在CG 上,故2.3=CD CG由题设可得PC ⊥平面PAB ,DE ⊥平面PAB ,所以//D PC , 因此21,.33==PE PG DE PC 由已知,正三棱锥的侧面是直角三角形且6PA =,可得2, 2.==DE PE 在等腰直角三角形EFP 中,可得 2.==EF PF所以四面体PDEF 的体积114222.323=⨯⨯⨯⨯=V【考点】线面位置关系及几何体体积的计算 【名师点睛】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,注意防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.10.(2021·四川·乐山市教育科学研究所一模(文))《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”.在如图所示的“阳马”P ABCD -中,侧棱PD ⊥底面ABCD ,PD DA =,点E 是PA 的中点,作EF PB ⊥交PB 于点F .(1)求证:PC ∥平面EBD ; (2)求证:PB ⊥平面EFD . 【答案】 (1)证明见解析 (2)证明见解析 【分析】(1)作出辅助线,利用中位线证明线线平行,进而证明线面平行;(2)由线面垂直得到线线垂直,进而证明线面垂直. (1)连接AC 交BD 于O ,连接EO ,因为ABCD 为矩形,所以O 为AC 中点,又E 为PC 中点,所以EO PC ∥又EO ⊂平面EBD ,PC ⊄平面EBD ,所以PC ∥平面EBD .(2)因为侧棱PD ⊥底面ABCD ,AB ⊆平面ABCD ,所以PD AB ⊥,又ABCD 为矩形,所以AB AD ⊥,PD DA D ⋂=,所以AB ⊥平面PDA ,ED ⊂平面PDA ,所以AB ED ⊥,因为E 为PA 的中点,且PD DA =,由三线合一得:ED PA ⊥,因为AB PA A ⋂=,所以ED ⊥平面PAB ,因为PB ⊂平面PAB ,从而ED PB ⊥,又EF PB ⊥,EF ED E ⋂=,所以PB ⊥平面EFD .11.(2021·四川成都·一模(文))如图甲,在直角三角形ABC 中,已知AB ⊥BC ,BC =4,AB =8,D ,E 分别是AB ,AC 的中点.将ADE 沿DE 折起,使点A 到达点1A 的位置,且1A D ⊥BD ,连接1A B ,1A C ,得到如图乙所示的四棱锥1A DBCE -,M 为线段1A D 上一点.图 甲 图乙(1)证明:平面1A DB ⊥平面DBCE ;(2)过B ,C ,M 三点的平面与线段1A E 相交于点N ,从下列三个条件中选择一个作为已知条件,求三棱锥1A BCN -的体积.①BM =BE ;②直线EM 与BC 所成角的大小为45°;③三棱锥M BDE -的体积是三棱锥1E A BC -体积的1.4注:如果选择多个条件分别解答,按第一个解答计分. 【答案】 (1)证明见解析 (2)条件选择见解析,163【分析】(1)先根据折叠前后的变化得到线线垂直,再利用线面垂直、面面垂直的判定定理进行证明;(2)先分别选择条件得到M 为1A D 的中点,再利用等体积法合理转化顶点进行求解. (1)解:∵D ,E 分别为AB ,AC 的中点, ∴DE BC ∥.∵AD BC ⊥, ∴AD DE ⊥,∴1A D DE ⊥.∵1A D BD ⊥,DE ⊂平面BDEC ,DB ⊂平面BDEC ,DE DB D ⋂=,∴1A D ⊥平面BDEC . 又1A D ⊂平面1A DB , ∴平面1A DB ⊥平面BDEC . (2) 解:选①:∵BM BE =,90BDM BDE ∠=∠=︒, ∴≌BDM BDE .∴2==DE DM . ∴M 为1A D 的中点, 选②: ∵BCDE .∴直线EM 与BC 所成角为MED ∠. 又直线EM 与BC 所成角的大小为45︒. ∴45∠=︒MED .∵1A D DE ⊥. ∴2==DE DM . ∴M 为1A D 的中点. 选③:∵1113E A DC N EBC EDC V V S A D --==⋅△,13M BDC BDE V S MD -=⋅△,114M BDE E A BC V V --=又12DE BC =,即12BDEEBCS S =∴12A D MD =. ∴M 为1A D 的中点.∵过B ,C ,M 三点的平面与线段1A E 相交于点N , DE BC ∥,BC ⊄平面1A DE ,∴BC 平面1A DE ,又平面BMNC ⋂平面1A DE MN =, ∴∥BC MN , ∴N 为1A E 的中点.∵11A BCN N A BC V V --=,又MN 平面A BC ', ∴111N A BC M A BC C A BM V V V ---==, 易知BC ⊥平面1A BD .∴11111116843663C A BM A BM A BD V S BC S BD -=⋅=⋅=⨯⨯=△△.∴三棱锥1A BCN -的体积为163.12.(2021·全国·贵阳一中一模(文))如图甲,平面图形ABCDE 中,1,,//,60AE ED DB BC CB BD ED AB EAB ====⊥∠=︒.沿BD 将BCD △折起,使点C到F 的位置,如图乙,使,//BF BE EG BF ⊥,且2EG BF =.(1)求证:平面GEBF ⊥平面AEG ;(2)点M 是线段FG 上的动点,当点M 在什么位置时,三棱锥A MBE -3【答案】 (1)证明见解析 (2)点M 为FG 中点 【分析】(1)根据几何关系证明BE ⊥平面AEG ,进而证明平面GEBF ⊥平面AEG ;(2)过M 作//MH BF ,交BE 于H ,过F 作//FT BE 交GE MH ,分别于T N ,点,可以证明MH ⊥平面ABE ,进而设(02)FM x x =≤≤,再根据几何关系求解体积计算即可得点M 为FG 中点时,34A MBEV -=(1)证明:∵//EG BF ,BF BE ⊥, ∴EG EB ⊥,∵60EAB ∠=︒,1AE ED DB ===,//ED AB , ∴30EBA ∠=︒,则90AEB =︒∠,∴AE BE ⊥, ∵AE EG E =,∴BE ⊥平面AEG , ∵BE ⊂平面GEBF , ∴平面GEBF ⊥平面AEG (2)解:如图,过M 作//MH BF ,交BE 于H ,过F 作//FT BE 交GE MH ,分别于T N ,点.∵BF BE BF BD BE BD B ⊥⊥=,,, ∴BF ⊥平面ABE ,则MH ⊥平面ABE ∵//22GE BF GE BF ==,,∴T 为GE 的中点, ∵1BF =,∴1TG =,3FT BE =2GF=.设(02)FM x x =≤≤, 则FM MNFG TG =,即21x MN =,∴2x MN =,∵1NH =,∴12x MH =+. 1322ABE S AE BE ==△1133133224A MBE M ABE ABE x V V S MH --⎛⎫===+= ⎪⎝⎭△解得1x =,故点M 为FG 中点时,3A MBE V -.13.(2021·河南·温县第一高级中学高三阶段练习(文))如图,直四棱柱ABCD EHGF -中,上下底面为等腰梯形,//AD BC .ADC 60∠=,22AE AD CD ===,M 为线段EF 的中点.(1)证明:平面ECD ⊥平面ACE ;(2)设O 为线段AD 上一点,试确定点O 的位置,使平面//BOE 平面MCD . 【答案】(1)证明见解析; (2)点O 为AD 中点. 【分析】(1)根据给定条件可得EA CD ⊥,利用勾股定理证明CD AC ⊥即可证得平面ECD ⊥平面ACE .(2)取AD 的中点O ,证明//BO CD 和//EO MD ,利用面面平行的判定定理即可推理作答. (1)因为ABCD EHGF -为直四棱柱,则EA ⊥平面ABCD ,而CD ⊂平面ABCD ,于是得EA CD ⊥,在ADC 中,1,2CD AD ==,60ADC ∠=︒,由余弦定理得,22212cos601421232AC CD AD CD AD =+-⋅︒=+-⨯⨯⨯=, 因此,222AC CD AD +=,即CD AC ⊥,又EA AC A =,,EA AC ⊂平面ACE ,则CD ⊥平面ACE ,又CD ⊂平面ECD , 所以平面ECD ⊥平面ACE . (2)当点O 为AD 中点时,平面//BOE 平面MCD , 连接,EO BO ,如图,在等腰梯形ABCD 中,2cos 221cos601BC AD CD ADC =-∠=-⨯⨯=, 即1BC OD ==,而//AD BC ,则四边形BODC 为平行四边形,即有//BO CD , 因BO ⊄平面MCD ,CD ⊂平面MCD ,则有//BO 平面MCD ,因为1OD EM ==,//EF AD ,则四边形EODM 为平行四边形,有//EO MD ,而EO ⊄平面MCD ,MD ⊂平面MCD ,因此,//EO 平面MCD ,又EO BO O ⋂=, 所以平面//BOE 平面MCD .14.(2021·河北衡水中学模拟预测)如图,在三棱锥P ABC -中,△PAB 是等边三角形,90PAC PBC ∠=∠=︒.(1)证明:AB PC ⊥;(2)若6PC =,且平面PAC ⊥平面PBC ,求三棱锥P ABC -体积. 【答案】 (1)证明见解析 (2)9 【分析】(1)取AB 中点D ,连接PD ,CD ,证明AB ⊥平面PDC ,得线线垂直;(2)作BE PC ⊥,垂足为E ,连接AE .得证PC ⊥平面AEB ,利用全等三角形的性质得E 是PC 中点,求得各线段长后,由体积公式计算体积. (1)证明:因为PAB △是等边三角形,90PAC PBC ∠=∠=︒,所以Rt Rt PBC PAC ≌,可得AC BC =. 如图,取AB 中点D ,连接PD ,CD ,则PD AB ⊥,CD AB ⊥,PD CD D ⋂=,,PD CD ⊂平面PDC , 所以AB ⊥平面PDC ,又PC ⊂平面PDC , 所以AB PC ⊥. (2)解:作BE PC ⊥,垂足为E ,连接AE . 因为Rt Rt PBC PAC ≌, 所以AE PC ⊥,AE BE =.,,AE BE E AE BE ⋂=⊂平面ABE ,所以PC ⊥平面AEB , 由已知,平面PAC ⊥平面PBC ,故90AEB =︒∠.在Rt ABE △中,90AEB =︒∠,AE BE =,222AE AB BE =-.在Rt PBE 中,222PE PB BE =-,∵AB PB =,∴PE AE BE ==.∴在Rt PBC △中,132BE PC ==. ∴193322AEBS=⨯⨯=. ∵PC ⊥平面AEB ,∴三棱锥P ABC -体积196932P ABC V -=⨯⨯=.15.(2021·山西大同·高三阶段练习(文))如图,在四棱锥P ABCD -中,底面ABCD 为矩形,且1AD PD ==,2AB PB ==.(1)连接BD ,求证:PA BD ⊥;(2)若H 在CD 上,且PH ⊥平面ABCD ,求线段PH 的长度. 【答案】 (1)证明见解析 (2)32【分析】(1)通过构造线面垂直来证得PA BD ⊥. (2)通过相似三角形相似比求得12DH =,由此求得PH . (1)取AP 的中点E ,连接DE ,BE , 由DA DP =,BA BP =, 可得DE AP ⊥,BE AP ⊥,又因为DE BE E ⋂=,所以AP ⊥平面BDE , 又∵BD ⊂平面BDE ,∴PA BD ⊥. (2)连接AH ,设AH BD M ⋂=因为PH ⊥平面ABCD ,所以PH BD ⊥, 又因为PA BD ⊥,AP PH P ⋂=, 所以BD ⊥平面PAH ,即可得AH BD ⊥, 在Rt ABD △中,2AB =,1AD =,所以5BD =,255AM =,455BM =,55DM =,又因为DMH BMA ∽,所以14DH DM AB BM ==, ∴12DH =,又因为1PD = 在Rt PDH 中,易得32PH =.16.(2021·河南·温县第一高级中学高三阶段练习(文))如图,在四棱锥E ABCD -中,底面ABCD 为等腰梯形,//AB CD ,CH 为等腰梯形的高,33AB CD ==,AE ⊥平面CHE ,AE HE =,13EF EA =.(1)证明:平面//BCE 平面HDF ;(2)求将AHF △以AH 为旋转轴旋转一周得到的几何体的体积. 【答案】(1)证明见解析; (2)827π. 【分析】(1)连接AC ,交HD 于点M ,连接MF ,首先证明MF CE ∥,再证//BE 平面HDF ,利用面面平行的判定定理证明平面//BCE 平面HDF ;(2)找到E ,F 到直线AH 的距离,再根据旋转体的空间特征求体积. (1)连接AC ,交HD 于点M ,连接MF .因为//AB CD ,所以::2:1AM MC AH CD ==. 又13EF EA =,所以:2:1FA EF =,所以::2:1AM MC AF EF ==,所以MF CE ∥.又MF ⊂平面HDF ,CE ⊄平面HDF ,所以//CE 平面HDF . 又因为:2:1AH HB =,所以HF BE ∥.又HF ⊂平面HDF ,BE ⊄平面HDF ,所以//BE 平面HDF . 又CE BE E =∩,MF HF F =,所以平面//BCE 平面HDF .(2)因为AE ⊥平面CHE ,EH ⊂平面CHE ,所以AE EH ⊥.取AH 的中点O ,连接EO ,因为AE EH =,所以AEH △是等腰直角三角形,所以EO AH ⊥,且1EO =,所以F 到AH 的距离为23.将AHF △以AH 为旋转轴旋转一周得到的几何体为两个同底的圆锥, 圆锥的底面圆半径就是F 到AH 的距离,即23,所以该几何体的体积为212823327⎛⎫π⨯⨯=π ⎪⎝⎭.17.(2021·四川·射洪中学高三阶段练习(文))如图,在斜三棱柱111ABC A B C - 中,已知△ABC 为正三角形,四边形11ACC A 是菱形,D ,E 分别是AC ,1CC 的中点,平面11ACC A ⊥平面ABC .(1)求证:1A C ⊥平面BDE ;(2)若160C CA ∠=,在线段1DB 上是否存在点M ,使得//AM 平面BDE ?若存在,求1DMDB 的值,若不存在,请说明理由. 【答案】(1)证明见解析; (2)存在,112DM DB =. 【分析】(1)连接1AC ,由菱形可得1DE A C ⊥,再证得1BD A C ⊥即可利用线面垂直的判定推理作答.(2)连接1C D ,以D 为原点,射线1,,DB DA DC 分别为x ,y ,z 轴非负半轴建立空间直角 坐标系,再利用空间位置关系的向量方法即可计算作答. (1)在斜三棱柱111ABC A B C - 中,连接1AC ,如图,因四边形11ACC A 是菱形,则11AC AC ⊥,又D ,E 分别是AC ,1CC 的中点,有1//DE AC ,因此,1DE A C ⊥,因△ABC 为正三角形,则BD AC ⊥,又平面11ACC A ⊥平面ABC ,平面11ACC A 平面ABC AC =,BD ⊂平面ABC ,于是得BD ⊥平面11ACC A ,又1AC ⊂平面11ACC A ,从而得1BD A C ⊥, 而BD DE D ⋂=,,BD DE ⊂平面BDE , 所以1A C ⊥平面BDE . (2)连接1C D ,菱形11ACC A 中,160C CA ∠=,则1ACC △是正三角形,而D 是AC 的中点,即有1C D AC ⊥,由(1)知,1,,DB DA DC 两两垂直,以D 为原点,射线1,,DB DA DC 分别为x ,y ,z 轴非负半轴建立空间直角坐标系,如图,令2AC =,则113(0,0,0),(3,0,0),(0,1,0),(0,3,1,3)2D B A E B -,13(3,0,0),(0,,)22DB DE ==-,1(3,1,3)DB =,令(,,)n x y z =是平面BDE 的一个法向量,则3013022n DB x n DE y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1z =得(0,3,1)n =,假设在线段1DB 上存在点M ,使得//AM 平面BDE ,则1//DB DM ,令1(3,,3)D tDB M t t t ==,(3,1,3)AM DM DA t t t =-=-,因//AM 平面BDE ,则AM n ⊥,3(1)30AM n t t ⋅=-+=,解得12t =, 所以在线段1DB 上存在点M ,使得//AM 平面BDE ,此时112DM DB =. 【点睛】思路点睛:涉及探求几何体中点的位置问题,可以建立空间直角坐标系,利用空间向量证明空间位置关系的方法解决.18.(2021·贵州毕节·模拟预测(文))如图1,正方形ABCD 中,112DM MA ==,1=12CN NB =,将四边形CDMN 沿MN 折起到四边形PQMN 的位置,使得60QMA ∠=(如图2).(1)证明:平面MNPQ ⊥平面ABPQ ;(2)若,E F 分别为,AM BN 的中点,求三棱锥F QEB -的体积. 【答案】 (1)见解析; (23 【分析】(1)证明QM ⊥AQ 和QM ⊥QP 结合线面垂直、面面垂直的判定即可得证; (2)根据几何关系,利用F QEB Q BEF V V --=,由锥体体积公式即可得解. (1)∵在正方形ABCD 中,112DM MA ==,1=12CN NB =, ∴QM ⊥QP ,1,2QM AM ==,又∵∠AMQ =60°,∴在△AMQ 中,由余弦定理得,22212cos 4121232AQ AM QM AM QM AMQ ∠=-⋅⋅-⨯⨯⨯+=+=,222AQ QM AM ∴=+,AQ QM ∴⊥,又∵AQ QP Q AQ QP ⋂=,、⊂平面ABPQ ,∴QM ⊥平面ABPQ , 又∵QM ⊂平面MNPQ ,∴平面MNPQ ⊥平面ABPQ ; (2)由(1)知AQ ⊥QM ,QM ⊥QP , ∵在正方形ABCD 中,112DM MA ==,1=12CN NB =, ∴四边形CDMN 为矩形 ∴MN ⊥AM ,MN ⊥DM , ∴MN ⊥MQ ,MN ⊥MA ,∵MQ ∩MA =M ,MQ 、MA ⊂平面AMQ ,∴MN ⊥平面AMQ , ∵MN ⊂平面ABNM ,∴平面ABNM ⊥平面AMQ ,过Q 作QH ⊥AM 于H ,则QH ⊥平面ABNM ,即QH ⊥平面BEF , QH =QM sin60°3∴1113331332F QEB Q BEF BEF V V SQH --⎛⎫⋅⋅⨯⨯⨯ ⎪⎝⎭====19.(2021·四川·成都七中一模(文))已知三棱柱111ABC A B C -中,M N 、分别是1CC 与1A B 的中点,1ABA △为等边三角形,111,2.CA CA A A A M BC ===(1)求证:MN ∥平面ABC ; (2)求证:BC ⊥平面11ABB A . 【答案】 (1)证明见解析 (2)证明见解析 【分析】(1)取1BB 中点P ,连接,MP NP ,由线面平行的判定定理易证MP //平面ABC ,//NP 平面ABC ,再根据面面平行的判定定理可得平面//PMN 平面ABC ,从而//MN 平面ABC ;(2)不妨设1BC =,由平面知识容易算出1115CA CA C A ==定理可证AB BC ⊥,1A B BC ⊥,从而由线面垂直的判定定理证出BC ⊥平面11ABB A . (1)如图所示:取1BB 中点P ,连接,MP NP ,则//MP BC ,因为BC ⊂平面ABC ,MP ⊄平面ABC ,所以MP //平面ABC ,因为N P 、分别11,A B BB 的中点,所以11PN A B //,又11//A B AB ,所以//PN AB ,因为AB平面,ABC PN ⊄平面ABC ,故//NP 平面ABC ,因为,NP MP P NP ⋂=⊂平面,PMN MP ⊂平面PMN ,于是平面//PMN 平面ABC , 又MN ⊂平面,PMN 所以//MN 平面ABC . (2)不妨设1BC =,则112A A A M ==.依题意111CA CA C A ==,故1A M 为等腰11ACC △底边上的中线,则11A M CC ⊥.于是2211115AC AC A M MC ==+=, 因为222AB BC AC +=,所以AB BC ⊥,同理22211A B BC A C +=,则1A B BC ⊥,又1,AB A B B AB ⋂=⊂平面11,ABA A B ⊂平面1ABA ,所以BC ⊥平面11ABB A .20.(2021·四川·高三阶段练习(文))如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面为直角梯形,CD AB ∥,AD AB ⊥,且2PA AD CD ===,3AB =,E 为PD 的中点.(1)证明:AE ⊥平面PCD .(2)过A ,B ,E 作四棱锥P ABCD -的截面,请写出作法和理由,并求截面的面积.【答案】 (1)证明见解析(2)作法和理由见解析;面积22 【分析】(1)由PA ⊥平面ABCD ,得到CD PA ⊥,再由//CD AB ,证得CD AD ⊥,利用线面垂直的判定定理,证得CD ⊥平面PAD ,得到CD AE ⊥,结合AE PD ⊥,进而证得AE ⊥平面PCD .(2)过E 作//EF CD ,交PC 于F ,连接BF ,证得//EF AB ,得到过A ,B ,E 的截面为四边形ABFE ,由(1)知证得AE EF ⊥,结合直角梯形的面积公式,即可求解. (1)证明:因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以CD PA ⊥, 又因为//CD AB ,AD AB ⊥,所以CD AD ⊥,由AD PA A ⋂=且,AD PA ⊂平面PAD ,所以CD ⊥平面PAD , 又由AE ⊂平面PAD ,所以CD AE ⊥,因为PA AD =,E 为PD 的中点,所以AE PD ⊥,又因为CD PD D =且,CD PD ⊂平面PCD ,所以AE ⊥平面PCD . (2)解:如图所示,过E 作//EF CD ,交PC 于F ,连接BF ,则截面为四边形ABFE . 理由如下:因为//AB CD ,//EF CD ,所以//EF AB ,所以A ,B ,F ,E 四点共面, 所以过A ,B ,E 的截面为四边形ABFE ,由(1)知AE ⊥平面PCD ,因为EF ⊂平面PCD ,所以AE EF ⊥, 又由11,2,32EF CD AE AB ====,所以四边形ABFE 为直角梯形,其面积()1132222S =⨯+⨯=.31。

(完整word版)—高考全国卷Ⅰ文科数学立体几何专题复习(附详细解析)

(完整word版)—高考全国卷Ⅰ文科数学立体几何专题复习(附详细解析)

2012-2018年新课标全国卷I 文科数学汇编立体几何、选择题28 n 直的半径.若该几何体的体积是 ,则它的表面积是()3A . 17 nB . 18nC . 20 nD . 28 n【2016, 11】平面 过正方体 ABCD A , B 1C 1D 1的顶点A ,//平面CB 1D 1 , I 平面 ABB 1A 1n ,则m,n 所成角的正弦值为()A 」2V 2731B .C .D .2 3 3【2015, 6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题: 今有委M 依垣内角,下周八尺,高五尺,问”积及为M 几何? ”其意思为:在 屋内墙角处堆放 M (如图,M 堆为一个圆锥的四分之一),M 堆底部的弧长为 8尺,M 堆的高为5尺,M 堆的体积和堆放的 M 各位多少? ”已知1斛M 的体 积约为1. 62立方尺,圆周率约为 3,估算出堆放的 M 有( )A . 14 斛B . 22 斛C . 36 斛D . 66 斛【2015, 11】圆柱被一个平面截去一部分后与半球(半径为 正视图和俯视图如图所示,若该几何体的表面积为A .三棱锥B .三棱柱C .四棱锥D .四棱柱【2013,11】某几何体的三视图如图所示,则该几何体的体积为 ().A . 16 + 8 nB . 8 + 8 nC . 16 + 16 nD . 8 + 16 n【2012, 7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为C . 12D . 15)I 平面 ABCD m ,r )组成一个几何体,该几何体的三视图中的 16+20n ,则 r=()B【2017, 6】如图,在下列四个正方体中, A ,B 为正方体的两个顶点,M , N , Q 为所在棱的中点,则在这四个正方体中,直接 AB 与平面MNQ 不平行的是() 【201【2012, 8】平面 截球O 的球面所得圆的半径为1,球心O 到平面 的距离为 2,则此球的体积为()B . 4 3C . 4.6D . 6、3二、 填空题【2017 , 16】已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若 平面SCA 平面SCB , SA A C , SB BC ,三棱锥S ABC 的体积为9,则球O 的表面积为 ________________ .【2013, 15】已知H 是球O 的直径AB 上一点,AH : HB = 1 : 2, AB 丄平面a, H 为垂足,a 截球O 所得 截面的面积为 n ,则球O 的表面积为 __________________ . 三、 解答题【2017, 18】如图,在四棱锥 P ABCD 中,AB // CD ,且 BAP CDP 90 .(1)证明:平面 PAB 平面PAD ;( 2)若PA PD AB DC , APD 90,且四棱锥P ABCD 的体积为8,求该四棱锥的侧面积.3【2018,为8的正方形,该圆柱的表面积为 A. 12 nB. 12 nC. 8 nD. 10n【2018, 9】某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点 为A ,圆柱表面上的点 的长度为5】已知圆柱的上、下底面的中心分别为O 1, O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积M 在正视图上的对应点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M到N 的路径中,最短路径A . C . 23B.卜匸: D. 2【2018, BB 1C 1C 所成的角为30°,则该长方体的体积为A. 8B. 6C. 810】在长方形 ABCD-A I B I C I D I 中,AB=BC=2 , AC 1 与平 D. 8,的正投影为点D,D在平面PAB内的正投影为点E •连结PE并延长交AB于点G .(1)求证:G是AB的中点;2)在题图中作出点E在平面PAC内的正投影F (说明作法及理由),并求四面体PDEF的体积.【2015, 18】如图四边形ABCD为菱形,G为AC与BD交点, (I )BE丄平面ABCD ,证明:平面AEC丄平面BED ;(H )若/ ABC=120 ° AE丄EC,三棱锥E- ACD的体积为求该三棱锥的侧面积.【2014,19】如图,三棱柱ABC A1B1C1中,侧面BBQC为菱形,B1C的中点为O,且AO 平面BB1GC .(1) 证明:BC AB;(2) 若AC AB1, CBB1 60 ,BC 1,求三棱柱ABC A^G 的高•1【2013, 19】如图,三棱柱ABC—A1B1C1 中,CA= CB , AB= AA i,/ BAA i = 60 °⑴证明:AB丄A1C; (2)若AB= CB= 2, A1C = 、一 6,求三棱柱ABC —A1B1C1 的体积.ACB 90 , AC=BC= — AA 1, D 是棱 AA 12的中点.(1) 证明:平面BDC I 丄平面BDC ;(2) 平面BDC I 分此棱柱为两部分,求这两部分体积的比.【2018, 18】如图,在平行四边形 ABCM 中,AB=AC=3,/ ACM=90。

【新课标】备战高考数学专题复习测试题_立体几何(文科)

【新课标】备战高考数学专题复习测试题_立体几何(文科)

高考第一轮复习专题素质测试题立体几何(文科)班别______学号______姓名_______评价______ (考试时间120分钟,满分150分,试题设计:隆光诚)一、选择题(每小题5分,共60分. 以下给出的四个备选答案中,只有一个正确)1.(10全国Ⅱ)与正方体1111ABCD A BC D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点( )A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个2.(09福建)设,m n 是平面α内的两条不同直线;12,l l 是平面β内的两条相交直线,则//αβ的一个充分而不必要条件是( )A. 1////m l βα且B. 12////m l l 且nC. ////m n ββ且D.2////m n l β且3.(08四川)直线l α⊂平面,经过α外一点A 与l α、都成30︒角的直线有且只有( ) A.1条 B.2条 C.3条 D.4条4.(08宁夏)已知平面α⊥平面β,α∩β= l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...成立的是( ) A. AB ∥mB. AC ⊥mC. AB ∥βD. AC ⊥β5.(10湖北)用a 、b 、c 表示三条不同的直线,y 表示平面,给出下列命题:①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ;③若a ∥y ,b ∥y ,则a ∥b ;④若a ⊥y ,b ⊥y ,则a ∥b .其中真命题是( ) A. ①②B. ②③C. ①④D.③④6.(10新课标)设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( )A.3πa 2B.6πa 2C.12πa 2D. 24πa 2 7.(08全国Ⅱ)正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积A .3B .6C .9D .188.(09全国Ⅱ) 已知正四棱柱1111ABCD A BC D -中,1AA =2AB ,E 为1AA 中点,则异面直线BE 与1CD 所形成角的余弦值为( )B. 15C.D. 359.(09北京)若正四棱柱1111ABCD A BC D -的底面边长为1,1AB 与底面ABCD 成60°角,则11AC到底面ABCD 的距离为 ( )A B . 1 C .D 10.(10全国Ⅰ)正方体ABCD -1111A B C D 中,1BB 与平面1ACD 所成角的余弦值为( )A.B. C.2311.(09全国Ⅰ)已知二面角l αβ--为600 ,动点P 、Q 分别在面,αβ内,P 到β的距离Q到α的距离为P 、Q 两点之间距离的最小值为( )A. 2B.2C.D.412.(10北京)正方体1111ABCD-A B C D 的棱长为2,动点E 、F 在棱11A B 上.点Q 是CD 的中点,动点P 在棱AD 上,若EF=1,DP=x ,1A E=y(x ,y 大于零),则三棱锥P-EFQ 的体积( ) A.与x ,y 都有关 B.与x ,y 都无关 C.与x 有关,与y 无关 D.与y 有关,二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡中对应题号后的横线上)13.(10四川)二面角l αβ--的大小是60︒,,AB B l α⊂∈,AB 与l 所成的角为30︒,则AB 与平面β所成角的正弦值是________________.14.(10江西)长方体1111ABCD A B C D -的顶点均在同一个球面上,11AB AA ==,BC =A ,B 两点间的球面距离为 .15.(08全国Ⅰ)已知菱形ABCD 中,2AB =,120A ∠=,沿对角线BD 将ABD △折起,使二面角A BD C --为120,则点A 到BCD △所在平面的距离等于 . 16.(09安徽)对于四面体ABCD ,下列命题正确的是_________(写出所有正确命题的编号).①相对棱AB 与CD 所在的直线是异面直线;②由顶点A 作四面体的高,其垂足是△BCD 的三条高线的交点; ③若分别作△ABC 和△ABD 的边AB 上的高,则这两条高的垂足重合; ④任何三个面的面积之和都大于第四个面的面积;⑤分别作三组相对棱中点的连线,所得的三条线段相交于一点.三、解答题(本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤) 17.(本题满分10分,08安徽19)如图,在四棱锥O ABCD -中,底面ABCD 是边长为1的菱形,4ABC π∠=, OA ABCD ⊥底面, 2OA =,M 为OA 的中点.(Ⅰ)求异面直线AB 与MD 所成角的大小; (Ⅱ)求点B 到平面OCD 的距离.18. (本题满分12分,09全国Ⅱ19)如图,直三棱柱111ABC A B C -中,AB AC ⊥,D E 、分别为11AA B C 、的中点,DE ⊥平面1BCC . (Ⅰ)证明:AB AC =;(Ⅱ)设二面角A BD C --为60°,求1B C 与平面BCD 所成的角的大小.19.(本题满分12分,09浙江19)如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠= ,,P Q 分别为,AE AB的中点.(I )证明://PQ 平面ACD ;(II )求AD 与平面ABE 所成角的正弦值.ACB A 1B 1C 1DE20. (本题满分12分,10全国Ⅱ19)如图,直三棱柱ABC-A 1B 1C 1中,AC =BC ,AA 1=AB ,D 为BB 1的中点,E 为AB 1上的一点,AE=3EB 1. (Ⅰ)证明:DE 为异面直线AB 1与CD 的公垂线;(Ⅱ)设异面直线AB 1与CD 的夹角为45o ,求二面角A 1-AC 1-B 1的大小.21.(本题满分12分,10山东20)在如图所示的几何体中,四边形ABCD 是正方形,BCD A MA 平面⊥,PD ∥MA ,E GF 、、分别为、PC PB 、的中点,且2MA PD AD ==.(Ⅰ)求证:平面PDC EFG 平面⊥;(Ⅱ)求三棱锥的体积之比与四棱锥ABCD P MAB P --.A A 1EB D B 1C C 122. 本题满分12分,(08全国Ⅰ18)四棱锥A - BCDE 中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,BC =2,CD =AB AC =. (Ⅰ)证明:AD ⊥CE ;(Ⅱ)设侧面ABC 为等边三角形,求二面角C - AD - E 的大小.C DB E A参考答案:一、选择题答题卡: 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D BBDCBBCDDCC二、填空题 13.43. 14.3π. 15.23. 16.①④⑤三、解答题17.解:(Ⅰ)作AP CD ⊥于点P ,因为.22,1,45==∴=︒=∠PD AP AD AODP分别以AB 、AP、AO 所在直线为,,x yz 轴建立空间直角坐标系A —xyz.则(0,0,0),(1,0,0),(0,((0,0,2),(0,0,1)222A B PD O M -, 设AB 与MD 所成的角为θ,(1,0,0),(1)AB MD ==- ∵,1c o s ,23AB MD AB MD πθθ===⋅ ∴∴. ∴AB 与MD 所成角的大小为3π.(Ⅱ))2,22,22(),0,0,1(--===,设平面OCD 的法向量为),,(z y x n =,由⎪⎩⎪⎨⎧=⋅=⋅00得⎪⎩⎪⎨⎧=-+-=0222220z y x x ,).2,4,0(=(1,0,2)OB =-∵,所以点B 到平面OCD 的距离为.322322||===n d . 18. 解:(Ⅰ)以A 为坐标原点,射线AB 为x 轴的正半轴,建立如图所示的直角坐标系A —xyz.设).,,1(),2,0,2(),,0,0(),2,0,0(),0,2,0(),0,0,2(11c b E c B c D c A b C B 则(b >0,c >0) 于是.2||,2||),0,2,2(),0,,1(b AC AB b b ==-== 由DE ⊥平面1BCC 知DE ⊥BC ,由DE BC =0得0222=+-b ,求得1=b ,所以AB AC =.(Ⅱ)设平面BCD 的法向量),,(z y x =, 又).0,2,2(),,0,2(-=-=c由⎪⎩⎪⎨⎧=⋅=⋅00得⎩⎨⎧=+-=+-002y x cz x ,令c x =, 则)2,,(c c =又平面ABD 的法向量)0,2,0(==, 由二面角C BD A --为60°知,︒>=<60,, 故214222||||,cos 2=+=⋅>=<c c n m ,求得2=c . 于是)22,2,2()2,2,2(1-==CB ,,设1B C 与平面BCD 所成的角为θ,则.30,2122424sin 1︒==⨯==θθ 所以C B 1与平面BCD 所成的角为30°.19.(Ⅰ)证明:在ABE ∆中,Q P ,分别是AB AE ,的中点,所以PQ 是ABE ∆的中位线,从而PQ ∥EB. 又因为//EB DC ,所以PQ ∥DC.z而⊄PQ 平面ACD ,DC ⊂平面ACD , 所以//PQ 平面ACD .(Ⅱ)在ABC ∆中,BQ AQ BC AC ===,2,120ACB ∠=,所以AB CQ ⊥,3,1===BQ AQ CQ .如图所示的空间直角坐标系Q —xyz ,则)1,1,3(--=AD , 面ABE 的法向量为).0,1,0(== 记AD 与平面ABE 所成的角为θ, 所以.5551sin ===θ 20.解:(Ⅰ)以B 为坐标原点,射线BA 为x 轴正半轴,建立如图所示的空间直角坐标系B xyz -.设)0,3,1(),0,2,0(),0,4,0(),0,0,4(,411E D B A AB A A 则==.又设),0,4,4(),0,1,1(),,0,2(1B c C =-==则因为0,01=⋅=⋅B ,所以.,1B ⊥⊥即1DE B A DE ⊥⊥,所以DE 为异面直线1AB 与CD 的公垂线.(Ⅱ)因为1,B A DC <>等于异面直线1AB 与CD 的夹角,故11cos 45B A DC B A DC =,即22824162⨯+⨯=c .解得22=c ,故).22,4,2(1C又).22,4,2(.),0,4,0(111-===AC BB设面11C AA 、面11C AB 的法向量分别为).,,(),,,(c b a z y x ==由⎪⎩⎪⎨⎧=⋅=⋅0011AA AC 得⎩⎨⎧==++-0022y z y x ,).1,0,2(=由⎪⎩⎪⎨⎧=⋅=⋅0011B AC 得⎩⎨⎧=-=++-022b a c b a ,).1,2,2(-=.1515531||||,cos =⨯=⋅>=<∴n m 由于,m n <>等于二面角A 1—AC 1—B 1的平面角, 所以二面角A 1—AC 1—B 1的大小为. 21.(Ⅰ)证明:由已知ABCD,PD MA,MA ⊥平面∥.ABCD PD 平面⊥∴ 又BC ABCD ⊂平面,所以PD DC ⊥. 因为四边形ABCD 为正方形,所以BC DC ⊥. 又PD DC=D ⋂,因此BC PDC ⊥平面. 在△PBC 中,因为G F 、分别为PB PC 、的中点, 所以GF ∥BC. 因此GF PDC ⊥平面.又GF EFG ⊂平面,所以EFG PDC ⊥平面平面.(Ⅱ)解:因为PD ABCD ⊥平面,四边形ABCD 为正方形,不妨设MA=1,则PD =A D =2,所以P-ABCD ABCD 1V =S 3正方形·8PD=3.由于DA MAB ⊥面,且PD MA ∥,所以DA 即为点P 到平面MAB 的距离.三棱锥32221213131=⨯⨯⨯⨯=⋅=∆-DA S V MAB MAB P .所以 4:1:=--ABCD P MAB P V V .22. (Ⅰ)证明:作AO ⊥BC ,垂足为O ,由题设知AO ⊥底面BCDE ,且O 为BC 的中点,以O 为坐标原点,射线OC 为x设A (0,0,t ),由已知条件有C(1,0,0), D(1,2,0), E(-1, 2),2,1(),0,2,2(t AD CE -=-=.所以0=⋅,得AD ⊥CE.(Ⅱ)△ABC 为等边三角形,则)3,2,1(),3,0,0(-=AD A ,).00,2(),0,2,0(==11 设面ACD 、面AED 的法向量分别为).,,(),,,(c b a z y x ==由⎪⎩⎪⎨⎧=⋅=⋅00CD m AD m 得⎪⎩⎪⎨⎧==-+02032y z y x ,).1,0,3(=m 由⎪⎩⎪⎨⎧=⋅=⋅00ED n 得⎩⎨⎧==-+02032a c b a ,).2,3,0(=1010522||||,cos =⨯=⋅>=<∴n m 故二面角C —AD —E 为1010arccos-π.。

高三数学专项训练:立体几何解答题(文科)(一)

高三数学专项训练:立体几何解答题(文科)(一)

高三数学专项训练:立体几何解答题(文科)(一)1.(本题满分12分)如图,三棱锥A —BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 中点,D 为PB 中点,且△PMB 为正三角形.(Ⅰ)求证:DM //平面APC ;(Ⅱ)求 证:平面ABC ⊥平面APC ;(Ⅲ)若BC =4,AB =20,求三棱锥D —BCM 的体积.2.如图1,在四棱锥ABCD P -中,⊥PA 底面ABCD ,面ABCD 为正方形,E 为侧棱PD 上一点,F 为AB 上一点.该四棱锥的正(主)视图和侧(左)视图如图2所示.(Ⅰ)求四面体PBFC 的体积;(Ⅱ)证明:AE ∥平面PFC ;(Ⅲ)证明:平面PFC ⊥平面PCD .3.如图,四棱柱P ABCD -中, .//,,AB PAD AB CD PD AD F ⊥=平面是DC 上的点且1,2DF AB PH =为PAD ∆中AD 边上的高. (Ⅰ)求证://AB 平面PDC ; (Ⅱ)求证:PH BC ⊥;(Ⅲ)线段PB 上是否存在点E ,使EF ⊥平面PAB ?说明理由.A B C4.在四棱锥V ABCD -中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD .V A B CD(Ⅰ)如果P 为线段VC 的中点,求证://VA 平面PBD ;(Ⅱ)如果正方形ABCD 的边长为2, 求三棱锥A VBD -的体积.5.如图,在四棱锥中,底面为菱形,,为的中点。

(1)若,求证:平面; (2)点在线段上,,试确定的值,使;6.如图,已知三棱锥BPC A -中,PC AP ⊥,BC AC ⊥,M 为AB 中点,D 为PB 中点,且PMB ∆为正三角形。

(Ⅰ)求证:DM //平面APC ;(Ⅱ)求证:平面ABC ⊥平面APC ;(III )若4=BC ,20=AB ,求三棱锥BCM D -的体积.AB CDPM7.如图,E 是矩形ABCD 中AD 边上的点,F 为CD 边的中点,243AB AE AD ===,现将ABE ∆沿BE 边折至PBE ∆位置,且平面PBE ⊥平面BCDE .⑴ 求证:平面PBE ⊥平面PEF ;⑵ 求四棱锥P BEFC -的体积.PB C FE (1)(2)8.如图,平面四边形ABCD 的4个顶点都在球O 的表面上,AB 为球O 的直径,P 为球面上一点,且PO ⊥平面 ABCD ,2BC CD DA ===,点M 为PA 的中点.(1) 证明:平面//PBC 平面ODM ;(2) 求点A 到平面PBC 的距离. OAD PBC M9.如图,四棱锥P —ABCD 中,底面ABCD 是边长为a 的正方形E , F 分别为PC ,BD 的中点,侧面PAD ⊥底面ABCD ,且PA=PD=2AD.(Ⅰ)求证:EF//平面PAD ;(Ⅱ)求三棱锥C —PBD 的体积.10.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,90ABC BCD ∠=∠=,PA PD DC CB a ====,2AB a =,E 是PB 中点,H 是AD 中点.(Ⅰ)求证://EC 平面APD ;(Ⅱ)求三棱锥E BCD -的体积.CDFEP11.如图,在三棱锥S ABC -中,侧面SAB 与侧面SAC 均为等边三角形, 90BAC ∠=°,O 为BC 中点.(Ⅰ)证明:SO ⊥平面ABC ;(Ⅱ)求异面直线BS 与AC 所成角的大小.12.(本题满分12分)如图,已知AB ⊥平面ACD ,DE ∥AB ,△ACD 是正三角形,2AD DE AB ==,且F 是CD 的中点.(Ⅰ)求证AF ∥平面BCE ;(Ⅱ)设AB =1,求多面体ABCDE 的体积.OSB C13.在四棱锥P -ABCD 中,∠ABC =∠ACD =90°,∠BAC =∠CAD =60°,PA ⊥平面ABCD ,E 为PD 的中点,PA =2AB =2.(Ⅰ)求四棱锥P -ABCD 的体积V ;(Ⅱ)若F 为PC 的中点,求证PC ⊥平面AEF ;PA BC DEF14..(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 是边长为a 的正方形E ,F分别为PC ,BD 的中点,侧面PAD ⊥底面ABCD ,且PA=PD=22AD.(Ⅰ)求证:EF//平面PAD ;(Ⅱ)求三棱锥C —PBD 的体积.CD FEP15.右图为一组合体,其底面ABCD为正方形,PD⊥平面ABCD,//EC PD,且22PD AD EC===(Ⅰ)求证://BE平面PDA;(Ⅱ)求四棱锥B CEPD-的体积;(Ⅲ)求该组合体的表面积.16.四棱锥S ABCD-中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,E为SD的中点,已知452ABC AB BC∠===,,SB SC==(Ⅰ)求证:SA BC⊥;(Ⅱ)在BC上求一点F,使//EC平面SAF;(Ⅲ)求三棱锥D EAC-的体积.A BC D SE17.(本小题满分12分) 在三棱柱111ABC A B C -中,底面是边长为32的正三角形,点1A 在底面ABC 上的射影O 恰是BC 中点.(Ⅰ)求证:1AA BC ⊥;(Ⅱ)当侧棱1AA 和底面成45角时, 求11A BB C C V -(Ⅲ)若D 为侧棱1AA 上一点,当DAD A 1为何值时,11BD A C ⊥.18.在四棱锥P-ABCD 中,平面PAD ⊥平面ABCD ,PA =PD ,底面ABCD 是菱形,∠A =60°,E 是AD 的中点,F 是PC 的中点.(Ⅰ)求证:BE ⊥平面PAD ;(Ⅱ)求证:EF ∥平面PAB ;AB O CD A 1B 1C 119.在几何体ABCDE 中,⊥=∠DC BAC ,2π平面ABC ,⊥EB 平面ABC ,1,2====CD BE AC AB .(1)设平面ABE 与平面ACD 的交线为直线l ,求证://l 平面BCDE ;(2)设F 是BC 的中点,求证:平面⊥AFD 平面AFE ;(3)求几何体ABCDE 的体积.20.在四棱锥P-ABCD 中,平面PAD ⊥平面ABCD ,PA =PD ,底面ABCD 是菱形,∠A =60°,E 是AD 的中点,F 是PC 的中点.(Ⅰ)求证:BE ⊥平面PAD ;(Ⅱ)求证:EF ∥平面PAB ;21.(本小题满分12分)如图,已知⊥AB 平面ACD ,⊥DE 平面ACD ,ACD ∆为等边三角形,AB DE AD 2==,F 为CD 中点.(1)求证://AF 平面BCE ;(2)求证:平面BCE ⊥平面CDE ;(3)求直线BF 与平面BCE 所成角的正弦值.22.如图,四棱锥P —ABCD 的底面ABCD 是边长为1的菱形,∠BCD ﹦60°,E 是CD 中点,PA ⊥底面ABCD ,PA(1)证明:平面PBE ⊥平面PAB(2)求二面角A —BE —P 的大小。

立体几何文科练习题(精品).docx

立体几何文科练习题(精品).docx

立体几何1.用斜二测画法画出长为6,宽为4的矩形水平放置的直观图,则该直观图面积为()A.12B. 24C. 6>/2D. 12^22.设是不同的直线,6Z,”是不同的平面,下列命题中正确的是()A.若mlla.n ± f3.m Ln ,则a L/3B.若mlla.n±/?,m,则a//”C.若mlla.n ±[3.mlIn ,则a ±D.若ml ta.n ± /3.ml In ,则a 11 /33.如图,棱长为1的正方体ABCD-A^C.D.中,P为线段A.B ±的动点,则下列结论错谖的是A. DC X 1B.平面D.A.P±平面A.APc. ZAPD]的最大值为90° D. AP + PD l的最小值为』2 +1 1 4.一个几何体的三视图如图所示(单位:m),则该几何体的体积为 m3. : 口2 1正视图侧视图I,1』5.若某几何体的三视图如图所示,则此几何体的体积等于. r* * it,2俯视图6.如图是一个几何体的三视图,则该几何体的体积是7 .如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞D,E,F ,且知SD : DA = SE : EB = CF : FS = 2 :1,若仍用这个容器盛水,则最多可盛水的体积是原来的.8.如图,四边形ABCD为正方形,QA_L平面ABCD, PD〃QA, QA=AB=- PD.⑴证明:PCU平面DCQ;⑵求棱锥Q-ABCD的体积与棱锥P- DCQ的体积的比值.[来7T 9.如图所示的多面体中,ABCD是菱形,3DE尸是矩形,面ABCD, ZBAD = ~.3(1)求证:平面BCF H平面AEQ.(2)若BF = BD = a,求四棱锥A-BQEF的体积。

10.在四棱锥 P —A3CQ 中,底面ABCD为矩形,PD 1 ^ABCD , AB = 1, BC = 2, PD =的,G、F分别为AP、CQ的中点.(1)求证:AD 1 PC;(2)求证:FG〃平面BCP;11.如图,多面体AEDBFC的直观图及三视图如图所示,M,N分别为AF,BC的中点.(1)求证:MN 〃平面CDEF ;(2)求多面体A - CDEF的体积.12.如图,在三棱锥P-ABC中,ZABC = 90°,(1)求证:EFtmABC;(2)求证:平面AEF L平面PAB.P平面ABC , E, F分别为PB, PC的中点.B13.如图,在二棱锥 P—ABC 中,D, E, F 分别为棱 PC, AC, AB 的中点.已知 PAXAC, PA=6, BC=8, DF=5.求证:(1)直线PA〃平面DFE;(2)平面BDE±平面ABC.14.如图.直二棱柱ABC —AiBiCi中,AB= AC,点D、E分别是棱BC, CG上的点(点D不同于点C),且ADXDE, F为BC的中点.求证:(1)平面ADE_L平面BCCB(2)直线AF〃平面ADE.参考答案1. C【解析】试题分析:斜二测法:要求长边,宽减半,直角变为45°角,则面积为:6x2xsin45° = 6& 考点:直观图与立体图的大小关系.2. C【解析】试题分析:此题只要举出反例即可,A,B中由可得nil (3,则可以为任意角度的两平面,A, B均错误.C, D中由n V (3,mll n可得m L (3 ,则有all /3 ,故C正确,D错误.考点:线,面位置关系.3. C【解析】试题分析:g项侦回,「.A正确;"5恤M,.IB正确;当0<A/<g 时,ZAPD]为钝角,3错;将面AA X B与面ABB^沿人3展成平面图形,线段人。

立体几何(文科)小题大做-备战高考数学冲刺横向强化精练精讲(解析版)

立体几何(文科)小题大做-备战高考数学冲刺横向强化精练精讲(解析版)

立体几何(文科)小题大做一、单选题1.(2021·上海青浦·一模)下列条件中,能够确定一个平面的是()A.两个点B.三个点C.一条直线和一个点D.两条相交直线【答案】D【分析】两个点能确定一条直线,但一条直线不能确定一个平面,可判断A;若三个点共线,则不能确定一个平面,可判断B;若点在直线上,则一条直线和一个点不能确定一个平面,可判断C;两条直线能确定一个平面,可判断D.【详解】解:对于A,两个点能确定一条直线,但一条直线不能确定一个平面,所以两个点不能确定一个平面;对于B,三个不共线的点可以确定一个平面,若三个点共线,则不能确定一个平面,故B不能;对于C,一条直线和这条直线外一点能确定一个平面,若这个点在直线上,则不能确定一个平面,故C不能;对于D,两条相交直线能确定一个平面,故D能.故选:D.2.(广东省佛山市顺德区郑裕彤中学2019-2020学年高二上学期期中数学试题)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.【答案】A【分析】利用线面平行判定定理逐项判断可得答案.【详解】对于选项A,OQ∥AB,OQ与平面MNQ是相交的位置关系,故AB和平面MNQ不平行:对于选项B,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ:对于选项C,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ:对于选项D ,由于AB ∥CD ∥NQ ,结合线面平行判定定理可知AB ∥平面MNQ :故选:A .3.(2021年浙江省高考数学试题)如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则( )A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCDB .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCDD .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B【答案】A【分析】由正方体间的垂直、平行关系,可证1//,MN AB A D ⊥平面1ABD ,即可得出结论.【详解】连1AD ,在正方体1111ABCD A B C D -中,M 是1A D 的中点,所以M 为1AD 中点,又N 是1D B 的中点,所以//MN AB ,MN ⊄平面,ABCD AB ⊂平面ABCD ,所以//MN 平面ABCD .因为AB 不垂直BD ,所以MN 不垂直BD则MN 不垂直平面11BDD B ,所以选项B,D 不正确;在正方体1111ABCD A B C D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥,1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥,且直线11,A D D B 是异面直线,所以选项C 错误,选项A 正确.故选:A.【点睛】关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系.4.(2018年全国普通高等学校招生统一考试文数(全国卷II ))在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A .22B .32C .52D .72【答案】C【分析】利用正方体1111ABCD A B C D -中,//CD AB ,将问题转化为求共面直线AB 与AE 所成角的正切值,在ABE ∆中进行计算即可.【详解】在正方体1111ABCD A B C D -中,//CD AB ,所以异面直线AE 与CD 所成角为EAB ∠, 设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以5BE a =,则55tan 22BE a EAB AB a ∠===.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角; (2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.5.(2020年天津市高考数学试卷)若棱长为23该球的表面积为( )A .12πB .24πC .36πD .144π 【答案】C【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【详解】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即()()()22223232332R ++==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.6.(2021·四川成都·一模(理))在△ABC 中,已知AB ⊥BC ,AB =BC =2.现将△ABC 绕边AC 旋转一周,则所得到的旋转体的表面积是( )A .2πB .22πC .32πD .42π【答案】D【分析】由题知该旋转体为两个倒立的圆锥底对底组合在一起,根据圆锥的侧面积S RL π=计算公式可得.【详解】解:由题知该几何体为两个倒立的圆锥底对底组合在一起,其中圆锥母线长2L =,圆锥底面半径2R =,22242S ππ∴=⨯⨯⨯= 故选:D .7.(2021·辽宁·模拟预测)攒尖是我国古代建筑中屋顶的一种结构样式,多见于亭阁式建筑、园林建筑.下面以圆形攒尖为例.如图所示的建筑屋顶可近似看作一个圆锥,其轴截面(过圆锥旋转轴的截面)是底边长为6m ,顶角为23π的等腰三角形,则该屋顶的体积约为( )A .36m πB .333m πC .393m πD .312m π【答案】B【分析】 根据给定条件求出圆锥的高,再利用圆锥体积公式计算即可得解.【详解】 依题意,该圆形攒尖的底面圆半径3r =,高tan 36h r π==,则21333V r h ππ==(3m ), 所以该屋顶的体积约为333m π. 故选:B8.(2021·全国全国·模拟预测)如图,已知圆锥的顶点为S ,AB 是底面圆的直径,点C 在底面圆上且60ABC ∠=︒,点M 为劣弧AC 的中点,过直线AC 作平面α,使得直线SB ∥平面α,设平面α与SM 交于点N ,则SN SM的值为( )A .13B .23C .12D .34【答案】B【分析】连接BM 交AC 于点D ,连接ND ,根据线面平行的性质定理知//ND SB ,再根据平行线分线段成比例定理得到SN BD SM BM=,然后根据圆的性质得到DAB DCM △△∽,进而得21BD AB DM MC ==,即可求出SN SM 的值. 【详解】解:如图,连接BM 交AC 于点D ,连接ND ,则平面SBM ⋂平面ND α=,又//SB 平面α,所以//ND SB ,所以SN BD SM BM=.因为AB 是底面圆的直径,60ABC ∠=︒,点M 为劣弧AC 的中点,连接MC ,所以30ABM MBC BAC BMC ∠=∠=∠=∠=︒,所以12MC BC AB ==,易得DAB DCM △△∽,所以21BD AB DM MC ==,则23BD SN BM SM ==.故选:B.9.(2021年天津高考数学试题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为( )A .3πB .4πC .9πD .12π 【答案】B【分析】作出图形,计算球体的半径,可计算得出两圆锥的高,利用三角形相似计算出圆锥的底面圆半径,再利用锥体体积公式可求得结果.【详解】如下图所示,设两个圆锥的底面圆圆心为点D ,设圆锥AD 和圆锥BD 的高之比为3:1,即3AD BD =,设球的半径为R ,则343233R ππ=,可得2R =,所以,44AB AD BD BD =+==, 所以,1BD =,3AD =,CD AB ⊥,则90CAD ACD BCD ACD ∠+∠=∠+∠=,所以,CAD BCD ∠=∠,又因为ADC BDC ∠=∠,所以,ACD CBD △∽△,所以,AD CD CD BD=,3CD AD BD ∴=⋅ 因此,这两个圆锥的体积之和为()21134433CD AD BD πππ⨯⋅+=⨯⨯=. 故选:B.10.(2021·陕西临渭·一模(理))已知,a b 是两条异面直线,直线c 与,a b 都垂直,则下列说法正确的是( )A .若c ⊂平面α,则a α⊥B .若c ⊥平面α,则//,//a b ααC .存在平面α,使得,,//c a b ααα⊥⊂D .存在平面α,使得,,c a b ααα⊥⊥//【答案】C【分析】在A 中,a 与α相交、平行或a ⊂α;在B 中,a ,b 与平面α平行或a ,b 在平面α内;在C 中,由线面垂直的性质得:存在平面α,使得c ⊥α,a ⊂α,b ∥α;在D 中,a ∥b ,与已知a ,b 是两条异面直线矛盾.【详解】由a ,b 是两条异面直线,直线c 与a ,b 都垂直,知:在A 中,若c ⊂平面α,则a 与α相交、平行或a ⊂α,故A 错误;在B 中,若c ⊥平面α,则a ,b 与平面α平行或a ,b 在平面α内,故B 错误; 在C 中,由线面垂直的性质得:存在平面α,使得c ⊥α,a ⊂α,b ∥α,故C 正确; 在D 中,若存在平面α,使得c ∥α,a ⊥α,b ⊥α,则a ∥b ,与已知a ,b 是两条异面直线矛盾,故D 错误.故选:C11.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .2πB .12πC .82πD .10π 【答案】B【详解】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积. 详解:根据题意,可得截面是边长为22 2的圆,且高为2所以其表面积为22(2)222212S πππ=+⋅⋅=,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.12.(2021·云南昆明·模拟预测(理))已知正四棱锥的底面边长为2,高为2,若存在点O 到该正四棱锥的四个侧面和底面的距离都等于d ,则d =( )A .512-B .312-C .322- D .622- 【答案】A【分析】作出四棱锥,根据题意sin OE O F SE SO α'==',解方程即可求解. 【详解】由题意可得2211sin 521OE SE α===+,且sin 25O F d SO d α'=='-, 解得51d -=. 故选:A二、填空题13.(2019年北京市高考数学试卷(文科))已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【答案】如果l ⊥α,m ∥α,则l ⊥m 或如果l ⊥α,l ⊥m ,则m ∥α.11【分析】将所给论断,分别作为条件、结论加以分析.【详解】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m . 正确;(2)如果l ⊥α,l ⊥m ,则m ∥α.正确;(3)如果l ⊥m ,m ∥α,则l ⊥α.不正确,有可能l 与α斜交、l ∥α.【点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.14.(2021年全国高考甲卷数学(文)试题)已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为________.【答案】39π【分析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案.【详解】∵216303V h ππ=⋅= ∴52h = ∴2222513622l h r ⎛⎫=+=+= ⎪⎝⎭∴136392S rl πππ==⨯⨯=侧. 故答案为:39π.15.(2019年江苏省高考数学试卷)如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.试卷第12页,共14页【答案】10.【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.【详解】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点, 所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.16.(2021年全国高考乙卷数学(文)试题)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).13【答案】③④(答案不唯一)【分析】由题意结合所给的图形确定一组三视图的组合即可.【详解】选择侧视图为③,俯视图为④,如图所示,长方体1111ABCD A B C D -中,12,1AB BC BB ===,,E F 分别为棱11,B C BC 的中点,则正视图①,侧视图③,俯视图④对应的几何体为三棱锥E ADF -.故答案为:③④.【点睛】三视图问题解决的关键之处是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系.试卷第14页,共14页15。

高三立体几何习题文科含答案(K12教育文档)

高三立体几何习题文科含答案(K12教育文档)

高三立体几何习题文科含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高三立体几何习题文科含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高三立体几何习题文科含答案(word版可编辑修改)的全部内容。

23正视图 图1侧视图 图22 2图3立几习题21若直线l 不平行于平面a ,且l a ∉,则 A .a 内的所有直线与异面 B .a 内不存在与l 平行的直线C .a 内存在唯一的直线与l 平行D .a 内的直线与l 都相交2.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是(A )12l l ⊥,23l l ⊥13//l l ⇒(B )12l l ⊥,23//l l ⇒13l l ⊥(C )233////l l l ⇒1l ,2l ,3l 共面(D)1l ,2l ,3l 共点⇒1l ,2l ,3l 共面3.如图1 ~ 3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为A .3.4 C .3.24。

某几何体的三视图如图所示,则它的体积是( )A 。

283π- B.83π-C 。

8-2πD 。

23π5、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD,∠BAD=60°,E 、F 分别是AP 、AD 的中点求证:(1)直线EF‖平面PCD;(2)平面BEF⊥平面PAD5(本小题满分13分)如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,1OA=,OD=,△OAB,△OAC,△ODE,△ODF都是正三角形。

高三数学立体几何专项训练(文科)(教育课资)

高三数学立体几何专项训练(文科)(教育课资)

2020届高三数学立体几何专题(文科)吴丽康 2019-111.如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的点. (Ⅰ)证明:PB // 平面AEC ;(Ⅱ)设AP=1,AD =,三棱锥P -ABD 的体积V =,求A 点到平面PBD 的距离.2. 如图,四棱锥P ­ABCD 中,AB ∥CD ,AB =2CD ,E 为PB 的中点. (1)求证:CE ∥平面P AD ;(2)在线段AB 上是否存在一点F ,使得平面P AD ∥平面CEF ? 若存在,证明你的结论,若不存在,请说明理由.3如图,在四棱锥P -ABCD 中,平面P AC ⊥平面ABCD ,且P A ⊥AC ,P A =AD =2,四边形ABCD 满足BC ∥AD ,AB ⊥AD ,AB =BC =1.点E ,F 分别为侧棱PB ,PC 上的点, 且PE PB =PFPC=λ(λ≠0). (1)求证:EF ∥平面P AD ;(2)当λ=12时,求点D 到平面AFB 的距离.3434.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.(1)证明:平面A1BD∥平面CD1B1;(2)若平面ABCD∩平面B1D1C=直线l,证明:B1D1∥l.5..如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.6.如图,在四棱锥P­ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.7.(2018北京通州三模,18)如图,在四棱锥P-ABCD中,平面PAB⊥平面ABCD,四边形ABCD为正方形,△PAB为等边三角形,E是PB中点,平面AED与棱PC交于点F.(1)求证:AD∥EF; (2)求证:PB⊥平面AEFD;(3)记四棱锥P-AEFD的体积为V1,四棱锥P-ABCD的体积为V2,直接写出V1的值.V28...如图,在四棱锥P­ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面P AD为正三角形,其所在平面垂直于底面ABCD,若G为AD的中点.(1)求证:BG⊥平面P AD;(2)求证:AD⊥PB;(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD?并证明你的结论.9.(2016·高考北京卷)如图,在四棱锥P­ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面P AC;(2)求证:平面P AB⊥平面P AC;(3)设点E为AB的中点.在棱PB上是否存在点F,使得P A∥平面CEF?说明理由.10..如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若AF⊥EF,求证:平面P AD⊥平面ABCD.11..如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,P A =AB =BC =3,AD =CD =1,∠ADC =120°,点M 是AC 与BD 的交点,点N 在线段PB 上,且PN =14PB .(1)证明:MN ∥平面PDC ;(2)求直线MN 与平面P AC 所成角的正弦值.12..(2016·高考四川卷)如图,在四棱锥P ABCD 中,P A ⊥CD ,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .(1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由; (2)证明:平面P AB ⊥平面PBD .13.(2016·高考江苏卷)如图,在直三棱柱ABC A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1. 求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .14.【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.15.(2017天津,文17)如图,在四棱锥P-ABCD 中,AD ⊥平面PDC,AD ∥ BC, PD ⊥PB, AD=1,BC=3,CD=4,PD=2.(1)求异面直线AP 与BC 所成角的余弦值;(2)求证:PD ⊥平面PBC;(3)求直线AB 与平面PBC 所成角的正弦值.16.(2016·高考浙江卷)如图,在三棱台ABC DEF 中,平面BCFE ⊥平面ABC , ∠ACB =90°,BE =EF =FC =1,BC =2,AC =3. (1)求证:BF ⊥平面ACFD ;(2)求直线BD 与平面ACFD 所成角的余弦值.17..(2018·全国Ⅲ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直, M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC .(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.立体几何中的翻折问题18...如图(1),在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图(2)中△A 1BE 的位置,得到四棱锥A 1­BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1­BCDE 的体积为362,求a 的值.19..如图1,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2,E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直, 如图2.在图2所示的几何体D -ABC 中: (1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F -BCE 的体积.20.如图,长方体ABCD ­A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8.点E ,F 分别在A 1B 1,D 1C 1上,过点E 、F 的平面α与此长方体的面相交,交线围成一个正方形EFGH .(1)求证:A 1E =D 1F ;(2)判断A 1D 与平面α的关系.2020届高三数学立体几何专题(文科)1解析:(Ⅰ)设AC 的中点为O , 连接EO . 在三角形PBD 中,中位线EO //PB ,且EO 在平面AEC 上,所以PB //平面AEC . (Ⅱ)∵AP =1,3AD =,-3P ABD V =, -11=32P ABD V PA AB AD ∴⋅⋅⋅33==AB ,∴32AB =, 作AH ⊥PB 角PB 于H ,由题意可知BC ⊥平面P AB ,∴BC ⊥AH ,故AH ⊥平面PBC .又313PA AB AH PB ⋅==,故A 点到平面PBC 的距离313. 2.(1)证明:如图所示,取P A 的中点H ,连接EH ,DH ,因为E 为PB 的中点, 所以EH ∥AB ,EH =12AB ,又AB ∥CD ,CD =12AB . 所以EH ∥CD ,EH =CD ,因此四边形DCEH 是平行四边形, 所以CE ∥DH , 又DH ⊂平面P AD ,CE ⊄平面P AD , 所以CE ∥平面P AD . (2)如图所示,取AB 的中点F ,连接CF ,EF , 所以AF =12AB ,又CD =12AB ,所以AF =CD ,又AF ∥CD ,所以四边形AFCD 为平行四边形,所以CF ∥AD ,又CF ⊄平面P AD ,所以CF ∥平面P AD ,由(1)可知CE ∥平面P AD , 又CE ∩CF =C ,故平面CEF ∥平面P AD ,故存在AB 的中点F 满足要求.3.(1)证明 ∵PE PB =PFPC =λ(λ≠0),∴EF ∥BC .∵BC ∥AD ,∴EF ∥AD .又EF ⊄平面P AD ,AD ⊂平面P AD ,∴EF ∥平面P AD . (2)解 ∵λ=12,∴F 是PC 的中点,在Rt △P AC 中,P A =2,AC =2,∴PC =P A 2+AC 2=6,∴PF =12PC =62.∵平面P AC ⊥平面ABCD ,且平面P AC ∩平面ABCD =AC ,P A ⊥AC ,P A ⊂平面P AC ,∴P A ⊥平面ABCD ,∴P A ⊥BC .又AB ⊥AD ,BC ∥AD ,∴BC ⊥AB ,又P A ∩AB =A ,P A ,AB ⊂平面P AB , ∴BC ⊥平面P AB , ∴BC ⊥PB ,∴在Rt △PBC 中,BF =12PC =62.连接BD ,DF ,设点D 到平面AFB 的距离为d ,在等腰三角形BAF 中,BF =AF =62,AB =1, ∴S △ABF =54,又S △ABD =1,点F 到平面ABD 的距离为1, ∴由V F -ABD =V D -AFB ,得13×1×1=13×d ×54,解得d =455,即点D 到平面AFB 的距离为455.4.证明 (1)由题设知BB 1∥DD 1且BB 1=DD 1,所以四边形BB 1D 1D 是平行四边形, 所以BD ∥B 1D 1.又BD ⊄平面CD 1B 1,B 1D 1⊂平面CD 1B 1,所以BD ∥平面CD 1B 1.因为A 1D 1∥B 1C 1∥BC 且A 1D 1=B 1C 1=BC , 所以四边形A 1BCD 1是平行四边形,所以A 1B ∥D 1C .又A 1B ⊄平面CD 1B 1,D 1C ⊂平面CD 1B 1, 所以A 1B ∥平面CD 1B 1.又因为BD ∩A 1B =B ,BD ,A 1B ⊂平面A 1BD , 所以平面A 1BD ∥平面CD 1B 1. (2)由(1)知平面A 1BD ∥平面CD 1B 1,又平面ABCD ∩平面B 1D 1C =直线l , 平面ABCD ∩平面A 1BD =直线BD ,所以直线l ∥直线BD , 在四棱柱ABCD -A 1B 1C 1D 1中,四边形BDD 1B 1为平行四边形, 所以B 1D 1∥BD ,所以B 1D 1∥l .5.连接AC 交BD 于点O ,连接MO ,因为PM =MC ,AO =OC ,所以P A ∥MO , 因为P A ⊄平面MBD ,MO ⊂平面MBD ,所以P A ∥平面MBD .因为平面P AHG ∩平面MBD =GH ,所以AP ∥GH .6.[证明] (1)在四棱锥P ­ABCD 中,因为P A ⊥底面ABCD , CD ⊂平面ABCD ,所以P A ⊥CD ,因为AC ⊥CD ,且P A ∩AC =A ,所以CD ⊥平面P AC ,而AE ⊂平面P AC ,所以CD ⊥AE . (2)由P A =AB =BC ,∠ABC =60°,可得AC =P A . 因为E 是PC 的中点,所以AE ⊥PC .由(1)知AE ⊥CD ,且PC ∩CD =C ,所以AE ⊥平面PCD . 而PD ⊂平面PCD ,所以AE ⊥PD . 因为P A ⊥底面ABCD ,所以P A ⊥AB . 又因为AB ⊥AD 且P A ∩AD =A ,所以AB ⊥平面P AD ,而PD ⊂平面P AD ,所以AB ⊥PD . 又因为AB ∩AE =A ,所以PD ⊥平面ABE .7.(1)证明 因为ABCD 为正方形,所以AD ∥BC.因为AD ⊄平面PBC,BC ⊂平面PBC,所以AD ∥平面PBC. 因为AD ⊂平面AEFD,平面AEFD ∩平面PBC=EF, 所以AD ∥EF. (2)证明 因为四边形ABCD 是正方形,所以AD ⊥AB.因为平面PAB ⊥平面ABCD,平面PAB ∩平面ABCD=AB,AD ⊂平面ABCD, 所以AD ⊥平面PAB.因为PB ⊂平面PAB,所以AD ⊥PB. 因为△PAB 为等边三角形,E 是PB 中点,所以PB ⊥AE.因为AE ⊂平面AEFD,AD ⊂平面AEFD,AE ∩AD=A,所以PB ⊥平面AEFD. (3)解 由(1)知,V 1=V C-AEFD ,V E-ABC =V F-ADC =23V C-AEFD =23V 1,∴V BC-AEFD =53V 1,则V P-ABCD =V 1+53V 1=83V 1, ∴V 1V 2=38.8.[解] (1)证明:在菱形ABCD 中,∠DAB =60°,G 为AD 的中点,所以BG ⊥AD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以BG ⊥平面P AD .(2)证明:如图,连接PG.因为△P AD为正三角形,G为AD的中点,所以PG⊥AD.由(1)知,BG⊥AD,又PG∩BG=G,所以AD⊥平面PGB.因为PB⊂平面PGB,所以AD⊥PB.(3)当F为PC的中点时,满足平面DEF⊥平面ABCD.证明如下:取PC的中点F,连接DE、EF、DF.在△PBC中,FE∥PB,在菱形ABCD中,GB∥DE.而FE⊂平面DEF,DE⊂平面DEF,EF∩DE=E,PB⊂平面PGB,GB⊂平面PGB,PB∩GB=B,所以平面DEF∥平面PGB.因为BG⊥平面P AD,PG⊂平面P AD,所以BG⊥PG.又因为PG⊥AD,AD∩BG=G,所以PG⊥平面ABCD.又PG⊂平面PGB,所以平面PGB⊥平面ABCD,所以平面DEF⊥平面ABCD.9.【解】(1)证明:因为PC⊥平面ABCD,所以PC⊥DC.又因为DC⊥AC,且PC∩AC=C,所以DC⊥平面P AC.(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.因为PC⊥平面ABCD,所以PC⊥AB.又因为PC∩AC=C,所以AB⊥平面P AC.又AB⊂平面P AB,所以平面P AB⊥平面P AC.(3)棱PB上存在点F,使得P A∥平面CEF.理由如下:如图,取PB中点F,连接EF,CE,CF.又因为E为AB的中点,所以EF∥P A.又因为P A⊄平面CEF,且EF⊂平面CEF,所以P A∥平面CEF.10.证明(1)因为四边形ABCD是矩形,所以AB∥CD.又AB⊄平面PDC,CD⊂平面PDC,所以AB∥平面PDC,又因为AB⊂平面ABE,平面ABE∩平面PDC=EF,所以AB∥EF.(2)因为四边形ABCD是矩形,所以AB⊥AD.因为AF⊥EF,(1)中已证AB∥EF,所以AB⊥AF.又AB⊥AD,由点E在棱PC上(异于点C),所以点F异于点D,所以AF∩AD=A,AF,AD⊂平面P AD,所以AB⊥平面P AD,又AB⊂平面ABCD,所以平面P AD⊥平面ABCD.11.(1)证明 因为AB =BC ,AD =CD , 所以BD 垂直平分线段AC .又∠ADC =120°,所以MD =12AD =12,AM =32. 所以AC = 3. 又AB =BC =3,所以△ABC 是等边三角形,所以BM =32,所以BM MD =3,又因为PN =14PB ,所以BM MD =BN NP=3,所以MN ∥PD . 又MN ⊄平面PDC ,PD ⊂平面PDC ,所以MN ∥平面PDC .(2)解 因为P A ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥P A ,又BD ⊥AC ,P A ∩AC =A ,P A ,AC ⊂平面P AC ,所以BD ⊥平面P AC .由(1)知MN ∥PD ,所以直线MN 与平面P AC 所成的角即直线PD 与平面P AC 所成的角, 故∠DPM 即为所求的角.在Rt △P AD 中,PD =2,所以sin ∠DPM =DM DP =122=14, 所以直线MN 与平面P AC 所成角的正弦值为14. 12.【解】 (1)取棱AD 的中点M (M ∈平面P AD ),点M 即为所求的一个点.理由如下:因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM , 所以四边形AMCB 是平行四边形,从而CM ∥AB .又AB ⊂平面P AB ,CM ⊄平面P AB ,所以CM ∥平面P AB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明:由已知,P A ⊥AB ,P A ⊥CD ,因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交. 所以P A ⊥平面ABCD ,从而P A ⊥BD .连接BM ,因为AD ∥BC ,BC =12AD ,所以BC ∥MD ,且BC =MD . 所以四边形BCDM 是平行四边形.所以BM =CD =12AD ,所以BD ⊥AB . 又AB ∩AP =A ,所以BD ⊥平面P AB .又BD ⊂平面PBD ,所以平面P AB ⊥平面PBD .13.[证明] (1)在直三棱柱ABC A 1B 1C 1中,A 1C 1∥AC .在△ABC 中,因为D ,E 分别为AB ,BC 的中点,所以DE ∥AC ,于是DE ∥A 1C 1.又DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F ,所以直线DE ∥平面A 1C 1F .(2)在直三棱柱ABC A 1B 1C 1中,A 1A ⊥平面A 1B 1C 1.因为A 1C 1⊂平面A 1B 1C 1,所以A 1A ⊥A 1C 1.又A 1C 1⊥A 1B 1,A 1A ⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1,A 1A ∩A 1B 1=A 1,所以A 1C 1⊥平面ABB 1A 1.因为B 1D ⊂平面ABB 1A 1,所以A 1C 1⊥B 1D .又B 1D ⊥A 1F ,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F ,A 1C 1∩A 1F =A 1, 所以B 1D ⊥平面A 1C 1F .因为直线B 1D ⊂平面B 1DE ,所以平面B 1DE ⊥平面A 1C 1F14.证明:(Ⅰ)连接 BC 1,则O 为B 1C 与BC 1的交点,∵AO ⊥平面BB 1C 1C . ∴AO ⊥B 1C , …2分因为侧面BB 1C 1C 为菱形,∴BC 1⊥B 1C ,…4分∴BC 1⊥平面ABC 1,∵AB ⊂平面ABC 1,故B 1C ⊥AB . …6分(Ⅱ)作OD ⊥BC ,垂足为D ,连结AD ,∵AO ⊥BC ,∴BC ⊥平面AOD ,又BC ⊂平面ABC ,∴平面ABC ⊥平面AOD ,交线为AD ,作OH ⊥AD ,垂足为H ,∴OH ⊥平面ABC . …9分∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,可得OD =3, 由于AC ⊥AB 1,∴11122OA B C ==,∴2274AD OD OA =+=, 由 OH·AD=OD·OA ,可得OH=21,又O 为B 1C 的中点, 所以点B 1到平面ABC 的距离为217, 所以三棱柱ABC -A 1B 1C 1的高高为21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考第一轮复习专题素质测试题立体几何(文科)班别______学号______姓名_______评价______ (考试时间120分钟,满分150分,试题设计:隆光诚)一、选择题(每小题5分,共60分. 以下给出的四个备选答案中,只有一个正确)1.(10全国Ⅱ)与正方体1111ABCD A BC D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点( )A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个2.(09福建)设,m n 是平面α内的两条不同直线;12,l l 是平面β内的两条相交直线,则//αβ的一个充分而不必要条件是( )A. 1////m l βα且B. 12////m l l 且nC. ////m n ββ且D.2////m n l β且3.(08四川)直线l α⊂平面,经过α外一点A 与l α、都成30︒角的直线有且只有( ) A.1条 B.2条 C.3条 D.4条4.(08宁夏)已知平面α⊥平面β,α∩β= l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...成立的是( ) A. AB ∥mB. AC ⊥mC. AB ∥βD. AC ⊥β5.(10湖北)用a 、b 、c 表示三条不同的直线,y 表示平面,给出下列命题:①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ;③若a ∥y ,b ∥y ,则a ∥b ;④若a ⊥y ,b ⊥y ,则a ∥b .其中真命题是( ) A. ①②B. ②③C. ①④D.③④6.(10新课标)设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( )A.3πa 2B.6πa 2C.12πa 2D. 24πa 2 7.(08全国Ⅱ)正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积A .3B .6C .9D .188.(09全国Ⅱ) 已知正四棱柱1111ABCD A BC D -中,1AA =2AB ,E 为1AA 中点,则异面直线BE 与1CD 所形成角的余弦值为( )B. 15C.D. 359.(09北京)若正四棱柱1111ABCD A BC D -的底面边长为1,1AB 与底面ABCD 成60°角,则11AC到底面ABCD 的距离为 ( )A B . 1 C .D 10.(10全国Ⅰ)正方体ABCD -1111A B C D 中,1BB 与平面1ACD 所成角的余弦值为( )A.B. C.2311.(09全国Ⅰ)已知二面角l αβ--为600 ,动点P 、Q 分别在面,αβ内,P 到β的距离Q到α的距离为P 、Q 两点之间距离的最小值为( )A. 2B.2C.D.412.(10北京)正方体1111ABCD-A B C D 的棱长为2,动点E 、F 在棱11A B 上.点Q 是CD 的中点,动点P 在棱AD 上,若EF=1,DP=x ,1A E=y(x ,y 大于零),则三棱锥P-EFQ 的体积( ) A.与x ,y 都有关 B.与x ,y 都无关 C.与x 有关,与y 无关 D.与y 有关,二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡中对应题号后的横线上)13.(10四川)二面角l αβ--的大小是60︒,,AB B l α⊂∈,AB 与l 所成的角为30︒,则AB 与平面β所成角的正弦值是________________.14.(10江西)长方体1111ABCD A B C D -的顶点均在同一个球面上,11AB AA ==,BC =A ,B 两点间的球面距离为 .15.(08全国Ⅰ)已知菱形ABCD 中,2AB =,120A ∠=,沿对角线BD 将ABD △折起,使二面角A BD C --为120,则点A 到BCD △所在平面的距离等于 . 16.(09安徽)对于四面体ABCD ,下列命题正确的是_________(写出所有正确命题的编号).①相对棱AB 与CD 所在的直线是异面直线;②由顶点A 作四面体的高,其垂足是△BCD 的三条高线的交点; ③若分别作△ABC 和△ABD 的边AB 上的高,则这两条高的垂足重合; ④任何三个面的面积之和都大于第四个面的面积;⑤分别作三组相对棱中点的连线,所得的三条线段相交于一点.三、解答题(本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤) 17.(本题满分10分,08安徽19)如图,在四棱锥O ABCD -中,底面ABCD 是边长为1的菱形,4ABC π∠=, OA ABCD ⊥底面, 2OA =,M 为OA 的中点.(Ⅰ)求异面直线AB 与MD 所成角的大小; (Ⅱ)求点B 到平面OCD 的距离.18. (本题满分12分,09全国Ⅱ19)如图,直三棱柱111ABC A B C -中,AB AC ⊥,D E 、分别为11AA B C 、的中点,DE ⊥平面1BCC . (Ⅰ)证明:AB AC =;(Ⅱ)设二面角A BD C --为60°,求1B C 与平面BCD 所成的角的大小.19.(本题满分12分,09浙江19)如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠= ,,P Q 分别为,AE AB的中点.(I )证明://PQ 平面ACD ;(II )求AD 与平面ABE 所成角的正弦值.ACB A 1B 1C 1DE20. (本题满分12分,10全国Ⅱ19)如图,直三棱柱ABC-A 1B 1C 1中,AC =BC ,AA 1=AB ,D 为BB 1的中点,E 为AB 1上的一点,AE=3EB 1. (Ⅰ)证明:DE 为异面直线AB 1与CD 的公垂线;(Ⅱ)设异面直线AB 1与CD 的夹角为45o ,求二面角A 1-AC 1-B 1的大小.21.(本题满分12分,10山东20)在如图所示的几何体中,四边形ABCD 是正方形,BCD A MA 平面⊥,PD ∥MA ,E GF 、、分别为MB 、PC PB 、的中点,且2MA PD AD ==.(Ⅰ)求证:平面PDC EFG 平面⊥;(Ⅱ)求三棱锥的体积之比与四棱锥ABCD P MAB P --.A A 1EB D B 1C C 122. 本题满分12分,(08全国Ⅰ18)四棱锥A - BCDE 中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,BC =2,CD =AB AC =. (Ⅰ)证明:AD ⊥CE ;(Ⅱ)设侧面ABC 为等边三角形,求二面角C - AD - E 的大小.C DB E A参考答案:一、选择题答题卡: 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D BBDCBBCDDCC二、填空题 13.43. 14.3π. 15.23. 16.①④⑤三、解答题17.解:(Ⅰ)作AP CD ⊥于点P ,因为.22,1,45==∴=︒=∠PD AP AD AODP分别以AB 、AP、AO 所在直线为,,x yz 轴建立空间直角坐标系A —xyz.则(0,0,0),(1,0,0),(0,((0,0,2),(0,0,1)222A B PD O M -, 设AB 与MD 所成的角为θ,(1,0,0),(1)AB MD ==- ∵,1c o s ,23AB MD AB MD πθθ===⋅ ∴∴. ∴AB 与MD 所成角的大小为3π.(Ⅱ))2,22,22(),0,0,1(--===,设平面OCD 的法向量为),,(z y x n =,由⎪⎩⎪⎨⎧=⋅=⋅00得⎪⎩⎪⎨⎧=-+-=0222220z y x x ,).2,4,0(=(1,0,2)OB =-∵,所以点B 到平面OCD 的距离为.322322||===n d . 18. 解:(Ⅰ)以A 为坐标原点,射线AB 为x 轴的正半轴,建立如图所示的直角坐标系A —xyz.设).,,1(),2,0,2(),,0,0(),2,0,0(),0,2,0(),0,0,2(11c b E c B c D c A b C B 则(b >0,c >0) 于是.2||,2||),0,2,2(),0,,1(b AC AB b b ==-== 由DE ⊥平面1BCC 知DE ⊥BC ,由DE BC =0得0222=+-b ,求得1=b ,所以AB AC =.(Ⅱ)设平面BCD 的法向量),,(z y x =, 又).0,2,2(),,0,2(-=-=c由⎪⎩⎪⎨⎧=⋅=⋅00得⎩⎨⎧=+-=+-002y x cz x ,令c x =, 则)2,,(c c =又平面ABD 的法向量)0,2,0(==, 由二面角C BD A --为60°知,︒>=<60,, 故214222||||,cos 2=+=⋅>=<c c n m ,求得2=c . 于是)22,2,2()2,2,2(1-==CB ,,设1B C 与平面BCD 所成的角为θ,则.30,2122424sin 1︒==⨯==θθ 所以C B 1与平面BCD 所成的角为30°.19.(Ⅰ)证明:在ABE ∆中,Q P ,分别是AB AE ,的中点,所以PQ 是ABE ∆的中位线,从而PQ ∥EB. 又因为//EB DC ,所以PQ ∥DC.z而⊄PQ 平面ACD ,DC ⊂平面ACD , 所以//PQ 平面ACD .(Ⅱ)在ABC ∆中,BQ AQ BC AC ===,2,120ACB ∠=,所以AB CQ ⊥,3,1===BQ AQ CQ .如图所示的空间直角坐标系Q —xyz ,则)1,1,3(--=AD , 面ABE 的法向量为).0,1,0(== 记AD 与平面ABE 所成的角为θ, 所以.5551sin ===θ 20.解:(Ⅰ)以B 为坐标原点,射线BA 为x 轴正半轴,建立如图所示的空间直角坐标系B xyz -.设)0,3,1(),0,2,0(),0,4,0(),0,0,4(,411E D B A AB A A 则==.又设),0,4,4(),0,1,1(),,0,2(1B c C =-==则因为0,01=⋅=⋅B ,所以.,1B ⊥⊥即1DE B A DE ⊥⊥,所以DE 为异面直线1AB 与CD 的公垂线.(Ⅱ)因为1,B A DC <>等于异面直线1AB 与CD 的夹角,故11cos 45B A DC B A DC =,即22824162⨯+⨯=c .解得22=c ,故).22,4,2(1C又).22,4,2(.),0,4,0(111-===AC BB设面11C AA 、面11C AB 的法向量分别为).,,(),,,(c b a z y x ==由⎪⎩⎪⎨⎧=⋅=⋅0011AA AC 得⎩⎨⎧==++-0022y z y x ,).1,0,2(=由⎪⎩⎪⎨⎧=⋅=⋅0011B AC 得⎩⎨⎧=-=++-022b a c b a ,).1,2,2(-=.1515531||||,cos =⨯=⋅>=<∴n m 由于,m n <>等于二面角A 1—AC 1—B 1的平面角, 所以二面角A 1—AC 1—B 1的大小为. 21.(Ⅰ)证明:由已知ABCD,PD MA,MA ⊥平面∥.ABCD PD 平面⊥∴ 又BC ABCD ⊂平面,所以PD DC ⊥. 因为四边形ABCD 为正方形,所以BC DC ⊥. 又PD DC=D ⋂,因此BC PDC ⊥平面. 在△PBC 中,因为G F 、分别为PB PC 、的中点, 所以GF ∥BC. 因此GF PDC ⊥平面.又GF EFG ⊂平面,所以EFG PDC ⊥平面平面.(Ⅱ)解:因为PD ABCD ⊥平面,四边形ABCD 为正方形,不妨设MA=1,则PD =A D =2,所以P-ABCD ABCD 1V =S 3正方形·8PD=3.由于DA MAB ⊥面,且PD MA ∥,所以DA 即为点P 到平面MAB 的距离.三棱锥32221213131=⨯⨯⨯⨯=⋅=∆-DA S V MAB MAB P .所以 4:1:=--ABCD P MAB P V V .22. (Ⅰ)证明:作AO ⊥BC ,垂足为O ,由题设知AO ⊥底面BCDE ,且O 为BC 的中点,以O 为坐标原点,射线OC 为x设A (0,0,t ),由已知条件有C(1,0,0), D(1,2,0), E(-1, 2),2,1(),0,2,2(t AD CE -=-=.所以0=⋅,得AD ⊥CE.(Ⅱ)△ABC 为等边三角形,则)3,2,1(),3,0,0(-=AD A ,).00,2(),0,2,0(==11 设面ACD 、面AED 的法向量分别为).,,(),,,(c b a z y x ==由⎪⎩⎪⎨⎧=⋅=⋅00CD m AD m 得⎪⎩⎪⎨⎧==-+02032y z y x ,).1,0,3(=m 由⎪⎩⎪⎨⎧=⋅=⋅00ED n 得⎩⎨⎧==-+02032a c b a ,).2,3,0(=1010522||||,cos =⨯=⋅>=<∴n m 故二面角C —AD —E 为1010arccos-π.。

相关文档
最新文档