化学热力学动力学
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
●等温变容过程(以气相反应为主)
example
◆单一不可逆反应: 如:AA+BBpP
a b 则: rA A rB A rP k CA C B
B
P
由于过程恒T、V,则:
dCA a b rA k CAC B dt C A 0 dC A 积分得 : t C A k Ca C b A B 或:t
反应速率的表达形式 取决于反应所用的操作方式及反应所处相态
间歇(或半间歇)和连续操作
均相反应和多相反应
间歇操作系统
过程特点: ○反应期间无物料的进出 ○经充分搅拌处于充分均匀混合状态 ○整个反应物系的浓度、温度、压力等参数在每一瞬间都是一样 ○各个参数随反应时间而变化。
独立变量是时间
A、均相间歇反应系统的化学反应速率定义 组分 i 为对象:
化学热力学--化学反应能否进行及进行到何种程度;
化学反应动力学--化学反应以怎样的形式和速率进行; 微观动力学(Microkinetics) 宏观动力学(Macrokinetics)
化学反应工程研究的核心问题--工业反应器的各种因素 (反应器的型式、操作方式等)对反应速率的影响;
化学反应工程研究的目的--化学反应在工业装置上的有效
○连续流动系统反应转化率
continue
◇连续系统化学反应速率的定义 反应速率的定义: 单位反应体积中(或单位反应表面积上、或单位固体质量或催化
剂上)某一组分的摩尔流率的变化。
dN i ri dVR dN i ri dS dN ri i dW dN i ri dVR dN i ri dS dN i ri dW
实施;
第二章 均相反应动力学基础
Chapter 2 The Basis of homogeneous reaction kinetics
§2.1 化学反应速率的定义及速率方程(Rate Equation) (一)化学反应速率的定义
计量方程
1 A1 2 A2 ...... s As 0 或 i Ai i 1
通常以C、p或y表示,则动力学方程可表示为:
a b l m rA k c C A C B C L C M
rA k p P P P P
a A b B l L
m M
a b l m rA k y y A y B y L y M
kc、ky、kp之间的关系为:
k c k p RT
K
n n0 n0 y K 0 x K nK 0 n n0 n0 y K 0 x K n0
x K 1
K
n n0 n0
i yK 0 i yK 0 y i 0 1 y x K y i 0 1 y x K K i0 K i0 yi 1 y K 0 K xK 1 K xK
其中:
a, b, l, m, a’, b’, l’, m’为反应级数;
' k c , k c 为正逆反应速率常数;
n= a+b+l+m正反应总级数;
n’= a’+b’+l’+m’逆反应总级数。
有关速率常数的几点说明: ○当催化剂、溶剂等影响因素固定时,k仅是温度T的函数,并遵循 Arrhenius方程:
又:VR= vS0τ0
则:dVR= vS0 dτ0 若按标准状态进行计算,则:
0 FA 0 C A 0 v S 0 0 C A0
FA 0 vS 0 FA0 dx A dx A dx A 0 dx FA 0 C A0 A dVR v S 0 d 0 v S 0 d 0 d 0
1 ax A 1 ln 1 a C B0 1 x A
其中 a
B C A0 B AB A C B0 A
● 更复杂的形式一般采用图解积分,具有整数级的不可逆反应 在物理化学已讲过,教材P19--表2-2-1有一些常见的动力学方 程解析形式。
n 1
RT ky P
n 1
习题:推导kc、ky、kp之间的关系。
return
§2.2 化学反应速率方程式的解析形式 ●等温恒容过程(以液相恒密度反应为主)
◆单一反应 单一不可逆反应 单一可逆反应 均相催化反应 自催化反应
◆复杂反应
并联反应
连串反应
C S C S 0 a S '
d' k C A0 a A ' k' C S 0 a S ' dt k CA0 k' C S 0 aA 积分得 : t ln k aA k' a S k CA k' C S aA
yK
针对气相反应或气固多相 催化反应时,计算摩尔分 率的是十分有用的。
n y 1 x K y 1 x K nK 0 K0 K0 n n 0 n 0 yK 0 x K K 1 y K 0 x K K
任意组分 i 则有:
nห้องสมุดไป่ตู้ n0 y i 0 n0 y i 0 xi y i 0 1 xi yi n n0 n0 y K 0 x K K 1 y K 0 x K K xi i yK 0 xK K yi 0 y 1 i K 0 x K yi 0 K yi 0 1 yK 0 xK K
标准态时A 的初始浓 度
rA FA0
return
(二)反应速率方程
分两类:双曲函数型和幂函数型 幂函数型
双曲函数型
如:H2+Br22HBr
rHBr
k1 H 2 Br2 k 2 HBr / Br2
1/ 2
多相催化反应速率方程以双曲函数型者居多
Continue
VR
影响。
USP= vS0/VR
v
标态空速
return
○接触时间(空时):
定义:空间速度的倒数即空时。若以标准状况下的空速率 uSP计,则得标准空时τ0:
0
V 1 R u SP v S 0
[时间]
说明:空时既不是反应时间,也不是物料在反应器内停留 时间,只是在特定条件下(如理想平推流)才与反
应时间和停留时间相等。
return
○连续流动系统反应转化率:
设 A 为关键组分,则转化率xA定义:
FA 0 FA xA FA 0
FA0----初始混合物组分 A 的摩尔流率; FA----反应物 A 的瞬间摩尔流率;
FA=FA0(1-xA)
dFA= - FA0dxA
则反应速率:
dFA dx A rA FA 0 dVR dVR
非等分子反应的膨胀因子及相关计算
非等分子反应膨胀率及相关计算
continue
非等分子反应的膨胀因子及相关计算 膨胀因子:
i 1
s
i
Ai 0
1 K K
n n0 i n y x i 1 0 K0 K
s
的情况
K 的定义:
每反应1mol的组分K所引起反应物系总摩尔数的变化量。 (举例:如合成氨的反应,求膨胀因子) 设关键组分K的转化率为xK,则:
影响化学反应速率的因素包括:物系性质、系统温度及压力、催化剂。
当催化剂确定后,用于描述化学反应速率与各组分含量之间量的关系式 称为化学反应动力学方程式。 液相:以浓度(mol/L or m3); 气相:以分压或摩尔分率表示; 实际气体:逸度 f 表示分压; 动力学方程式分两类:双曲函数型和幂函数型
举例:合成氨
s
0
其中:产物计量系数大于0,反应物计量系数小于0
反应速率(Reaction Rate)
化学反应速率 反应物反应的量 或产物生成的量 单位时间 单位反应区间
注意:反应物的转化率有的是随时间发生变化的,有的则是与空间有关, 也就是独立变量因场合而变。其具体形式不总是一样的。
很明显: rA rB rL rM
A B L
M
注意:只 适用于恒 容体系
对于均相液相反应,体系恒容,则
n d i dC V 1 dni ri i V dt dt dt
B、多相间歇反应系统的化学反应速率定义 (多相反应往往用于连续过程,后面要作为重点讲解) C、间歇操作系统的反应转化率及反应程度及相关计算 关键组分转化率 反应程度 反应瞬间组分摩尔分率的计算 等分子反应及非等分子反应
Ec k k 0 exp RT
其中:EC----反应活化能,KJ/Kmol; R----气体普适常数,8.314KJ/Kmol.K 活化能EC可以通过实验测定不同温度T的速率常数k后,由 Arrhenius方程求:
EC ln k ln k 0 RT
○反应速率常数k与反应混合物的组成表示方法有关,特别是气相,
return
连续操作系统 过程特点 反应物、产物于反应期间连续进出 反应达到稳定后无物料的累积 浓度、温度、压力等参数在反应器内一定位置上是一定值,不随 时间而变化 各个参数在反应器不同位置上是不同的 独立变量是空间 ◇连续系统化学反应速率的定义
◇连续流动系统中常用的工程概念
○空间速度(空速) ○接触时间(空时)
Ni----表示组分 i 的摩尔流率,单位:kmol/h VR----反应体积(均相反应指混合物所占的体积,气液相反应指液相
体积,气固多相反应指固定床体积)
return
◇连续流动系统中常用的工程概念
○空间速度(空速): u空速= v混合物/V反应体积 [时间]-1 V反应体积----按前面的定义 v混合物----反应混合物的体积流率
v混合物对u空速的影响分两种情况:
操作状态的变化(如T、P的变化)
反应前后摩尔数的变化
v0
为了方便计算及比较,对v混合物的定义:
不含生成物的初始体积流量(v0 ),再 按标准状态(气体:9.8×104Pa、0℃; 液体:9.8×104Pa、25℃)换算成vS0, 以 uSP来表示空速,以消除操作条件变化的
●幂函数型
对反应:AA+BB
a A
LL+MM '
kC
kC
rA kc C C C C k C C C C
b B l L m M ' C a' A b' B l' L
m' M
若为不可逆反应,则:
rA k c C C C C
a A b B l L
m M
注意:其幂指数 与计量系数可能 相等,也可能不 相等。
return
◆单一可逆反应:
以正逆反应均为一级的可逆反应为例:
a A A aS S 动力学方程描述为 : rA
两参数是无法 积分的,设法 变为单参数微 分形式
dC A kCA k' C S dt
当t 0 时 C A0 C S0 若反应进度为 , 则有 ' C A C A0 a A ' C A C A0 C S C S 0 V aA aS
1 dni i 为反应物 V dt 1 dni i 为产物 ri V dt ri
说明:A、B、L、M 的变化速率都可以用 来表示一个化学反应 进行的速率
如:AA+BB = LL+MM
则:
rA dnA dt rB dnB dt rL dnL dt rM dnM dt
y i 0 1 xi yi 1 yK 0 xK K
return
非等分子反应膨胀率及相关计算
n K 0 K n 0 y K 0 K y K 0K 膨胀率: K n0 n0
其定义:
(举例说明)
关键组分K完全反应完时,反应混合物的摩尔数比初始摩尔数增加
或减少的比例。
C A0 CA
dCA rA
由 微 分 变 为 积 分
分三种情形: ● C A0 A
由 积 分 形 式 变 为 解 析 式
C B0
B
则积分式为: k' t ●
CA0 AB A C B0 B
则解析形式为:
kt
1 1 C A C A0
其中 k'
B k A