培优专题6分式的概念分式的基本性质含答案

合集下载

2022年人教版八年级下册数学培优训练——《分式》全章复习与巩固(基础)知识讲解

2022年人教版八年级下册数学培优训练——《分式》全章复习与巩固(基础)知识讲解

《分式》全章复习与巩固(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.了解分式的基本性质,掌握分式的约分和通分法则.3.掌握分式的四则运算.4.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.【知识网络】【要点梳理】要点一、分式的有关概念及性质1.分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简. 要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算 a b a b c c c ±±= ;同分母的分式相加减,分母不变,把分子相加减. ;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算 a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算 a c a d ad b d b c bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方.4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.要点三、分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.【典型例题】类型一、分式及其基本性质1、在ma y x xy x x x x 1,3,3,)1(,21,12+++π中,分式的个数是( ) A.2 B.3 C.4 D.5【答案】C ;【解析】()21131x x a x x x y m+++,,,是分式. 【总结升华】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.2、当x 为何值时,分式293x x -+的值为0? 【思路点拨】先求出使分子为0的字母的值,再检验这个值是否使分母的值等于0,当它使分母的值不等于0时,这个值就是要求的字母的值.【答案与解析】解: 要使分式的值为0,必须满足分子等于0且分母不等于0.由题意,得290,30.x x ⎧-=⎨+≠⎩解得3x =. ∴ 当3x =时,分式293x x -+的值为0. 【总结升华】分式的值为0的条件是:分子为0,且分母不为0,即只有在分式有意义的前提下,才能考虑分式值的情况. 举一反三:【变式】(1)若分式的值等于零,则x =_______;(2)当x ________时,分式没有意义.【答案】(1)由24x -=0,得2x =±. 当x =2时x -2=0,所以x =-2;(2)当10x -=,即x =1时,分式没有意义. 类型二、分式运算3、计算:2222132(1)441x x x x x x x -++÷-⋅++-. 【答案与解析】解:222222132(1)(1)1(2)(1)(1)441(2)(1)1x x x x x x x x x x x x x x -+++-++÷-⋅=⋅⋅++-+-- 22(1)(2)(1)x x x +=-+-. 【总结升华】本题有两处易错:一是不按运算顺序运算,把2(1)x -和2321x x x ++-先约分;二是将(1)x -和(1)x -约分后的结果错认为是1.因此正确掌握运算顺序与符号法则是解题的关键.举一反三:【变式】(2020•滨州)化简:÷(﹣)【答案】解:原式=÷=• =﹣. 类型三、分式方程的解法4、(2020•呼伦贝尔)解方程:.【思路点拨】观察可得最简公分母是(x ﹣1)(x +1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【答案与解析】解:方程的两边同乘(x ﹣1)(x +1),得3x +3﹣x ﹣3=0,解得x=0.检验:把x=0代入(x ﹣1)(x +1)=﹣1≠0.∴原方程的解为:x=0.【总结升华】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.举一反三:【变式】()1231244x x x -=---, 【答案】解: 方程两边同乘以()24x -,得()()12422332x x x =---=-∴ 检验:当32x =-时,最简公分母()240x -≠, ∴32x =-是原方程的解.类型四、分式方程的应用5、(2020•东莞二模)某市为治理污水,需要铺设一条全长为600米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加20%,结果提前5天完成这一任务,原计划每天铺设多少米管道?【思路点拨】先设原计划每天铺设x 米管道,则实际施工时,每天的铺设管道(1+20%)x 米,由题意可得等量关系:原计划的工作时间﹣实际的工作时间=5,然后列出方程可求出结果,最后检验并作答.【答案与解析】解:设原计划每天铺设x 米管道,由题意得: ﹣=5,解得:x=20,经检验:x=20是原方程的解.答:原计划每天铺设20米管道.【总结升华】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.举一反三:【变式】小明家、王老师家、学校在同一条路上,并且小明上学要路过王老师家,小明到王老师家的路程为3 km ,王老师家到学校的路程为0.5 km ,由于小明的父母战斗在抗震救灾第一线,为了使他能按时到校、王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是他步行速度的3倍,每天比平时步行上班多用了20 min ,王老师步行的速度和骑自行车的速度各是多少?【答案】解:设王老师步行的速度为x km/h ,则他骑自行车的速度为3x km/h . 根据题意得:230.50.520360x x ⨯+=+. 解得:5x =.经检验5x =是原方程的根且符合题意.当5x =时,315x =.答:王老师步行的速度为5km/h ,他骑自行车的速度为15km/h .。

分式(含答案)

分式(含答案)

分式【回顾与思考】1.形如 的式子,叫做分式,其中A 叫做 ,B 叫做 。

2.分式的基本性质:分式的分子、分母都 的整式,分式的值 。

3.分式的值为零的条件是 ,分式有意义的条件是 。

4.分式的混合运算:分式的加、减、乘、除、乘方混合运算是先算 ,再算 ,遇到括号,先算括号内的【例题经典】1.熟练掌握分式的概念:性质及运算例1 (12x=______. 【点评】分式值为0的条件是:有意义且分子为0.(2)同时使分式2568x x x -++有意义,又使分式223(1)9x x x ++-无意义的x 的取值范围是( )A .x ≠-4且x ≠-2B .x=-4或x=2C .x=-4D .x=2(3)如果把分式2x y x+中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍 B .缩小10倍 C .不变 D .扩大2倍2. 分式的加、减、乘、除混合运算(1)221211221++--÷++-x x x x x x (2)2232214()2442x x x x x x x x x+---÷--+- 【点评】注意分式混和运算的顺序。

【基础训练】1.某玩具厂要加工x 只“福娃”,原计划每天生产y 只,实际每天生产(y+z)只,(1)该厂原计划 天完成任务(2)该厂实际用 天完成任务2.若分式122--x x 的值为0,则x 的值为( ) A. 1B. -1C. ±1D.23.计算22142a a a -=-- . 4.函数1x y x =-自变量x 的取值范围是5.将分式12 x-y x 5 +y 3 的分子和分母中的各项系数都化为整数,应为 ( ) A .x-2y 3x+5y B .15x-15y 3x+5y C . 15x-30y 6x+10y D .x-2y 5x+3y6.若分式xyy x +(x 、y 为正数)中, x 、y 的值分别扩大为原来的2倍,则分式的值( ) A .扩大为原来的2倍 B .缩小为原来的 12C .不变D .缩小为原来的14 7.若代数式21x x -+的值是零,则x = . 8.已知113x y -=,则代数式21422x xy y x xy y----的值为 【能力提升】9.化简:2113()1244x x x x x x x -++-÷++++.10.课堂上,李老师出了这样一道题: 已知352017-=x ,求代数式)1x 3x 1(1x 1x 2x 22+-+÷-+-的值。

分式习题精讲含详细解答答案

分式习题精讲含详细解答答案

1.分式的定义及性质1-1.若分式mx x +-212不论x 取任何实数总有意义,则m 的取值范围为( D ) A. 1≥m B. m >1 C. 1≤m D.m ≠1分析:分式有意义的条件是分母不为0.只要m x x +-22≠0,即可,而m x x +-22=()1122-++-m x x =()112-+-m x ,要使()112-+-m x ≠0,因为()012≥-x ,所以只需要m -1≠0,即m ≠1。

1-2.若()()30622----x x 有意义,那么x 的范围是( D )。

A. x >2B. x <3C. x ≠3或x ≠2D. x ≠3且x ≠2 1-3.已知分式的值为正或负,或1,-1,或0.求字母的取值。

① 当x 时,分式21+x 的值为正。

解:由题意得21+x >0,根据实数运算法则,同号两数相除得正,异号两数相除得负,可知x+2与1同号,所以x+2>0,所以x >-2. ② 当x 时,分式112+-x x的值为负。

解:由题意得112+-x x <0,因为x 2+1>0,根据实数运算法则,同号两数相除得正,异号两数相除得负,可知1-x 与x 2+1异号,所以1-x <0,所以x >1. ③ 当x 时,分式22-+x x 的值为-1。

解:由题意得22-+x x =-1,所以x+2与x -2互为相反数,所以x+2+x -2=0,所以x =-x ,所以x ≤0总结:以上题型为:已知分式的值为正或负,或为1,-1等常数,求x 的值。

这种题型的解法是:运用转化的思想。

A.若分式的值为正或负,则转化成解分式不等式,解分式不等式的方法是运用实数运算法则将分式不等式转化成整式不等式,再解整式不等式。

B.或分式的值为1,-1等常数时,则转化成求解分式方程,解分式方程的方法是先转化成整式方程,再解整式方程。

最后记得要检验是否有增根。

附加练习:④ 当x >5 时,分式52-x 的值为正。

分式的基本概念及性质

分式的基本概念及性质

分式的概念:当两个整数不能整除时,出现了分数;类似的当两个整式不能整除时,就出现了分式.一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式.整式与分式统称为有理式.在理解分式的概念时,注意以下三点:⑴分式的分母中必然含有字母;⑵分式的分母的值不为0;⑶分式必然是写成两式相除的形式,中间以分数线隔开.分式有意义的条件:两个整式相除,除数不能为0,故分式有意义的条件是分母不为0,当分母为0时,分式无意义.如:分式1x,当0x≠时,分式有意义;当0x=时,分式无意义.分式的值为零:分式的值为零时,必须满足分式的分子为零,且分式的分母不能为零,注意是“同时”.分式的基本性质:分式的基本性质:分式的分子与分母同时乘(或除以)一个不等于0的整式,分式的值不变.上述性质用公式可表示为:a amb bm=,a a mb b m÷=÷(0m≠).注意:①在运用分式的基本性质时,基于的前提是0m≠;②强调“同时”,分子分母都要乘以或者除以同一个“非零”的数字或者整式;③分式的基本性质是约分和通分的理论依据.一、分式的基本概念【例1】在下列代数式中,哪些是分式?哪些是整式?1 t ,(2)3xx+,2211x xx-+-,24xx+,52a,2m,21321xx x+--,3πx-,323a aa+【例2】代数式22221131321223x x x a b a b abm n xyx x y+--++++,,,,,,,中分式有()A.1个B.1个C.1个D.1个分式的基本概念及性质二、分式有意义的条件【例3】求下列分式有意义的条件:⑴1x⑵33x+⑶2a ba b+--⑷21nm+⑸22x yx y++⑹2128x x--⑺293xx-+【例4】x为何值时,分式2141xx++无意义?【例5】x为何值时,分式2132x x-+有意义?【例6】x为何值时,分式211xx-+有意义?【例7】要使分式23xx-有意义,则x须满足的条件为.【例8】x为何值时,分式1111x++有意义?【例9】要使分式241312aaa-++没有意义,求a的值.【例10】x为何值时,分式1122x++有意义?【例11】x为何值时,分式1122xx+-+有意义?【例12】若分式25011250xx-++有意义,则x;若分式25011250x x-++无意义,则x ;【例13】 若33aa-有意义,则33a a -( ).A. 无意义B. 有意义C. 值为0D. 以上答案都不对【例14】 x 为何值时,分式29113x x-++有意义?【例15】 ⑴ 若分式216(3)(4)x x x --+有意义,则x ;⑵ 若分式216(3)(4)x x x --+无意义,则x ;三、分式值为零的条件【例16】 当x 为何值时,下列分式的值为0?⑴1x x+ ⑵211x x -+ ⑶33x x -- ⑷237x x ++ ⑸2231x x x +--⑹2242x x x-+【例17】 当x 为何值时,下列分式的值为0?⑴213x x -+ ⑵223(1)(2)x x x x --++ ⑶2656x x x --- ⑷221634x x x -+-⑸288xx + ⑹2225(5)x x -- ⑺(8)(1)1x x x -+-【例18】 若分式41x x +-的值为0,则x 的值为 .【例19】 若分241++x x 的值为零,则x 的值为________________________.【例20】 若分式242x x --的值为0,则x 的值为 .【例21】 若分式 242a a -+ 的值为0,则a 的值为 .【例22】 若分式221x x -+的值为0,则x = .【例23】 (2级)(2010房山二模)9. 若分式221x xx +-的值为0,则x 的值为 .【例24】 若分式231x x ++的值为零,则x = ________________.【例25】 (2级)(2010平谷二模)已知分式11x x -+的值是零,那么x 的值是( ) A .1 B. 0 C. 1- D. 1±【例26】 若分式2532x x -+的值为0,则x 的值为 .【例27】 如果分式2321x x x -+-的值是零,那么x 的取值是 .【例28】 若分式()()321x x x +-+的值不为零,求x 的取值范围.【例29】 若22x x a-+的值为0,则x = .【例30】 x 为何值时,分式29113x x-++分式值为零?【例31】 若22032x xx x +=++,求21(1)x -的值.【例32】 x 为何值时,分式23455x xx x ++-+值为零?【例33】 若分式2160(3)(4)x x x -=-+,则x ;【例34】 若分式233x x x--的值为0,则x = .【巩固】 若分式250011250x x-=++,则x .【例35】 若2(1)(3)032m m m m --=-+,求m 的值.四、分式的基本性质【例36】 填空:(1)()2ab ba = (2)()32x x xy x y =++(3)()2x y x xyxy ++=(4)()222x y x y x xy y +=--+【例37】 若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?⑴x y x y +- ⑵xy x y - ⑶22x y x y -+【例38】 把下列分式中的字母x 和y 都扩大为原来的5倍,分式的值有什么变化?(1)2x y x y ++ (2)22923x x y +【例39】 若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?⑴2222x y x y +-⑵3323x y⑶223x y xy-【例40】 不改变分式的值,把下列各式的分子与分母的各项系数都化为整数. ⑴1.030.023.20.5x y x y +- ⑵32431532x yx y -+【例41】 不改变分式的值,把下列各式分子与分母的各项系数都化为整数。

第20讲 分式的意义、性质及综合计算(解析版)

第20讲 分式的意义、性质及综合计算(解析版)

第20讲分式的意义、性质及综合计算一、分式的意义与基本性质:1、分式的概念:两个整式A、B相除,即A B÷时,可以表示为AB.如果B中含有字母,那么AB叫做分式,A叫做分式的分子,B叫做分式的分母.在理解分式的概念时,注意以下三点:(1)分式的分母中必然含有字母;(2)分式的分母的值不为0;(3)分式必然是写成两式相除的形式,中间以分数线隔开.2、分式有意义的条件:两个整式相除,除数不能为0,故分式有意义的条件是分母不为0,当分母为0时,分式无意义.例如:分式1x,当0x≠时,分式有意义;当0x=时,分式无意义.3、分式值为零的条件:分式的值为零时,必须满足分式的分子为零,且分式的分母不能为零,注意是“同时”.4、分式的基本性质:分式的基本性质:分式的分子和分母都乘以(或除以)同一个不为零的整式,分式的值不变.上述性质用公式可表示为:a amb bm=,a a mb b m÷=÷(0m≠).注意:①在运用分式的基本性质时,基于的前提是0m≠;②强调“同时”,分子分母都要乘以或者除以同一个“非零”的数字或者整式;原创精品资源学科网独家享有版权,侵权必究!1③分式的基本性质是约分和通分的理论依据.二、分式的乘除:1、分式的乘法:两个分式相乘,将分子相乘的积作分子,分母相乘的积作分母,用式子表示为:A C ACB D BD ⋅=.2、分式的乘方法则:分式乘方就是把分子、分母各自乘方.即nn n A A B B ⎛⎫= ⎪⎝⎭.3、分式的除法法则:分式除以分式,将除式的分子和分母颠倒位置后,再与被除式相乘.用公式表示为:A C A D ADB D BC BC÷=⋅=.4、分式的乘除混合运算:分式的乘除混合运算,有括号先算括号里的,没有括号按从左到右的顺序计算.【注意】1、在分式除法运算中,除式或(被除式)是整式时,可以看作分母是1的分式,然后按照分式的乘除法的法则计算.2、要注意运算顺序,对于分式的乘除来讲,它只含同级乘除运算,而在同级运算中,如果没有附加条件(如括号等),那么就应该按照由左到右的顺序计算.三、分式的加减:1、同分母的分式加减法法则:同分母分式相加减,分母不变,分子相加减.2、异分母的分式加减法法则:(1)通分:将几个异分母的分式分别化为与原来分式的值相等的同分母分式的过程叫做通分,这几个相同的分母叫做公分母.(2)异分母分式加减法法则:分母不同的几个分式相加减,应先进行通分,化成同分母分式后再进行加减运算,运算结果能化简的必须化简.四、分式的综合运算:与分数的混合运算类似,先算乘除,再算加减,如果有括号,要先算括号内的.1.不改变分式的值,使分式115101139x yx y -+的各项系数化为整数,分子、分母应乘以()A 、10B 、9C 、45D 、90【答案】D【解析】找5,10,3,9的最小公倍数.【总结】本题主要考查分式的基本性质.2.分式1a b +、222a a b -、bb a-的最简公分母是()原创精品资源学科网独家享有版权,侵权必究!3A 、()()()22a b a b b a +--B 、()()22a b b a +-C 、()()22a b b a --D 、22a b -【答案】D【解析】考察最简公分母的定义.3.在下列各式中:①222mn a b -⎛⎫ ⎪⎝⎭;②42528m n an a b bm -⋅;③2222m nb ab a ⎛⎫⎛⎫⋅ ⎪ ⎪-⎝⎭⎝⎭;④2222mn a ab m ÷.相等的两个式子是()A 、①②B 、①③C 、②③D 、③④【答案】B【解析】①22224224mn m n a b a b -⎛⎫= ⎪⎝⎭;②4223524288m n an m n a b bm a b -⋅=-;③2222222224242244m nb m n b m n ab a a b a a b ⎛⎫⎛⎫⋅=⋅= ⎪ ⎪-⎝⎭⎝⎭;④2222222232222mn a mn m m n ab m ab a a b÷=⋅=.【总结】本题主要考查分式的约分.4.已知2519970x x --=,则代数式()()222112x x x ---+-的值为()A 、1999B 、2000C 、2001D 、-2【答案】D【解析】()()222112x x x ---+-22442112x x x x x -+-+-+=-242x x -+=-()222x x --=-2=-.【总结】本题主要考查分式的化简,分式的最终结果跟x 的取值并无关系.5.若269a a -+与1b -互为相反数,则式子()a b a b b a ⎛⎫-÷+ ⎪⎝⎭的值为__________.【答案】32.【解析】∵269a a -+与1b -互为相反数,∴26910a a b -++-=,即()0132=-+-b a ,∴3=a ,1=b .∴()22123a b a b a b a b b a ab a b ab --⎛⎫-÷+=⋅== ⎪+⎝⎭.【总结】本题一方面考查分式的混合运算,一方面注意相反数的概念.6.当x _______时,分式1111x++有意义.【答案】1-≠x 且2-≠x .【解析】∵01≠+x 且0111≠++x,∴1-≠x 且2-≠x .7.当x _______时,分式211xx++的值为零.【答案】2-=x .【解析】由题意,得:02=+x 且0≠x 且011≠+x,所以2-=x .【总结】本题主要考查分式值为零的条件.8.已知:222222M xy y x yx y x y x y--=+--+,则M =_________.【答案】2x .【解析】因为()()()22222222x y xy y x x y x y x y x y--+=-+--,所以2M x =.【总结】本题一方面考查异分母分式的加减,另一方面考查当两个分式相等并且分母相等时,分子也相等.9.已知对任意x 有324231+3x A Bx Cx x x x x ++=++--+,则A =_______,B =______,C =______.【答案】1;-1;-1.【解析】因为222(3)()(1)1+3(1)(3)A Bx C A x x Bx C x x x x x x x +++++-+=-+-++3()()(3)23A B x A B C x A C x x ++-++-=+-,又324231+3x A Bx Cx x x x x ++=++--+所以0134A B A B C A C +=⎧⎪-+=⎨⎪-=⎩,解得111A B C =⎧⎪=-⎨⎪=-⎩.【总结】本题一方面考查分式的混合运算,另一方面考查当两个分式相等并且分母相等时,分子也相等.10.计算:原创精品资源学科网独家享有版权,侵权必究!5(1)22266(3)(2)443x x x x x x x x -+-÷+⋅⋅--+-;(2)222221211()()22x x x x x x x x--+÷÷---+.【答案】(1)2;(2)xx -22.【解析】(1)22266(3)(2)443x x x x x x x x -+-÷+⋅⋅--+-()()()()223321(2)332x x x x x x x -+-=⋅⋅⋅-+--2=;(2)222221211()()22x x x x x x x x--+÷÷---+()()()()()222222121211x x x x x x x --=⋅⋅+-+-22x x=-.【总结】本题主要考查分式的乘除运算,注意对法则的准确运用.11.计算:(1)22221244n m m n m n m mn n --+÷--+;(2)322114221x x x x x x ⎛⎫+--+⋅⎪-++⎝⎭.【答案】(1)nm n+3;(2)44223+-+x x x .【解析】(1)原式()()()2122m n m n n m m n m n +--=+÷--()()()2212m n n mm n m n m n --=+⋅-+-21m n m n -=-+3nm n=+;(2)原式322214142121x x x x x x x x +---=⋅+⋅-+++()()()()()()()()2112211222121x x x x x x x x x x x x x +-++-+-+-=⋅+-+++()()()()21212x x x x x =-+++--32244x x x =+-+.【总结】本题主要考查分式的混合运算,注意对法则的准确运用以及方法的选择.12.计算:(1)2222963441644x x x x x x x x -+-++÷⋅---;(2)22214(1)441a a a a a a --÷+⋅++-.【答案】(1)()()()()2423-++-x x x x ;(2)22+-a a .【解析】(1)原式()()()()()()2232444322x x x x x x x x -+-=⋅⋅+--+-()()()()3242x x x x -+=+-;(2)原式()()()()()211221112a a a a a a a -++-=⋅⋅+-+2222a aa a --=-=++.13.已知21610x x --=,求331x x -的值.【答案】4144.【解析】∵21610x x --=,∴161=-xx .∴331x x -2211++1x x x x ⎛⎫⎛⎫=- ⎪⎪⎝⎭⎝⎭211=+2+1x x x x ⎡⎤⎛⎫⎛⎫--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()2=1616+3⨯=4144.【总结】本题综合性较强,一方面考查对原式的变形,另一方面考查立方差的运用.14.已知:0a b c ++=,8abc =,求证:1110a b c++<.【答案】证明略,见解析.【解析】∵0=++c b a ,∴()()022222=+++++=++ac bc ab c b a c b a .即2222220a b c ab ac bc +++++=.∴2221()2ab ac bc a b c ++=-++.∵8abc =,∴a 、b 、c 均不为零.∴2221111=()016bc ac ab a b c a b c abc ++++=-++<.【总结】本题综合性较强,主要还是利用了异分母分式的加减以及完全平方公式.15.若111122229999199991A +=+,222233339999199991B +=+,试比较A 与B 的大小.【答案】A B >.【解析】设11119999a =,则2+1=1a A a +,23+1=1a B a +.则B A -2322323+1+12=11(1)(1)a a a a a a a a a -+-=++++223(1)(1)(1)a a a a -=++.又111199991a =>,所以10a ->.所以0A B ->,所以A B >.【总结】本题主要考查通过换元法试原来的式子变得简洁一些,然后再通过做差比较两数大小.原创精品资源学科网独家享有版权,侵权必究!716.设10x y z a b c a b c x y z++=++=,,求222222x y z a b c ++的值.【答案】1.【解析】设m a x =,n b y =,t cz=.∵1x y za b c ++=,∴1=++t n m .∵0=++zcy b x a ,∴0111=++tn m ,∴0=++mntmnmt nt ,∴0=++mn mt nt .∴()()222222222222101x y z m n t m n t mn nt mt a b c++=++=++-++=-=.【总结】本题也是考查对换元法的理解和运用.1.(2023年上海浦东新区模拟卷)2023年1月,中国迎来奥密克戎变异毒株的首波感染高峰.已知该病毒的直径长120纳米,1纳米=910-米,则这种冠状病毒的半径用科学记数法表示为()A .71.210-⨯米B .111.210-⨯米C .8610-⨯米D .70.610-⨯米【答案】C【分析】绝对值小于1的负数也可以用科学记数法表示,一般形式为10n a -⨯,其中110,a ≤<根据题意,该病毒的直径长120纳米,即可求出这种冠状病毒的半径用科学记数法表示.【详解】解:()9812026010610--÷=⨯=⨯纳米米.故选:C.【点睛】本题主要考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中110,a ≤<熟练掌握科学记数法是解此题的关键.2.(2023年上海民办华育期中真题)对于分式226xx --,下列说法错误的是()A .当2x =时,分式的值为0B .当3x =时,分式无意义C .当2x >时,分式的值为正数D .当83x =时,分式的值为1【答案】C【分析】直接利用分式的值为零,分式无意义,分式的求值进行判断即可.【详解】解:A .当2x =时,20x -=,2620x -=-≠,分式226xx --的值为0,故此项选项不符合题意;B .当3x =时,260x -=,分式226xx --无意义,故此选项不符合题意;C 当2x >时,当3x =时,260x -=,分式226xx --无意义,故此选项符合题意;D .当83x =时,822233182262633x x ---===-⨯--,故此选项不符合题意.故选:C .【点睛】本题考查分式值为零的条件,分式无意义的条件,分式的求值.解题的关键是能熟练掌握分式相关知识进行解答.3.(2022年上海新华中学期中真题)若2m n +=,则代数式2n m nm m m ⎛⎫--÷ ⎪⎝⎭的值为()A .2B .2-C .12D .12-【答案】B【分析】先根据分式的混合运算化简,再整体代入即可作答.【详解】2n m nm m m ⎛⎫--÷⎪⎝⎭22·n m mm m m n ⎛⎫=- ⎪-⎝⎭22·n m m m m n-=-()()·n m n m m m m n+-=-()n m =-+n m =--,∵2m n +=,∴原式2n m =--=-,故选:B .【点睛】本题考查了分式的化简求值,掌握分式的混合运算法则是解答本题的关键.4.(2023年上海新华中学期中真题)下列运算正确的是()A .22m m ÷=B .()222m n m n-=-C .33322n n m m ⎛⎫=⎪⎝⎭D .2yxy x x÷=原创精品资源学科网独家享有版权,侵权必究!9【答案】D【分析】根据整式以及分式的运算法则逐项计算即可判断.【详解】A.221m m ÷=,即原计算错误,本项不符合题意;B.()2222m n m mn n -=-+,即原计算错误,本项不符合题意;C.33328n n m m ⎛⎫= ⎪⎝⎭,即原计算错误,本项不符合题意;D.2y xy xy yx x x÷=⨯=,即原计算正确,本项符合题意;故选:D .【点睛】本题考查了整式以及分式的运算,掌握相应的运算法则是解答本题的关键.5.计算321b a a⎛⎫-÷ ⎪⎝⎭的结果为()A .3b a-B .3b a C .35b a -D .35b a【答案】A【分析】先计算乘方,再计算除法即可求解.【详解】解:321b a a⎛⎫-÷ ⎪⎝⎭3321b a a =-÷323b aa =-⋅3b a=-.故选:A .【点睛】本题考查分式混合运算,熟练掌握分式乘方与除法运算法则是解题的关键.6.小强上山和下山的路程都是S 千米,上山的速度为1v 千米时,下山的速度为2v 千米时,则小强上山和下山的平均速度为()A .122sv v +千米/时B .122sv v +千垙时C .12ss s v v +千时D .12122v v v v +千米/时【答案】D【分析】先表示出上山时间与下山时间,然后根据总路程除以总时间,即可求解.【详解】解:依题意,上山所用时间为:1Sv ,下山所用时间为:2S v ,∴小强上山和下山的平均速度为()1212121212222v v SSS Sv v S v v v v v v ==+++,故选:D .【点睛】本题考查了列代数式,分式的加减运算,根据题意列出代数式是解题的关键.7.(2023年上海民办华育期中真题)下列分式从左到右变形错误的是()A .155c c =B .3344b a a b +=+C .11a b b a=---D .2242442a a a a a --=+++【答案】B【分析】根据分式的基本性质进行计算即可解答.【详解】解:A 、155c c =,故A 不符合题意;B 、3344b a a b+≠+,故B 符合题意;C 、11a b b a=---,故C 不符合题意;D 、2224(2)(2)244(2)2a a a a a a a a -+--==++++,故D 不符合题意;故选B .【点睛】本题考查了分式的基本性质,解题的关键是熟练掌握分式的基本性质,分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变.8.对于任意的x 值都有()()272121x M Nx x x x +=++-+-,则M ,N 值为()A .1M =,3N =B .1M =-,3N =C .2M =,4N =D .1M =,4N =【答案】B【分析】对等式右边通分并进行加法运算,再根据对应项系数相等列方程组求解即可.【详解】解:∵()()()()()()()()()()12227212121M x N x M N x M N x x x x x x x -++++-++==+-+-+-,∴227M N M N +=⎧⎨-+=⎩,解得:13M N =-⎧⎨=⎩.故选:B .【点睛】本题考查分式的加法,二元一次方程组.掌握分式的加减运算法则是解题的关键.原创精品资源学科网独家享有版权,侵权必究!119.当x ________时,分式226xx -有意义.【答案】3≠【分析】根据分式有意义的条件:分母0≠,进行求解即可.【详解】解:依题意得:260x -≠.解得:3x ≠.故答案是:3≠.【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件:分母不等于0,是解题的关键.10.(2023年上海兰生复旦中学月考)约分:221827xyx y -=______.【答案】23xy-【分析】根据分式的约分解答即可.【详解】解:221829227393xy xyx y xy xy xy ⋅-=-=-⋅.故答案为:23xy -.【点睛】本题主要考查了分式的约分,掌握分式的基本性质是解答本题的关键.11.化简:2211a a a -+-÷()21a -=_____.【答案】11a +【详解】解:()222111a a a a -+÷--()()()211111a a a a -=⨯-+-11a =+故答案为:11a +【点睛】此题考查了分式的除法运算,熟练掌握除法法则是解题的关键.12.若分式222x x x ---的值为0,则x 的值为_______.【答案】2-【分析】根据分式的值为0的条件,即可求解.【详解】解:由分式的值为零的条件得:20x -=,且()()22210x x x x --+-=≠,解得2x =-,故答案为:2-.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.13.(2023年上海兰生复旦中学月考)分式261812a a a -+,24(1)b a -,23(2)c a -的最简公分母是__.【答案】()()221212a a ﹣﹣/()()221221a a ﹣﹣【分析】根据最简公分母的定义解决此题.【详解】解:()()()2261812632612a a a a a a ++﹣=﹣=﹣﹣ ,根据最简公分母的定义,这三个分式的最简公分母为()()221212aa ﹣﹣,故答案为:()()221212a a ﹣﹣.【点睛】本题主要考查最简公分母的定义,熟练掌握最简公分母的找法是解决本题的关键.14.如图,一个长、宽、高分别为a ,b ,2r 的长方体纸盒装满了一层半径为r 的小球,则纸盒的空间利用率(小球总体积与纸箱容积的比)为______(结果保留π,球体积公式343V r π=).【答案】6π【分析】由题意可知:小球的直径为2r ,每个小球的体积为343V r π=,计算小球的总数,就可以算出小球的总体积,算出长方体纸盒的体积为;根据纸盒空间利用率为小球总体积与纸箱容积的比即可解答;【详解】由题意可知:小球的直径为2r ,每个小球的体积为:343V r π=沿长边摆放了2a r 个小球,沿宽摆放了2b r个小球;所以小球的总数为:2·224a b ab r r r =原创精品资源学科网独家享有版权,侵权必究!13所以小球的总体积为:324·343ab rab r r ππ=长方体纸盒的体积为:22ab r abr⨯=所以纸盒空间利用率为:326abr abr ππ=故答案为:6π.【点睛】本题考查了圆,两圆相切的性质,如果两圆相切,那么连心线必经过切点,也考查了分式的运算.15.计算:2a b b a b++=-______.【答案】2-a a b【分析】根据分式的运算求解即可.【详解】解:原式2()()a b a b b a b a b-+=+--222a b b a b-+=-2a a b=-.故答案为:2-a a b.【点睛】此题考查了分式的混合运算,解题的关键是熟练掌握分式的有关运算法则.16.(2023年上海兰生复旦中学月考)先化简,再求值:222112111x x x x x x ⎛⎫-+÷ ⎪-+--⎝⎭,其中x 是满足条件11x -≤≤的整数.【答案】1x,1-【分析】先对分式进行化简,然后根据11x -≤≤及分式有意义的条件可进行代值求解.【详解】解:222112111x x x x x x ⎛⎫-+÷ ⎪-+--⎝⎭()()()22111111x x x x xx ⎡⎤+-=-⨯⎢⎥-⎥⎣⎦--⎢211111x xx x x -⎛⎫=-⨯ ⎪-⎭+-⎝211x x x x-=⨯-1x=;∵x 是满足条件11x -≤≤的整数,且0x ≠且1x ≠,∴=1x -,∴原式1=-.【点睛】本题主要考查分式的化简求值,熟练掌握分式的混合运算法则是解题的关键,注意分式有意义的条件.17.约分:(1)262ab b-;(2)22348a b a b--;(3)22222a ab a b ab ++;(4)22222a a b ab b -++.【答案】(1)3ab-(2)2b a (3)1b (4)a ba b-+【分析】(1)分子分母约去2b 即可;(2)分子分母约去24a b 即可;(3)首先把分子分母分解因式,然后再约去分子分母的公因式()2a a b +即可;(4)首先把分子分母分解因式,然后再约去分子分母的公因式()a b +即可.【详解】(1)262ab b-3ab =-;(2)22348a b a b--2b a=;(3)22222a ab a b ab ++()()22a a b ab a b +=+1b =;原创精品资源学科网独家享有版权,侵权必究!15(4)22222a a b ab b -++()()()2a b a b a b +-=+a b a b -=+.【点睛】此题考查了分式的约分,解题的关键是熟练掌握分式的基本性质.18.当x为何整数时,(1)​分式421x +的值为正整数;(2)​分式21x x +-的值是整数.【答案】(1)0(2)2或0或4或2-【分析】(1)若使该式的值为正整数,则()21x +能够被4整除,所以21x +可以为1,2,4;即0x =,0.5,1.5;由x 为整数得,0x =即可;(2)分式21x x +-进行变形,化为311x +-,若要使21x x +-值为整数,则31x -的值一定是整数,则1x -一定是3的约数,从而求得x 的值.【详解】(1)解:若使该式的值为正整数,则()21x +能够被4整除,21x ∴+可以为1,2,4,x ∴=,0.5,1.5,x 为整数,0x ∴=;(2)解:21331111x x x x x +-+==+---,21x x +- 的值为整数,且x 为整数;1x ∴-为3的约数,1x ∴-的值为1或1-或3或3-;x ∴的值为2或0或4或2-.【点睛】此题考查了分式的值,分式的加减,解决此题的关键是要熟练掌握分式的加减法法则.1.下列各式中,是分式的是()A .132x +B .3m n+-C .33x +D .1x -【答案】C【分析】根据分式的定义即可判断.【详解】解:A 、选项中分母中不含有字母,故此项不符合题意;B 、选项中分母中不含有字母,故此项不符合题意;C 、选项中3和3x +都为整式,且分母中含有字母,故此项符合题意;D 、选项中分母中不含有字母,故此项不符合题意;【点睛】本题考查了分式的概念及相关的基础问题,熟练掌握分式的定义:一般地,如果A 、B (B 不等于零)表示两个整式,且B 中含有字母,那么式子A B就叫做分式,是解此题的关键.2.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.下列判断正确的是()结论I :若n 的值为5,则y 的值为1;结论Ⅱ:x y +的值为定值;结论Ⅲ:若31m n x -=,则y 的值为4或1.A .I ,Ⅲ均对B .Ⅱ对,Ⅲ错C .Ⅱ错,Ⅲ对D .I ,Ⅱ均错【答案】B【分析】先由题意得到232x y m x y n +=⎧⎨+=⎩①②,8m n +=,然后解方程组得到234n m x m n y -⎧=⎪⎪⎨-⎪=⎪⎩,当5n =时,3m =,则此时33514y ⨯-==,即可判断I ;+①②得448x y +=,即可判断②;根据1的任何次方为1,1-的偶次方为1,非零底数的0次方为1,三种情况讨论求解即可判断Ⅲ.【详解】解:由题意得,232x y m x y n +=⎧⎨+=⎩①②,8m n +=,原创精品资源学科网独家享有版权,侵权必究!17-②①得2x n m =-,解得2n m x -=,把2n m x -=代入①得22n m y m -+=,解得34m n y -=,∴方程组的解为234n m x m n y -⎧=⎪⎪⎨-⎪=⎪⎩,∵8m n +=,∴当5n =时,3m =,则此时33514y ⨯-==,故结论I 正确;+①②得448x y +=,∴2x y +=,故结论Ⅱ正确;当1x =时,1y =,此时满足31m n x -=;当30m n -=时,则3m n =,此时62m n ==,,∴2x =-,4y =,此时满足31m n x -=;当=1x -时,则3y =,此时123513233m n =-+⨯=⎧⎨=-⨯+⨯=⎩,∴35334m n -=-⨯=-,此时满足31m n x -=,综上所述,若31m n x -=,则y 的值为4或3或1,故结论Ⅲ错误,故选B .【点睛】本题主要考查了解二元一次方程组和二元一次方程的解,零指数幂和负整数指数幂,熟练掌握相关知识是解题的关键.3.已知13,x x -=则221x x+=___.【答案】11【分析】由13,x x -=两边平方可得22129,x x-+=移项即可的结果.【详解】解:13,x x -= 22129,x x ∴-+=22111,x x ∴+=故答案为:11.【点睛】本题主要考查了完全平方公式,熟练掌握完全平方公式的变形推导是解此题的关键.4.已知122b a -=,则234436a ab b ab a b+--+的值为______.【答案】72-【分析】根据已知条件得出22a b ab -=,代入分式进行计算即可求解.【详解】解:∵122b a-=,∴22a b ab-=即22a b ab -=,∴()()223234437436432462a b ab a ab b ab ab ab a b ab a b ab ab -++-+===--+---,故答案为:72-.【点睛】本题考查了分式的加减以及分式的求值,得出22a b ab -=是解题的关键.5.计算1x a +•212a x-的结果是_____.【答案】12a -【分析】先将原式进行因式分解,再进行分式的乘法运算,化简求值就可.【详解】解:原式=()()+1112a a x a x -⋅+=12a -,故答案为:12a -.【点睛】本题考查分式的乘法运算,解题的关键是熟练运用分式的乘法运算,本题属于基础题型.6.计算(1)2222452343a b c d abc cd ab d⋅÷;(2)22819369269a a a a a a a --+÷⋅++++;(3)22233x y z ⎛⎫- ⎪⎝⎭;(4)222255a a a b b b ⎛⎫-⎛⎫÷⋅ ⎪ ⎪⎝⎭⎝⎭.【答案】(1)252b ;(2)2-;(3)424x y z;(4)54ab 【分析】(1)按照分式乘除混合运算法则进行计算即可.原创精品资源学科网独家享有版权,侵权必究!19(2)按照分式乘除运算法则进行计算即可.(3)分式的分子分母分别平方即可.(4)按照分式混合运算法则进行计算即可.【详解】(1)2222222222223222452453605==343342242a b c d abc a b c d da bc d cd ab d cd ab abc a b cd b ⋅÷=⋅⋅(2)222(9)(9)2(3)81933=26926999(3)aa a a a a a a a a a a a a +---++÷⋅⋅⋅=-++++-+++(3)2224243=3x y z x y z ⎛⎫- ⎪⎝⎭(4)22222242255==55454a a a a b a b b b b a b ab⎛⎫-⎛⎫÷⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭【点睛】本题考查分式的乘除法,熟练掌握运算法则是解题关键.7.(1)化简:()()()22222a b a b a b +--+;(2)先化简222313(9369x xx x x x --÷---+,然后x 从-3、0、1、3中选择一个合适的数代入求值.【答案】(1)2510b ab +;(2)13x -+;14-.【分析】(1)先去括号,然后合并同类项,即可得到答案;(2)先化简分式,然后将x=1代入求值,即可得到答案.【详解】解:(1)()()()2222a b a b a b +--+=4a 2+b 2+4ab-2(2a 2-2b 2-3ab )=4a 2+b 2+4ab-4a 2+4b 2+6ab=5b 2+10ab ;(2)222313()9369x xx x x x --÷---+=22233(3)()99(3)x x x x x x +--÷---=3(3)(3)x xx x x--⨯+-=13x -+;∵x 2-9≠0,x-3≠0,x 2-3x≠0,∴3x ≠±,0x ≠,当x=1时,原式=11134-=-+;【点睛】本题考查了整式的化简与分式的化简求值,熟练运用完全平方公式与分解因式是解题的关键.。

浙教版七下数学第5章《分式》单元培优测试题(含参考答案)

浙教版七下数学第5章《分式》单元培优测试题(含参考答案)

浙教版七下数学第5章《分式》单元培优测试题考试时间:120分钟满分:120分一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.在﹣3x、、﹣、、﹣、、中,分式的个数是( )A. 3个B. 4个C. 5个D. 6个【答案】A【考点】分式的定义【解析】【解答】解:、、是分式,其余都是整式。

故答案为:A【分析】根据分母中含有字母的有理式是分式,逐个判断即可。

2.下列运算正确的是()A. B. C. D.【答案】C【考点】分式的约分,分式的加减法【解析】解答: A、分式的分子和分母同时乘以一个不为0的数时,分式的值才不改变,故A错误。

B、分式的分子和分母同时加上一个不为0的数时,分式的值改变,故B错误,C、,故C正确,D、,故D错误,故选C.分析: 根据分式的基本性质对前三项进行判断,D是同分母的分式加减运算,分母不变,分子直接相加即可.3.若分式的值为0,则的取值范围为()A. 或B.C.D.【答案】B【考点】分式的值为零的条件【解析】【解答】解:由题意得:(x+2)(x-1)=0,且∣x∣-2≠0,解得:x=1;故答案为:B。

【分析】根据分子为0,且分母不为0时分式的值为0,列出混合组,求解即可。

4.计算的结果为()A. 1B. xC.D.【答案】A【考点】分式的加减法【解析】【解答】解:原式==1故答案为:A.【分析】根据同分母分式的减法,分母不变,分子相减,并将计算的结果约分化为最简形式。

A. x=1B. x=2C. 无解D. x=4【答案】C【考点】解分式方程【解析】【解答】方程两边都乘以x-2得:1=x-2+1,解这个方程得:-x=-2+1-1-x=-2,x=2,检验:∵把x=2代入x-2=0,∴x=2是原方程的增根,即原方程无解,故答案为:C.【分析】方程两边都乘以最简公分母x-2,化分式方程为整式方程,解这个整式方程求出x的值,把x的值代入最简公分母中检验,若最简公分母不为0,则x的值是原分式方程的解,若最简公分母为0,则x的值是原分式方程的增根,原分式方程无解.6.计算的结果是()A. ﹣yB.C.D.【答案】B【考点】分式的乘除法【解析】解答: 原式=故选B.分析: 在计算过程中需要注意的是运算顺序.分式的乘除运算实际就是分式的约分7.已知公式(),则表示的公式是()A. B. C. D.【答案】D【考点】解分式方程【解析】【解答】解:∵,∴,∴,∴,∴∴,∵,∴;故答案为:D。

分式的概念和性质+答案

分式的概念和性质+答案

分式的概念和性质(基础)+答案(总10页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除分式的概念和性质(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件. 2.掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算.【要点梳理】【高清课堂403986 分式的概念和性质知识要点】要点一、分式的概念一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:(1)分式的形式和分数类似,但它们是有区别的.分数是整式,不是分式,分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.(3)分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如aπ是整式而不能当作分式.(4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如2x yx是分式,与xy有区别,xy是整式,即只看形式,不能看化简的结果.要点二、分式有意义,无意义或等于零的条件1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).要点诠释:(1)基本性质中的A、B、M表示的是整式.其中B≠0是已知条件中隐含着的条件,一般在解题过程中不另强调;M ≠0是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M ≠0这个前提条件.(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:,在变形后,字母x 的取值范围变大了.要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数.要点诠释:根据分式的基本性质有b b a a -=-,b ba a-=-.根据有理数除法的符号法则有b b b a a a -==--.分式a b 与ab-互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用.要点五、分式的约分,最简分式与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式.要点诠释:(1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分母再没有公因式.(2)约分的关键是确定分式的分子与分母的公因式.分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子与分母是不能再分解的因式积的形式,然后再进行约分.要点六、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幂的积作为公分母.(2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.【典型例题】类型一、分式的概念1、下列式子中,哪些是整式哪些是分式2a ,3x ,1m m +,23x +,5π,2a a ,23-.【思路点拨】3x ,5π,23-虽具有分式的形式,但分母不含字母,其中5π的分母中π表示一个常数,因此这三个式子都不是分式. 【答案与解析】解:整式:3x ,23-,5π,23x +,分式:2a ,1m m+,2a a .【总结升华】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.类型二、分式有意义,分式值为02、下列各式中,m 取何值时,分式有意义 (1)2m m +;(2)1||2m -;(3)239mm --. 【答案与解析】解:(1)由20m +=得2m =-,故当2m ≠-时分式2mm +有意义. (2)由||20m -=得2m =±,故当2m ≠±时分式1||2m -有意义. (3)由229(9)0m m --=-+<,即无论m 取何值时29m --均不为零,故当m 为任意实数时分式239mm --都有意义. 【总结升华】首先求出使分母等于零的字母的值,然后让未知数不等于这些值,便可使分式有意义.这是解答这类问题的通用方法. 举一反三:【变式1】在什么情况下,下列分式没有意义(1)3(7)x x x +;(2)21x x +;(3)222x x ++.【答案】解:分式没有意义的条件是分式的分母等于0.(1)由(7)0x x +=,得0x =或7x =-,∴ 当0x =或7x =-时,原分式没有意义.(2)由20x =,得0x =,∴ 当0x =时,原分式没有意义. (3)由2x ≥0得,220x +>,即220x +≠,∴ 当x 取一切实数,原分式都有意义,即没有x 值能使分式没有意义. 【变式2】当x 为何值时,下列各式的值为0.(1)2132x x +-;(2)221x x x +-;(3)224x x +-.【答案】解:(1)由210x +=得12x =-,当12x =-时,1323()202x -=⨯--≠,∴ 当12x =-时,分式2132x x +-的值为0.(2)由20x x +=得0x =或1x =-, 当0x =时,21010x -=-≠, 当1x =-时,221(1)10x -=--=,∴ 当0x =时,分式221x xx +-的值为0.(3)由20x +=得2x =-,当2x =-时,224(2)40x -=--=, ∴ 在分式有意义的前提下,分式224x x +-的值永不为0. 类型三、分式的基本性质3、不改变分式的值,将下列分式的分子、分母中的系数化为整数.(1)0.20.020.5x y x y+-; (2)11341123x yx y +-. 【思路点拨】将(1)式中分子、分母同乘50,(2)式的分子、分母同乘12即可.【答案与解析】 解:(1)0.20.020.5x yx y +-(0.2)501050(0.020.5)5025x y x y x y x y +⨯+==-⨯-.(2)11341123x y x y +-1112433411641223x y x y x y x y ⎛⎫+⨯⎪+⎝⎭==-⎛⎫-⨯ ⎪⎝⎭.【总结升华】利用分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变. 举一反三:【变式1】如果把分式yx x232-中的y x ,都扩大3倍,那么分式的值( )A 扩大3倍B 不变C 缩小3倍D 扩大2倍【答案】B ;【变式2】填写下列等式中未知的分子或分母.(1)22?x y x y x y +-=-; (2)()()?()()()b a c b a c a b b c a c--=----.【答案】2()x y -;1;解:(1)先观察分子,等式左边分式的分子为x y +,而等式的右边分式的分子为22x y -,由于22()()x y x y x y +-=-,即将等式左边分式的分子乘以x y -,因而分母也要乘以x y -,所以在处应填上2()x y -.(2)先观察分母,等式左边的分母为()()()a c a b b c ---,等式右边的分母为a c -,根据分式的性质可知应将等式左边分式的分子、分母同时除以()()a b b c --,因为()()[()()]1b a c b a b b c --÷--=,所以在处填上1.4、 不改变分式的值,使下列分式的分子和分母不含“-”号. (1)2a b -;(2)45x y --;(3)3m n -;(4)23bc--.【答案与解析】 解:(1)22a a b b -=- (2)4455x x y y -=- (3)33m m n n =-- (4)2233b bc c-=-. 【总结升华】在分子、分母、分式本身中,只有任意两个同时改变符号时,才能保证分式的值不变.一般地,在分式运算的最后结果中,习惯于只保留一个负号,写在分式的前面.类型四、分式的约分、通分5、 将下列各式约分:(1)23412ax x ;(2)243153n n x y x y +-;(3)211a a --;(4)321620m m m m -+-. 【答案与解析】解:(1)22324412433ax x a ax x x x==. (2)243223315355331n n n n x y x y x y x y x y x y +--==-.(3)21111(1)(1)1a a a a a a --==--++. (4)32216(4)(4)420(5)(4)5m m m m m m mm m m m m --+-+==-+-+-+.【总结升华】当分子、分母都是单项式时,分子、分母的公因式即是分子、分母的字母系数的最大公约数与分子、分母的相同因式最低次幂的乘积. 举一反三:【高清课堂403986 分式的概念和性质 例6(2)】【变式】通分:(1)4b ac ,22a b c ;(2)22x x +,211x -. (3)232a b 与2a b ab c -;(4)12x +,244x x -,22x -.【答案】解:(1)最简公分母为24ab c ,2322444b b b b ac ab c ab c ==,222222244a a a a b c ab c ab c==. (2)222(1)x x x x =++,2111(1)(1)x x x =-+-, 最简公分母为2(1)(1)x x +-,2(1)222(1)(1)2(1)(1)x x x x x x x x x x --==++-+-. 2112212(1)(1)2(1)(1)x x x x x ⨯==-+-+-. (3)最简公分母是222a b c .2222333222bc bc a b a b bc a b c ==,22222()22222a b a b a a ab ab c ab c a a b c---==. (4)最简公分母是(2)(2)x x +-,21222(2)(2)4x x x x x x --==++--,224444x xx x =--,222(2)242(2)(2)4x x x x x x ++==--+-. 【巩固练习】一.选择题1.在代数式22221323252,,,,,,33423x x xy x x x x π+-+中,分式共有( ). 个个 个 个2.使分式5+x x值为0的x 值是( ) A .0 B .5 C .-5D .x ≠-53. 下列判断错误..的是( ) A .当23x ≠时,分式231-+x x 有意义 B .当a b ≠时,分式22aba b -有意义C .当21-=x 时,分式214x x+值为0D .当x y ≠时,分式22x y y x--有意义4.x 为任何实数时,下列分式中一定有意义的是( )A .21x x+B .211x x -- C .11x x -+ D .211x x -+ 5.如果把分式yx yx ++2中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍 B .缩小10倍 C .是原来的32D .不变6.下列各式中,正确的是( ) A .a m ab m b+=+ B .0a ba b+=+ C .1111ab b ac c +-=-- D .221x y x y x y-=-+二.填空题7.当x =______时,分式632-x x无意义. 8.若分式67x--的值为正数,则x 满足______. 9.(1)112()x xx --=- (2).y x xy x22353)(= 10.(1)22)(1y x y x -=+ (2)⋅-=--24)(21y y x 11.分式2214a b 与36xab c的最简公分母是_________. 12. 化简分式:(1)3()x yy x -=-_____;(2)22996x x x-=-+_____. 三.解答题13.当x 为何值时,下列分式有意义(1)12x x +-;(2)1041x x -+;(3)211x x -+;(4)2211x x ---.14.已知分式,y ay b-+当y =-3时无意义,当y =2时分式的值为0, 求当y =-7时分式的值.15.不改变分式的值,使分子、分母中次数最高的项的系数都化为正数.(1)22x x y --(2)2ba a--(3)2211x x x x---+(4)2231m m m ---【答案与解析】一.选择题 1. 【答案】B ;【解析】21325,,42x x x x++是分式.2. 【答案】A ;【解析】050x x =+≠且.3. 【答案】B ;【解析】a b ≠±,22ab a b -有意义. 4. 【答案】D ;【解析】无论x 为何值,21x +都大于零.5. 【答案】D ;【解析】102010(2)2101010()x y x y x y x y x y x y+++==+++. 6. 【答案】D ;【解析】利用分式的基本性质来判断.二.填空题7. 【答案】2;【解析】由题意,360,2x x -==.8. 【答案】7x >;【解析】由题意70,7x x -<>∴.9. 【答案】(1)2x -;(2)5y ;10.【答案】(1)x y -;(2)22xy x y +--;【解析】221(1)(2)22244x x y xy x y y y y --++--==---. 11.【答案】2312a b c ;【解析】最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积.12.【答案】(1)()21x y --;(2)33x x +-. 【解析】()()()222339963x x x x x x +--==-+-33x x +-. 三.解答题13.【解析】解:(1)由分母20x -≠,得2x ≠.∴ 当2x ≠时,原分式有意义.(2)由分母410x +≠,得14x ≠-.∴ 当14x ≠-时,原分式有意义. (3)∵ 不论x 取什么实数,都有210x +>.∴ x 取一切实数,原分式都有意义.(4)∵ 20x ≥,∴ 211x +≥,∴ 2(1)1x -+≤-即211x --≤-∴ x 取一切实数,分式2211x x ---都有意义. 14.【解析】解:由题意:30b -+=,解得3b = 2023a -=+,解得2a = 所以分式为23y y -+,当y =-7时,2729937344y y ----===+-+-.。

分式的概念与性质(有答案)

分式的概念与性质(有答案)

分式的基本概念和性质一、 分式的定义二、 分式有意义的条件 三、 分式的值为零的条件 四、 讨论分式值的情况 五、 分式的基本性质1.基本性质2.约分3.最简公分母4.通分六、 列代数式(分式)一、 分式的定义1.【易】下列式子:1a ,2x -,6m ,3b ,z x y -,62a b +,25mn ,2217x x ++,a ba b -+中分式的个数是( ) A .4个 B .5个 C .6个 D .7个 【答案】B2.【易】在式子1x ,12,212x +,3xyπ,4x y +,1a m +中,分式的个数是( )A .5B .4C .3D .2 【答案】C3.【易】在式子1a ,3b ,ca b -,2ab π,22x x y -中,分式的个数为( )A .2个B .3个C .4个D .5个 【答案】B4.【易】在式子3x y -,21a x -,1x π+,3a b -,12x y +,12x y +中,分式的个数为( ) A .2个 B .3个 C .4个 D .5个 【答案】B5.【中】代数式2211532452m n y y x x y-+-,,,,中,分式有( )A .1个B .2个C .3个D .4个 【答案】C6.【中】代数式2113x x ax x π+,,,中,分式有( ) A .1个 B .2个 C .3个 D .4个 【答案】B7.【中】下列各式:()115x -,43x π-,222x y -,1x x +,25x x其中分式共有( )个A .2B .3C .4D .5 【答案】A8.【中】下列式子:1x ,23a a b -,3x y +,42a π-,2x xx-,其中是分式的有( )A .1个B .2个C .3个D .4个 【答案】C9.【中】代数式()()1222122x x a b a b a x a x π-+++++,,,,中,分式有( ) A .1个 B .2个 C .3个 D .4个 【答案】C10.【中】代数式215131n x h x m y x y x π+-++,,,,中,分式有( ) A .1个 B .2个 C .3个 D .4个 【答案】D11.【中】代数式()()()222333124a x aa b x x m x mπ++÷--,,,,,中,分式有( ) A .1个 B .2个 C .3个 D .4个 【答案】C12.【中】在下列各式中,11a -,243x y y -,h π-,22m n m n --,25a b a-,23x +,是分式的有________.【答案】11a -,22m n m n--,23x +13.【难】在下列代数式中:x π,12x y -,22x y x y -+,1x y x y+-,是分式的有________.【答案】22x y x y-+,1x y x y+-14.【难】在下列代数式中:222a b -,m n m n --,53x -,43x -,2y x y +,1111x+-是分式的有________.【答案】m nm n--,53x -,2y x y +,1111x+- 15.【难】在下列代数式中:211x -,111x x --,2a a,23x -,1155x x -++是分式的有________.【答案】211x -,111x x --,2a a ,23x -,1155x x -++二、 分式有意义的条件16. 【易】若分式23x -有意义,则x 应满足的条件是( ) A .0x ≠B .3x ≥C .3x ≠D .3x ≤【答案】C17. 【易】若分式25x -有意义,则x 的取值范围是( ) A .5x ≠ B .5x ≠- C .5x >D .5x >-【答案】A18. 【易】在函数22xy x =+中,自变量x 取值范围是_________. 【答案】1x ≠- 19. 【易】使分式24xx -有意义的x 的取值范围是( ) A .2x =B .2x ≠C .2x =-D .2x ≠-【答案】B20. 【易】函数21x y x -=-中自变量x 的取值范围是___________. 【答案】1x ≠21. 【易】使分式211x x -+有意义的x 的取值范围是________. 【答案】全体实数22. 【易】请写出一个对任意实数都有意义的分式,你所写的分式是________.【答案】221x + 23. 【易】无论x 取什么实数值,分式总有意义的是( )A .21x x+ B .221(2)x x -+ C .211x x -+ D .2xx + 【答案】C24. 【易】下列判断错误的是( )A .当23x =/时,分式132x x +-有意义 B .当a b ≠时,分式22aba b-有意义C .当12x =-时,分式214x x+值为0D .当x y ≠时,分式22x yy x --有意义 【答案】B25. 【易】若分式ba ba 235+-有意义,则a 、b 满足的关系是( )A .32a b ≠B .b a 51=/ C .23b a =-/D .b a 32-=/【答案】D26. 【易】已知分式242x x -+,当x =________时,分式无意义.【答案】2-27. 【中】求下列分式有意义的条件:⑴22x y x y ++;⑵2128x x --;⑶293x x -+ 【答案】⑴分式有意义的条件是210m +≠,即m 为任何实数;⑵分式有意义的条件是228(4)(2)0x x x x --=-+≠,即4x ≠且2x ≠-; ⑶分式有意义的条件是30x +≠,即3x ≠-28. 【中】当1x =时,分式23x x a+-无意义,则a =________.【解析】由题意,得:当时,20x x a +-=,即2110a +-=,所以2a = 【答案】229. 【中】使分式1111x++有意义的条件是________. 【解析】由题意,得:101101x x+≠⎧⎪⎨+≠⎪+⎩ 解得12x x ≠-⎧⎨≠-⎩ 【答案】1x ≠-且2x ≠-30. 【中】x 为何值时,分式1122x x+-+有意义? 【答案】1202x x+-≠+且20x +≠,则1x ≠-,且3x ≠-,且2x ≠-,31. 【中】若使分式241312a a a-++没有意义,则a 的值为________.【解析】由题意,得:20a =或13102a a ++=,解得,0a =或15a =- 【答案】0或15-1x =32. 【中】有一个分式,三位同学分别说出了它的一些特点,甲:分式的值不可能为0,乙:分式有意义时x 的取值范围是2x ≠±;丙:当1x =-时,分式的值为3-,请你写出满足上述全部特点的一个分式________.【答案】32x -(答案不唯一)33. 【中】要使分式11x x-有意义,则x 的取值范围是________【答案】0x ≠且1x ≠±根据题意可得:010x x x ⎧≠⎪-⎨≠⎪⎩,解得0x ≠且1x ≠±34. 【中】分式1111a a ---有意义,那么a 的取值范围是__________.【答案】1a ≠±且2a ≠±35. 【中】请写出一个含有字母x 的分式(要求:不论x 取何值,该分式都有意义)________.【答案】答案不唯一,如231x +等不论x 取何值,该分式都有意义,所以所写分式的分母最重要,联想到非负数的形式,20x ≥,所以只要在2x 的基础上加上一个正数即可作为分母,分子随意写一个数即可.36. 【中】当x 为任意实数时,分式212x x m-+一定有意义,则实数m 满足( )A .0m ≥B .1m >C .1m ≤D .1m < 【答案】B()2211211x x m x m =-+-+-,由题意得,()2110x m -+-≠恒成立,由于()210x -≥,所以10m ->,即1m >37. 【难】a ,b ,c 为ABC △的三边,且分式222abca b c ab bc ac++---无意义,则ABC △是________三角形.【解析】由题意,得:()()()222222102a b c ab bc ac a b b c a c ⎡⎤++---=-+-+-=⎣⎦, 所以a b c ==,所以ABC △为等边三角形【答案】等边三、 分式的值为零的条件38. 【易】若分式8x x-的值为零,则x 的值等于________________. 【答案】839. 【易】若分式12x x -+的值为0,则x 的值等于________________. 【答案】140. 【易】若分式261x x --的值为0,则x 的值等于________________. 【答案】341. 【易】已知3x =时,分式31x kx +-的值为零,则k =________. 【答案】9-42. 【中】若分式2362x xx --的值为0,则x 的值为( )A .0B .2C .2-D .0或2 【答案】A43. 【中】若分式211x x -+的值为0,则x 的值为________.【答案】144. 【中】若分式242x x -+的值为0,则x 应满足的条件是( )A .2x =-B .2x =C .2x ≠-D .2x =± 【答案】B45. 【中】如果分式23273x x --的值为0,则x 的值应为________【答案】3-46. 【中】如果分式2321x x x -+-的值是零,那么x 的取值是________.【答案】247. 【中】分式265632x x x --+的值为0,则x 的值为________.【答案】3248. 【中】若分式221x xx +-的值为0,则x 的值为________.【答案】049.【中】若分式2242x x x ---的值为0,则x =_________________.【答案】2x =-50.【中】若分式2231244x x x -++的值为0,则x 的值为_____________.【答案】251.【中】若分式22221x x x x --++的值为0,则x 的值等于________;【答案】252.【中】若分式2296a a a ---的值为0,则a 的值为( )A .3B .3-C .3±D .2a ≠-【答案】B53. 【中】如果分式11x x --的值是零,那么x 的取值是________.【答案】1x =-54. 【中】当x =________时,分式33x x -+的值为0.【答案】355. 【中】当x =_______时,分式3412x x -+的值是零.【答案】356. 【中】如果分式22a a -+的值为零,则a 的值为( )A .1±B .2C .2-D .以上全不对【答案】B57. 【中】如果分式222a a a ++-的值为零,则a 的值为( )A .2-B .1C .0D .以上全不对【答案】D58. 【中】式子()()811x x x -+-的值为零,则x 的值为( )A .1±B .1-C .8D .1-或8【答案】C59. 【中】若分式2||323x x x -+-的值为0,求x 的值.【答案】3四、 讨论分式值的情况60. 【易】当x 为何值时,分式的值为正数? 【答案】12x >-61. 【易】若分式2121bb -+的值是负数,则b 满足( )A .0b <B .1b ≥C .1b <D .1b > 【答案】D62. 【易】已知a 、b 为有理数,要使分式ab的值为非负数,a 、b 应满足的条件是( )A .00a b ≠≥,B .00a b <≤,C .00a b >≥,D .0000a b a b ><≥,或≤, 【答案】D63. 【中】当x 取什么值的时候,分式33x x +-的值为1-.【答案】03x x ≠-≤且64.【中】如果分式26xx x --的值恒为正数,求x 的取值范围【答案】20x -<<或3x >65.【中】使代数式34x xx-的值为正整数的x 值是( )A .正数B .负数C .零D .不存在的 【答案】D66.【中】若31a +表示一个整数,则整数a 可以值有( )A .1个B .2个C .3个D .4个 【答案】D67.【中】若41x +表示一个整数,则整数x 可取值共有( )A .3个B .4个C .5个D .6个 【答案】D68.【中】若x 取整数,则使分式6321x x +-的值为整数的x 值有( )A .3个B .4个C .6个D .8个 【答案】B69.【中】若32n -表示一个正整数,则n 可取值得的正整数有( )A .1个B .2个C .3个D .无数个【答案】B121+x五、 分式的基本性质1.基本性质 70. 【易】如果分式x yx y+-中的x 、y 的值都变为原来的3倍,那么此分式的值( ) A .不变B .是原来的3倍C .是原来的13D .是原来的16【答案】A71. 【易】如果把分式2xx y +中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .缩小3倍 C .缩小6倍 D .不变 【答案】D72. 【易】如果把223xyx y-中的x 和y 都扩大5倍,那么分式的值( )A .扩大5倍B .不变C .缩小5倍D .扩大4倍 【答案】A73. 【易】把分式()200x x y x y≠≠+,中的分子分母的x 、y 都同时扩大为原来的3倍,那么分式的值将是原分式值的( ) A .9倍 B .3倍 C .一半 D .不变 【答案】B74. 【中】不改变分式的值,使分式0.20.0120.05x x ---的分子、分母中各项系数都为整数为____________.【答案】20012100050x x ---75. 【中】如果a cb d=(其中0,0b d >>),那么下列式子中不正确的是( )A .a b c d b d ++=B .a b c d b d --=C .a c c b d d +=+D .a db c = 【答案】D76. 【中】下列变形正确的是( )A .11a ab b+=+ B .11a ab b--=-- C .221a b a b a b-=--D .()()221a b a b --=-+ 【答案】B77. 【中】下列变形正确的是( )A .0a ba b +=+ B .1a ba b-+=-- C .22a a b b -=D .0.10.330.22a b a ba b a b --=++【答案】B78. 【中】下列化简正确的是( )A .22a b a b a b +=++B .1a ba b --=-+ C .1a ba b --=--D .22a b a b a b -=--【答案】B79. 【中】下列各等式中,正确的是( )A .0.220.33x y x yx y x y++=--B .221x y x y x y+=++C .x y y xx y y x++=--D .()()221y x x y -=-【答案】D80. 【中】下列各式中正确的是( )A .0x y x y +=+B .22y y x x = C .1x y x y -+=-- D .11x y x y =--+- 【答案】D81. 【中】不改变分式的值,使下列分式的分子、分母都不含负号.⑴35a-;⑵235x y -;⑶25b a --;⑷1115y x --- 【答案】⑴35a -;⑵235x y -;⑶25b a ;⑷1115y x-82. 【中】不改变分式的值,使下列分式的分子、分母的最高次项的系数都是正数.⑴223x x --+;⑵322311a a a a -+---;⑶3223145x x x x-+--++ 【答案】⑴223x x --;⑵323211a a a a -++-⑶2232154x x x x --+-2.约分83. 下列约分正确的是( )A .632x x x= B .x m m x n n +=+ C .22x y x y x y -=++ D .1x yy x-+=- 【答案】D84. 【易】约分:⑴1015ab ac -;⑵y x y x 322.36.1-;⑶211m m --;⑷2223812a bc a b c - 【答案】⑴23b c -;⑵12x -;⑶11m +;⑷223cb - 85. 【易】________化简22a aa+的结果是__________.________【答案】2a +86. 【易】化简:293x x --=___________. 【答案】3x +87. 【易】化简分式2222936a b a b ab -后得( )A .222232a b a b ab - B .263ab a ab - C .b a ab 23- D .bb a ab2332- 【答案】C88. 【中】化简222a b a ab -+的结果为( )A .b a -B .a b a -C .a b a +D .b -【答案】B89. 【中】化简222m n m mn-+的结果是( )A .2m nm - B .m nm- C .m nm+ D .m nm n-+ 【答案】B90. 【中】化简分式:⑴=--3)(x y y x _____;⑵22996x x x-=-+_____. 【答案】⑴21()x y --;⑵33x x +-91. 【易】化简:22121a a a -++=________ 【答案】11a a -+92. 【中】化简22222bab a b a ++-的正确结果是( ) A .b a b a -+ B .b a b a +- C .ab 21D .ab21- 【答案】B93. 【中】填入适当的代数式,使等式成立.⑴22222()a ab b a b a b +-=-+;⑵1()1a b a b a b+=--【答案】⑴2a b +;⑵b a +94. 【中】化简:22442y xy x x y -+-_________________;22322m m m m -+=-________________; 【答案】2x y -;1m m-95. 【中】约分:⑴22312()27()a b a a b --;⑵62322--++x x x x ;⑶22416m m m --;⑷2442-+-x x x 【答案】⑴249()a ab -;⑵13x x +-;⑶4m m -+;⑷2x -96. 【中】化简2244xy yx x --+的结果是( )A .2x x +B .2x x -C .2y x + D .2y x - 【答案】D97. 【中】化简:2222444m mn n m n -+=-_____. 【答案】22m nm n -+98. 【中】化简:22211x xy y x y -+---=______________ 【答案】1x y -+3.最简公分母99. 【易】分式25364x y xyz,的最简公分母( )A .212x yzB .12xyzC .224x yzD .24xyz【答案】A100. 【易】分式32235b c a ax bx x-,,的最简公分母( ) A .15axb B .315abx C .30abx D .330abx【答案】D101. 【中】分式234m -与542m-的最简公分母是____________.【答案】()()222m m -+102. 【中】分式2212a b a b a b b a+--,,的最简公分母( ) A .()()()22a b a b a b -+- B .()()22a b a b -+C .()()22ab b a --D .22a b -【答案】D103. 【中】分式22211112121a a a a a --+++,,的最简公分母( ) A .()221a - B .()()2211a a -+ C .21a +D .()41a -【答案】A104. 【中】分式222222222a b b a ab b a b a ab b -+-++,,的最简公分母是( )A .()()()22222222a ab b a b a ab b -+-++B .()()22a b a b +- C .()()()2222a b a b a b +-- D .44a b - 【答案】B105. 【难】求下列各组分式的最简公分母⑴277a -,2312a a a -+,211a - ⑵2145x x --,232x x x ++,22310x x x -- ⑶22a ab a ab +-,22ab b ab -,222a ab - ⑷231881x x -+,2281x -,211881x x ++ 【答案】⑴27(1)(1)a a -+;⑵(5)(1)(2)x x x -++;⑶()()ab a b a b +-;⑷22(9)(9)x x -+4.通分106. 【易】将3b a ,2abc -通分可得________【答案】2366bc a bac ac-,107. 【易】将13,1a,1b 通分后,它们分别是_______【答案】33333ab b a ab ab ab,,108. 【易】通分⑴22328c aab bc-,;⑵1111y y -+, 【答案】⑴3222221288c a b ab c ab c -,;⑵()()()()111111y y y y y y +-+-+-,109. 【易】通分⑴2221225ab a b c,;⑵223a b xy x ,; 【答案】⑴2222541010ac a b c a b c,⑵223266xa yb x y x y ,110. 【中】通分422a a +-- 【答案】224442222a a a a a a -++-==---111. 【中】通分⑴2269x y ab a bc ,;⑵2216211a a a a -++-, 【答案】⑴2222321818acx bya b c a b c ,;⑵()()()()()()2221611111a a a a a a -++-+-, 112. 【中】把12x -,()()123x x -+,()223x +通分过程中,不正确的是( )A .最简公分母是()()223x x -+ B .()()()2231223x x x x +=--+ C .()()()()2132323x x x x x +=-+-+D .()()()22222323x x x x -=+-+【答案】D113. 【中】通分⑴222111329xy x y x y ,,;⑵()222123a b a ba b -+-+,,【答案】⑴222222692181818x y yx y x y x y ,,;⑵()()()()()()()()222223a b a b a ba b a b a b a b a b a b ++--+-+-+-,,六、 列代数式114. 【易】甲瓶盐水含盐量为1a ,乙瓶盐水含盐量为1b,从甲乙两瓶中各取重量相等的盐水混合制成新盐水的含盐量为( )A .2a b ab +B .a b ab +C .1abD .随所取盐水重量而变化【答案】A115. 【易】某种长途电话的收费方式如下:接通电话的第一分钟收费a 元,之后的每一分钟收费b 元。

分式培优练习题(基本性质) 姓名

分式培优练习题(基本性质) 姓名

分式的基本性质培优 姓名一.选择题1.在代数式22221323252,,,,,,33423x x xy x x x x π+-+中,分式共有( ). A.2个B.3个C.4个D.5个 2.使分式5+x x 值为0的x 值是( ) A .0 B .5C .-5D .x ≠-5 3. 下列判断错误..的是( ) A .当23x ≠时,分式231-+x x 有意义 B .当a b ≠时,分式22ab a b -有意义 C .当21-=x 时,分式214x x+值为0 D .当x y ≠时,分式22x y y x --有意义 4.x 为任何实数时,下列分式中一定有意义的是( )A .21x x+ B .211x x -- C .11x x -+ D .211x x -+ 5.如果把分式yx y x ++2中的x 和y 都扩到原来的10倍,那么分式的值( ) A .扩大10倍B .缩小10倍C .是原来的32 D .不变 6.下列各式中,正确的是( )A .a m a b m b +=+B .0a b a b+=+ C .1111ab b ac c +-=-- D .221x y x y x y -=-+ 二.填空题7.当x =______时,分式632-x x 无意义. 8.若分式67x--的值为正数,则x 满足______. 9.(1)112()x x x --=- (2).y x xy x 22353)(= 10.(1)22)(1y x y x -=+ (2)⋅-=--24)(21y y x 11.分式2214a b 与36x ab c的最简公分母是_________. 12. 化简分式:(1)3()x y y x -=-_____;(2)22996x x x -=-+_____.三.解答题13.当x 为何值时,下列分式有意义?(1)12x x +-;(2)1041x x -+;(3)211x x -+;(4)2211x x ---.14.已知分式,y a y b-+当y =-3时无意义,当y =2时分式的值为0,求当y =-7时分式的值.15.不改变分式的值,使分子、分母中次数最高的项的系数都化为正数.(1)22x x y --= (2)2ba a --=(3)2211x x x x ---+= (4)2231m m m ---=16、已知x yz 3460==≠,求x y zx y z +--+的值。

初中数学培优:分式的概念、分式的基本性质(含答案)

初中数学培优:分式的概念、分式的基本性质(含答案)

分式的概念及性质一、基本知识分式包括分式的概念、分式的基本性质、分式的运算、简单的分式方程等主要内容. 分式的基本性质:,A A M A A M B B M B B M⨯÷==⨯÷ 分式的运算规律:,b d bc ad b d bd a c ac a c ac ±±=⋅=;b d b c bc a c a d ad ÷=⋅=;()nn n b b a a= 从整式到分式,我们可以形象地说是从“平房”到了“楼房”.在脚手架上活动,无疑增加了难点,体现在:解分式问题总是在分式有意义的前提下进行的,因此必须考虑字母取值范围;分式运算中的通分和约分是技巧性较强的工作,需要灵活处理.分式的运算与分数的运算相似,是以分式的基本性质、运算法则、通分和约分为基础,是以整式的变形、因式分解为工具.分式的加减运算是分式运算的难点,突破这一难点的关键是能根据问题的特点恰当地通分,常用通分的策略与技巧有:1.化整为零,分组通分; 2.步步为营,分步通分;3.减轻负担,先约分再通分; 4.裂项相消后通分等学习分式时,应注意:(1)分式与分数的概念、性质、运算的类比;(2)整数可以看做是分数的特殊情形,但整式却不是分式的特殊情形;(3)分式需要讨论字母的取值范围,这是分式区别于整式的关键所在.二、典型例题例1. 若分式2|2|169x x x ---+的值为0,则2x -的值为 11.1.1.1.199A B C D --或或 例2 要使分式11||||x x -有意义,则x 的取值范围是 . 例3 已知122432+--=--+x B x A x x x ,其中A 、B 为常数,则4A -B 的值为( ) A .7 B .9 C .13 D .5例4.已知4,12x y xy +==-,求1111y x x y +++++的值例3计算下列各式: (1) 222231244a b a b a a b a ab b a b---÷+--++(2)443224211b a a b a a b a b a ++++++-;(3)xy z y x z xy z zx y x z y zx y yz x z y x yz x ---+++++-+--++)()()(222222;例4. 先化简,再求值:2222222222()()2a ab ac a b c a b c a ab ab a b a b+-----⋅÷-++-,其中1,2,3a b c ==-=-例5. 已知1110a b -=,求a ab b a ab b+---的值三、能力测试1.当x 任意实数时,下列分式中,一定有意义的是2221111 (112)x x x x A B C D x x x x -+---++ 2.已知分式(1)(3)(1)(3)x x x x -++-有意义,则x 的取值为 .1.3.1A x B x C x ≠-≠≠-且3.1x D x ≠≠-或3x ≠ 3.已知式子1)1)(8(-+-x x x 的值为0,则x 的值为( ) A .±1 B .-l C .8 D .-1或84.若290x -=,则分式2563x x x -+-的值为 .1.5.15.5A B C D --或5.有理数,x y 满足1xy =,设11,1111x y M N x y x y=+=+++++,则,M N 大小关系是 ....A M NB M NC M ND >=<不确定 6.当代数式2111111a a a ++-+-的值等于零时,a 的值是 1.3.1.1.2A B C D -- 7.化简)5)(4(1)4)(3(1)3)(2(1)2)(1(1+++++++++++x x x x x x x x 的结果是( ) A .5642++x x B .5632++x x C .5622++x x D .5612++x x8.若x 取整数,则使分式1236-+x x 的值为整数的x 值有( ) A .3个 B .4个 C .6个 D .8个9.已知226a b ab +=且0,a b >>则a b a b+-的值是...2.2A B C D ±10.已知0221≠+=+b a b a ,则ba 为( ) A .-1 B .1 C . 2 D .不能确定11.要使分式aa a 231142++-没有意义,则a 的值为 . 12.已知x 为整数,且918232322-++-++x x x x 为整数,则所有符合条件的x 值的和为 . 13.已知2+x a 与2-x b 的和等于442-x x ,则a = ,b = . 14.当2007,1x y =-=-时,442222_____2x y y x x xy y x y -+⋅=+++ 15.已知2222003,2004,2005a x b x c x +=+=+=,且6024abc =,则111=_____a b c bc ca ab a b c++--- 16.已知118x y+=,则2322x xy y x xy y -+++=__________ 17.已知4,3x y xy +==,则______y x x y += 18.若13x x +=,则221____x x +=, 242______1x x x =++,若2610x x -+=,则221____x x += 19.计算下列各题:(1)1814121111842+-+-+-+--x x x x x ;(2)42241313x x x x x x x x +-+++--+--+;(3(4)ab bc ac c b a ac ab bc b a c bc ac ab a c b +---++----+---222;20.若22(3)(2)32x x A B C x x x x x x -+=++-+-+,求有理数,,A B C 的值21.A 与B 的大小。

分式的概念与基本性质

分式的概念与基本性质

分式的概念当两个整数不能整除时,出现了分数;类似的当两个整式不能整除时,就出现了分式. 一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式. 整式与分式统称为有理式.在理解分式的概念时,注意以下三点: ⑴分式的分母中必然含有字母; ⑵分式的分母的值不为0;⑶分式必然是写成两式相除的形式,中间以分数线隔开.分式有意义的条件两个整式相除,除数不能为0,故分式有意义的条件是分母不为0,当分母为0时,分式无意义. 如:分式1x,当0x ≠时,分式有意义;当0x =时,分式无意义. 分式的值为零分式的值为零时,必须满足分式的分子为零,且分式的分母不能为零,注意是“同时”.分式的基本性质分式的基本性质:分式的分子与分母同时乘(或除以)一个不等于0的整式,分式的值不变.上述性质用公式可表示为:a am b bm =,a a mb b m÷=÷(0m ≠).注意:①在运用分式的基本性质时,基于的前提是0m ≠;②强调“同时",分子分母都要乘以或者除以同一个“非零”的数字或者整式; ③分式的基本性质是约分和通分的理论依据.一、分式的基本概念【例1】 在下列代数式中,哪些是分式?哪些是整式?1t ,(2)3x x +,2211x x x -+-,24x x +,52a ,2m ,21321x x x +--,3πx -,323a a a +【考点】分式的基本概念【解析】根据分式的概念可知,分式的分母中必然含有字母,由此可知1t,2211x x x -+-,24x x +,21321x x x +--,323a a a +为分式.(2)x x +,5a ,2m ,3x-为整式.【答案】1t,1x -,24x x +,21321x x x +--,3a 为分式(2)3x x +,52a ,2m ,3πx-为整式.【例2】 代数式22221131321223x x x a b a b ab m n xy x x y +--++++,,,,,,,中分式有( )A.1个B.1个 C 。

人教版八年级上册数学《分式的基本性质》分式培优说课教学复习课件

人教版八年级上册数学《分式的基本性质》分式培优说课教学复习课件

=
3x2 x2
-15 x - 25
探索新知
知识点3 分式的通分 约分和通分的联系与区别
联系:约分和通分都是根据分式的基本性质对分式进行恒等变形, 二者均不改变分式的值. 区别:约分是针对一个分式而言的,把分式的分子和分母的公因 式约去,将分式化为最简分式或整式;而通分是针对多个异分母 的分式而言的,将分式的分子和分母乘同一个适当的整式,使这 几个异分母的分式化为同分母的分式.
2.分式有意义和无意义的条件是什么?
分式有意义的条件:分式的分母不能为0,即当B≠0时,分式
A B
才有意义.
分式无意义的条件:分式的分母为0,即当B=0时,分式 A 无
B
意义.
复习导入
3.分式值为零的条件是什么? 要使分式 A 的值为零,则A=0,且B≠0.
B
探索新知
知识点1 分式的基本性质 下列两组分数相等吗? (1) 6 6 2 3 相等
分 约分 找公因式

的方法

(1)找系数的最大公约数; (2)找分子分母相同因式的最低次幂; (3)两者的乘积即为公因式.
约 分
内容
把几个异分母的分式分别化成与原来的分

式相等的同分母的分式
通 通分 确定最简公 分
分母的方法
从系数、相同因式、不同因式三个方 面确定,注意多项式要先分解因式
课堂练习
1.下列分式中,最简分式是( D )
(1
m(m m)(1
( a b+ b 2 ) ab2
(2)
×100
(3) 0.01x- 5 (x-500) (4)0.3x 0.04 30x 4
×100
÷x3
x3 x3y 1 y

初中数学培优:分式的概念、分式的基本性质(含答案)

初中数学培优:分式的概念、分式的基本性质(含答案)

分式的概念及性质一、基本知识分式包括分式的概念、分式的基本性质、分式的运算、简单的分式方程等主要内容. 分式的基本性质:,A A M A A M B B M B B M⨯÷==⨯÷ 分式的运算规律:,b d bc ad b d bd a c ac a c ac ±±=⋅=;b d b c bc a c a d ad ÷=⋅=;()nn n b b a a= 从整式到分式,我们可以形象地说是从“平房”到了“楼房”.在脚手架上活动,无疑增加了难点,体现在:解分式问题总是在分式有意义的前提下进行的,因此必须考虑字母取值范围;分式运算中的通分和约分是技巧性较强的工作,需要灵活处理.分式的运算与分数的运算相似,是以分式的基本性质、运算法则、通分和约分为基础,是以整式的变形、因式分解为工具.分式的加减运算是分式运算的难点,突破这一难点的关键是能根据问题的特点恰当地通分,常用通分的策略与技巧有:1.化整为零,分组通分; 2.步步为营,分步通分;3.减轻负担,先约分再通分; 4.裂项相消后通分等学习分式时,应注意:(1)分式与分数的概念、性质、运算的类比;(2)整数可以看做是分数的特殊情形,但整式却不是分式的特殊情形;(3)分式需要讨论字母的取值范围,这是分式区别于整式的关键所在.二、典型例题例1. 若分式2|2|169x x x ---+的值为0,则2x -的值为 11.1.1.1.199A B C D --或或 例2 要使分式11||||x x -有意义,则x 的取值范围是 . 例3 已知122432+--=--+x B x A x x x ,其中A 、B 为常数,则4A -B 的值为( ) A .7 B .9 C .13 D .5例4.已知4,12x y xy +==-,求1111y x x y +++++的值例3计算下列各式: (1) 222231244a b a b a a b a ab b a b---÷+--++(2)443224211b a a b a a b a b a ++++++-;(3)xy z y x z xy z zx y x z y zx y yz x z y x yz x ---+++++-+--++)()()(222222;例4. 先化简,再求值:2222222222()()2a ab ac a b c a b c a ab ab a b a b+-----⋅÷-++-,其中1,2,3a b c ==-=-例5. 已知1110a b -=,求a ab b a ab b+---的值三、能力测试1.当x 任意实数时,下列分式中,一定有意义的是2221111 (112)x x x x A B C D x x x x -+---++ 2.已知分式(1)(3)(1)(3)x x x x -++-有意义,则x 的取值为 .1.3.1A x B x C x ≠-≠≠-且3.1x D x ≠≠-或3x ≠ 3.已知式子1)1)(8(-+-x x x 的值为0,则x 的值为( ) A .±1 B .-l C .8 D .-1或84.若290x -=,则分式2563x x x -+-的值为 .1.5.15.5A B C D --或5.有理数,x y 满足1xy =,设11,1111x y M N x y x y=+=+++++,则,M N 大小关系是 ....A M NB M NC M ND >=<不确定 6.当代数式2111111a a a ++-+-的值等于零时,a 的值是 1.3.1.1.2A B C D -- 7.化简)5)(4(1)4)(3(1)3)(2(1)2)(1(1+++++++++++x x x x x x x x 的结果是( ) A .5642++x x B .5632++x x C .5622++x x D .5612++x x8.若x 取整数,则使分式1236-+x x 的值为整数的x 值有( ) A .3个 B .4个 C .6个 D .8个9.已知226a b ab +=且0,a b >>则a b a b+-的值是...2.2A B C D ±10.已知0221≠+=+b a b a ,则ba 为( ) A .-1 B .1 C . 2 D .不能确定11.要使分式aa a 231142++-没有意义,则a 的值为 . 12.已知x 为整数,且918232322-++-++x x x x 为整数,则所有符合条件的x 值的和为 . 13.已知2+x a 与2-x b 的和等于442-x x ,则a = ,b = . 14.当2007,1x y =-=-时,442222_____2x y y x x xy y x y -+⋅=+++ 15.已知2222003,2004,2005a x b x c x +=+=+=,且6024abc =,则111=_____a b c bc ca ab a b c++--- 16.已知118x y+=,则2322x xy y x xy y -+++=__________ 17.已知4,3x y xy +==,则______y x x y += 18.若13x x +=,则221____x x +=, 242______1x x x =++,若2610x x -+=,则221____x x += 19.计算下列各题:(1)1814121111842+-+-+-+--x x x x x ;(2)42241313x x x x x x x x +-+++--+--+;(3(4)ab bc ac c b a ac ab bc b a c bc ac ab a c b +---++----+---222;20.若22(3)(2)32x x A B C x x x x x x -+=++-+-+,求有理数,,A B C 的值21.A 与B 的大小。

分式的概念与基本性质教案(包括例题、习题及答案)保你百分之百满意

分式的概念与基本性质教案(包括例题、习题及答案)保你百分之百满意

16.1 概念16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v-2060,as ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义? (1) (2) (3)3. 当x 为何值时,分式的值为0?1-m m 32+-m m 112+-m m 4522--x x x x 235-+23+x xx x --221(1) (2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义?3. 当x 为何值时,分式的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, b a s +,4y x -; 整式:8x, a+b, 4y x -;分式:x80, b a s + 2. X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形. 二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应x x 57+xx 3217-x 802332xx x --212312-+x x概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.ab 56--, yx 3-, nm --2, nm 67--, yx 43---。

分式和分式方程 专题复习讲义(含答案)

分式和分式方程 专题复习讲义(含答案)

分式和分式方程 专题复习讲义中考考点知识梳理: 一、分式1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子BA就叫做分式。

其中,A 叫做分式的分子,B 叫做分式的分母。

分式和整式通称为有理式。

2、分式的性质 (1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算法则(1) ;;bc adc d b a d c b a bd ac d c b a =⨯=÷=⨯(2));()(为整数n b a ba n nn =(3);c b a c b c a ±=± (4)bd bc ad d c b a ±=± 二、分式方程1、分式方程分母里含有未知数的方程叫做分式方程。

2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。

它的一般解法是: (1)去分母,方程两边都乘以最简公分母 (2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

考点典例一、分式的值【例1】当x= 时,分式x-22x+5的值为0.【答案】2. 【解析】试题分析:∵x-22x+5的值为0,∴x-2=0且2x+5≠0,解得x=2. 考点:分式.【点睛】使分式的值为零必须满足分子等于0分母不等于零这两个条件. 【举一反三】1.使分式11x-有意义的x的取值范围是()A.x≠1 B.x≠﹣1 C.x<1 D.x>1 【答案】A.考点:分式有意义的条件.2.若分式211xx-+的值为0,则x=【答案】1 【解析】试题分析:根据题意可知这是分式方程,211xx-+=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解. 答案为1.考点:分式方程的解法 考点典例 二、分式的化简【例2】化简2(1)1a a a -+-的结果是( ) A .11a - B .11a -- C .211a a -- D .211a a --- 【答案】A . 【解析】试题分析:原式=22(1)1a a a ---=11a -,故选A .考点:分式的加减法.【点睛】观察所给式子,能够发现是异分母的分式减法。

初中数学分式的概念、运算及分式方程培优(含解析)

初中数学分式的概念、运算及分式方程培优(含解析)

初中数学分式的概念、运算及分式方程培优考试要求:例题精讲:模块一分式的概念【例1】x为何值时,分式29113xx-++有意义?【解析】根据题意可得:110330xx⎧+≠⎪+⎨⎪+≠⎩,解得3x≠-且4x≠-;如果问:x为何值时,分式29113xx-++值为零,答案为3x=.【答案】3x=【巩固】⑴若分式216(3)(4)xx x--+有意义,则x;⑵若分式216(3)(4)xx x--+无意义,则x;【解析】⑴若分式216(3)(4)xx x--+有意义,则3x≠且3x≠-且4x≠-;⑵若分式216(3)(4)xx x--+无意义,则3x=或3x=-或4x=-;【答案】⑴3x≠且3x≠-且4x≠-;⑵3x=或3x=-或4x=-【例2】解下列不等式:①53xx-<-;②523xx->-【解析】①由题意可知5030xx->⎧⎨-<⎩或者5030xx-<⎧⎨->⎩,解得3x<;5x>,所以原不等式的解集为3x<或5x>;②5203x x -->-,即11303xx ->-,由题意可知113030x x ->⎧⎨->⎩或者113030x x -<⎧⎨-<⎩, 解得1133x <<;无解,所以原不等式的解集为1133x <<. 【答案】3x <或5x >;1133x <<.【巩固】⑴解不等式304x x +<- ;⑵解不等式334x x +>- .【解析】 ⑴由题意可知3040x x +>⎧⎨-<⎩或者3040x x +<⎧⎨->⎩,由得34x -<<;无解集,所以原不等式的解集为34x -<<;⑵由题意可知3304x x +->-,15204xx ->-,可得:152040x x ->⎧⎨->⎩或者152040x x -<⎧⎨-<⎩得1542x <<;无解集,所以原不等式的解集为1542x <<. 【答案】34x -<<;1542x <<.模块二 分式的运算☞分式的化简求值裂项【例3】 设为正整数,求证:. 【解析】,故【答案】【巩固】化简:. 【解析】 【答案】2100100x x+n 1111...1335(21)(21)2n n +++<⋅⋅-+1111()(21)(21)22121n n n n =--+-+111111111(1.....)(1)233521212212n n n -+-++-=-<-++1111...1335(21)(21)2n n +++<⋅⋅-+111.....(1)(1)(2)(99)(100)x x x x x x ++++++++111111111.........(1)(1)(2)(99)(100)11299100x x x x x x x x x x x x +++=-+-+-++++++++++211100100100x x x x =-=++【巩固】化简: 【解析】 原式 【答案】255x x+【例4】 化简:. 【解析】同理,,故.【答案】0【巩固】(第11届希望杯试题)已知,,为实数,且,,,求. 【解析】 由已知可知 ,三式相加得,,故. 【答案】16【巩固】化简:. 【解析】同理,, 故 【答案】022222111113256712920x x x x x x x x x x +++++++++++++11111(1)(1)(2)(2)(3)(3)(4)(4)(5)x x x x x x x x x x =+++++++++++++211555x x x x =-=++222()()()()()()a bc b ac c aba b a c b c b a c a c b ---++++++++22()()()()a bc a ac ac bc a ca b a c a b a c a b a c-+--==-++++++2()()b ac b a b c b a b c b a -=-++++2()()c ab c bc a c b c a c b-=-++++2220()()()()()()a bcb ac c aba b a c b c b a c a c b ---++=++++++a b c 13ab a b =+14bc b c =+15ca c a =+abc ab bc ca++113114115a b b cc a ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩1116a b c ++=1111116abc ab bc ca ab bc ca abc a b c===++++++222222a b c b c a c a ba ab ac bc b ab bc ac c ac bc ab ------++--+--+--+221111()()a b c a b a c a ab ac bc a b a c a b a c a b c a---+-==+=---+------2211b c a b ab bc ac b c a b --=---+--2211c a b c ac bc ab c a b c --=---+--2222220a b c b c a c a ba ab ac bc b ab bc ac c ac bc ab ------++=--+--+--+☞分式的恒等变形部分分式【例5】 下面的等式成立:22465()()x y x y x y A x y B -+--=--++,求A 、B . 【解析】2222465()()()()x y x y x y A x y B x y B A x A B y AB -+--=--++=-+--+-, 故有4B A -=,6A B +=,所以1A =,5B =.【答案】1A =5B =【巩固】若代数式(1)(2)(3)x x x x p ++++恰好能分解为两个二次整式的乘积(其中二次项系数均为1,且一次项系数相同),则p 的最大值是 . 【解析】设原式可分解为22()()x ax m x ax n ++++,展开可得:224322()()2()()x ax m x ax n x ax a m n x a m n x mn ++++=+++++++. 比较等号两边的系数可得:32a m n mn p =⎧⎪+=⎨⎪=⎩,,故22(2)21(1)1p m m m m m =-=-=--≤,最大值为1.【答案】1【例8】 若213111a M Na a a -=+--+,求M 、N 的值. 【解析】 2213()()1111a M N M N a M N a a a a -++-=+=--+-,所以31M N M N +=-⎧⎨-=⎩,所以12M N =-⎧⎨=-⎩ 【答案】1,2M N =-=-【巩固】(06年宁波市重点中学提前考试招生试题)已知2a x +与2b x -的和等于244xx -,求a ,b .【解析】 22()2()42244a b a b x a b x x x x x +--+==+--- 所以40a b a b +=⎧⎨-=⎩,解得22a b =⎧⎨=⎩【答案】2,2a b ==分式恒等证明【例9】 求证:()()332222222222a a a ab b a ab b a ab b a ab b a b a b ⎛⎫⎛⎫++--+-=++-+ ⎪⎪-+⎝⎭⎝⎭【解析】 左边()()333333333322a b a b a b a a b a a b a b a b a b a b a b -+--⎛⎫⎛⎫-+=--=⋅ ⎪⎪--++-+⎝⎭⎝⎭ ()()33332222a b a b a ab b a ab b a b a b -+=⋅=++-+=-+右边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6、分式的概念、分式的基本性质
【知识精读】
分式的概念要注意以下几点:
(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;
(2)分式的分子可以含字母,也可以不含字母,但分母必须含有字母;
(3)分式有意义的条件是分母不能为0。

分式的基本性质类似于分数的基本性质,是分式的符号变换法则、约分和通分的理论基础。

在运用分式的基本性质时,要抓住对性质中的“都”与“同”两个字的理解,并注意法则中M “不为零”的条件。

下面我们通过习题进一步理解分式的有关概念。

【分类解析】
例1. 已知a b ,为有理数,要使分式
a b 的值为非负数,a b ,应满足的条件是( ) A. a b ≥≠00,
B. a b ≤<00,
C. a b ≥>00,
D. a b ≥>00,,或a b ≤<00,
分析:首先考虑分母b ≠0,但a 可以等于0,由a b
≥0,得a b ≥>00,,或a b ≤<00,,故选择D 。

例2. 当x 为何值时,分式||x x -+55
的值为零? 分析:分式的值为零必须满足两个条件:(1)分子为零;(2)分母不为零。

解:由题意得,得||x x -==±505,,而当x =-5时,分母x +5的值为零。

∴当x =5时,分式
55||+-x x 的值为零。

例3. 已知
113a b -=,求2322a ab b a ab b ----的值( ) A. 12 B. 23 C. 95
D. 4
分析:
113113a b b a
-=∴-=-,,将分式的分母和分子都除以ab ,得 23222231122333295a ab b a ab b b a b a ----=----=⨯----=(),故选择C 。

例4. 已知x y -=20,求x xy y x xy y
22
22323-++-的值。

分析:根据已知条件,先消元,再化简求值。

解: x y x y -=∴=202
∴原式=-⋅+⋅+-()()2322223222
222y y y y y y
=-=-y y
22717
例5. 已知:x x 210--=,求x x 44
1+的值。

解一:由x x 210--=得x ≠0,等式两边同除以x 得: x x --
=110,即x x
-=11 x x x x 44441122+=+-+
=-+=-++=-+++=--++=+=()[()()]()()()[()]x x x x x x
x x x x x x x x
222222221211211221142527
解二:由已知得:x x -
=11,两边平方得:x x 2213+= 两边平方得:x x 44
17+
=
中考点拨:
1.若代数式()()||x x x -+-211
的值为零,则x 的取值范围应为( ) A. x =2或x =-1
B. x =-1
C. x =±2
D. x =2 解:由已知得:()()||x x x -+=-≠⎧⎨⎪⎩⎪210
10
解得:x =2 故选D
简析:在求解分式值为零的题目时,考虑到分子为零,但不要忽略了分母不为零这一条件。

2. 已知:x y z 346
0++≠,求x y z x y z +--+的值。

解:设
x y z k 3460++=≠,则x k y k z k ===346,, ∴
+--+=+--+=x y z x y z k k k k k k 34634615
题型展示:
1. x 为何值时,
||x x x x -+-=+123132成立? 解: ||||()()
x x x x x x -+-=-+-1231312 当x ≠1且x ≠-3时,分式x x x -+-1232与13
x +都有意义。

当||x x -=-11时,由分式的基本性质知: ||()()()()x x x x x x x -+-=-+-=+13113113
解不等式组:x x x -≥≠≠-⎧⎨⎪⎪⎩⎪⎪1013
得:x >1
∴当x >1时,x x x x -+-=+12313
2 说明:利用分式的基本性质解决恒等变形问题是基本性质的灵活运用,注意分式的基本性质所适用的条件是分式有意义,做题时应考虑分母不为零的条件。

2. 把分式1882483222a b ab a b
++++化为一个整式和一个分子为常数的分式的和,并且求出这个整式与分式的乘积等于多少?
解:原式=++++291248
3222()a ab b a b =+++=+++2328
322328
322()()a b a b a b a b
∴+⋅+=2328
3216()a b a b
说明:利用因式分解、分式的基本性质可以化简分式。

【实战模拟】
1. 在下列有理式2
21
1
21
a x x m n x y
x y y a b ,,,,++-+-()()中,分式的个数是(

A. 1
B. 2
C. 3
D. 4
2. 如果分式a a a 2
24
26---的值为零,则a 的值为( )
A. 2
B. -2
C. a =2且a =-2
D. 0
3. 填空题:
(1)x y x y x y x y x y -+=-+=-+=--+()(
)
()
()
(2)当a =_______时,分式a a a -+1
32的值等于零;
当a =_______时,分式a a a -+1
32无意义。

4. 化简分式:x x x x x x 32325396512
++-++-
5. 已知:x y y y +=--=22402,,求y x y -
的值。

6. 已知:a b c ++=0,求a b c b c a c a b
()()()1111113+++
+++的值。

【试题答案】
1. 简析:判断一个有理式是否为分式,关键在于看分母中是含有字母,故选D 。

2. B
说明:分式值为0的条件:分子为分母不为00
⎧⎨⎪⎩⎪ 3. (1)x y x y y x x y y x x y x y x y -+=--+=--+=---+()()()()
(2)当a =1时,
a a a
-+132的值为0。

当a =0或a =-1时,a a a -+132无意义。

4. 解:原式=-+-+--+-+-()()()()()()
x x x x x x x x x x 3223226699771212 =-++-++=-+-++=++()()()()
()()()()()x x x x x x x x x x x x x 16917121313434222
说明:利用因式分解把分子、分母恒等变形,再约分。

5. 解: x y x y +=∴=-22, 2402
2022y y y y --=∴--=, ∴-=-=--=+-y x y y x y y y y y y y
22222() =-
-+=y y y y 2223232
说明:变形已知条件,先消元,再化简求值。

6. 解: a b c ++=0
∴+=-+=-+=-a b c b c a c a b ,,
∴原式=++++++a b a c b a b c c a c b
3
=
++++++=-+-+-+=---+=b c a a c b a b c a a b b c c 3311130。

相关文档
最新文档