气相色谱—静态顶空进样装置

合集下载

对气相色谱仪顶空进样器进行安装和调节

对气相色谱仪顶空进样器进行安装和调节

对气相色谱仪顶空进样器进行安装和调节对气相色谱仪顶空进样器进行安装和调节北京中仪宇盛科技有限公司顶空进样器作为气相色谱仪分析挥发性物资具有无比的优越性。

不仅可以免除冗长繁琐的样品前处理过程,避免有机溶剂对分析造成的干扰、减少对色谱柱及进样口的污染,而且具有进样量准确、重现性好等优点。

该仪器可以和国内外各种型号的气相色谱仪相连接。

1、调节载气系统压力和流量打开载气(气体发生器??或钢瓶)和压缩空气开关后,首先调低色谱仪载气系统的柱头压力到0.01Mpa,再把顶空进样器的进样针插入气相色谱仪的注样口内(用随机支架固定进样针套管),然后通过调节顶空进样器前面板的稳压阀来满足色谱仪所需的柱流量;对于毛细管柱系统,当使用内径小于0.32mm的毛细管柱时,色谱仪应采用分流进样模式;对于配备电子流量/电子压力(EFC/EPC)控制的气相色谱仪,推荐色谱仪使用恒流模式,然后根据色谱仪的柱头压力来调节顶空进样器载气压力,并使其稍高于色谱仪柱头压力即可。

2、设定色谱仪工作状态根据分析的样品种类设定气相色谱仪分析条件(汽化室温度、色谱柱温度、检测器温度)。

3、设定顶空进样器柱温箱、阀箱、管路温度打开顶空进样器的电源开关,电气系统自检后,通过按键盘上的“样品”、“阀箱”、“管路”、数字键以及“输入”键,根据分析要求分别输入需要的样品、阀箱、管路的温度值(为避免样品在传输时发生冷凝现象),阀箱、管路温度高于样品温度20-25℃)。

4、放置样品瓶当温度达到设定值后,,稳定10分钟,,再将密封好的装有样品的顶空瓶放入印有号码的加热筒中,平衡30分钟。

顶空瓶内的样品量一般不要超过顶空瓶容量的1/2,当样品的恒温温度高于100℃时,请注意选择合适的溶剂,以免瓶内压力过高造成密封垫漏气或瓶子破损。

同时,请带手套拿取瓶子以免烫伤。

5、吹洗取样针拿住取样针管, 同时按下面板上的“吹洗”键,吹洗气将吹洗取样系统中的空气或上次取样的残余气(此时,吹洗状态灯红色亮),再次按面板上的“吹洗”键,吹洗电磁阀关闭(此时,吹洗状态灯红色灭)。

气相色谱—静态顶空进样装置

气相色谱—静态顶空进样装置
• 2009年,北京均方谱元科技有限公司的夏恩林等 研发了配PID的便携式或基站式气相色谱仪。
• 太极计算机股份有限公司承担了国家“十一五” 环境分析便携仪PID气相色谱仪的研制,已进入 测试验收阶段。
• 中国船舶总公司的杨振夏等研发了手持式PID可 挥发性有机物检测仪,已投入小批量生产。
PID的主要应用
colamn,DACC)
国内外生产的高压液相制备色谱系统
• 给出了四家国外公司(德国KNAUER 公司、美国Agilen 公司、瑞士Latomatic 公司和日本Shimadzu公司)和三 家国内公司(莱伯泰科公司、创新通恒科技公司和汉邦 科技公司)生产的8种型号高压液相制备色谱系统(其 中创新通恒科技公司有2个型号)的型号和系统配置。
• 在上世纪六十年代,由于第一代PID的光源和与 离子化池设计在一个空间里,致使紫外光源放电 效率和光离子池中被检物质的光电离度都不能工 作在最佳状态,致使PID研究、推广和应用缓慢, 被认为是没有实际应用前途的一种检测技术,几 乎被人们遗忘。
• 1974年,随着新技术、新材料、新器件的发展与 出现,Scvcik和Krysl首先使用氟化物晶体做窗 口材料,将光源和离子化池分开,使其两者都工 作在最佳状态,这一设计使PID检测灵敏度提高 了几个数量级,被称为第二代PID。至此,PID进 入了实用阶段,为PID今后迅速发展打下了基础。
制备液相色谱的操作方式
除经典的制备型加压液相色谱以外,还有以 下四种:
• 循环制备液相色谱(cycle preparation LC,CPLC)
• 扩展床吸附色谱(expanded bed adsorption Chromatography,EBAC)
• 模拟移动床(Simalated moving ted,SMB) • 动态轴向压缩柱(Dynamic axial compression

顶空进样器原理

顶空进样器原理

顶空进样器原理
顶空进样器是一种常用于气相色谱仪的样品进样装置,其原理是利用气体压力将样品从容器中推送至色谱柱中,从而实现样品的分离和检测。

顶空进样器的工作原理相对简单,但其在气相色谱分析中的重要性不可忽视。

首先,顶空进样器通过一个小孔将气体推入样品容器中,使得容器内部产生一定的压力。

随着气体的推入,样品容器内的气体压力逐渐增加,最终超过了外部大气压,这时容器内部的气体就会受到挤压,导致样品溶液的表面产生一个凸起。

这个凸起就是顶空,也是顶空进样器名称的由来。

接着,顶空进样器通过一个针头将顶空中的气体和挥发性物质抽取出来,然后注入到气相色谱仪的色谱柱中。

在色谱柱中,样品分子会根据其在固定相和流动相中的亲和力不同而发生分离,最终被依次检测和记录。

顶空进样器的原理就是利用气体压力和样品挥发性来实现样品的进样和分离,其主要特点包括,1. 无需样品预处理,可以直接将样品溶液注入到顶空瓶中;2. 适用于挥发性物质的分析,如挥发性有机物、香料、药物等;3. 进样速度快,样品不易受到外界污染。

总之,顶空进样器是一种简单而有效的样品进样装置,其原理基于气体压力和样品挥发性的特点,通过将样品推送至色谱柱中实现分离和检测。

在气相色谱分析中具有重要的应用价值,为化学分析领域带来了诸多便利。

气相色谱仪顶空自动进样器原理参数

气相色谱仪顶空自动进样器原理参数

气相色谱仪顶空自动进样器原理参数顶空自动进样器的原理是通过控制样品在高温下的蒸发,将样品中的挥发性成分转化为气态,并将这些气态成分引入GC进行分析。

顶空自动进样器一般由以下几个部分组成:进样室、样品容器、温度控制系统和进样针。

进样室是样品进入顶空自动进样器后的首要位置,它通常由耐高温、耐化学腐蚀的材料制成,如不锈钢。

进样室内有一个样品容器,用于存放待分析样品。

样品容器可以是各种形式的小容量玻璃瓶,通常具有密封性能,以防止样品挥发或外部空气进入。

温度控制系统是顶空自动进样器中的核心部件。

为了将样品中的挥发性成分转化为气态,需要将样品加热到一定温度。

温度控制系统通常由加热系统、温度探测系统和控制系统组成。

加热系统通过提供恒定的加热源,将样品容器加热至设定的温度。

温度探测系统用于监测样品容器内的实际温度,并将这些信息传输给控制系统。

控制系统会根据设定的温度值和实际温度值来控制加热系统的输出,以维持样品容器内的温度在一定范围内。

进样针是样品从样品容器进入顶空自动进样器的通道。

进样针通常由不锈钢制成,具有良好的耐腐蚀性和导热性能。

进样针通过注射器或其他机械手段,将一定体积的样品从样品容器中抽取出来,并喷射到气相色谱仪中进行分析。

顶空自动进样器的参数分为机械参数和操作参数两个方面。

机械参数包括进样室容量、最大工作温度、加热速率等。

进样室容量可以影响样品的进样量和分析的精度,通常根据不同的样品需求选择适当的容量。

最大工作温度是指顶空自动进样器能够达到的最高温度,温度越高,样品中的挥发性成分转化为气态的速率越快。

加热速率是指样品容器加热至设定温度所需的时间,加热速率较快可提高进样效率。

操作参数包括进样体积、进样时间、预注气体流量等。

进样体积是指进样针从样品容器中抽取的样品体积,体积大小会影响分析的灵敏度和线性范围。

进样时间是指进样针从样品容器中抽取样品的时间,时间过短可能导致不完全的样品蒸发,时间过长会延长分析周期。

顶空

顶空

样品瓶中萃取顶空气体有两种方式
单次顶空萃取 多次顶空萃取 (MHE) MHE 适用于无校准标准但易于制 备的顶空样品 (如固体样品) , 或者液体中挥发性很高的化合物, 在这些液体中由于蒸发损失很难 使用标准添加方法。 MHE 可从每 个样品瓶中萃取几次顶空样品。 每次抽取,气相和样品中的挥发 物浓度都会减小,尽管比率保持 恒定。
单次顶空萃取是标准方法。 它适用于易挥发的样品,或 者没有基体效应或基体效应 有限的样品。
动态顶空分析技术(吹扫捕集)
• 静态法的主要缺点是样品的蒸汽体积过大,影响色谱柱的分离效能,特别 对于组成复杂的样品,这种进样方式限制了高效毛细管柱的使用,蒸汽中 大量水分也往往有损于柱的寿命。然而如果样品中待分析组分的含量不是 很低,而水分又缺少时,静态法仍是一种有效的分析方法。
工作原理
将待测样品置于一密闭的容器中,通过加热升温使 待测样品中挥发性组分从样品基体中挥发出来,在气液(或气-固)两相中达到平衡,直接抽取上部气体进 行色谱分析,从而检测样品中可挥发性组分的成分和含 量。
优势
• 顶空分析专一性收集样品中易挥发的成分 ,与液 - 液萃取和固相萃取方法 相比这样既可以避免在除去溶剂时引起挥发性物质的损失 ,又降低了共提 取物所引起的噪音 ,这使得顶空分析方法相对于溶剂提取方法对样品中微 量的有机挥发性物质分析具有更高的灵敏度和更快的分析速度。 • 顶空分析可以直接得到样品所释放出的气体的化学组成 ,因此顶空分析法 在气味分析方面有独特的意义和价值。 • 顶空分析法在分析过程中无需采用有机溶剂进行提取 ,大大减少了对分析 人员和环境的危害 ,是一种符合 “绿色分析化学” 要求的分析手段。 • 顶空分析方法随着气相色谱分析方法的发展也在不断更新和发展 ,尤其是 近十年来对环境、 食品及药品中挥发性有害物质的关注 ,使得顶空分析这 一传统的分析方法再度成为分析化学工作者关注的热点

气相色谱仪顶空自动进样器原理参数

气相色谱仪顶空自动进样器原理参数

气相色谱仪顶空自动进样器原理参数
气相色谱仪顶空自动进样器原理:有一个全面的通电自检程序,样品盘自动定位系统,还有完整的故障报警,故障提示功能。

方便分析中遇到的问题及时处理。

系统预存一套默认分析方法,并允许用户存储多套常用分析方法和混合运行分析方法。

气相色谱仪顶空自动进样器原理参数:
1、样品加热温度控制范围:室温-240℃以增量1℃任设;
2、阀进样系统温度控制范围:室温-220℃以增量1℃任设;
3、样品传送管温度控制范围:室温-220℃以增量1℃任设;
4、温度控制精度:<±0、1℃;
5.顶空瓶工位:16位;20位,27位,120位
6、顶空瓶规格:标准10ml、20ml(其他规格可定制);
7、重复性:RSD<1、5%(和GC性能有关);
8、进样加压范围:0~0、4Mpa(连续可调);
9、仪器尺寸:430mm×330mm×500mm
标签:
气相色谱仪
1。

第六章顶空气相色谱

第六章顶空气相色谱

第六章顶空气相色谱6.1顶空气相色谱法的概念和类别一、顶空气相色谱的概念顶空气相色谱是指对液体或固体中的挥发性成分进行气相色谱分析的一种间接测定法,它是在热力学平衡的蒸气相与被分析样品同时存在于一个密闭系统中进行的。

例如测定血液中的乙醇。

把血样置于一个密闭恒温的样品瓶中,测定恒温后样品瓶蒸气相中的乙醇浓度,通过校准曲线计算血样中的乙醇含量。

这一方法从气相色谱仪角度讲.是一种进样系统,即“顶空进样系统”。

有不少仪器公司有商品的顶空进样系统。

有关顶空气相色谱分析的名称,我国一般称为:顶空气相色谱分析,但是有人称为:“液上气相色谱分析”,这样的名称不全面,因为有不少样品是固体。

所以本书还是用顶空气相色谱分析。

二、顶空气相色谱的类别和特点1静态和动态顶空气相色谱一般顶空气相色谱分为静态和动态顶空气相色谱,所谓静态顶空气相色谱是在一个密闭恒温体系中,液气或固气达到平衡时用气相色谱法分析蒸气相中的被测组分。

静态顶空气相色谱的典型装置如图7.1所示。

动态顶空气相色谱也叫做吹扫-捕集分析法,这一方法是用惰性气体通人液体样品(或固体表面),把要分析的组分吹扫出来,使之通过一个吸附剂进行富集然后再把吸附剂进行加热,使吸附的组分脱附,用载气将其带到气相色谱仪中进行分析。

2.静态顶空和气态顶空的比较两种方法各有优缺点,静态顶空所用仪器简单,仅用一个玻璃瓶就可以进行分析,要求能够达到两相平衡,而且在取样时仍能保持这种平衡,但是一般情况下作为分析用的玻璃瓶每个只能应用一次,日产分析需要处理大量的玻璃瓶,增加了强度,此外平衡还需要一定的等待时间。

动态顶空气相色谱法需要较多的仪器,也要较多的时间。

该方法的成本较高。

由于吹扫会带入杂质到样品中,大量的水蒸气会带入到捕集器中,还需要选择适当的脱附剂,该方法有时往往会出现吸附或脱附不完全的问题。

6.2 顶空气相色谱法的原理一、色谱峰面积和样品蒸气分压的关系在顶空气相色谱分析时当顶空瓶中样品t 面的蒸气压相当低时,峰面积(Fi)的大小与样品上面的挥发性组分的蒸气压(p i )成正比关系,即:i i p F ∝ (6-1)由(7-1)式可导出下式:i i i p c F = (6-2) 式中i c 是特定物质的校正因子,决定于检测器的性能。

顶空进样器在气相色谱仪中是怎么使用的

顶空进样器在气相色谱仪中是怎么使用的

顶空进样器在气相色谱仪中是怎么使用的
顶空进样器是气相色谱仪的一个进样装置,启动后按设定值自动完成样品加热;进样;充压;取样;样品充入定量管;六通阀切换进样;启动工作站开始采样数据等工作.
什么是顶空分析法?顶空分析是通过检测样品基质上方的气体成分来测定这些组分在原样品中含量的.很显然,这是一种间接分析方法,其基本理论依据是在一定条件下气相和液体相(液相和固相)之间存在着气液分配平衡.所以,气相的组成能反映凝聚相(液相)的组成.并且这个组成在其他条件不变的情况下是固定的。

我们可以把顶空分析看成是一种气相萃取方法,即用气体作“溶剂”来萃取样品中的挥发性成分,因而,顶空分析就是一种理想的样品净化方法.传统的液液萃取以及SPE都是将样品溶在液体中,不可避免地会有一些共萃取物干扰分析.况且溶剂本身的纯度也是一个问题,这在痕量分析中尤为重要.而气体作溶剂就可避免不必要的干扰,因为高纯度气体很容易得到,且成本较低,这也是顶空GC被广泛采用的一个重要原因.
作为一种分析方法,顶空进样(器)分析首先简单,它只取气相部分进行分析,大大减少了样品基质对分析的干扰.作为GC分析的样品处理方法,顶空是为简便的.其次,顶空进样分析有不同模式,可以通过优化操作参数而适合于各种样品.第三,顶空分析的灵敏度能满足法规的要求.后,与GC的定量分析能力相结合,顶空进样器和GC完够进行准确的定量分析。

顶空进样器工作原理

顶空进样器工作原理

顶空进样器工作原理
顶空进样器是一种常用于气相色谱仪的自动进样装置,其工作原理是利用气流将样品从容器中吹入色谱柱。

顶空进样器通常由两个部分组成:进样针和固定的进样室。

首先,需要将样品溶液注入进样室中。

然后,进样针插入进样室,其中包含一个密封的活塞。

气体通过活塞进入进样室,形成一个高压区域。

当进样针插入样品溶液中时,活塞被推向上方,引起一定的负压。

接下来,一个简单的示意图描述如何使用顶空进样器完成样品进样过程:
第一步:将样品溶液注入固定的进样室中。

第二步:将进样针插入进样室。

第三步:通过活塞推动气体进入进样室,形成高压区域。

第四步:由于高压区域,进样针上的活塞被推向上方,产生负压。

第五步:负压将样品吸附到进样针上。

第六步:将进样针插入色谱柱中,并通过气流将样品吹入色谱柱。

通过这种方式,样品被快速、准确地引入色谱柱中,以进行后续的分析。

顶空进样器的工作原理可以实现自动化并提高分析效率,尤其对于揮发性或易挥发的样品,其进样效果更佳。

顶空进样法是气相色谱特有的一种进样方法

顶空进样法是气相色谱特有的一种进样方法

❖顶空技术的分类顶空技术依据其不同的取样和进样方式可分为:静态顶空:将样品放置在一密闭容器中,在一定温度下放置一段时间使气液两相达到平衡,取气相部分进入GC分析,有称平衡顶空或者一次气相萃取。

动态顶空:在样品中连续通入惰性气体,挥发性组分即随该萃取气体中样品中溢出,然后通过一个吸附装置(补集器)将样品浓缩,最后再将样品解吸进入气谱分析。

这是一种连续的多次气相萃取,直到样品中的挥发性组分完全萃取出来❖ 1.5.1 静态顶空的原理:当在一定温度下达到气液平衡时有cg=co/(K+β),其中:cg :气体样品的浓度co:样品的原始浓度K 和β:一个给定的平衡系统中,K 和β均为常数即在平衡状态下,气相的组成与样品原来的组成为正比关系。

当用GC分析得到cg后,就可以算出原来样品的量顶空进样技术基于三个物理定律,这三个定律阐述了有关蒸气汽压,分压及溶剂上空的蒸汽压力与溶剂中的被分析物浓度之间的关系。

❖道尔顿定律----理想气体混合在一起的总压等于各个组分分压之和。

❖罗氏定律----在恒定温度下,溶解在一定体积溶剂中的气体或液体量直接正比于溶液上方的蒸汽相的分压。

❖亨利定律----顶空中一种溶质的分压与这种溶质在溶液中的摩尔含量成正比。

这三个定律提供了我们放入瓶中的物质与瓶内顶空相中物质之间的关系。

一般地,顶空中被分析物的浓度正比于溶液中被分析物的浓度。

1.5.2 静态顶空技术的适用范围❖欲检测的被分析物在200℃以下挥发;❖要分析的样品是固态的、膏状的或液态的,都必须进行样品前处理后才能进入GC 进样口的。

❖操作环境很难进行可靠的样品前处理的样品。

1.5.3 进样方式❖手动进样:一定温度下达到平衡后采用气密注射器(普通的不可用)从容器中抽取顶空气体样品注射入GC分析❖自动进样:A、采用注射器进样采用气密自动注射器和增加了样品的加热和平衡模块B、压力平衡顶空进样系统C、压力控制定量管进样系统1.5.4、压力控制定量管进样系统步骤:A、平衡,将样品定量加入顶空样品瓶,加盖密封,然后置于顶空进样器的恒温槽中,在设定的温度和时间条件下进行平衡。

Agilent7697A气相色谱顶空进样器

Agilent7697A气相色谱顶空进样器

FPO 概述Agilent 7697A 顶空进样器是安捷伦色谱产品家族的一员,7697A 设计基于市场领先的气相色谱仪和 7693A 自动进样器系列产品的构架思路,它的性能可以满足最苛刻实验室的要求。

7697A 顶空进样器采用的设计可节省电能、气体及其他宝贵资源,具有自动关机和唤醒等功能。

此外,顶空控制软件简化了减少气流的过程,便于更高效地管理必需气体供应。

Agilent 7697A 气相色谱顶空进样器型号–A gilent7697A顶空进样器:有 12 个瓶位和一个加热炉位,可以依次进行样品瓶加热– 带样品盘的 Agilent 7697A 顶空进样器:有 111 个样品瓶位和 12 个加热炉位,优化了样品瓶的重叠加热能力色谱性能*典型面积重复性– 7697A < 1.5% RSD– 7697A 带样品盘 < 1% RSD* 使用 7697A、带 EPC(分流)的 7890 GC 和安捷伦数据系统分析乙醇,结果可能会随样品和环境的不同而变化。

在第 7 页上列有条件和参数。

样品处理Agilent 7697A–12位样品瓶容量– 单一加热位置,铝块样品瓶加热炉带样品盘的 Agilent 7697A–111位样品瓶总容量• 108 位样品瓶放在三个可以移动的 36 瓶位的架子上,方便压盖等操作(架子材料可以耐受一般气相色谱溶剂的侵蚀)• 三个优先样品瓶位• 在连续操作过程中,样品架可以随时更换–提供 108 位样品瓶冷却板–采用空气浴的 12 位加热炉,在整个平衡时间里对每个样品进行精确温度控制–采用自适应算法自动进行样品重叠加热,以便获得最大的分析效率–样品瓶在一定频率下摇震,其参数是可调的,可以加快样品的顶空层平衡–可配备内置的条形码阅读器–带温度传感器(从 5 °C 到室温,具体取决于环境条件,如表 4 所述)的样品瓶冷却板,可以让热敏感的样品在分析之前保持在低温的状态(需要循环冷却系统)进样方法–顶空进样系统采用阀和定量管的稳定进样方式。

气相色谱仪顶空自动进样器原理参数

气相色谱仪顶空自动进样器原理参数

气相色谱仪顶空自动进样器原理参数气相色谱仪(GC)是一种常见的分离仪器,而顶空自动进样器则是其一部分。

顶空自动进样器是一种高精度、高效率的进样方式,广泛应用于食品、环保、制药、农药等领域的质量监测中。

本文将详细介绍顶空自动进样器的原理和常见参数。

原理顶空自动进样器是一种基于气体扩散原理的进样方式。

其原理是在样品热化的情况下,样品内的挥发性有机物质通过被加热的总管进入顶空室,在顶空室中与惰性气体(如氮气)混合,然后由气体经过固定的时间后,进入气相色谱仪分析。

因此,顶空自动进样器的最初工作是将固态、液态或粉末化的样品通过热化技术转化为气态,然后在进入固定容积的He/Ar气体体积中混合均匀,最后由气相色谱仪进行检测。

在进入气相色谱仪后,根据质谱规律及商标模版曲线,可得出分析结果。

参数顶空自动进样器的常见参数包括:1. 体积:顶空自动进样器的体积通常在2mL 至 20 mL之间,可以根据实际检测要求选取。

当体积设置较大时,分析时间较长,但灵敏度高。

2. 采样器热化温度:顶空自动进样器中的采样器需要进行热化,热化温度通常在50°C - 250°C之间,根据样品挥发性进行设置。

3. 顶空室温度:顶空室温度设置合理与否直接影响到分析结果的准确性和灵敏度。

通常情况下,顶空室温度在60°C - 200°C之间,根据样品的挥发性和分析的质量要求来进行设置。

4. 气体类型:进样器所使用的气体需要是惰性气体,如氦气、二氧化碳、氮气等,用于稀释和携带样品分子进入色谱柱。

5. 进样器工作方法:进样器的工作方法分为两种:注射和插入。

主流的顶空自动进样器采用注射方法,将样品注射至采样器,通过少量样品施加气压进行注入。

6. 进样量:进样量是指一个样品在一次进样中喷射入自动进样器中的物质量。

通常进样量掌握在μL级别,使用者也可自行设置。

结束语顶空自动进样器作为气相色谱仪设备的重要部分,具有高效、高精准和高灵敏度的特点,在环保、食品、制药、农药等行业中得到了广泛的应用。

静态顶空操作流程

静态顶空操作流程

1、设置参数并放置样品。

设置“样品”、“阀箱”、“管路”温度。

样品为50度,阀箱130度,管路140度。

温度稳定后放入样品,平衡30分钟后进行下面的操作。

2、进样前吹洗。

设置吹洗压力为0.2-0.3Mpa。

按吹洗键,约30s后关闭。

3、准备进样。

先将取样管扎入相应的瓶内,再将进样管扎至色谱进样口。

观察顶空进样器压力示数,由小变大。

待稳定时,调节“载气调节”旋钮使压力示数增加一个格(0.02Mpa)。

4、进样、开始采样。

按“进样”同时操作色谱仪开始采样。

听到“咔”然后“砰”的声音。

2s-3s后取出取样管。

5、拔出进样管。

听到“砰”的一声此时进样灯灭,拔出进样管。

将“载气调节”归零。

6、吹洗30s后完成本次进样。

气相色谱顶空进样器的参数优化

气相色谱顶空进样器的参数优化

气相色谱顶空进样器的参数优化静态顶空SHS-气相色谱法是一项适合测定固体或基体复杂的液体如:血液、涂料和污泥中挥发性物质的技术;使用SHS时,一般需要将样品置于密封的容器中,在受控的水浴上中仔细加热,直至挥发性物质在气液固两相中的浓度达到平衡;欲分析的化合物的浓度在两相之间的分配系数如下式所示:K = Cl / Cg其中: Cl和Cg分别为平衡时挥发性物质在液相和气相中的浓度1;移取气相中整数体积的气体注入气相色谱中;本文将介绍在一般的分析中选择最优化的参数时所能获得的最大精密度和灵敏度;讨论的参数如下:1.样品制备步骤2.顶空进样器的控制参数:a.样品平衡时间和平衡时样品的搅拌震荡效果b.顶空瓶和传输线的温度;以下所有的比较实验都采用Varian公司的顶空进样器“Genesis”来进行;此处所讨论的大多数原理都适合简单的顶空气相色谱,即那些使用气密性注射器从密封的顶空瓶中手动抽取气体的进样器;Genesis自动顶空进样器相比于手动技术能够提供更多的优点;通过软件用户能够建立四个方法;用户能够对任何方法中的某个参数进行编辑,而顶空进样器则按照这些参数进行自动设定;之后气相色谱按照被分析物质的特点进行分析条件的最优化;另一个优点是自动建立方法,包括自动分析50个样品、每个样品恒定加热以及通过加热的定量环来移取气体,确保结果的重复性;使用仪器仪器:带有Varian Genesis自动顶空进样器的Varian3400气相色谱;安装有SPI进样器和FID检测器;SHS系统的传输线直接连接到SPI的载气输入口,并由Genesis的流量控制器控制色谱柱的流量;带有应用功能扩展包的GC Star工作站进行数据采集;色谱柱:30m×0.32mm涂有膜厚为μm的聚乙烯醇DB-WAX固定液,Varian货号:JW-123703-3030m×0.53mm涂有膜厚为μm的聚甲基硅氧烷DB-1固定液,Varian货号:JW-125103-20顶空进样器:顶空瓶22ml,定量管500μL影响顶空结果的参数样品制备:虽然静态顶空对样品的制备要求很低,但仍有些步骤能够提高灵敏度和精密度;进行顶空分析的样品都含有挥发性物质,所以在进行样品处理时要避免此类物质的损失;将样品装满容器可以避免挥发损失;从样品容器中取样之前,需要先对顶空瓶和传输线进行吹扫;顶空瓶中气液两相的体积比是影响灵敏度的一个参数;本文只讨论水溶液中的有机物在气液两相的相对浓度,而此参数的影响远超过本文所讨论的内容;从图一的曲线我们可以看出当分配比K很小的时候,气液两相的比例是非常重要的;随着样品体积的增加,比面积则变小;因此大体积的样品在传输时就能减少挥发性物质的损失,结果的精密度更佳;对于那些在水中分配比很高的样品,通过加入盐能够降低分配比进而提高灵敏度;另一方面,对于非水溶性的样品如土壤,可以通过加入水将非水溶性的有机物质驱赶到气相中;由Genesis控制的参数:当样品制备方法建立之后,用户需要权衡Genesis控制的参数;样品和传输线的温度、平衡时间和平衡时的搅拌效果都是非常重要的;利用方法优化和Genes is的方法时间特性表,能够对这些参数进行自动研究;本研究中讨论两个样品——样品1为工业和环境实验室监测的水中有机物,样品2为从肇事司机的血液样本中浓缩出的含有乙醇和正丙醇内标的水溶液;以上分析方法的细节请参见相关的标准;2,3表1列出了采用一系列方法测定样品1中挥发性物质的结果;设定的参数包括:平衡时间无搅拌、搅拌时间、阀和传输线温度和样品温度;从表中可以看出使用搅拌能使响应值更快达到平衡;另外采用搅拌,总的响应值相比之下也较高;增加样品温度很明显对水溶性的1,4-二氧六环高分配比的响应值有利,但对于TCE三氯乙烯和苯则相反,其实这两类物质的气相浓度只与分配比有关而增加样品温度本质上是无影响的;阀和传输线温度一般稍高于样品温度以免挥发性物质冷凝,但过高的温度不仅无用而且还使三种物质的响应值都下降;这是因为高温使样品气体体积膨胀,进入定量管的相对浓度变小所致;总之,复杂基体中的挥发性物质的分配比决定了静态顶空参数的优化方法;对于所有的样品,在短时间内搅拌能获得最大的灵敏度和精密度;。

7890A 型气相色谱仪(顶空进样器)操作规程

7890A 型气相色谱仪(顶空进样器)操作规程

1操作前的准备安装色谱柱2仪器操作2.1开机2.1.1打开氮气瓶总开关,调节输出气压为0.4~0.6Mpa;打开空气发生器,氢气发生器。

2.1.2打开7890A色谱仪开关,待GC进入自检,自检完成后会提示“Power on Successful”。

2.1.3开启计算机,进入Windows系统后,双击电脑桌面的(Instrument Online)图标,进入GC化学工作站。

2.2采集数据方法编辑2.2.1从“Method”菜单中选择“Edit Entire Method”,根据需要钩选项目,“Method Information”(方法信息),“Instrument/Acquisition”(仪器参数/数据采集条件),“Data Analysis”(数据分析条件),“Run Time Checklist”(运行时间顺序表),确定后单击“OK”。

2.2.2出现“Method Commons”窗口,如有需要输入方法信息(方法用途等),单击“OK”。

2.2.3进入“Select Injection Source/Location”(进样器设置),接受默认选项,单击“OK”。

2.2.4进入“Agilent GC Method:Instrument 1”(方法参数设置)2.2.4.1“Injector”参数设置,输入“injection volume”(进样体积),和“wash and pumps”(洗针程序),完成后单击“OK”。

2.2.4.2“inlet”参数设置,输入“heater”(进样口温度);“septum purge flow”(隔垫吹扫速度);拉下“Mode”菜单,选择分流模式或不分流模式或脉冲分流模式或脉冲不分流模式;如果选择分流或脉冲分流模式,输入“split ratio”(分流比),完成后单击“OK”。

2.2.4.3“CFT setting”参数设置,选择“control mode”(恒流或恒压模式),如选择恒流模式,在“value”输入柱流速,完成后单击“OK”。

顶空气相色谱法

顶空气相色谱法

顶空气相色谱法顶空气相色谱法(HS-GC)又称液上气相色谱分析,它采用气体进样,可专一性收集样品中的易挥发性成分,与液-液萃取和固相萃取相比既可避免在除去溶剂时引起挥发物的损失,又可降低共提物引起的噪音,具更高灵敏度和分析速度,对分析人员和环境危害小,操作简便,是一种符合“绿色分析化学”要求的分析手段。

顶空分析方法随气相色谱分析方法的发展在不断更新和发展,现代顶空分析法已形成一个相对较为完善的分析体系。

主要分为静态顶空分析、动态顶空分析、顶空-固相微萃取三类。

简述顶空气相色谱原理和应用顶空气相色谱法(HS-GC)是在气相色谱仪进样口前面增加一个顶空进样装置的一种色谱技术,常解释为将顶空装置与气相色谱仪联用的仪器。

它利用被测样品(气-液和气-固)加热平衡后,取其挥发气体部分进入气相色谱仪。

它专用于分析易挥发的微量成分,如对甲醇、乙醇等许多易挥发的有机溶剂类,不同季节的花香气、香水类,带有易挥发成分的中草药类,特殊气味的蔬菜和调味品类等均可用它进行定量分析。

顶空气相色谱与质谱联用法(HS-GC-MS)用于对未知的挥发成分进行定性分析的方法。

顶空气相色谱法常用于酒后开车司机或行人发生交通事故后对其血液中酒精进行定性定量确证分析、中西医药投入市场前其残留溶剂的标准分析、刑事案件中有毒气体和挥发性毒物的认定分析等,另外许多行业需要控制产品质量或开发新产品等均会用到这种仪器。

这种分析方法可避免水份、高沸点物或非挥发性物质对分析柱造成超载和污染问题。

而且操作简单、快速,分析结果与气相色谱一样灵敏、可靠、准确。

顶空气相色谱系列讲座(2)血中酒精的顶空色谱分析法研究血中酒精浓度的分析方法,对解决酒后开车、酗酒肇事、酒中投毒等刑事案件中的法律责任问题十分重要。

如果因交通事故或中毒死亡后无法取到合格的检材心血或静脉血时,本方法也适用取用其他体液或脏器进行分析,乘以比例系数,换算为血中的酒精量。

样品配制:⒈标准样品①含内标的乙醇溶液用0.9%生理盐水配制0.4%乙醇和0.2%特丁醇(内标)②内标溶液用0.9%生理盐水配制0.2%特丁醇(内标)③混合标样用0.9%生理盐水配制甲醇、乙醇、丙醇、异丙醇、丁醇、异丁醇和特丁醇七种醇各0.7% ⒉对照样品①阴性对照样取0.5g或0.5mL空白脏器或体液,加0.50mL内样溶液②血中阳性对照样取0.5mL空白血(血站购得,用前需检查不含乙醇),加0.50mL含内标的乙醇溶液③水中阳性对照样取0.5mL蒸馏水,加0.50mL含内标的乙醇溶液④肝中阳性对照样取0.5g空白肝(可用猪肝代替)加0.50mL含内标的乙醇溶液⒊待测样品准确取0.500mL死者心血(活者静脉血)0.500g死者肝,各加0.50mL内标溶液。

顶空气相色谱法的概念和类别

顶空气相色谱法的概念和类别

11. 气相色谱测定样品中乙酸乙酯,丙酸甲酯,正丁酸甲酯的色谱数据见下表,死时间为
0.6min。
组分
乙酸甲酯
丙酸甲酯
正丁酸甲酯
保留时间 tR(min) 2.72
4.92
9.23
峰面积 Ai
18.1
43.6
相对校正因子 f'is 0.60
0.78
(1) 计算每种组分的含量。
(2) 根据碳数规律,预测正戊酸甲酯的保留时间。
7. 在气相色谱检测器中通用型检测器是:
A.氢火焰离子化检测器
B.热导池检测器
C.示差折光检测器
D.火焰光度检测器
解:
8. 在气相色谱分析中为了测定下面组分,宜选用哪种检测器?为什么? (1)蔬菜中含氯农药残留量; (2)测定有机溶剂中微量水 (3)痕量苯和二甲苯的异构体;(4)啤酒中微量硫化物 解: (1) 蔬菜中含氯农药残留量选用电子捕获检测器,因为根据检测机理电子捕获检测器 对含有电负性化合物有高的灵敏度。残留含氯农药是含有电负性化合物,选用电 子捕获检测器。 (2) 溶剂中微量水选用热导池检测器检测,因为热导池检测器是通用型检测器,只要 有导热能力的组分均可测定,故可测定微量水。 (3) 痕量苯和二甲苯的异构体可用氢火焰离子化检测器,因为氢火焰离子化检测器对 含 C、H 元素的有机化合物有高的响应信号,特别适合。 (4) 啤酒中微量硫化物选用火焰光度检测器,因为火焰光度检测器是只对硫、磷有响 应信号,而且灵敏度高。
密闭恒温体系中,液气或固气达到平衡时用气相色谱法分析蒸气相中的被测组分。静态顶空 气相色谱的典型装置如图 6.10 所示。 动态顶空气相色谱也叫做吹扫-捕集(Purge-Trap) 分析法,这一方法是用惰性气体通人液体样品(或固体表面),把要分析的组分吹扫出来, 使之通过一个吸附剂进行富集,然后再把吸附剂加热,使被吸附的组分脱附,用载气带到气 相色谱仪中进行分析。其典型装置如图 6-11 所示。

顶空进样器之顶空气相色谱法分析

顶空进样器之顶空气相色谱法分析

顶空进样器之顶空气相色谱法分析点击次数:7 发布时间:2010-12-10顶空是气相色谱仪顶空进样器的一种进样设备,普通的气相色谱是用进样针进样,进样体积在ul级别,样品为液体;顶空进样进样体积在ml级别,进入气相色谱的为气体;一般测物质里易挥发的杂质用顶空测试比较好,比如测残留溶剂,比如检测空气中的有机污染物,这些情况要么需要大体积进样,要么需要进气体样品进行分析,顶空进样很好的满足这些要求。

(1)高聚物的分散系顶空进样器顶空气相色谱法可用于分离分析塑料、共聚物、高聚物的分散系。

例如:用于检测聚乙烯基团降解产物如乙烷、丙烷、正丁烷和丁烯-1等。

聚乙烯用作牛奶的包装材料时,这些组分造成牛奶产生不正气味。

哈切伯格(Hachenberg)已经给出顶空气相色谱法用于测定固体高聚物和高聚物分散系的例子。

他发现用此技术检测残留单体比用常规的把高聚物溶解后再度沉淀的方法要灵敏得多。

图2-40说明用常规的气相色谱法测定聚苯乙烯中的苯乙烯。

首先把聚苯乙烯溶解于二氯甲烷(CH2Cl2)之中,然后加入甲醇(CH3OH)使其沉淀,再用注射器取样品溶液,送入色谱柱进行分离分析。

在此分析中,除苯乙烯峰之外,唯一只见到内标峰,溶剂(CH2Cl2)和沉淀剂(CH3OH)则一起流出,而其他的杂质没有分离出来,被隐藏于CH2Cl2和CH3OH的混合峰中。

图中表明仅能测出样品中含量较高的两个组分,因此用常规方法测定苯乙烯的灵敏度是很低的。

顶空气相色谱分析不必花费制备样品(溶解和沉淀)的时间,取其挥发性气态样品直接进行气相色谱分离分析,得到如图2-41所示的色谱图。

从图中可以看出,顶空气相色谱分析能测出更多的组分,可以达到更低的检测限。

故此法具有快速、灵敏等特点。

用顶空气相色谱法还分析过高聚物中残留的石油醚;分析过α-甲基苯乙烯和其他一些种类的高聚物、共聚物和高聚物分散系等。

(2)食品挥发性组分顶空气相色谱分析首先应用于食品工业。

以前仅凭人的嗅觉和味觉来鉴别食品的质量,现在则可借用此法来帮助鉴别,在很多情况下,从色谱图上可找到代表食品特征香味的组分峰,因此,顶空气相色谱法有“气相色谱鼻”之称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 1977年,加拿大Pbotovac公司,采用PID研制生 产了有毒气体分析仪:10A10型便携式气相色谱 仪,随后在灯的中心能量,池体积、窗材料等方 面又做了改进和提高,被称为第三代PID。
• 1983年,光离子检测技术,被美国国家环保局 (EPD )、美国职业安全与健康局(NOSHA)和 美国职业安全与健康研究所(NIOSHA),规定为 具有法律仲裁的环境污染中有毒物质分析检测方 法(EPA methods501、5022、503、506、602、 8020、T015、EPA method2等)。
• 在上世纪六十年代,由于第一代PID的光源和与 离子化池设计在一个空间里,致使紫外光源放电 效率和光离子池中被检物质的光电离度都不能工 作在最佳状态,致使PID研究、推广和应用缓慢, 被认为是没有实际应用前途的一种检测技术,几 乎被人们遗忘。
• 1974年,随着新技术、新材料、新器件的发展与 出现,Scvcik和Krysl首先使用氟化物晶体做窗 口材料,将光源和离子化池分开,使其两者都工 作在最佳状态,这一设计使PID检测灵敏度提高 了几个数量级,被称为第二代PID。至此,PID进 入了实用阶段,为PID今后迅速发展打下柱的气相色 谱仪。1970年,PID已经开始从实验室中走到现 场用于化学品污染调查,可以在环保应急事故中 对有机化合物测量发挥重要作用。
• PID另一个应用是被便携式GC选配为检测器,便 携式GC主要用于现场分析。
气相色谱用电子压力控制装置
(EPC)
• 气相色谱用电子压力控制装置(electronic pressure control,EPC)是20世纪90年代初由 惠普公司,即现在的安捷伦科技公司推出的新技 术。随后,其他厂家很快也采用类似的技术,但 是采用了不同的名称:如岛津公司称自动流量控 制(automatic flow control,AFC),瓦里安 公司称电子流量控制系统(electronic flow control,EFC),PE公司则称可编程压力控制( program pressure cotrol,PPC)。
EPC用于GC的主要优点
• 仪器更省气。EPC具有节省气体的功能,当一段 时间不进样分析时,仪器可自动开启省气功能, 将载气流速降低(具体数值可人为设定)。需要 进样分析时,仪器在几秒钟之内就可恢复原来的 条件。
• 操作更安全。 • 分析结果更可靠。
国外GC配置EPC的情况
• 世界各国的气相色谱(GC)仪器生产厂商均为其 高端仪器配置了电子压力控制装置,以提高仪器 的自动化程度和分析重现性。如:美国安捷伦公 司的Agilent7890A气相色谱仪,岛津公司的GC2010气相色谱仪、PE公司的Clarus 600气相色谱 仪、瓦里安公司的CP-3800都配置了名称不同的 电子气路控制,可准确控制载气流量,提高了仪 器的自动化程度和分析结果的重现性、可靠性。
• 2009年,北京均方谱元科技有限公司的夏恩林等 研发了配PID的便携式或基站式气相色谱仪。
• 太极计算机股份有限公司承担了国家“十一五” 环境分析便携仪PID气相色谱仪的研制,已进入 测试验收阶段。
• 中国船舶总公司的杨振夏等研发了手持式PID可 挥发性有机物检测仪,已投入小批量生产。
PID的主要应用
PID结构简单,体积小、重量轻、坚固、 操作简单,再加上仅用一种载气(且可以 用空气),因此,特别适合设计环境监测 用手持式检测仪器(可看作无柱分离的GC 特例)、便携式或移动式气相色谱仪器和 基站式现场在线式分析仪器。
国外PID发展概况
• 1955年Lossing和Tanaka等人首先简述了光离子 化的原理,当光子能量高于受辐射组分分子的电 离能时该组分可以被电离。
EPC用于GC的主要优点
• 流量控制准确,重现性好。采用EPC后,由于载 气流量变化引起的保留时间误差可小于0.02% RSD。
• 可实现载气的多模式操作,如恒流操作、恒压操 作和压力编程操作。
• 使仪器体积更小。不再需要各种机械阀和压力表 ,故仪器显得更为简洁,也不再有机械阀故障。
• 使仪器自动化程度更高。
• 上世纪九十年代初,吉林大学化学系于爱民、王 旭杨等研制了气相色谱用微波诱导氩等离子体光 离子化检测器,对检测器的基本特性和离子化机 理进行了探讨,并应用于实际样品分析。
• 2005年北京东西电子技术研究所,成功的研发并 生产了具有我国自主知识产权的GC–4400型便携 式光离子化气相色谱仪,并于2005年度获得 BCEIA金奖和科技部创新基金支持。
计划完成情况
• 原定的五个专题评议现已全部完成
• 关于色谱仪器进展的综合评议报告 正在撰写中
光离子检测器(PID)
PID的响应机理是电离电位等于或小于 光能量的化合物在气相中发生光电离(常 用光源为紫外光源),在一定电场作用下, 收集这些离子流便实现被测组分的能量转 换,即被转换成:易放大、易传送和易处 理的电信号。
• 1957年,Robinson依据光离子原理,设计了第一 代PID检测器,由于综合性能不如FID(氢火焰离 子化检测器),未能推广实用,而很快被新出现 的FID替代。
• 1961年,Lovelock在对色谱检测离子化技术的详 述中,把PID和FID做了详细比较,显示出PID是 有相当前途的检测方法。
• 上世纪90年代中期,美国Volac公司开发研制了 无窗的脉冲放电光电离检测器(PDPID),为PID 的发展开辟了新的途径。
国内PID发展概况
• 上世纪八十年代,首先由中科院生态环境研究中 心,引进了加拿大Pbotovac公司第一代10S便携 式PID气相色谱仪,随后开展了我国相关PID光源、 器件、检测池、便携式仪器的研究与开发,于 1987年6月开展了光离子化气体分析仪的研制工 作,经过两年的努力,研制出了我国第一台光离 子化气体分析仪—110型光离子化气体分析仪, 为国内PID分析检测技术发展作出了很大贡献。
2009年色谱仪器 专题评议
色谱仪器评议小组 2010年2月9日
2009年计划进行的专题评议
• 气相色谱:
1.气相色谱电子压力控制/自动流量控制(EPC/AFC) 的进展 2.气相色谱顶空进样技术的进展 3.气相色谱用光离子化检测器(PID)的进展
• 液相色谱:
1.制备液相色谱仪的进展 2.液相色谱用的填料及液相色谱柱技术的进展
相关文档
最新文档