图像增强研究现状

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在借鉴国外相对成熟理论体系与技术应用体系的条件下,国内的增强技术与应用也有了很大的发展。总体来说,图像增强技术的发展大致经历了初创期、发展期、普及期与应用期4个阶段。初创期开始于20世纪60年代,当时的图像采用像素型光栅进行扫描显示,大多采用中、大型机对其进行处理。在这一时期由于图像存储成本高,处理设备造价高,因而其应用面很窄。20世纪70年代进入了发展期,开始大量采用中、大型机进行处理,图像处理也逐渐改用光栅扫描显示方式,特别就是出现了CT与卫星遥感图像,对图像增强处理提出了一个更高的要求。到了20世纪80年代,图像增强技术进入普及期,此时的计算机已经能够承担起图形图像处理的任务。20世纪90年代进入了应用期,人们运用数字图像增强技术处理与分析遥感图像,以有效地进行资源与矿藏的勘探、调查、农业与城市的土地规划、作物估产、气象预报、灾害及军事目标的监视等。在生物医学工程方面,运用图像增强技术对X射线图像、超声图像与生物切片显微图像等进行处理,提高图像的清晰度与分辨率。在工业与工程方面,主要应用于无损探伤、质量检测与过程自动控制等方面。在公共安全方面,人像、指纹及其她痕迹的处理与识别,以及交通监控、事故分析等都在不同程度上使用了图像增强技术。图像增强就是图像处理的重要组成部分,传统的图像增强方法对于改善图像质量发挥了极其重要的作用。随着对图像技术研究的不断深入与发展,新的图像增强方法不断出现。例如一些学者将模糊映射理论引入到图像增强算法中,提出了包括模糊松弛、模糊熵、模糊类等增强算法来解决增强算法中映射函数选择问题,并且随着交互式图像增强技术的应用,可以主观控制图像增强效果。同时利用直方图均衡技术的图像增强也有许多新的进展:例如提出了多层直方图结合亮度保持的均衡算法、动态分层直方图均衡算法。这些算法通过分割图像,然后在子层图像内做均衡处理,较好地解决了直方图均衡过程中的对比度过拉伸问题,并且可以控制子层灰度映射范围,增强效果较好。

20世纪20年代图片第一次通过海底电缆从伦敦传往纽约。当时人们通过字符模拟得到中间色调的方法来还原图像。早期的图像增强技术往往涉及硬件参数的设置,如打印过程的选择与亮度等级的分布等问题。在1921年年底提出了一种基于光学还原的新技术。在这一时期由于引入了一种用编码图像纸带去调制光束达到调节底片感光程度的方法,使灰度等级从5个灰度级增加到15个灰度等级,这种方法明显改善了图像复原的效果。到20世纪60年代早期第一台可以执行数字图像处理任务的大型计算机制造出来了,这标志着利用计算机技术处理数字图像时代的到来。1964年,研究人员在美国喷气推进实验室(JPL)里使用计算机以及其它硬件设备,采用几何校正、灰度变换、去噪声、傅里叶变换以及二维线性滤波等增强方法对航天探测器“徘徊者7号”发回的几千张月球照片进行处理,同时她们也考虑太阳位置与月球环境的影响,最终成功地绘制出了月球表面地图。随后她们又对1965年“徘徊者8号”发回地球的几万张照片进行了较为复杂的数字图像处理,使图像质量进一步提高。这些成绩不仅引起世界许多有关方面的注意而且JPL本身也更加重视对数字图像处理地研究与设备的改进,并专门成立了图像处理实验室IPL。在IPL里成功的对后来探测飞船发回的几十万张照片进行了更为复杂的图像处理,最终获得了月球的地形图、彩色图以及全景镶嵌图。从此数字图像增强技术走进了航空航天领域。

20世纪60年代末与20世纪70年代初有学者开始将图像增强技术用于医学图像、地球遥感监测与天文学等领域。X射线就是最早用于成像的电磁辐射源之一,在1895年X射线由伦琴发现。20世纪70年代Godfrey N、Hounsfield先生与Allan M、Cormack教授共同发明计算机轴向断层技术:一个检测器围绕病人,并用X射线源绕着物体旋转。X射线穿过身体并由位于对面环中的相应检测器收集起来。其原理就是用感知的数据去重建切片图像。当物体沿垂直于检测器的方向运动时就产生一系列的切片,这些切片组成了物体内部的再现图像。到了20世纪80年代以后,各种硬件的发展使得人们不仅能够处理二维图像,而且开始处理三维图像。许多能获得三维图像的设备与分析处理三维图像的系统已经研制成功了,图像处理技术

得到了广泛的应用。进入20世纪90年代,图像增强技术已经逐步涉及人类生活与社会发展的各个方面。计算机程序用于增强对比度或将亮度编码为彩色,以便解释X射线与用于工业、医学及生物科学等领域的其她图像。地理学用相同或相似的技术从航空与卫星图像中研究污染模式。在考古学领域中使用图像处理方法已成功地复原模糊图片。在物理学与相关领域中计算机技术能增强高能等离子与电子显微镜等领域的实验图片。直方图均衡处理就是图像增强技术常用的方法之一。1997年Kim 提出如果要将图像增强技术运用到数码相机等电子产品中,那么算法一定要保持图像的亮度特性。在文章中Kim提出了保持亮度特性的直方图均衡算法(BBHE)。Kim的改进算法提出后,引起了许多学者的关注。在1999年Wan等人提出二维子图直方图均衡算法(DSIHE)。接着Chen与Ramli提出最小均方误差双直方图均衡算法(MMBEBHE)。为了保持图像亮度特性,许多学者转而研究局部增强处理技术,提出了许多新的算法:递归均值分层均衡处理(RMSHE)、递归子图均衡算法(RSIHE)、动态直方图均衡算法(DHE)、保持亮度特性动态直方图均衡算法(BPDHE)、多层直方图均衡算法(MHE)、亮度保持簇直方图均衡处理(BPWCHE)等等。

小波变换就是当前数学中一个迅速发展的新领域,理论深刻,应用十分广泛。小波变换的概念就是由法国从事石油信号处理的工程师J、Morlet在1974年首先提出的,通过物理的直观与信号处理的实际需要经验的建立了反演公式,当时未能得到数学家的认可。正如1807年法国的热学工程师J、B、J、Fourier提出任一函数都能展开成三角函数的无穷级数的创新概念未能得到著名数学家J、L、Lagrange,P、S、Laplace以及A、M、Legendre的认可一样。幸运的就是,早在七十年代,A、Calderon表示定理的发现、Hardy空间的原子分解与无条件基的深入研究为小波变换的诞生做了理论上的准备,而且J、O、Stromberg还构造了历史上非常类似于现在的小波基;1986年著名数学家Y、Meyer偶然构造出一个真正的小波基,并与S、Mallat合作建立了构造小波基的同样方法及其多尺度分析之后,小波分析才开始蓬勃发展起来,其中比利时女数学家I、Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》对小波的普及起了重要的推动作用。它与Fourier 变换、窗口Fourier变换(Gabor变换)相比,这就是一个时间与频率的局域变换,因而能有效的从信号中提取信息,通过伸缩与平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题,从而小波变化被誉为“数学显微镜”,它就是调与分析发展史上里程碑式的进展。

小波分析的应用就是与小波分析的理论研究紧密地结合在一起地。现在,它已经在科技信息产业领域取得了令人瞩目的成就。电子信息技术就是六大高新技术中重要的一个领域,它的重要方面就是图象与信号处理。现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就就是:准确的分析、诊断、编码压缩与量化、快速传递或存储、精确地重构(或恢复)。从数学地角度来瞧,信号与图象处理可以统一瞧作就是信号处理(图象可以瞧作就是二维信号),在小波分析地许多分析的许多应用中,都可以归结为信号处理问题。现在,对于其性质随实践就是稳定不变的信号,处理的理想工具仍然就是傅立叶分析。但就是在实际应用中的绝大多数信号就是非稳定的,而特别适用于非稳定信号的工具就就是

相关文档
最新文档