圆柱体的表面积课件1
合集下载
《圆柱体的表面积》ppt课件
在几何图形中,圆柱体表面积的计算有助于理解立体图形的构造和性质,为解决 更复杂的几何问题提供基础。
在日常生活中的应用
圆柱体在日常生活中随处可见,如水桶、饮料瓶、水管等。 这些物品的表面积决定了它们的外观和包装方式,对于生产 制造、物流运输和销售都有重要意义。
圆柱体表面积的计算有助于优化产品设计,降低生产成本, 提高经济效益。
代数法
总结词
代数法是通过代数运算来计算圆柱体的表面积。这种方法需 要一定的代数基础和计算能力。
详细描述
首先,将圆柱体的侧面积表示为2πr|h|,其中|h|是高度的一半。 然后,将两个底面的面积表示为2πr^2。最后,将侧面积和两 个底面积相加,得到圆柱体的总表面积。
微积分法
总结词
微积分法是通过微积分的基本定理来 计算圆柱体的表面积。这种方法需要 一定的微积分基础和计算能力。
侧面积 $S_{侧} = C times h = 2pi rh$。
圆柱体的底面积计算公式
底面积计算公式
$S_{底} = pi r^{2}$
解释
其中,$S_{底}$表示圆柱体的底面积,$pi$是圆周率,$r$是圆柱 底面圆的半径。
底面积计算公式推导
根据圆的面积公式,圆的面积 $A = pi r^{2}$,所以底面积 $S_{底} = A = pi r^{2}$。
圆柱体的全面积计算公式
全面积计算公式
$S_{全} = S_{侧} + S_{底}$
解释
其中,$S_{全}$表示圆柱体的全面积,$S_{侧}$是圆柱体的侧面积, $S_{底}$是圆柱体的底面积。
全面积计算公式推导
全面积就是侧面积加上两个底面积,即 $S_{全} = S_{侧} + 2S_{底} = 2pi rh + 2pi r^{2}$。
在日常生活中的应用
圆柱体在日常生活中随处可见,如水桶、饮料瓶、水管等。 这些物品的表面积决定了它们的外观和包装方式,对于生产 制造、物流运输和销售都有重要意义。
圆柱体表面积的计算有助于优化产品设计,降低生产成本, 提高经济效益。
代数法
总结词
代数法是通过代数运算来计算圆柱体的表面积。这种方法需 要一定的代数基础和计算能力。
详细描述
首先,将圆柱体的侧面积表示为2πr|h|,其中|h|是高度的一半。 然后,将两个底面的面积表示为2πr^2。最后,将侧面积和两 个底面积相加,得到圆柱体的总表面积。
微积分法
总结词
微积分法是通过微积分的基本定理来 计算圆柱体的表面积。这种方法需要 一定的微积分基础和计算能力。
侧面积 $S_{侧} = C times h = 2pi rh$。
圆柱体的底面积计算公式
底面积计算公式
$S_{底} = pi r^{2}$
解释
其中,$S_{底}$表示圆柱体的底面积,$pi$是圆周率,$r$是圆柱 底面圆的半径。
底面积计算公式推导
根据圆的面积公式,圆的面积 $A = pi r^{2}$,所以底面积 $S_{底} = A = pi r^{2}$。
圆柱体的全面积计算公式
全面积计算公式
$S_{全} = S_{侧} + S_{底}$
解释
其中,$S_{全}$表示圆柱体的全面积,$S_{侧}$是圆柱体的侧面积, $S_{底}$是圆柱体的底面积。
全面积计算公式推导
全面积就是侧面积加上两个底面积,即 $S_{全} = S_{侧} + 2S_{底} = 2pi rh + 2pi r^{2}$。
人教版六年级下册数学《圆柱的表面积》课件ppt
圆柱表面积 = 侧面积 + 2× 底面积
长方形的面积
圆柱表面积 =底面周长×高+ 2×圆面积
圆柱表面积 =
2πr ×高 + 2× πr2
探究新知
圆柱与圆锥
练一练
一顶厨师帽近似圆柱形,高30cm,帽顶直径20cm。做这样一
顶帽子大约要用多少平方厘米的面料?(得数保留整十数)
想一想:这个帽
子是什么样的,
罐的长度。
12cm
课堂小结
圆柱与圆锥
这节课你们都学会了哪些知识?
圆柱的侧面积和表面积
圆柱的侧面积=底面周长×高
底面周长:C
高:h
半径:r
S侧 = Ch
圆柱的表面积=侧面积 + 两个底面的面积
S表 = S侧 + 2S底
= 2rh + 2r2
要根据具体情况计算表面积涉及哪几个面。
课后作业
圆柱与圆锥
24罐这种饮料按如图所示的方式放入箱内,这个箱子的长、
6cm
宽、高至少是多少厘米?
箱子的高是饮料
罐的高是12cm。
箱子的长:6×6=36(cm)
箱子的长是6个底
箱子的宽:6×4=24(cm) 面直径6cm的饮料
答:这个箱子的长是36cm, 罐的长度。
宽是24cm,高是12cm。
箱子的宽是4个底
面直径6cm的饮料
人教版
数学
六年级 下册
圆柱与圆锥
3 圆柱与圆锥
圆柱的表面积
复习导入
圆柱与圆锥
谁能说一说:圆柱有什么特征?
两个底面 ——圆
一个侧面 ——曲面
侧面展开是一个长方形。
复习导入
圆柱与圆锥
说一说:把这个圆柱表面都涂成红色,他需要哪
长方形的面积
圆柱表面积 =底面周长×高+ 2×圆面积
圆柱表面积 =
2πr ×高 + 2× πr2
探究新知
圆柱与圆锥
练一练
一顶厨师帽近似圆柱形,高30cm,帽顶直径20cm。做这样一
顶帽子大约要用多少平方厘米的面料?(得数保留整十数)
想一想:这个帽
子是什么样的,
罐的长度。
12cm
课堂小结
圆柱与圆锥
这节课你们都学会了哪些知识?
圆柱的侧面积和表面积
圆柱的侧面积=底面周长×高
底面周长:C
高:h
半径:r
S侧 = Ch
圆柱的表面积=侧面积 + 两个底面的面积
S表 = S侧 + 2S底
= 2rh + 2r2
要根据具体情况计算表面积涉及哪几个面。
课后作业
圆柱与圆锥
24罐这种饮料按如图所示的方式放入箱内,这个箱子的长、
6cm
宽、高至少是多少厘米?
箱子的高是饮料
罐的高是12cm。
箱子的长:6×6=36(cm)
箱子的长是6个底
箱子的宽:6×4=24(cm) 面直径6cm的饮料
答:这个箱子的长是36cm, 罐的长度。
宽是24cm,高是12cm。
箱子的宽是4个底
面直径6cm的饮料
人教版
数学
六年级 下册
圆柱与圆锥
3 圆柱与圆锥
圆柱的表面积
复习导入
圆柱与圆锥
谁能说一说:圆柱有什么特征?
两个底面 ——圆
一个侧面 ——曲面
侧面展开是一个长方形。
复习导入
圆柱与圆锥
说一说:把这个圆柱表面都涂成红色,他需要哪
8.3.2 圆柱、圆锥、圆台、球表面积和体积(课件)2022-2023学年高一下学期数学(人教A版2
解:当球内切于正方体时用料最省 此时棱长=直径=5cm
答:至少要用纸150cm2
练习
解析 设球 O 的半径为 r,则圆柱的底面半径为 r, 高为 2r,所以VV12=π43rπ2·r23r=32.
三、课堂小结:
1.圆柱、圆锥、圆台的表面积公式
1).圆柱 2).圆锥
S 2r 2 rl
S r 2 rl
如果圆台的上、下底面半径分别为r和R,母线长为l,你能计算它的
表面积吗?
r O’
RO
圆台的侧面展开图是扇环
x x
r 'O’
rO
xl r x r' l rr' x r'
xl 1 r 1 x r'
x r' l r r'
∵圆台侧面展开图是一个扇环
S侧面积
1 2
2 r( x
l)
1 2
2 r
'
x
r( x l ) r ' x rx rl r ' x
A
B
D
C
A1 D1
B1 C1
变式 球的内接长方体的长、宽、高分别为3、2、 3 ,求此球体的表面积 和体积。
分析:长方体内接于球,则由球和长方体都是中心对称图形可知,它们 中心重合,则长方体对角线与球的直径相等。
内切球问题
例题3 把直径为5cm钢球放入一个正方体的有盖纸盒中,至少要用多少纸? 分析:用料最省时,球与正方体有什么位置关系? 球内切于正方体
解:一个浮标的表面积为
2π×0.15×0.6 + 4π×0.152 =0.8478(m2) 所以给1000个这样的浮标涂防水漆约需涂料
0.8478×0.5×1000 =423.9(kg).
答:至少要用纸150cm2
练习
解析 设球 O 的半径为 r,则圆柱的底面半径为 r, 高为 2r,所以VV12=π43rπ2·r23r=32.
三、课堂小结:
1.圆柱、圆锥、圆台的表面积公式
1).圆柱 2).圆锥
S 2r 2 rl
S r 2 rl
如果圆台的上、下底面半径分别为r和R,母线长为l,你能计算它的
表面积吗?
r O’
RO
圆台的侧面展开图是扇环
x x
r 'O’
rO
xl r x r' l rr' x r'
xl 1 r 1 x r'
x r' l r r'
∵圆台侧面展开图是一个扇环
S侧面积
1 2
2 r( x
l)
1 2
2 r
'
x
r( x l ) r ' x rx rl r ' x
A
B
D
C
A1 D1
B1 C1
变式 球的内接长方体的长、宽、高分别为3、2、 3 ,求此球体的表面积 和体积。
分析:长方体内接于球,则由球和长方体都是中心对称图形可知,它们 中心重合,则长方体对角线与球的直径相等。
内切球问题
例题3 把直径为5cm钢球放入一个正方体的有盖纸盒中,至少要用多少纸? 分析:用料最省时,球与正方体有什么位置关系? 球内切于正方体
解:一个浮标的表面积为
2π×0.15×0.6 + 4π×0.152 =0.8478(m2) 所以给1000个这样的浮标涂防水漆约需涂料
0.8478×0.5×1000 =423.9(kg).
《圆柱体的表面积》ppt课件
一个圆柱的高是18厘米,底 例1: 面半径是5厘米,它的表面 积是多少?
例2:一顶圆柱形厨师帽,高28厘米,
帽顶直径20厘米,做这样一顶帽子 需要用多少面料?
(得数保留整十平方厘米) 问:求表面积还是总面积?
答案:2073平方厘米
一顶厨师帽,高28cm,帽顶直径20cm, 做这样一顶帽子至少需要用多少面 料?(得数保留整十平方厘米)
S表=S侧+2S底=345.4(cm2)
两个圆柱的侧面积相等,表面积不相等。
说一说: 该求哪部分的面积?
茶 叶
做茶叶桶所需铁皮面积
加油啊!
做一个无盖水桶 所需铁皮面积
加油啊!
往井的内壁和底面抹水泥, 求抹水泥部分的面积。
加油啊!
做一个笔筒所需塑料面积
加油啊!
圆柱在木板上滚过的轨迹是什么形状?
S表 = S侧 + 2S底
3、在日常生活中,我们可以利用圆柱的 侧面积计算公式和表面积计算公式,解 决那些问题?
爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”
【课件】圆柱、圆锥、圆台的表面积与体积+课件高一下学期数学人教A版(2019)必修第二册
设圆台的上底面面积为S',下底面面积为S
r O
1
1
2
2
2
2
V圆台 (r r r r )h ( S S S S )h
3
3
1
这和V棱台 ( S S S S )h是一致的。
3
1
因而得 V台体 = ( S S S S )h
3
【练习】 如图,在直角梯形 ABCD 中,BC∥AD,∠ABC=90°,AB=5,
1
V锥体 Sh
3
1 2
r h
3
1
V台体 = ( S SS S )h
3
1
= h(r 2 rr r 2 )
3
2
感谢聆听
S圆柱 =πr +πr +2πrl 2πr (r l )
2
2
(1)圆柱的表面积、体积
圆柱的侧面展开图是什么?如何计算它的表面积?
r O
l
2 r
O
圆柱的侧面展开图是一个矩形,
S圆柱表面积 2r 2rl 2r (r l ).
2
V圆柱 = πr h
2
例1 将一个边长分别为4π,8π的矩形卷成一个圆柱的侧面,则
圆台的表面积为(
A.81π
)
B.100π
C.168π
D.169π
解 圆台的轴截面如图所示,
设上底面半径为 r,下底面半径为 R,则它的母线长为
l= h2+R-r2= 4r2+3r2=5r=10,
所以 r=2,R=8。
故 S 侧=π(R+r)l=π(8+2)×10=100π,
S 表=S 侧+πr2+πR2=100π+4π+64π=168π。故选 C。
《圆柱、圆锥、圆台的表面积》课件
1.看图回答问题
h2
l2
r' 1
l2
r 1
r 1
r2
S圆柱侧 __ S圆锥侧 __S圆台侧 __
S圆柱表 __S圆 锥表 __ S圆台表 __
20
2.一个圆柱形锅炉的底面半径为 1m ,侧面展开
图为正方形,则它的表面积
为_________ .
3.以直角边长为1的等腰直角 三角形的一直角边为轴旋转, 所得旋转体的表面积为
S柱侧 2 rl
S锥侧 rl S台侧 (rl rl)
三者之间关系
圆柱、圆锥、圆台三者的表面积公式之间有 什么关系?
r O
r’=r
l 上底扩大
O
r 'O ’ l r’=0
rO
上底缩小
l rO
S柱 2r(r l) S台 (r2 r 2 rl rl ) S锥 r(r l)
做一做
圆台侧面积公式
S侧 (r ' r) l
小结:柱体、锥体、台体的表面积
圆柱S 2r(r l)
圆柱、圆锥、 圆台
r r 圆台S (r2 r2 rl rl)
r 0
圆锥 S r(r l)
棱柱、棱锥、 棱台
展开图
各面面积之和
所用的数学思想: 空间问题“平面”化
1 .课本习题1.3 A组1,2;
2 .探究性作业:斜四棱柱的侧面展 开图及表面积
北京奥运会场馆图
相信自己:一定行!!
复习回顾
矩形面积公式:S ab
三角形面积公式:S 1 ah
圆面积公式: S r2 2
圆周长公式: C 2 r
扇形面积公式:S 1 rl 2
梯形面积公式:S 1 (a b)h 2
h2
l2
r' 1
l2
r 1
r 1
r2
S圆柱侧 __ S圆锥侧 __S圆台侧 __
S圆柱表 __S圆 锥表 __ S圆台表 __
20
2.一个圆柱形锅炉的底面半径为 1m ,侧面展开
图为正方形,则它的表面积
为_________ .
3.以直角边长为1的等腰直角 三角形的一直角边为轴旋转, 所得旋转体的表面积为
S柱侧 2 rl
S锥侧 rl S台侧 (rl rl)
三者之间关系
圆柱、圆锥、圆台三者的表面积公式之间有 什么关系?
r O
r’=r
l 上底扩大
O
r 'O ’ l r’=0
rO
上底缩小
l rO
S柱 2r(r l) S台 (r2 r 2 rl rl ) S锥 r(r l)
做一做
圆台侧面积公式
S侧 (r ' r) l
小结:柱体、锥体、台体的表面积
圆柱S 2r(r l)
圆柱、圆锥、 圆台
r r 圆台S (r2 r2 rl rl)
r 0
圆锥 S r(r l)
棱柱、棱锥、 棱台
展开图
各面面积之和
所用的数学思想: 空间问题“平面”化
1 .课本习题1.3 A组1,2;
2 .探究性作业:斜四棱柱的侧面展 开图及表面积
北京奥运会场馆图
相信自己:一定行!!
复习回顾
矩形面积公式:S ab
三角形面积公式:S 1 ah
圆面积公式: S r2 2
圆周长公式: C 2 r
扇形面积公式:S 1 rl 2
梯形面积公式:S 1 (a b)h 2
第二单元 圆柱的表面积拓展(课件)-2021-2022学年数学六年级下册
两个底面积和:3.14x2²x2=25.12(平方厘米) 侧面积251.2-25.12=226.08(平方厘米) 高:226.08÷(3.14x2x2)=18(厘米) 答:圆柱的高是18厘米。
课下练一练
1. 一个圆柱的表面积是 3140 平方厘米,这个圆柱的底面半径是高的 4 :1 , 这个圆柱的侧面积是多少?
拓展3
如图是一块长方形铁皮,利用图中的阴影部分,刚好能做成一个圆柱形油桶。 (接头处忽略不计),这个油桶的表面积是多少平方分米?
提示:做成圆柱形油桶后,阴影长方形是油桶的侧面,两个圆分 别是油桶的两个底面,所以油桶的表面积就是这个阴影长方形的 面积和两个圆的面积之和。 圆的周长就是阴影长方形的长,圆的直径的 2 倍就是阴影长方形 的宽,且圆的周长与圆的直径的和就是这块长方形铁皮的长,即 3.14×圆的直径+圆的直径=16.56 分米
2.下的机器零件是由三个圆柱组成的,三个圆柱的高都是 4 厘米,底面半径从 上到下分别是2 厘米,4 厘米,6 厘米,这个机器零件的表面积是多少平方厘米?
小圆柱侧面积:3.14x2x2x4=50.24(平方厘米) 中圆柱侧面积:3.14x4x2x4=100.48(平方厘米) 大圆柱表面积:3.14x6²x2+3.14x6x2x4=376.8(平方厘米) 机器零件的表面积:50.24+100.48+376.8=527.52(平方厘米) 答:这个机器零件的表面积是527.52 平方厘米。
长方形的宽(圆柱的高)是多少分米? 188.4÷12.56=15(分米)
答:它的高是 15 分米。
请你练一练
1. 一个圆柱的侧面积是 251.2 平方厘米,底面半径是 4 厘米,这个圆柱 的高是多少厘米?
圆柱的表面积课件
一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做 这样一顶帽子需要用多少面料?(得数保留整十平 方厘米)
帽子需要的面料 = 帽子的侧面积 + 帽顶的面积
一根10米长的圆柱形排水钢管,量得横截面周长3.14 米,如果在钢管的表面喷上防锈油漆,喷漆面积是多少 平方米?
3.14×10=31.4(平方米)
上一页
ቤተ መጻሕፍቲ ባይዱ
返回主页
下一页
• 1、请你观察圆 柱体的形状,小 组协作拆分手中 的圆柱体,你发 现它由哪几部分 构成? • 2、小组讨论: 圆柱的表面积应 该怎样计算?
底面
高 底面周长
底面
圆柱表面积=( 侧面积)+( 两个底面的面积 )
上一页
返回主页
下一页
请你当一回服装设计师和机械工程师, 小组合作完成以下的工作任务:
2、一个圆柱,底面直径是2分米,高是45分米,求它的表面积。
3.14×2×45+3.14×12×2
=282.6+6.28 =288.88(平方分米)
上一页
返回主页
下一页
请同学们根据下面的 提示,谈一下自己的学 习体验。
本节课我学到的知识有: 我还在 方面存在不足
;
我打算
弥补。
上一页
返回主页
下一页
上一页
返回主页
下一页
底 面
圆形的面积=( 半径的平方乘π )
底 面
侧
高
面
长方形的面积=( 长乘宽 )
圆柱各部分的名称是什么?
上一页
返回主页
下一页
• 1、请你观察圆 柱体的形状,小 组协作拆分手中 的圆柱体,你发 现各部分的形状 分别是什么? • 2、小组讨论: 圆柱的表面积应 该怎样计算?
大班数学认识圆柱体PPT课件-2024鲜版
04
2024/3/28
05
球体的半径是从球心到球面 任意一点的距离。
17
三者之间联系与区别总结
2024/3/28
联系
圆柱体、圆锥和球体都是常见的三维图形,在数学和日常生活中都有广泛应用。它们都可 以用来描述具有圆形截面的物体。
形状不同
圆柱体有两个平行的圆形底面和一个侧面;圆锥有一个圆形底面和一个顶点;球体则是一 个完全对称的图形,没有平面。
单位换算的方法:根据换算关系进行 计算。例如,1米=100厘米,因此可 以将厘米单位的数值除以100转换为 米单位。
2024/3/28
14
04
拓展内容:圆锥和球体简介
2024/3/28
15
圆锥基本概念与性质
定义:圆锥是一个有一个圆形底面和一 个顶点的三维图形,所有从顶点到底面 边缘的线段都相等。
6
02
圆柱体表面积计算方法
2024/3/28
7
侧面积计算公式推导
圆柱体侧面积定义
圆柱体侧面展开后形成的矩形面积。
注意事项
计算侧面积时,要确保底面半径和高 度的单位一致。
公式推导
设圆柱体底面半径为$r$,高为$h$, 则侧面展开后矩形的长为底面周长 $2pi r$,宽为$h$。因此,侧面积 $S_{侧} = 2pi r times h$。
2024/3/28
22
06
课程总结与回顾
2024/3/28
23
关键知识点梳理
01
02
03
圆柱体的基本特征
上下两个面是相等的圆形,侧 面是一个曲面。
圆柱体的高
两个底面之间的距离叫做高。
圆柱体的表面积
侧面积+2个底面积。
圆柱、圆锥、圆台、球的表面积和体积 课件-高一数学人教A版(2019)必修第二册
二、圆柱、圆锥、圆台的体积
例2 (1)(多选)圆柱的侧面展开图是长12 cm,宽8 cm的矩形,则这个
圆柱的体积可能是
√288 A. π
cm3
√192 B. π
cm3
C.288π cm3
D.192π cm3
解析 当圆柱的高为 8 cm 时,V=π×122π2×8=2π88(cm3), 当圆柱的高为 12 cm 时,V=π×28π2×12=1π92(cm3).
V柱 Sh
V柱
1 3
Sh
1 V台 3 (S
SS' S' )h
复习 棱柱、棱锥、棱台的表面积:
围成它们的各个面的面积的和,即侧面积+底面积
我们知道了多面体的表面积,那你认为旋转体——圆柱、圆锥、圆 台、球的表面积又是怎样的呢?
圆柱、圆锥、圆台的表面积是围成它们的各个面的面积和,即 侧面积+底面积
变式2 (1)设圆台的高为3,如图,在轴截面中母线AA1与底面直径AB的夹角为60°, 轴截面中的一条对角线垂直于腰,则圆台的体积为________.
解析 设上、下底面半径,母线长分别为r,R,l.
作A1D⊥AB于点D, 则A1D=3,∠A1AB=60°, 又∠BA1A=90°, ∴∠BA1D=60°,
1 3
Sn
R
1 3
R(Si
S2
S3
...
Sn
)
1 3
RS
因为 S 4πR2 所以球的体积为 V 4 R3
3
Si
hi
Vi
Si
R
O
Vi
2
PART TWO
题型探究
题型一 求圆柱、圆锥、圆台的表面积 【例1】 圆锥的高和底面半径相等,它的一个内接圆柱的高和圆柱底面半径也相等.
圆柱体课件
等研究中涉及圆柱体的性质。
工程学
03
在工程学中,圆柱体广泛应用于各种结构设计和建筑设计中,
如水塔、油罐、高层建筑等。
圆柱体的制作方法介绍
旋转成型
通过旋转一个矩形或圆形平面并逐渐缩小尺寸,可以制作出圆柱 体。
切割和拼接
通过将多个矩形或圆形平面切割成细条并拼接起来,也可以制作 出圆柱体。
3D打印
现代技术如3D打印可以方便地制作出各种形状的圆柱体,尤其 是具有复杂内部结构的圆柱体。
起来即可。
计算表面积
利用圆柱体的展开图可以计算圆 柱体的表面积,包括侧面积和底
面积。
理解几何形状
通过观察圆柱体的展开图,可以 更好地理解圆柱体、圆锥体等几
何形状的特点和性质。
05
圆柱体的截面
圆柱体截面的定义
定义
过圆柱体(Cylinder)的任意一平面与 圆柱体的交线称为圆柱体的截面 (Section of Cylinder)。
圆柱体课件
• 圆柱体概述 • 圆柱体的表面积 • 圆柱体的体积 • 圆柱体的展开图 • 圆柱体的截面 • 圆柱体的应用
目录
01
圆柱体概述
圆柱体的定义
圆柱体是一种三维图形,由一 个矩形平面和一个垂直于该平 面的圆形平面相交而成。
圆柱体的两个底面是两个相等 的圆,而侧面是一个矩形。
圆柱体的高度等于矩形的高度 ,而底面的周长等于矩形的长 度。
圆柱体的构成
01
02
03
04
圆柱体由顶面、底面和侧面构 成。
顶面是一个平面,与底面平行 且等距。
底面是一个圆形,与顶面平行 且等距。
侧面是一个矩形,垂直于底面 和顶面,且与底面和顶面等长
第一课时圆柱、圆锥、圆台的表面积和体积课件-高一下学期数学人教A版(2019)必修第二册
19
课堂精炼
【训练 3】
π
如图所示,在梯形 ABCD 中,∠ABC= ,AD∥BC,BC=2AD
2
=2AB=2,将梯形 ABCD 绕 AD 所在的直线旋转一周而形成的曲面所围成的
几何体的体积为(
5
A. π
3
4
B. π
3
2
C. π
3
)
D.2π
解析
由题意,旋转而成的几何体是圆柱,挖去一个圆
锥(如图),
又 BD=A1D·tan 60°=3 3,∴R+r=3 3,
∴R=2 3,r= 3,又 h=3,
1
1
2
2
∴V 圆台= πh(R +Rr+r )= π×3×[(2 3)2+
3
3
2 3× 3+( 3)2]=21π.
∴圆台的体积为 21π.
答案
10
21π
关于旋转体面积、体积等计
算问题,一般重点考察几何
体的轴截面,将立体问题平
面积与两底面积之和
题型二
求圆柱、圆锥、圆台的体积
数 学
7
知识梳理
2.柱体、锥体、台体的体积公式
V 柱体= sh (S 为底面面积,h 为柱体高);
V 锥体=
sh
(S 为底面面积,h 为锥体高);
1
V 台体= (S′+ S′S+S)h(S′,S 分别为上、下底面面积,h 为台体高).
3
8
课堂精讲
8.3.2 第一课时 圆柱、圆
锥、圆台的表面积和体积
数 学
1
题型一
求圆柱、圆锥、圆台的表面积
数 学
2
知识梳理
1.圆柱、圆锥、圆台的表面积和体积
人教版六年级数学下册第三单元第4课《圆柱的表面积》整理复习课件
一个圆柱的侧面积是188.4 dm2,底面半径是2 dm。 它的高是多少?
根据3.14×圆柱的底面半径×2×高=圆柱的侧面积
188.4÷(3.14×2×2)=15(dm)
侧面积 ÷ 底面周长 = 高
答:这个圆柱的高是15dm。
一根圆柱形木料的底面半径是0.5m,长是2m。如图所示, 将它截成4段,这些木料的表面积之和比原木料的表面积增 加了多少平方米?
正方形的边长
圆柱的底面周长 =圆柱的高
解:设圆柱的底面直径为d,底面周长为dπ。 直径与高的比 d∶πd =1∶π
答:这个圆柱底面直径与高的比是1∶π。
这节课你们都学会了哪些知识?
圆柱的表面积计算 1.计算方法:
圆柱的表面积=侧面积+两个底面积
2πrh
2×πr2
2.解决问题时要根据实际情况判断。
圆柱表面积的意义 1.填一填。 (1)圆柱的表面积是指圆柱的( 侧面积 )和
求用了多少彩纸,需要用圆 柱的表面积减去上下底面中 间留出的口的面积。
(1)侧面积:3.14×20×30=1884(cm2 ) (2)两个底面的面积:3.14×(20÷2)2 ×2=628(cm2 ) (3)需要用的彩纸:1884+628-78.5×2=2355(cm2 )
答:他用了2355cm2的彩纸。
3 圆柱与圆锥
练习四
说一说:圆柱展开图是什么样的。
用手摸一摸,圆的表面积是哪Fra bibliotek? 圆柱的表面积是指圆柱的侧面积和两个底面积 的面积和。
用字母怎么表示呢?
圆柱的表面积=侧面积+两个底面积
底面是圆形 S底= πr 2
S表=S侧 +2S底
长方形的面积= 长 × 宽
圆柱体表面积课件
底面
ห้องสมุดไป่ตู้
底面的周长
高
底面
圆柱的侧面积=底面周长×高
做一个圆柱形纸盒,至少需要用 多大面积的纸板?(接口处不计)
底面
侧面
圆柱的表面积=
底面
圆柱的侧面积 + 底面的面积×2
底面周长×高
S表面积=2πr×h + 2×πr2
(1)侧面积:2 ×3.14 ×10 ×30=1884(平方厘米)
(2)底面积:3.14 ×102 =314(平方厘米)
复习:
1 、圆的周长、面积怎样计算?
2、长方形面积怎样计算?
3、圆柱的特征是什么?
什么是圆柱的表面积?
圆柱的侧面积加上两个底面 的面积就是圆柱的表面积.
圆柱的侧面展开是一个长方形.
1、有两个底面:
面积相等
2、一个侧面:
长=底面周长
高宽
长
试验小结: 圆柱侧面展开图是长方形 (正方形),长方形的长等于 圆柱的底面周长,宽等于圆柱 的高。
(3)表面积:1884+314 × 2=2512(平方厘米)
达标检测
计算下现各圆柱的表面积。(图中单位:厘米)
做一个无盖的圆柱形铁皮水桶,高是5分米。 底面直径4分米,至少需要多大面积的铁皮?
水桶没有盖,说明它只有一个底面。 (1)水桶的侧面积: 3.14 ×4 ×5=62.8(平方分米) (2)水桶的底面积:
如果一段圆柱形的木头,截成两截, 它的表面积会有什么变化呢?
3.14 ×(4÷2) 2=12.56(平方分米)
( 3)需要铁皮:
62.8+12.56=75.36≈ 75.4(平方分米)
2、一个圆柱形烟囱长50分米底面半径 长2厘米,做这样一个烟囱需要多大面 积的材料
人教版六年级数学下册3.2《圆柱的表面积》课件
小试牛刀 (选题源于教材P22做一做第1题)
求下面各圆柱的侧面积。 (1)底面周长是1.6m,高是0.7m。
1.6×0.7=1.12( m2 ) 答:圆柱的侧面积是1.12m2 。 (2)底面半径是3.2dm,高是5dm。
2×3.14×3.2 ×5=100.48(dm2 ) 答:圆柱的侧面积是100.48dm2。
3 圆柱与圆锥
圆柱的表面积(1)
口头回答下面的问题。
(1)一个圆形花池,直径是5m,周长是多少? (2)长方形的面积怎样计算?
长方形的面积=长×宽。
探究点 1 圆柱的表面积的意义和计算公式
圆柱的表面积指的是什么?
底面
底面的周长 底面
底面
底面的
周长 高
底面
圆柱的表面积=圆柱的侧面积 +两个底面的面积
4.一个圆柱的展开图是一个正方形,求这个圆柱的 底面直径与高的比。(选题源于教材P24第14*题)
底面直径×π=高, 所以底面直径:高=1:π
夯实基础
1.填空。 (1)已知圆柱的底面直径是3 cm,高也是3 cm,把它沿高
展开后得到的图形的长是( 9.42 )cm,宽是( 3 )cm。 (2)把一个底面半径是2 cm,高是5 cm的圆柱沿高展开,
(1)帽子的侧面积:3.14×20×30=884(cm2 ) (2)帽顶的面积:3.14×(20÷2)2=314(cm2 ) (3)需要用的面料:1884+314=198≈2200(cm2 ) 为什么最后的结果取2200,而不取2190呢?
628÷10÷3.14÷2=10(cm) 3.14×102×2+3.14×10×2×(10+15)=2198(cm2)
6.一根圆柱形木头的长是3 m,底面直径是8 cm, 如果将它截成3段,表面积增加了多少平方厘米?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1:一个圆柱,底面的直径是0.5 米,高是1.8米,求它的侧面积。 (得数保留两位小数)
2、求下面各圆柱的侧面积。
①C=9.42厘米,h=5厘米。
②d=8米,h=3米。
③r=2分米,h=6分米。
课堂小结:
求侧面积。只有侧面而无底面的圆柱 状物体。如: 烟囱、铅笔、(木桩)涂漆 的部分、压路机滚筒、罐头盒商标纸等等。
小学六年级数学第十二册
什么是圆柱的表面积?
侧面积
圆柱的侧面积加上两个底面 的面积就是圆柱的表面积.
圆柱的表面积=侧面积+底面积×2 底面积= 2πr2
知识探究(小组合作):
侧面积怎么计算呢?它的 长、宽与什么有关呢?
底面
底面
底面
底面
底面
底面
底面
底面
底面
底面
底面
底面的周长 高
底面
长方形的面积
圆柱的侧面积
=
长
×
宽
高
= 底面周长×
底面的周长高ຫໍສະໝຸດ 底面圆柱侧面积=底面周长×高
S = ch S = πd h
S = 2πr h
做一做:
一个圆柱底面半径是2dm,高是 4.5dm,求它的侧面积。
知识拓展
一台压路机的前轮是圆柱形,轮宽2m, 直径是1.2m,前轮滚动一周,压路的面 积是多少平方米?