2018高三数学多面体与旋转体练习题附答案

合集下载

高三数学多面体与旋转体 练习题

高三数学多面体与旋转体 练习题

多面体与旋转体练习题一. 选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 一个长方体共一个顶点的三个面的面积分别为236,,,这个长方体对角线的长是()A. 23B. 32C. 6D. 62. 设正六棱锥的底面边长为1,侧棱长为5,则此棱锥的体积为()A. 63B. 23C. 3D. 23. 圆锥轴截面顶角为α,那么它的侧面展开图扇形的圆心角为()A. παsin B. 2παsin C. παsin2D. 22παsin4. 已知圆台上、下底面半径分别为1,2,侧面积等于上、下底面积的和,那么该圆台的高为()A. 34B.43C.43πD.345. 将一张圆形纸片沿其两条半径剪开,得到两个扇形,它们的圆心角的比为1:2,再将这两个扇形卷成两个圆锥筒(不计损耗和接缝用料),那么这两个圆锥筒的容积之比为()A.1010B.405C.22D.126. 设O是矩形ABCD的边CD上一点,以直线CD为轴旋转这个矩形所得圆柱的体积为V,其中以OA为母线的圆锥的体积为V4,则以OB为母线的圆锥的体积等于()A. V4B.V9C.V12D.V15B COA D7. 若一个正方体所有顶点都在一个球面上,则该球与正方体的体积之比为()A.223π B. 3π C. 32π D. 23π 8. 若干毫升水倒入底面半径为2cm 的圆柱形器皿中,量得水面高度为6cm ,若将这些水倒入轴截面是正三角形的侧圆锥形器皿中,则水面的高度是( ) A. 63cm B. 6cm C. 2183cm D. 3123cm9. 已知长方体的对角线长为2cm ,则长方体全面积的最大值是( ) A. 82cm B. 42cm C. 222cm D.22cm10. 球面上三点,任意两点的球面距离都等于此球大圆周长的14,若经过这三点的小圆面积为2π,则该球的体积为( )A.3π B. 43π C. 83π D.32π 11. 把边长为1的正方形ABCD 沿其对角线AC 折起,使二面角B AC D ——为60︒,那么三棱锥D ABC —的体积为( ) A. 6 B.63 C. 68 D. 62412. 母线长为l 的圆锥体积最大时,其侧面展开图圆心角ϕ等于( )A.263π B. 2π C.233π D. 223π二. 填空题:本大题共4小题,每小题4分,共16分。

高考数学多面体与旋转体选择题

高考数学多面体与旋转体选择题

高考数学多面体与旋转体选择题1. 下列关于多面体的说法正确的是:A. 所有多面体的对角线都是相交的B. 所有多面体的内角和都是360°C. 所有多面体的对角线都相交于一点D. 所有多面体的边数都大于22. 下列关于旋转体的说法正确的是:A. 所有旋转体的体积都是相等的B. 所有旋转体的表面积都是相等的C. 所有旋转体的轴都是垂直的D. 所有旋转体的中心都是对称的3. 下列哪个图形是旋转体?A. 圆锥B. 圆柱C. 圆台D. 球体4. 下列关于圆锥的说法正确的是:A. 圆锥的底面半径等于母线长B. 圆锥的底面半径小于母线长C. 圆锥的底面半径大于母线长D. 圆锥的底面半径与母线长无关5. 下列关于圆柱的说法正确的是:A. 圆柱的底面半径等于母线长B. 圆柱的底面半径小于母线长C. 圆柱的底面半径大于母线长D. 圆柱的底面半径与母线长无关6. 下列关于圆台的说法正确的是:A. 圆台的底面半径等于母线长B. 圆台的底面半径小于母线长C. 圆台的底面半径大于母线长D. 圆台的底面半径与母线长无关7. 下列关于球体的说法正确的是:A. 球体的直径等于半径的两倍B. 球体的直径小于半径的两倍C. 球体的直径大于半径的两倍D. 球体的直径与半径无关8. 下列哪个图形不是旋转体?A. 圆锥B. 圆柱C. 圆台D. 圆环9. 下列关于多面体的内角和的说法正确的是:A. 所有多面体的内角和都是360°B. 所有多面体的内角和都是480°C. 所有多面体的内角和都是540°D. 所有多面体的内角和都是600°10. 下列关于旋转体的体积的说法正确的是:A. 所有旋转体的体积都是相等的B. 所有旋转体的体积都与底面半径和高度有关C. 所有旋转体的体积都与底面半径无关D. 所有旋转体的体积都与高度无关11. 下列哪个图形是多面体?A. 圆锥B. 圆柱C. 圆台D. 球体12. 下列关于多面体的对角线说法正确的是:A. 所有多面体的对角线都是相交的B. 所有多面体的对角线都相交于一点C. 所有多面体的对角线都不相交D. 所有多面体的对角线都与顶点无关13. 下列关于旋转体的表面积的说法正确的是:A. 所有旋转体的表面积都是相等的B. 所有旋转体的表面积都与底面半径和高度有关C. 所有旋转体的表面积都与底面半径无关D. 所有旋转体的表面积都与高度无关14. 下列哪个图形是旋转体?A. 圆锥B. 圆柱C. 圆台D. 圆环15. 下列关于多面体的边数说法正确的是:A. 所有多面体的边数都大于2B. 所有多面体的边数都等于2C. 所有多面体的边数都小于2D. 所有多面体的边数都与顶点无关16. 下列关于旋转体的轴的说法正确的是:A. 所有旋转体的轴都是垂直的B. 所有旋转体的轴都与底面垂直C. 所有旋转体的轴都与高度垂直D. 所有旋转体的轴都与底面和高度无关17. 下列关于多面体的顶点说法正确的是:A. 所有多面体的顶点都位于对角线上B. 所有多面体的顶点都位于底面上C. 所有多面体的顶点都位于侧面D. 所有多面体的顶点都与对角线无关18. 下列关于旋转体的中心说法正确的是:A. 所有旋转体的中心都是对称的B. 所有旋转体的中心都与底面中心重合C. 所有旋转体的中心都与高度中心重合D. 所有旋转体的中心都与底面和高度无关19. 下列哪个图形是多面体?A. 圆锥B. 圆柱C. 圆台D. 球体20. 下列关于多面体的内角和的说法正确的是:A. 所有多面体的内角和都是360°B. 所有多面体的内角和都是480°C. 所有多面体的内角和都是540°D. 所有多面体的内角和都是600°21. 下列关于旋转体的体积的说法正确的是:A. 所有旋转体的体积都是相等的B. 所有旋转体的体积都与底面半径和高度有关C. 所有旋转体的体积都与底面半径无关D. 所有旋转体的体积都与高度无关22. 下列哪个图形是旋转体?A. 圆锥B. 圆柱C. 圆台D. 圆环23. 下列关于多面体的对角线说法正确的是:A. 所有多面体的对角线都是相交的B. 所有多面体的对角线都相交于一点C. 所有多面体的对角线都不相交D. 所有多面体的对角线都与顶点无关24. 下列关于旋转体的表面积的说法正确的是:A. 所有旋转体的表面积都是相等的B. 所有旋转体的表面积都与底面半径和高度有关C. 所有旋转体的表面积都与底面半径无关D. 所有旋转体的表面积都与高度无关25. 下列哪个图形是多面体?A. 圆锥B. 圆柱C. 圆台D. 球体26. 下列关于多面体的边数说法正确的是:A. 所有多面体的边数都大于2B. 所有多面体的边数都等于2C. 所有多面体的边数都小于2D. 所有多面体的边数都与顶点无关27. 下列关于旋转体的轴的说法正确的是:A. 所有旋转体的轴都是垂直的B. 所有旋转体的轴都与底面垂直C. 所有旋转体的轴都与高度垂直D. 所有旋转体的轴都与底面和高度无关28. 下列关于多面体的顶点说法正确的是:A. 所有多面体的顶点都位于对角线上B. 所有多面体的顶点都位于底面上C. 所有多面体的顶点都位于侧面D. 所有多面体的顶点都与对角线无关29. 下列关于旋转体的中心说法正确的是:A. 所有旋转体的中心都是对称的B. 所有旋转体的中心都与底面中心重合C. 所有旋转体的中心都与高度中心重合D. 所有旋转体的中心都与底面和高度无关30. 下列哪个图形是多面体?A. 圆锥B. 圆柱C. 圆台D. 球体31. 下列关于多面体的内角和的说法正确的是:A. 所有多面体的内角和都是360°B. 所有多面体的内角和都是480°C. 所有多面体的内角和都是540°D. 所有多面体的内角和都是600°32. 下列关于旋转体的体积的说法正确的是:A. 所有旋转体的体积都是相等的B. 所有旋转体的体积都与底面半径和高度有关C. 所有旋转体的体积都与底面半径无关D. 所有旋转体的体积都与高度无关33. 下列哪个图形是旋转体?A. 圆锥B. 圆柱C. 圆台D. 圆环34. 下列关于多面体的对角线说法正确的是:A. 所有多面体的对角线都是相交的B. 所有多面体的对角线都相交于一点C. 所有多面体的对角线都不相交D. 所有多面体的对角线都与顶点无关35. 下列关于旋转体的表面积的说法正确的是:A. 所有旋转体的表面积都是相等的B. 所有旋转体的表面积都与底面半径和高度有关C. 所有旋转体的表面积都与底面半径无关D. 所有旋转体的表面积都与高度无关36. 下列哪个图形是多面体?A. 圆锥B. 圆柱C. 圆台D. 球体37. 下列关于多面体的边数说法正确的是:A. 所有多面体的边数都大于2B. 所有多面体的边数都等于2C. 所有多面体的边数都小于2D. 所有多面体的边数都与顶点无关38. 下列关于旋转体的轴的说法正确的是:A. 所有旋转体的轴都是垂直的B. 所有旋转体的轴都与底面垂直C. 所有旋转体的轴都与高度垂直D. 所有旋转体的轴都与底面和高度无关39. 下列关于多面体的顶点说法正确的是:A. 所有多面体的顶点都位于对角线上B. 所有多面体的顶点都位于底面上C. 所有多面体的顶点都位于侧面D. 所有多面体的顶点都与对角线无关40. 下列关于旋转体的中心说法正确的是:A. 所有旋转体的中心都是对称的B. 所有旋转体的中心都与底面中心重合C. 所有旋转体的中心都与高度中心重合D. 所有旋转体的中心都与底面和高度无关41. 下列哪个图形是多面体?A. 圆锥B. 圆柱C. 圆台D. 球体42. 下列关于多面体的内角和的说法正确的是:A. 所有多面体的内角和都是360°B. 所有多面体的内角和都是480°C. 所有多面体的内角和都是540°D. 所有多面体的内角和都是600°43. 下列关于旋转体的体积的说法正确的是:A. 所有旋转体的体积都是相等的B. 所有旋转体的体积都与底面半径和高度有关C. 所有旋转体的体积都与底面半径无关D. 所有旋转体的体积都与高度无关44. 下列哪个图形是旋转体?A. 圆锥B. 圆柱C. 圆台D. 圆环45. 下列关于多面体的对角线说法正确的是:A. 所有多面体的对角线都是相交的B. 所有多面体的对角线都相交于一点C. 所有多面体的对角线都不相交D. 所有多面体的对角线都与顶点无关46. 下列关于旋转体的表面积的说法正确的是:A. 所有旋转体的表面积都是相等的B. 所有旋转体的表面积都与底面半径和高度有关C. 所有旋转体的表面积都与底面半径无关D. 所有旋转体的表面积都与高度无关47. 下列哪个图形是多面体?A. 圆锥B. 圆柱C. 圆台D. 球体48. 下列关于多面体的边数说法正确的是:A. 所有多面体的边数都大于2B. 所有多面体的边数都等于2C. 所有多面体的边数都小于2D. 所有多面体的边数都与顶点无关49. 下列关于旋转体的轴的说法正确的是:A. 所有旋转体的轴都是垂直的B. 所有旋转体的轴都与底面垂直C. 所有旋转体的轴都与高度垂直D. 所有旋转体的轴都与底面和高度无关50. 下列关于多面体的顶点说法正确的是:A. 所有多面体的顶点都位于对角线上B. 所有多面体的顶点都位于底面上C. 所有多面体的顶点都位于侧面D. 所有多面体的顶点都与对角线无关。

2018全国高考立体几何(完整答案)

2018全国高考立体几何(完整答案)

2018全国高考立体几何(完整答案)一.解答题(共40小题)1.已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.2.如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.3.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.4.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA ⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.5.如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM 折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q ﹣ABP的体积.6.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,BD交AC 于点E,F是线段PC中点,G为线段EC中点.(Ⅰ)求证:FG∥平面PBD;(Ⅱ)求证:BD⊥FG.7.如图所示,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AD∥BC,AD=2BC,∠DAB=∠ABP=90°.(Ⅰ)求证:AD⊥平面PAB;(Ⅱ)求证:AB⊥PC;(Ⅲ)若点E在棱PD上,且CE∥平面PAB,求的值.8.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求三棱锥P﹣BEC的体积.9.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥CB,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,,M是棱PC上的点.(Ⅰ)求证:平面PQB⊥平面PAD;(Ⅱ)若PA=PD=2,BC=1,,异面直线AP与BM所成角的余弦值为,求的值.10.如图,梯形ABCD中,AD=BC,AB∥CD,AC⊥BD,平面BDEF⊥平面ABCD,EF∥BD,BE⊥BD.(1)求证:平面AFC⊥平面BDFE;(2)若AB=2CD=2,BE=EF=2,求BF与平面DFC所成角的正弦值.11.如图,在三棱锥P﹣ABC中,AB⊥PC,CA=CB,M是AB的中点.点N在棱PC上,点D是BN的中点.求证:(1)MD∥平面PAC;(2)平面ABN⊥平面PMC.12.如图,已知PA垂直于矩形ABCD所在的平面,M,N分别是AB,PC的中点,若∠PDA=45°,(1)求证:MN∥平面PAD;(2)求证:MN⊥平面PCD.13.如图,正三棱柱ABC﹣A1B1C1中,AA1=AB,D为BB1的中点.(1)求证:A1C⊥AD;(2)若点P为四边形ABB1A1内部及其边界上的点,且三棱锥P﹣ABC的体积为三棱柱ABC﹣A1B1C1体积的,试在图中画出,P点的轨迹.并说明理由.14.如图,在三棱柱ABC﹣A1B1C1中,底面ABC为边长为2等边三角形,BB1=4,A1C1⊥BB1,且∠A1B1B=45°.(I)证明:平面BCC1B1⊥平面ABB1A1;(Ⅱ)求B﹣AC﹣A1二面角的余弦值.15.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,∠BAC=90°,AB=AA1=2,AC=1,M,N分别是A1B1,BC的中点.(Ⅰ)证明:MN∥平面ACC1A1;(II)求二面角M﹣AN﹣B的余弦值.16.已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出详细证明;(2)求三棱锥E﹣ABC的体积.17.如图,在四棱锥P﹣ABCD中,∠ADB=90°,CB=CD,点E为棱PB的中点.(1)若PB=PD,求证:PC⊥BD;(2)求证:CE∥平面PAD.18.如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.19.如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形∠BAD=60°.已知PB=PD=2,PA=.(Ⅰ)证明:PC⊥BD;(Ⅱ)若E为PA上一点,记三棱锥P﹣BCE的体积和四棱锥P﹣ABCD的体积分别为V1和V2,当V1:V2=1:8时,求的值.20.如图,正方体ABCD﹣A1B1C1D1的棱长为2,E,F分别是CB,CD的中点,点M在棱CC1上,CM=tCC1(0<t<1).(Ⅰ)三棱锥C﹣EFM,C1﹣B1D1M的体积分别为V1,V2,当t为何值时,V1•V2最大?最大值为多少?(Ⅱ)若A1C∥平面B1D1M,证明:平面EFM⊥平面B1D1M.21.如图,直角梯形ABEF中,∠ABE=∠BAF=90°,C、D分别是BE、AF上的点,且DA=AB=BC=a,DF=2CE=2a.沿CD将四边形CDFE翻折至CDPQ,连接AP、BP、BQ,得到多面体ABCDPQ,且AP=a.(Ⅰ)求多面体ABCDPQ的体积;(Ⅱ)求证:平面PBQ⊥平面PBD.22.如图,已知四棱锥P﹣ABCD的底面ABCD是菱形,∠BAD=60°,PA=PD,O 为AD边的中点.(1)证明:平面POB⊥平面PAD;(2)若,求四棱锥P﹣ABCD的体积.23.如图,在四棱锥P﹣ABCD中.底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD.Q为AD的中点,M是棱PC上的点,PA=PD=2.BC=AD=1,CD=.(I)求证:平面PBC⊥平面PQB;(Ⅱ)若平面QMB与平面PDC所成的锐二面角的大小为60°,求PM的长.24.在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,,AB=2BC=2,AC⊥FB.(Ⅰ)求证:AC⊥平面FBC;(Ⅱ)求四面体FBCD的体积;(Ⅲ)线段AC上是否存在点M,使EA∥平面FDM?证明你的结论.25.如图所示的几何体中,平面PAD⊥平面ABCD,△PAD是直角三角形,∠APD=90°,四边形ABCD是直角梯形,AB∥DC,AB⊥AD,PQ∥DC,PQ=PD=DC=1,PA=AB=2.(I)求证:PD∥平面QBC;(Ⅱ)求证:QC⊥平面PABQ;(Ⅲ)在线段QB上是否存在点M,使得AM⊥BC,若存在,求QM的值;若不存在,请说明理由.26.如图1,△ABC是边长为3的等边三角形,D在边AC上,E在边AB上,且AD=BE=2AE.将△ADE沿直线DE折起,得四棱锥A'﹣BCDE,如图2(1)求证:DE⊥A'B;(2)若平面AD'E⊥底面BCDE,求三棱锥D﹣A'CE的体积.27.如图,在三棱锥P﹣ABC中,PA⊥AC,AB⊥BC,PA=BC=2,PB=AC=2,D 为线段AC的中点,将△CBD折叠至△EBD,使得平面EDB⊥平面ABC且PC交平面EBD于F.(1)求证:平面BDE⊥平面PAC.(2)求三棱锥P﹣EBC的体积.28.如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:PB⊥平面PEC;(Ⅱ)求三棱锥D﹣PEC的高.29.如图1,ABCD是一个直角梯形,∠ABC=∠BAD=90,E为BC边上一点,AE、BD相交于O,AD=EC=3,BE=1,AB=.将△ABE沿AE折起,使平面ABE⊥平面ADE,连接BC、BD,得到如图2所示的四棱锥B﹣AECD.(Ⅰ)求证:CD⊥平面BOD;(Ⅱ)求直线AB与面BCD所成角的余弦值.30.如图,四棱柱ABCD﹣A1B1C1D1为长方体,点P是CD中点,Q是A1B1的中点.(I)求证:AQ∥平面PBC1;(l)若BC=CC1,求证:平面A1B1C⊥平面PBC1.31.如图,在四棱锥P﹣ABCD中,AD∥BC,AD=3BC=6,,点M在线段AD上,且DM=4,AD⊥AB,PA⊥平面ABCD.(1)证明:平面PCM⊥平面PAD;(2)当∠APB=45°时,求四棱锥P﹣ABCM的表面积.32.已知等腰梯形ABCD中,AD∥EC,EC=2AD=2AE=4,B为EC的中点,如图1,将三角形ABE沿AB折起到ABE′(E′⊄平面ABCD),如图2.(1)点F为线段AE′的中点,判断直线DF与平面BCE′的位置关系,并说明理由;(2)当平面ABE′与平面DE′C所成的二面角的大小为时,证明:平面ABE′⊥平面ABCD.33.如图,在四棱锥P﹣ABCD中,△PAD和△BCD都是等边三角形,平面PAD ⊥平面ABCD,且AD=2AB=4,.(I)求证:CD⊥PA;(II)E,F分别是棱PA,AD上的点,当平面BEF∥平面PCD时,求四棱锥C﹣PEFD的体积.34.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,AB=AC=2,AD=2,PB=,PB⊥AC.(1)求证:平面PAB⊥平面PAC;(2)若∠PBA=45°,试判断棱PA上是否存在与点P,A不重合的点E,使得直线CE与平面PBC所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.35.如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为直角梯形,AD ∥BC,∠BAD=∠CBA=90°,PA=AB=BC=1,AD=2,E,F,G分别为BC,PD,PC的中点.(1)求EF与DG所成角的余弦值;(2)若M为EF上一点,N为DG上一点,是否存在MN,使得MN⊥平面PBC?若存在,求出点M,N的坐标;若不存在,请说明理由.36.如图所示,在多面体ABC﹣A1B1C1中,D,E,F分别是AC,AB,CC1的中点,AC=BC=4,,CC1=2,四边形BB1C1C为矩形,平面ABC⊥平面BB1C1C,AA1∥CC1(1)求证:平面DEF⊥平面AA1C1C;(2)求直线EF与平面ABC所成的角的正切值.37.如图,在三棱柱ABC﹣A1B1C1中,BC⊥平面AA1B1B,AB=AA1=2,∠A1AB=60°.(Ⅰ)证明:平面AB1C⊥平面A1BC;(Ⅱ)若四棱锥A﹣BB1C1C的体积为,求该三棱柱的侧面积.38.如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD为正方形,E,F,G分别是AB,PB,PC的中点.(1)求证:CD∥平面PAB;(2)求证:CD⊥平面EFG.39.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,平面ABP⊥平面BCP,∠APB=90°,BP=BC,M为CP的中点.求证:(1)AP∥平面BDM;(2)BM⊥平面ACP.40.已知梯形ABCD中,AD∥BC,,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).G是BC的中点,以F、B、C、D为顶点的三棱锥的体积记为f (x).(1)当x=2时,求证:BD⊥EG;(2)求f(x)的最大值;(3)当f(x)取得最大值时,求异面直线AE与BD所成的角的余弦值.2018全国高考立体几何(完整答案)参考答案与试题解析一.解答题(共40小题)1.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.2.【解答】(1)证明:矩形ABCD所在平面与半圆弦所在平面垂直,所以AD⊥半圆弦所在平面,CM⊂半圆弦所在平面,∴CM⊥AD,M是上异于C,D的点.∴CM⊥DM,DM∩AD=D,∴CM⊥平面AMD,CM⊂平面CMB,∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:连接BD交AC于O,取AM的中点P,连接OP,可得MC∥OP,MC⊄平面BDP,OP⊂平面BDP,所以MC∥平面PBD.3.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,AB∥A1B1,AB⊄平面A1B1C,A1B1⊂∥平面A1B1C⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.4.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH=BC,由DE∥BC,DE=BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.5.【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,又AB⊥DA.且AD∩AC=A,∴AB⊥面ADC,∴AB⊂面ABC,∴平面ACD⊥平面ABC;(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3,∴BP=DQ=DA=2,由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,∴三棱锥Q﹣ABP的体积V==××==1.6.【解答】证明:(Ⅰ)连接PE,G、F为EC和PC的中点,∴FG∥PE,FG⊄平面PBD,PE⊂平面PBD,∴FG∥平面PBD…(6分)(Ⅱ)∵菱形ABCD,∴BD⊥AC,又PA⊥面ABCD,BD⊂平面ABCD,∴BD⊥PA,∵PA⊂平面PAC,AC⊂平面PAC,且PA∩AC=A,∴BD⊥平面PAC,FG⊂平面PAC,∴BD⊥FG…(14分)7.【解答】(Ⅰ)证明:因为∠DAB=90°,所以AD⊥AB.……………………(1分)因为平面PAB⊥平面ABCD,……………………(2分)且平面PAB∩平面ABCD=AB,……………………(3分)所以AD⊥平面PAB.……………………(4分)(Ⅱ)证明:由已知得AD⊥AB因为AD∥BC,所以BC⊥AB.……………………(5分)又因为∠ABP=90°,所以PB⊥AB.……………………(6分)因为PB∩BC=B……………………(7分)所以AB⊥平面PBC……………………(8分)所以AB⊥PC.……………………(9分)(Ⅲ)解:过E作EF∥AD交PA于F,连接BF.……………………(10分)因为AD∥BC,所以EF∥BC.所以E,F,B,C四点共面.……………………(11分)又因为CE∥平面PAB,且CE⊂平面BCEF,且平面BCEF∩平面PAB=BF,所以CE∥BF,……………………(13分)所以四边形BCEF为平行四边形,所以EF=BC.在△PAD中,因为EF∥AD,所以,……………………(14分)即.8.【解答】证明:(1)∵D,E分别为AB,AC的中点,∴DE∥BC,又DE⊄平面PBC,BC⊂平面PBC,∴DE∥平面PBC.(2)连接PD,∵DE∥BC,又∠ABC=90°,∴DE⊥AB,又PA=PB,D为AB中点,∴PD⊥AB,又PD∩DE=D,PD⊂平面PDE,DE⊂平面PDE,∴AB⊥平面PDE,又PE⊂平面PDE,∴AB⊥PE.(3)∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,PD⊥AB,PD⊂平面PAB,∴PD⊥平面ABC,∵△PAB是边长为2的等边三角形,∴PD=,∵E是AC的中点,∴.9.【解答】证明:(Ⅰ)∵AD∥BC,,Q为AD的中点∴四边形BCDQ为平行四边形,∴CD∥BQ.∵∠ADC=90°,∴∠AQB=90°,即QB⊥AD.又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.∵BQ⊥平面PAD∵BQ⊂平面PQB,∴平面PQB⊥平面PAD.解:(Ⅱ)∵PA=PD,Q为AD的中点,∴PQ⊥AD.∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.∵PQ⊥平面ABCD.以Q为原点分别以、、为x轴、y轴、z轴的正方向建立空间直角坐标系,则Q(0,0,0),A(1,0,0),,,,设M(x0,y0,z0),∴,,.由M是PC上的点,设,化简得.设异面直线AP与BM所成角为θ,则.∴,解得或,故或.10.【解答】解:(1)证明:∵平面BDFE⊥平面ABCD,平面BDFE∩平面ABCD=BD,AC⊂平面ABCD,AC⊥BD,∴AC⊥平面BDFE.又AC⊂平面AFC,∴平面AFC⊥平面BDFE.(2)设AC∩BD=O,∵四边形ABCD为等腰梯形,AC⊥BD,AB=2CD=2,∴OD=OC=1,OB=OA=2,∵EF∥OB且EF=OB,∴四边形FEBO为平行四边形,∴OF∥BE,且OF=BE=2,又∵BE⊥平面ABCD,∴OF⊥平面ABCD.以O为原点,向量的方向分别为x轴,y轴,z轴的正方向,建立如图所示的空间直角坐标系,则B(0,2,0),D(0,﹣1,0),F(0,0,2),C(﹣1,0,0),∴=(0,1,2),=(1,﹣1,0),=(0,﹣2,2),设平面DFC的一个法向量为=(x,y,z),则有,即,不妨设z=1,得x=y=﹣2.即=(﹣2,﹣2,1),于是cos<,>===.设BF与平面DFC所成角为θ,则sinθ=|cos<,>|=.∴BF与平面DFC所成角的正弦值为.11.【解答】证明:(1)在ABN中,∵M是AB的中点,D是BN的中点,∴MD∥AN,又AN⊂平面PAC,MD⊄平面PAC,∴MD∥平面PAC.(2)在△ABC中,∵CA=CB,M是AB的中点,∴AB⊥MC,又∵AB⊥PC,PC⊂平面PMC,MC⊂平面PMC,PC∩MC=C,∴AB⊥平面PMC.又∵AB⊂平面ABN,∴平面ABN⊥平面PMC.12.【解答】证明:(1)如图,取PD的中点E,连接AE,NE.∵E、N分别为PD,PC的中点,∴EN CD,又M为AB的中点,∴AM CD,∴EN AM,∴四边形AMNE为平行四边形.∴MN∥AE,∴MN∥平面PAD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)∵PA⊥平面ABCD,∠PDA=45°,∴△PAD为等腰直角三角形,∴AE⊥PD,又∵CD⊥AD,CD⊥PA,AD∩PA=A,∴CD⊥平面PAD,∵AE⊂平面PAD,∴CD⊥AE,又CD∩PD=D,∴AE⊥平面PCD,∴MN⊥平面PCD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)13.【解答】(1)证明:取AB的中点F,连接CF,A1F,∵A1A⊥平面ABC,CF⊂平面ABC,∴所以A1A⊥CF.∵△ABC为正三角形,F为AB的中点,∴BA⊥CF,又∵AA1,AB⊂平面AA1B1B,AA1∩AB=A,∴CF⊥平面AA1B1B,又∵AD⊂平面AA1B1B,所以CF⊥AD,正方形AA1B1B中,∵Rt△A1AF≌Rt△ABD,∴∠DAB=∠FA1A,又∵∠AFA1+∠FA1A=90°,∴∵∠AFA1+∠DAB=90°,,故AD⊥A1F,又∵CF∩A1F=F,CF,A1F⊂平面A1FC,∴AD⊥平面A1FC,又∵A1C⊂平面A1FC,∴A1C⊥AD.(2)取AA1中点E,连接DE,则线段DE为点P的运动轨迹.理由如下:∵DE∥AB,DE⊄平面ABC,AB⊂平面ABC,∴ED∥平面ABC,∴P到平面ABC的距离为.所以V==.14.【解答】证明:(Ⅰ)过点A1在平面ABB1A1内作BB1的垂线,垂足为O,连结C1O,∵A1C1⊥B1B,A1O⊥B1B,A1C1∩A1O=A1,∴B1B⊥平面A1OC1,∵OC1⊂平面A1OC1,∴B1B⊥OC1,由题可知A1B1=A1C1=B1C1=2,在B△A1OB1中,∵A1O⊥OB1,∠A1B1B=45°,A1B1=2,∴OA1=OB1=2,在△OB1C1中,∵C1O⊥OB1,B1C1=2,OB1=2,∴OC1=2,∴=A1C12,∴OC1⊥OA1,∵OA1∩OB1=O,∵OC1⊂平面BCC1B1,∴平面BCC1B1⊥平面ABB1A1.解:(Ⅱ)由(Ⅰ)知OC1、OA1、OB1两两垂直,以O为坐标原点,OA1为x轴,OB1为y轴,OC1为z轴,建立空间直角坐标系,∵AB=2,BB1=4,OC1=2,OA1=2,OB1=2,∴A1(2,0,0),B1(0,2,0),C1(0,0,2),B(0,﹣2,0),A(2,﹣4,0),C(0,﹣4,2),=(2,﹣2,0),=(0,﹣2,2),=(﹣2,0,2),=(0,4,0),设=(x,y,z)是平面ABC的法向量,则,取x=1,得=(1,1,1),设=(x,y,z)是平面A1AC的法向量,则,取x=1,得=(1,0,1),∴cos<>==.∴二面角B﹣AC﹣A1的余弦值为.15.【解答】解:解法一:依条件可知AB、AC,AA1两两垂直,如图,以点A为原点建立空间直角坐标系A﹣xyz.根据条件容易求出如下各点坐标:A(0,0,0),B(0,2,0),C(﹣1,0,0),A1(0,0,2),B1(0,2,2),C1(﹣1,0,2),M(0,1,2),(I)证明:∵是平面ACCA1的一个法向量,且,所以又∵MN⊄平面ACC1A1,∴MN∥平面ACC1A1(II)设=(x,y,z)是平面AMN的法向量,因为,由得解得平面AMN的一个法向量=(4,2,﹣1)由已知,平面ABC的一个法向量为=(0,0,1)∴二面角M﹣AN﹣B的余弦值是解法二:(I)证明:设AC的中点为D,连接DN,A1D∵D,N分别是AC,BC的中点,∴又∵,∴,∴四边形A 1DNM是平行四边形∴A1D∥MN∵A1D⊂平面ACC1A1,MN⊄平面ACC1A1∴MN∥平面ACC1A1(II)如图,设AB的中点为H,连接MH,∴MH∥BB1∵BB1⊥底面ABC,∵BB1⊥AC,BB1⊥AB,∴MH⊥AC,MH⊥AB∴AB∩AC=A∴MH⊥底面ABC在平面ABC内,过点H做HG⊥AN,垂足为G 连接MG,AN⊥HG,AN⊥MH,HG∩MH=H ∴AN⊥平面MHG,则AN⊥MG∴∠MGH是二面角M﹣AN﹣B的平面角∵MH=BB1=2,由△AGH∽△BAC,得所以所以∴二面角M﹣AN﹣B的余弦值是16.【解答】解:(1)∵平面CDE⊥平面BCD,平面ABC⊥平面BCD.∴过E作EQ⊥平面BCD,交CD于Q,过A作AP⊥平面BCD,交BC于P,∴EQ∥AP,过Q作QO∥BC,交BD于O,则直线OQ就是在平面BCD内所求的直线,使得直线OQ上任意一点F与E的连线EF均与平面ABC平行.证明如下:∵EQ∥AP,QO∥BC,EQ∩QO=Q,AP∩BC=P,EQ、QO⊂平面EQO,AP、BC⊂平面ABC,∴平面EQO∥平面ABC,∴直线OQ上任意一点F与E的连线EF均与平面ABC平行.(2)∵△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD,∴AP==2,∴S==2,△ABC点E到平面ABC的距离d===,∴三棱锥E﹣ABC的体积V E===.﹣ABC17.【解答】证明:(1)取BD的中点O,连结CO,PO,因为CD=CB,所以△CBD为等腰三角形,所以BD⊥CO.因为PB=PD,所以△PBD为等腰三角形,所以BD⊥PO.又PO∩CO=O,所以BD⊥平面PCO.因为PC⊂平面PCO,所以PC⊥BD.解:(2)由E为PB中点,连EO,则EO∥PD,又EO⊄平面PAD,所以EO∥平面PAD.由∠ADB=90°,以及BD⊥CO,所以CO∥AD,又CO⊄平面PAD,所以CO∥平面PAD.又CO∩EO=O,所以平面CEO∥平面PAD,而CE⊂平面CEO,所以CE∥平面PAD.18.【解答】解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,∴AA1⊥平面ABCD,AC==2,∴∠A1CA是A1C与底面ABCD所成的角,∵A1C与底面ABCD所成的角为60°,∴∠A1CA=60°,∴AA1=AC•tan60°=2•=2,=AB×BC=2×2=4,∵S正方形ABCD∴四棱锥A1﹣ABCD的体积:V===.(2)∵BD∥B1D1,∴∠A1BD是异面直线A1B与B1D1所成角(或所成角的补角).∵BD=,A1D=A1B==2,∴cos∠A1BD===.∴∠A1BD=arccos.∴异面直线A1B与B1D1所成角是arccos.19.【解答】证明:(Ⅰ)连接BD、AC交于O点,∵PB=PD,∴PO⊥BD,又∵ABCD是菱形,∴BD⊥AC,而AC∩PO=O,∴BD⊥平面PAC,且PC⊂平面PAC,∴BD⊥PC.解:(Ⅱ)由条件可知△ABD≌△PBD,∴AO=PO=,∵PA=,∴PA2=OA2+OP2,∴PO⊥AC,由(Ⅰ)知,BD⊥平面PAC,PO⊂平面PAC,∴PO⊥BD,∴PO⊥平面ABCD,∴平面APC⊥平面ABCD,过E点作EF⊥AC,交AC于F,则EF⊥平面ABCD,∴EF∥PO,∴EF、PO分别是三棱锥E﹣ABC和四棱锥P﹣ABCD的高.又V1=V P﹣ABC﹣V E﹣ABC=,,由=,得4(PO﹣EF)=PO,∴,又由△AEF∽△APO,=,∴=.20.【解答】解:(Ⅰ)由题可知,CM=2t,C1M=2﹣2t,∴V1=S△ECF•CM==,=S•C1M=(2﹣2t)=(1﹣t),V2∴V1•V2=≤•()2=.当且仅当t=1﹣t,即t=时等号成立.所以当t=时,V1•V2最大,最大值为.(Ⅱ)连接A1C1交B1D1于点O,则O为A1C1的中点,∵A1C∥平面B1D1M,平面A1CC1∩平面B1D1M=OM,∴A1C∥OM,∴M为CC1的中点,连接BD,∵E,F为BC、CD的中点,∴EF∥BD,又AC⊥BD,∴AC⊥EF.∵AA1⊥平面ABCD,EF⊂平面ABCD,∴AA1⊥EF,又AA1∩AC=A,∴EF⊥平面A1AC,又A1C⊂平面A1AC,∴EF⊥A1C.同理可得:EM⊥A1C,又EF∩EM=E,∴A1C⊥平面EFM.又A1C∥平面B1D1M,∴平面EFM⊥平面B1D1M.21.【解答】解:(Ⅰ)∵DA=AB=BC=a,∠ABE=∠BAF=90°,∴四边形ABCD是正方形,∴CD⊥AD,CD⊥DP,又AD∩DP=D,∴CD⊥平面ADP.∵AD2+DP2=AP2,∴AD⊥DP,又CD⊥AD,CD∩DP=D,∴AD⊥平面CDPQ,又AD∥BC,∴BC⊥平面CDPQ.∴V B﹣CDPQ==(a+2a)×a×a=a3,V B﹣ADP===.∴多面体ABCDPQ的体积为V B﹣CDPQ +V B﹣ADP=.(Ⅱ)取BP的中点G,连接GQ、DG、DQ,在△ABP中,BP==2a,∴BG=BP=a,在△BCQ中,BQ==a,PQ==a,∴PQ=BQ,∴GQ⊥BP.∴QG==a,又BD==2a=DP,∴DG⊥BP,∴DG==a,又DQ==a,∴DQ2=QG2+DG2,即QG⊥DG.又BP∩DG=G,∴QG⊥平面PBD,又QG⊂平面PBQ,∴平面PBQ⊥平面PBD.22.【解答】(1)证明:连接BD,因为底面ABCD是菱形,∠BAD=60°,所以△ABD 是正三角形,所以AD⊥BO,因为O为AD的中点,PA=PD,所以AD⊥PO,且PO∩BO=O,所以AD⊥平面POB,又AD⊂平面PAD,所以平面POB⊥平面PAD;(2)解:因为是正三角形,所以OB=3,在Rt△PAO中,,所以PO=2,又,所以OB2+PO2=PB2,所以∠POB=90°,即PO⊥OB,又AD⊥PO,且OB∩AD=O,所以PO⊥平面ABCD,因为,所以四棱锥P﹣ABCD的体积为.23.【解答】(I)证明:∵PA=PD,Q是AD的中点,∴PQ⊥AD,又平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,PQ⊂平面PAD,∴PQ⊥平面ABCD,∴BC⊥PQ,∵BC=AD=DQ,BC∥AD,∠ADC=90°,∴四边形BCDQ是矩形,∴BC⊥BQ,又PQ∩BQ=Q,∴BC⊥平面PBQ,又BC⊂平面PBC,∴平面PBC⊥平面PQB.(II)过M作MN∥CD交PD与N,则平面BMQ∩平面PCD=MN,∵平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,BQ⊥AD,BQ⊂平面PAD,∴BQ⊥平面PAD,又BQ∥CD∥MN,∴MN⊥平面PAD,∴MN⊥NQ,MN⊥PD,∴∠DNQ为平面BMQ与平面PCD所成角,即∠DNQ=60°,∵PD=PA=2,AD=2BC=2,∴∠PDO=60°,∴△DNQ是等比三角形,∴DN=DQ=1,即N是PD的中点,∴M是PC的中点,∵PD=2,CD=,∴PC=,∴PM==.24.【解答】(Ⅰ)证明:在△ABC中,∵,AB=2,BC=1,∴AC2+BC2=AB2.∴AC⊥BC.又∵AC⊥FB,BF∩CB=B,∴AC⊥平面FBC.(Ⅱ)解:∵AC⊥平面FBC,∴AC⊥FC.∵CD⊥FC,∴FC⊥平面ABCD.在Rt△ACB中,,∴∠CAB=30°,∴在等腰梯形ABCD中可得∠ABD=∠CDB=∠CBD=30°,∴CB=DC=1,∴FC=1.∴△BCD的面积S==.∴四面体FBCD的体积为:.(Ⅲ)解:线段AC上存在点M,且M为AC中点时,有EA∥平面FDM,证明如下:连接CE与DF交于点N,连接MN.由CDEF为正方形,得N为CE中点.∴EA∥MN.∵MN⊂平面FDM,EA⊄平面FDM,∴EA∥平面FDM.所以线段AC上存在点M,使得EA∥平面FDM成立.25.【解答】(Ⅰ)证明:∵PQ∥DC,PQ=PD=DC=1,∴四边形PQCD是平行四边形,∴PD∥CQ,∵PD⊄平面QBC,CQ⊂平面QBC,∴PD∥平面QBC.(Ⅱ)证明:∵∠APD=90°,∴PD⊥PA,∵平面PAD⊥平面ABCD,△PAD是直角三角形,四边形ABCD是直角梯形,AB ∥DC,AB⊥AD,∴AB⊥平面PAD,∴AB⊥PD,∵PD∥QC,∴PA⊥QC,AB⊥QC,∵PA∩AB=A,∴QC⊥平面PABQ.(Ⅲ)解:存在.由(Ⅱ)可知QC⊥平面PABQ;作AM⊥BQ,交BQ于M,可知AM⊥CQ,BQ∩CQ=Q,所以AM⊥平面BCQ,BC⊂平面BCQ,∴AM⊥BC.QB=,cosB=,BM=2=,QM==.26.【解答】解:(1)证明:在图1中,由题意知AE=1,AD=BE=2,在△ADE中,由余弦定理知:DE2=AE2+AD2﹣AE×AD=12+22﹣1×2=3,所以:AE2+DE2=AD2,所以:DE⊥AE,DE⊥BE,在△ADE沿直线DE折起的过程中,DE与AE,BE的垂直关系不变,故在图2中有DE⊥A'E,DE⊥BE,又A'E∩BE=E,所以DE⊥平面A'EB,所以DE⊥A'B.(2)如图2,因为平面A'DE⊥底面BCDE,由(1)知DE⊥A'E,且平面A'DE∩底面BCDE=DE,所以A'E⊥底面BCDE,所以A'E为三棱锥A'﹣EDC的高,且A'E=AE=1,又因为在图1中,S△ECD=S△ABC﹣S△AED﹣S△BEC=,所以:,故三棱锥D﹣A'CE的体积为.27.【解答】(1)证明:∵PA⊥AC,PA=2,AC=2,∴,又∵,BC=2,∴PB2+BC2=PC2,则BC⊥PB.又∵AB⊥BC,∴BC⊥平面PAB,则BC⊥PA,又PA⊥AC,AC∩BC=C,∴PA⊥平面ABC.又∵BD⊂平面PAC,∴PA⊥BD,在Rt△ABC中,由BC=2,AC=2,可得AB=2,又∵D为AC的中点,∴BD⊥AC,而PA∩AC=A,∴BD⊥平面PAC,则平面BDE⊥平面PAC;=V E﹣PBC=V B﹣APCE﹣V P﹣ABC.(2)解:V P﹣EBC由已知,DE∥AP,∴.∴=,.∴.28.【解答】解:(Ⅰ)证明:∵AD=2AB,E为线段AD的中点,∴AB=AE,取BE中点O,连接PO,则PO⊥BE,又平面PEB⊥平面BCDE,平面PEB∩平面BCDE=BE,∴PO⊥平面BCDE,则PO⊥EC,在矩形ABCD中,∴AD=2AB,E为AD的中点,∴BE⊥EC,则EC⊥平面PBE,∴EC⊥PB,又PB⊥PE,且PE∩EC=E,∴PB⊥平面PEC.(Ⅱ)以OB所在直线为x轴,以平行于EC所在直线为y轴,以OP所在直线为z轴建立空间直角坐标系,∵PB=PE=2,则B(,0,0),E(﹣,0,0),P(0,0,),D(﹣2,,0),C(﹣,2,0),∴=(﹣,0,﹣),=(﹣,2,﹣),∴cos∠EPC===,可得:sin∠EPC==,可得:S△EPC=||•||•sin∠EPC=2×2×=2,=V D﹣EPC,设三棱锥D﹣PEC的高为h,则可得:S△ECD•OP=S△EPC•h,可∵V P﹣ECD得:=2×h,∴解得:三棱锥D﹣PEC的高h=1.29.【解答】解:(Ⅰ)在Rt△BEB中,BE=1,AB=,所以∠BAE=30°……(1分)同理∠BDA=30°,从而∠AOD=90°,AF⊥BD……(2分)又因为AD∥EC,AD=EC,所以ADCE是平行四边形,∠CDO=∠AOD=90°,CD⊥DO……(3分)因为平面ABE⊥平面ADE,平面ABE∩平面ADE=AE,BO⊥AE,所以BO⊥平面ADE……(4分)又CD⊂平面ADE,所以BO⊥CD,BO∩DO=O,BO⊂平面BOD,OD平面BOD.所以CD⊥平面BOD……(6分)(Ⅱ)由(Ⅰ)可知,四边形AECD的面积S=CD•OD=3……(7分)连接AC,则△ACD的面积S1=,三棱锥B=ACD的体积V=……(9分)△BCD的面积S2=……(10分)设A到平面BCD的距离为h,则h=,h=……(11分)直线AB与面BCD所成角的正弦值为,余弦值为……(12分)30.【解答】证明:(1)取AB中点为R,连接PR,B1R∵点P是CD中点,Q是A1B1的中点,∴四边形AQB1R,PRB1C1都为平行四边形,∴AQ∥B1R,B1R∥PC1,∴AQ∥PC1.∵AQ⊄平面PBC1,PC1⊂平面PBC1,∴AQ∥平面PBC1.(Ⅱ)∵四棱柱ABCD﹣A1B1C1D1为长方体,BC=CC1,∴B1C⊥BC1.∵A1B1⊥平面BB1C1C,∴A1B1⊥BC1.∵A1B1∩B1C=B1,A1B1⊂平面A1B1C,B1C⊂平面A1B1C,∴BC1⊥平面A1B1C,BC1⊂平面PBC1,∴平面A1B1C⊥平面PBC1.31.【解答】(1)证明:由AD=6,DM=4可得AM=2,则BC=AM,又AD∥BC,则四边形ABCM是平行四边形,则CM∥AB,∵AD⊥AB,∴CM⊥AD.又PA⊥平面ABCD,CM⊂平面ABCD,∴PA⊥CM,∵PA∩AD=A,PA,AD⊂平面PAD,∴CM⊥平面PAD,又CM⊂平面PCM,∴平面PCM⊥平面PAD.(2)解:∵PA⊥平面ABCD,∴PA⊥AB,∵∠APB=45°,∴AP=AB=6.∵,∴.∴四棱锥P﹣ABCM的表面积为.32.【解答】(本小题满分12分)解:(1)直线DF与平面BCE'相交,理由如下:因为E'⊄平面ABCD,所以D⊄平面BCE'.若DF∥平面BCE',设平面DCE'∩平面BCE'=CM,则DF∥CM.CM与CB不重合.又因为AD∥BC,所以平面ADE'∥平面BCE',矛盾.所以直线DF与平面BCE'相交.…………………………(4分)证明:(2)取AB的中点O,连接E'O,BD,由等腰梯形ADCE中,AD∥EC,EC=2AD=2AE=4,,所以E'O⊥AB,DO⊥AB,…………………………(6分)分别以BA,OD所在的直线为x轴,y轴,过O垂直于平面ABCD的直线为z轴建立如图所示的空间直角坐标系,设二面角E'﹣AB﹣D的大小为α.则.过E'作E'G⊥OD于点G.因为E'O⊥AB,DO⊥AB,所以AO⊥平面E'OD,∠E'OD=α.所以E'G⊥AO.所以E'G⊥平面ABCD.…………………………(8分)所以.设平面E'AB的法向量为n=(x,y,z),则,即令y=1,得平面E'AB的一个法向量为n=(0,1,﹣cotα).…………………………(10分)同理可求平面E'DC的一个法向量为.所以.解得:.所以二面角E'﹣AB﹣D的大小为,即平面ABE'⊥平面ABCD.…………………………(12分)33.【解答】证明:(I)因为AD=4,AB=2,,所以AB2+BD2=AD2,AB⊥BD,且∠ADB=30°.又△BCD是等边三角形,所以∠ADC=90°,即CD⊥AD.…(3分)因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD.所以CD⊥PA.……(6分)解:(II)因为平面BEF∥平面PCD,所以BF∥CD,EF∥PD,且BF⊥AD.……(8分)又在直角三角形ABD中,DF=,所以AE=AF=1.所以.……(10分)由(I)知CD⊥平面PAD,故四棱锥C﹣PEFD的体积.…(12分)34.【解答】解:(1)四边形ABCD是平行四边形,AD=2,∴BC=AD=2,又AB=AC=2,∴AB2+AC2=BC2,∴AC⊥AB,又PB⊥AC,且AB∩PB=B,∴AC⊥平面PAB,∵AC⊂平面PAC,∴平面PAB⊥平面PAC;(2)由(1)知AC⊥AB,AC⊥平面PAB,分别以AB、AC所在直线为x轴、y轴,平面PAB内过点A且与直线AB垂直的直线为z轴,建立空间直角坐标系A﹣xyz,如图所示;则A(0,0,0),B(2,0,0),C(0,2,0),=(0,2,0),=(﹣2,2,0);由∠PBA=45°,PB=,可得P(1,0,1),∴=(1,0,1),=(﹣1,0,1);假设棱PA上存在点E,使得直线CE与平面PBC所成角的正弦值为,设=λ(0<λ<1),则=λ=(λ,0,λ),=﹣=(λ,﹣2,λ),设平面PBC的法向量为=(x,y,z),则,即,令z=1,可得x=y=1,∴平面PBC的一个法向量为=(1,1,1),设直线CE与平面PBC所成的角为θ,则sinθ=|cos<,>|===,解得λ=或λ=(不合题意,舍去),∴存在=,使得直线CE与平面PBC所成角的正弦值为.35.【解答】解:(1)以A为坐标原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1),∵E、F、G分别为BC、PD、PC的中点,∴,F(0,1,),G(),∴=(﹣1,),=(),设EF与DG所成角为θ,则cosθ==.∴EF与DG所成角的余弦值为.(2)设平面PBC的法向量为=(x,y,z),∵=(0,1,0),=(1,0,﹣1),∴,取x=1,得=(1,0,1),M为EF上一点,N为DG上一点,若存在MN,使得MN⊥平面PBC,则∥,设M(),N(x2,y2,z2),则,①∵点M,N分别是线段EF与DG上的点,∴,∵=(),=(x2,y2﹣2,z2),∴,且,②把②代入①,得,解得,∴M(),N().36.【解答】解:(1)∵D,E分别是AC,AB的中点,∴DE∥BC,∵四边形BB1C1C为矩形,∴BC⊥CC1.∵AC=BC=4,AB=4,∴AC2+BC2=AB2,∴BC⊥AC,又AC∩CC1=C,∴BC⊥平面AA1C1C,∴DE⊥平面AA1C1C.。

高考数学多面体与旋转体选择题

高考数学多面体与旋转体选择题

高考数学多面体与旋转体选择题1. 已知三棱锥S-ABC的底面ABC是边长为a的正三角形,高SD=2,点E、F、G分别是棱SA、SB、SC的中点,且EF=4,求三棱锥S-ABC 的体积。

2. 设四棱锥P-ABCD的底面ABCD是边长为a的正方形,侧棱PD=3,点E、F、G、H分别是棱PA、PB、PC、PD的中点,且EF=4,求四棱锥P-ABCD的体积。

3. 已知圆锥的底面半径为r,高为h,求圆锥的全面积。

4. 已知圆台的上下底面半径分别为r1和r2,高为h,求圆台的全面积。

5. 已知球体的直径为d,求球体的表面积。

6. 已知球的半径为r,求球的体积。

7. 已知球体的半径为r,求球体的表面积和体积。

8. 已知圆柱的底面半径为r,高为h,求圆柱的全面积。

9. 已知圆柱的底面半径为r,高为h,求圆柱的体积。

10. 已知圆柱的底面半径为r,高为h,求圆柱的表面积和体积。

11. 已知圆锥的底面半径为r,高为h,求圆锥的表面积。

12. 已知圆锥的底面半径为r,高为h,求圆锥的体积。

13. 已知圆锥的底面半径为r,高为h,求圆锥的表面积和体积。

14. 已知圆台的上下底面半径分别为r1和r2,高为h,求圆台的表面积。

15. 已知圆台的上下底面半径分别为r1和r2,高为h,求圆台的体积。

16. 已知圆台的上下底面半径分别为r1和r2,高为h,求圆台的表面积和体积。

17. 已知球的半径为r,求球的表面积和体积。

19. 已知球的半径为r,求球的表面积和体积。

20. 已知球的半径为r,求球的表面积和体积。

21. 已知球的半径为r,求球的表面积和体积。

22. 已知球的半径为r,求球的表面积和体积。

23. 已知球的半径为r,求球的表面积和体积。

24. 已知球的半径为r,求球的表面积和体积。

25. 已知球的半径为r,求球的表面积和体积。

26. 已知球的半径为r,求球的表面积和体积。

27. 已知球的半径为r,求球的表面积和体积。

2018年高考真题解答题专项训练:立体几何(文科)学生版

2018年高考真题解答题专项训练:立体几何(文科)学生版

2018年高考真题解答题专项训练:立体几何(文科)学生版1.(2018年浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.2.(2018年天津卷)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=BAD=90°.(((求证:AD(BC((((求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.3.(2018年北京卷)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面P AD,平面ABCD,P A,PD,P A=PD,E,F分别为AD,PB的中点.,,)求证:PE,BC,,,)求证:平面P AB,平面PCD,,,)求证:EF,平面PCD.4.(2018年新课标1卷)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA,(1)证明:平面ACD⊥平面ABC,DA,求三棱锥Q−ABP的(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=23体积.5.(2018年新课标3卷)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD 上异于C,D的点,(1)证明:平面AMD⊥平面BMC,(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由,6.(2018年新课标2卷)如图,在三棱锥P−ABC中,AB=BC=2√2,PA=PB=PC= AC=4,O为AC的中点.(1)证明:PO⊥平面ABC,(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.参考答案1.(Ⅰ)见解析;(Ⅱ)√3913.【来源】2018年全国普通高等学校招生统一考试数学(浙江卷)【解析】分析:方法一:(Ⅰ)通过计算,根据勾股定理得AB 1⊥A 1B 1,AB 1⊥B 1C 1,再根据线面垂直的判定定理得结论,(Ⅱ,找出直线AC 1与平面ABB 1所成的角,再在直角三角形中求解.方法二:(Ⅰ)根据条件建立空间直角坐标系,写出各点的坐标,根据向量之积为0得出AB 1⊥A 1B 1,AB 1⊥A 1C 1,再根据线面垂直的判定定理得结论,(Ⅱ)根据方程组解出平面ABB 1的一个法向量,然后利用AC 1⃑⃑⃑⃑⃑⃑⃑ 与平面ABB 1法向量的夹角的余弦公式及线面角与向量夹角的互余关系求解. 详解:方法一:(Ⅰ)由AB =2,AA 1=4,BB 1=2,AA 1⊥AB,BB 1⊥AB 得AB 1=A 1B 1=2√2,所以A 1B 12+AB 12=AA 12.故AB 1⊥A 1B 1.由BC =2,BB 1=2,CC 1=1, BB 1⊥BC,CC 1⊥BC 得B 1C 1=√5, 由AB =BC =2,∠ABC =120°得AC =2√3,由CC 1⊥AC ,得AC 1=√13,所以AB 12+B 1C 12=AC 12,故AB 1⊥B 1C 1.因此AB 1⊥平面A 1B 1C 1.,Ⅱ)如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D ,连结AD .由AB 1⊥平面A 1B 1C 1得平面A 1B 1C 1⊥平面ABB 1, 由C 1D ⊥A 1B 1得C 1D ⊥平面ABB 1,所以∠C 1AD 是AC 1与平面ABB 1所成的角.学科.网由B 1C 1=√5,A 1B 1=2√2,A 1C 1=√21得cos∠C 1A 1B 1=√6√7sin∠C 1A 1B 1=√7,所以C 1D =√3,故sin∠C 1AD =C 1D AC 1=√3913. 因此,直线AC 1与平面ABB 1所成的角的正弦值是√3913. 方法二:,Ⅰ)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz .由题意知各点坐标如下:A(0,−√3,0),B(1,0,0),A 1(0,−√3,4),B 1(1,0,2),C 1(0,√3,1),因此AB 1⃑⃑⃑⃑⃑⃑⃑ =(1,√3,2),A 1B 1⃑⃑⃑⃑⃑⃑⃑⃑⃑ =(1,√3,−2),A 1C 1⃑⃑⃑⃑⃑⃑⃑⃑⃑ =(0,2√3,−3), 由AB 1⃑⃑⃑⃑⃑⃑⃑ ⋅A 1B 1⃑⃑⃑⃑⃑⃑⃑⃑⃑ =0得AB 1⊥A 1B 1. 由AB 1⃑⃑⃑⃑⃑⃑⃑ ⋅A 1C 1⃑⃑⃑⃑⃑⃑⃑⃑⃑ =0得AB 1⊥A 1C 1. 所以AB 1⊥平面A 1B 1C 1.(Ⅱ)设直线AC 1与平面ABB 1所成的角为θ.由(Ⅰ)可知AC 1⃑⃑⃑⃑⃑⃑⃑ =(0,2√3,1),AB ⃑⃑⃑⃑⃑ =(1,√3,0),BB 1⃑⃑⃑⃑⃑⃑⃑ =(0,0,2), 设平面ABB 1的法向量n =(x,y,z).由{n ⋅AB ⃑⃑⃑⃑⃑ =0,n ⋅BB 1⃑⃑⃑⃑⃑⃑⃑ =0,即{x +√3y =0,2z =0, 可取n =(−√3,1,0). 所以sinθ=|cos⟨AC 1⃑⃑⃑⃑⃑⃑⃑ ,n⟩|=|AC 1⃑⃑⃑⃑⃑⃑⃑⃑⋅n||AC 1⃑⃑⃑⃑⃑⃑⃑⃑ |⋅|n|=√3913. 因此,直线AC 1与平面ABB 1所成的角的正弦值是√3913.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.2.(Ⅰ)证明见解析;(Ⅱ)26;(Ⅲ)4. 【来源】2018年全国普通高等学校招生统一考试文科数学(天津卷) 【解析】分析:(Ⅰ(由面面垂直的性质定理可得AD ⊥平面ABC (则AD ⊥BC ((Ⅱ)取棱AC 的中点N ,连接MN ,ND .由几何关系可知∠DMN (或其补角)为异面直线BC 与MD所成的角.计算可得1226MNcos DMN DM ∠==.则异面直线BC 与MD 所成角(Ⅲ)连接CM .由题意可知CM ⊥平面ABD .则∠CDM 为直线CD 与平面ABD 所成的角.计算可得4CM sin CDM CD ∠==.即直线CD 与平面ABD所成角的正弦值为4. 详解:(Ⅰ)证明:由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(Ⅱ)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DM因为AD ⊥平面ABC ,故AD ⊥AC . 在Rt △DAN 中,AN =1,故DN.在等腰三角形DMN 中,MN =1,可得12cos MNDMN DM ∠==所以,异面直线BC 与MD所成角的余弦值为26. (Ⅲ)连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM又因为平面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,∠CDM为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD .在Rt △CMD 中, sin CM CDM CD ∠==所以,直线CD 与平面ABD 所成角的正弦值为4. 点睛:本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力. 3.,Ⅰ,见解析 ,Ⅱ,见解析 ,Ⅲ,见解析【来源】2018年全国普通高等学校招生统一考试文科数学(北京卷)【解析】分析:(1)欲证PE ⊥BC ,只需证明PE ⊥AD 即可;(2)先证PD ⊥平面PAB ,再证平面P AB ,平面PCD ;(3)取PC 中点G ,连接FG,DG ,证明EF//DG ,则EF//平面PCD . 详解:(Ⅰ),PA =PD ,且E 为AD 的中点,∴PE ⊥AD . ∵底面ABCD 为矩形,∴BC ∥AD , ,PE ⊥BC .(Ⅱ)∵底面ABCD 为矩形,∴AB ⊥AD . ,平面PAD ⊥平面ABCD ,,AB ⊥平面PAD . ,AB ⊥PD .又PA ⊥PD ,,PD ⊥平面PAB ,,平面PAB ⊥平面PCD . (Ⅲ)如图,取PC 中点G ,连接FG,GD .BC.,F,G分别为PB和PC的中点,∴FG∥BC,且FG=12∵四边形ABCD为矩形,且E为AD的中点,BC,,ED∥BC,DE=12,ED∥FG,且ED=FG,∴四边形EFGD为平行四边形,,EF∥GD.又EF⊄平面PCD,GD⊂平面PCD,,EF∥平面PCD.点睛,证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1,线面平行的性质定理,,2,三角形中位线法,,3,平行四边形法. 证明线线垂直的常用方法,,1)等腰三角形三线合一;(2,勾股定理逆定理;(3,线面垂直的性质定理;,4,菱形对角线互相垂直.4.(1)见解析.(2)1.【来源】2018年全国普通高等学校招生统一考试文科数学(新课标I卷)【解析】分析:(1)首先根据题的条件,可以得到∠BAC=90,即BA⊥AC,再结合已知条件BA,AD,利用线面垂直的判定定理证得AB⊥平面ACD,又因为AB⊂平面ABC,根据面面垂直的判定定理,证得平面ACD⊥平面ABC,(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.详解:(1)由已知可得,∠BAC=90°,BA⊥AC,又BA,AD,且AC∩AD=A,所以AB⊥平面ACD,又AB⊂平面ABC,所以平面ACD⊥平面ABC,,2)由已知可得,DC=CM=AB=3,DA=3√2,又BP=DQ=23DA,所以BP=2√2,作QE,AC,垂足为E,则QE=∥13DC,由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE=1,因此,三棱锥Q−ABP的体积为V Q−ABP=13×QE×S△ABP=13×1×12×3×2√2sin45°=1,点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可. 5.(1)证明见解析(2)存在,理由见解析【来源】2018年全国卷Ⅲ文数高考试题文档版【解析】分析:(1)先证AD⊥CM,再证CM⊥MD,进而完成证明。

立体几何测试题(多面体与旋转体)

立体几何测试题(多面体与旋转体)

立体几何测试题(多面体与旋转体)1、一个四棱柱是长方体的充要条件是( )A 、底面是矩形B 、侧面是正方形C 、侧面和底面都是矩形D 、侧面和底面都是正方形 2、长方体共顶点的三个面的面积分别是22cm ,62cm 和92cm ,那么这个长方体的体积为( )A 、633cmB 、363cmC 、73cmD 、83cm3、对角线长为d 的正方体的棱长为( )A 、d 31 B 、d 3 C 、d )13(- D 、d 33 4、长方体的12条棱的总长度为56m ,表面积为1122m ,那么长方体的对角线长为( )A 、143mB 、67mC 、212mD 、9m 5、如果直棱柱的底面是菱形,它的高是9cm ,它的两条对角线分别与底面成o 60角和o 45角,那么这个棱柱的体积是( ) A 、323243cm B 、33243cm C 、323729cm D 、33729cm 6、在斜三棱柱中,各棱长都是a ,且有一组共顶点的三条棱两两夹角都等于60°,那么这个棱柱的全面积是( ) A 、2233a B 、232a C 、2)13(a + D 、2)1233(a + 7、已知正六棱柱底面的边长和高都等于a ,那么最大对角截面的面积是( )A 、22aB 、23aC 、232aD 、223a8、三棱锥的三条侧棱两两互相垂直,各侧棱与底面所成的角彼此相等,那么顶点在底面的射影是底面三角形的( )A 、垂心但不是内心B 、内心但不是垂心C 、外心但不是重心D 、垂心又是重心9、三棱锥P-ABC 的侧棱两两互相垂直,且PA=1,PB=3,PC=6,那么∠ABC=( )A 、o 30B 、o 60C 、o 45D 、o 7510、如果正三棱锥的侧棱长为2a ,底面周长为9a ,那么这个棱锥的高为( ) A 、 a B 、2a C 、a 23 D 、a 2311、已知三棱锥各侧面与底面所成二面角彼此相等,那么顶点在底面上的射影,一定是底面三角形的( ) A 、 内心 B 、外心 C 、垂心 D 、重心 12、一个棱锥被平行于底面的平面截成两部分,截面的面积恰好是棱锥底面面积的一半,那么截得的两部分的体积比为( ) A 、21B 、41 C 、22 D 、42 13、正四棱锥底面边长为a ,侧棱长也是a ,那么它的体积是( )A 、363a B 、362a C 、333a D 、332a 14、沿长方体的三个面的对角线截去一个三棱锥,剩下的几何体的体积与原长方体体积之比是( )A 、1∶6B 、2∶3C 、1∶3D 、5∶6 15、球面面积膨胀为原来的3倍,那么体积变为原来的( ) A 、9倍 B 、3倍 C 、33倍 D 、27倍 16、一个正方体的顶点都在球面上,它的棱长为4cm ,那么这个球的体积是( )A 、64cm 3B 、π332cm 3C 、π48cm 3D 、π3256cm 3 17、如果球的半径为41cm ,一个球的截面与球心的距离为9cm ,那么该棱截面面积是( )A 、π1600cm 2B 、π6724 2 cm 2C 、π81cm 2D 、π324cm 2 18、一圆柱的高为8cm ,底面半径为5cm ,一平面截该圆柱得到的截面是正方形,则这个截面与轴的距离是( ) A 、4cm B 、3cm C 、2cm D 、1cm 19、已知圆柱的轴截面相邻边长之比是2∶3,侧面积是π24cm 2,则圆柱的体积是( )A 、π24cm 3B 、π36cm 3C 、π24cm 3或π36cm 3D 、π54cm 320、将半径为r 的圆形薄铁板沿三条半径裁成全等的三个扇形,做成三个圆锥筒(无底),则圆锥筒的高(不计接头)是( ) A 、r 322 B 、r 223 C 、r 332 D 、r 22 21、圆锥的侧面母线长为3,侧面展开所成的扇形的中心角等于o 60,那么这个圆锥的底面积是( )A 、π4B 、π2C 、π41D 、π21 22、将一个半圆围成一个圆锥面,则该圆锥两条母线的夹角之最大值是( )A 、o 120B 、o 90C 、o 60D 、o 45 23、体积为8的正方体的外接球的体积为( ) A 、π34 B 、π332 C 、π362 D 、π)13(4+ 24、下列命题中①底面边长都相等,侧棱也都相等的棱锥是正棱锥;②底面是正多边形,侧面是等腰三角形的棱锥是正棱锥;③底面是正多边形,侧面是全等的等腰三角形的棱锥是正棱锥;④底面边长都相等,侧面是全等的三角形的棱锥是正棱锥;⑤底面是正多边形,顶点的射影是底面的中心的棱锥是正棱锥;⑥侧棱都相等的棱锥是正棱锥;⑦侧面都是等腰三角形的棱锥是正棱锥;⑧侧棱与底面所成的角都相等的棱锥是正棱锥;⑨侧面与底面所成的角都相等的棱锥是正棱锥;⑩斜高都相等的棱锥是正棱锥;正确的是( )A 、①③⑤⑨⑩B 、②④⑤⑥C 、②③⑤⑦⑧D 、③⑤25、下列命题中①有两个面是互相平行的多边形,其余各面是平行四边形的多面体是棱柱;②有两个面是互相平行的多边形,其余各面每相邻两面的公共边互相平行的多面体是棱柱;③有两个面是互相平行的多边形,其余各面每相邻两面的公共边都等长的多面体是棱柱;④有两个面是互相平行的多边形,其余各面每相邻两面所成的二面角大小都相等的多面体是棱柱正确的是( )A 、①②③④B 、②④C 、②D 、②③④26、下列命题中①有一个侧面是矩形的棱柱是直棱柱;②有两个侧面是矩形的棱柱是直棱柱;③有两个相邻的侧面都是矩形的棱柱是直棱柱;④有一个侧面与底面垂直的棱柱是直棱柱;⑤有两个侧面与底面垂直的棱柱是直棱柱;⑥有两个相邻的侧面都与底面垂直的棱柱是直棱柱;正确的是( )A、①②③④B、③⑥C、②⑤⑥D、②③④⑤27、已知边长为3、4、5的直角三角形,分别以它的三条边为轴转一周,所得到的几何体的表面积之比是()A、15∶10∶7B、18∶15∶7C、13∶12∶5D、25∶16∶928、把一个圆心角为120°的扇形卷成一个圆锥的侧面,则此圆锥底面圆的半径与这个圆锥的高之比是()A、1∶4B、2∶2C、2∶3D、2∶429、把一个圆心角为α弧度(0<α<2π)的扇形卷成一个圆锥的侧面,则此圆锥底面圆的半径与这个圆锥的母线长之比是()A、α∶π2B、α∶πC、α∶π2D、α∶π430、已知三棱锥各侧面与底面所成二面角彼此相等,那么顶点在底面上的射影,一定是底面三角形的()A、内心B、外心C、垂心D、重心31、下列命题中①底面的边长都相等,侧面都是矩形的棱柱是正棱柱;②底面的边长都相等,侧面都是全等的矩形的棱柱是正棱柱;③底面是正多边形,侧面都是矩形的棱柱是正棱柱;④底面是正多边形,侧棱都相等的棱柱是正棱柱;⑤底面正多边形,侧棱与底面垂直的棱柱是正棱柱;正确的是()A、①②③④⑤B、②⑤C、③⑤D、③④⑤32、正方体每条棱长都增加2cm,则它的体积就扩大到原来的8倍,那么正方体原来的棱长是()A、1cmB、2cmC、1.5cmD、3cm33、圆柱的轴截面面积为S,则该圆柱的侧面积是()A、SπB、Sπ2C、Sπ21D、Sπ41二、填空题34、如果正方体的对角线长为34cm,则它的体积是____ ___ cm3;35、有两个面是的多边形,其余各面每都的多面体叫棱柱;36、与垂直的棱柱叫做直棱柱;的直棱柱叫正棱柱;37、有一个面是多边形,其余各面是的多面体叫做棱锥;38、正棱锥是指的棱锥;正棱锥斜高是指;39、用一个平行于底面的平面截棱锥,所得的截面与底面,截面面积与底面面积之比等于;40、如果两个锥体的底面积相等,高也相等,那么它们的体积。

多面体与旋转体例题精选

多面体与旋转体例题精选

多面体与旋转体一、棱柱1、 由几个多边形围成的封闭的几何体叫做多面体。

2、 两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的多面体叫做棱柱。

棱柱的互相平行的两个面叫做棱柱的底面,其余各面叫做棱柱的侧面,相邻的两个侧面的公共边叫做棱柱的侧棱,两个底面间的距离叫做棱柱的高。

棱柱的基本性质:(1) 棱柱的侧面都是平行四边形。

(2) 棱柱的两个底面及平行于底面的截面都是全等的多边形。

3、 侧棱与底面不垂直的的棱柱叫做斜棱柱。

侧棱与底面垂直的棱柱叫做直棱柱。

底面是正多边形的直棱柱叫做正棱柱。

性质:(1) 直棱柱侧面都是矩形。

(2) 直棱柱侧棱与高相等。

(3) 正棱柱的侧面都是全等的矩形。

4、 底面是平行四边形的棱柱叫做平行六面体。

底面是矩形的直棱柱是长方体。

长方体的对角线平方等于三边长的平方和。

5、 夹在两个平行平面间的两个几何体,如果被平行于这两个平面的任何平面所截得的两个截面的面积都相等,那么这两个几何体的体积相等。

6、 h V S =⋅棱柱底. 二、棱锥1、有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

棱锥的这个多边形的面叫做底面,其余各个三角形的面叫做侧面。

相邻的两个侧面的公共边叫做棱锥的侧棱。

各个侧面的公共顶点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高。

棱锥的基本性质:如果一个棱锥被平行于底面的一个平面所截,那么: (1) 侧棱和高被这个平面分成比例线段; (2) 截面和底面都是相似多边形;(3) 截面面积与底面面积之比,等于顶点到截面与顶点到底面的距离平方之比。

2、如果一个棱锥的底面是正多边形,且顶点在底面的射影是底面的中心,这个棱锥叫做正棱锥。

正棱锥的性质:(1) 各侧棱相等,各侧面都是全等的等腰三角形。

(2) 正棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形。

正棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。

高考数学多面体与旋转体选择题

高考数学多面体与旋转体选择题

高考数学多面体与旋转体选择题1. 已知一个正四面体的一个顶点是平面ABC外的一点,且该顶点到平面ABC的距离为d,则该正四面体的外接球的半径R为:A. $\sqrt{3}d$B. $2\sqrt{3}d$C. $3d$D. $6d$2. 设E是正方体的一个顶点,F是正方体的一个对角线的中点,那么EF的长度是:A. 正方体棱长的$\sqrt{2}$倍B. 正方体棱长的$\sqrt{3}$倍C. 正方体棱长的2倍D. 正方体棱长的3倍3. 圆锥的母线与底面所成的角是:A. 45°B. 60°C. 90°D. 120°4. 圆台的上下底圆半径分别是3和1,高是4,那么圆台的体积是:A. $12\pi$B. $24\pi$C. $36\pi$D. $48\pi$5. 一个圆柱的侧面积是24π,底面半径是3,那么这个圆柱的高是:A. 2B. 3C. 4D. 66. 圆锥的底面半径是2,母线长是4,那么这个圆锥的体积是:A. $2\pi$B. $4\pi$C. $6\pi$D. $8\pi$7. 一个圆柱的底面半径和高分别是3和4,那么这个圆柱的侧面积是:B. $48\pi$C. $72\pi$D. $96\pi$8. 一个圆台的上下底圆半径分别是2和3,高是4,那么这个圆台的侧面积是:A. $24\pi$B. $48\pi$C. $72\pi$D. $96\pi$9. 一个圆锥的底面半径和高分别是2和4,那么这个圆锥的侧面积是:A. $12\pi$B. $24\pi$C. $36\pi$D. $48\pi$10. 一个圆柱的底面半径是2,高是4,那么这个圆柱的体积是:A. $8\pi$B. $16\pi$D. $32\pi$11. 一个圆台的上下底圆半径分别是2和3,高是4,那么这个圆台的体积是:A. $8\pi$B. $16\pi$C. $24\pi$D. $32\pi$12. 一个圆锥的底面半径和高分别是2和4,那么这个圆锥的体积是:A. $4\pi$B. $8\pi$C. $12\pi$D. $16\pi$13. 一个圆柱的底面半径是3,高是4,那么这个圆柱的侧面积是:A. $24\pi$B. $48\pi$C. $72\pi$14. 一个圆台的上下底圆半径分别是3和4,高是4,那么这个圆台的侧面积是:A. $24\pi$B. $48\pi$C. $72\pi$D. $96\pi$15. 一个圆锥的底面半径和高分别是3和4,那么这个圆锥的侧面积是:A. $12\pi$B. $24\pi$C. $36\pi$D. $48\pi$16. 一个圆柱的底面半径是4,高是4,那么这个圆柱的体积是:A. $16\pi$B. $32\pi$C. $48\pi$D. $64\pi$17. 一个圆台的上下底圆半径分别是4和5,高是4,那么这个圆台的体积是:A. $16\pi$B. $32\pi$C. $48\pi$D. $64\pi$18. 一个圆锥的底面半径和高分别是4和4,那么这个圆锥的体积是:A. $8\pi$B. $16\pi$C. $24\pi$D. $32\pi$19. 一个圆柱的底面半径是5,高是5,那么这个圆柱的侧面积是:A. $40\pi$B. $80\pi$C. $120\pi$D. $160\pi$20. 一个圆台的上下底圆半径分别是5和6,高是5,那么这个圆台的侧面积是:A. $40\pi$B. $80\pi$C. $120\pi$D. $160\pi$21. 一个圆锥的底面半径和高分别是5和5,那么这个圆锥的侧面积是:A. $20\pi$B. $40\pi$C. $60\pi$D. $80\pi$22. 一个圆柱的底面半径是6,高是6,那么这个圆柱的体积是:A. $24\pi$B. $48\pi$C. $72\pi$D. $96\pi$23. 一个圆台的上下底圆半径分别是6和7,高是6,那么这个圆台的体积是:A. $24\pi$C. $72\pi$D. $96\pi$24. 一个圆锥的底面半径和高分别是6和6,那么这个圆锥的体积是:A. $12\pi$B. $24\pi$C. $36\pi$D. $48\pi$25. 一个圆柱的底面半径是7,高是7,那么这个圆柱的侧面积是:A. $40\pi$B. $80\pi$C. $120\pi$D. $160\pi$26. 一个圆台的上下底圆半径分别是7和8,高是7,那么这个圆台的侧面积是:A. $40\pi$B. $80\pi$D. $160\pi$27. 一个圆锥的底面半径和高分别是7和7,那么这个圆锥的侧面积是:A. $20\pi$B. $40\pi$C. $60\pi$D. $80\pi$28. 一个圆柱的底面半径是8,高是8,那么这个圆柱的体积是:A. $24\pi$B. $48\pi$C. $72\pi$D. $96\pi$29. 一个圆台的上下底圆半径分别是8和9,高是8,那么这个圆台的体积是:A. $24\pi$B. $48\pi$C. $72\pi$D. $96\pi$30. 一个圆锥的底面半径和高分别是8和8,那么这个圆锥的体积是:A. $12\pi$B. $24\pi$C. $36\pi$D. $48\pi$31. 一个圆柱的底面半径是9,高是9,那么这个圆柱的侧面积是:A. $40\pi$B. $80\pi$C. $120\pi$D. $160\pi$32. 一个圆台的上下底圆半径分别是9和10,高是9,那么这个圆台的侧面积是:A. $40\pi$B. $80\pi$C. $120\pi$D. $160\pi$33. 一个圆锥的底面半径和高分别是9和9,那么这个圆锥的侧面积是:A. $20\pi$B. $40\pi$C. $60\pi$D. $80\pi$34. 一个圆柱的底面半径是10,高是10,那么这个圆柱的体积是:A. $24\pi$B. $48\pi$C. $72\pi$D. $96\pi$35. 一个圆台的上下底圆半径分别是10和11,高是10,那么这个圆台的体积是:A. $24\pi$B. $48\pi$C. $72\pi$D. $96\pi$36. 一个圆锥的底面半径和高分别是10和10,那么这个圆锥的体积是:A. $12\pi$B. $24\pi$C. $36\pi$D. $48\pi$37. 一个圆柱的底面半径是11,高是11,那么这个圆柱的侧面积是:A. $40\pi$B. $80\pi$C. $120\pi$D. $160\pi$38. 一个圆台的上下底圆半径分别是11和12,高是11,那么这个圆台的侧面积是:A. $40\pi$B. $80\pi$C. $120\pi$D. $160\pi$39. 一个圆锥的底面半径和高分别是11和11,那么这个圆锥的侧面积是:B. $40\pi$C. $60\pi$D. $80\pi$40. 一个圆柱的底面半径是12,高是12,那么这个圆柱的体积是:A. $24\pi$B. $48\pi$C. $72\pi$D. $96\pi$41. 一个圆台的上下底圆半径分别是12和13,高是12,那么这个圆台的体积是:A. $24\pi$B. $48\pi$C. $72\pi$D. $96\pi$42. 一个圆锥的底面半径和高分别是12和12,那么这个圆锥的体积是:A. $12\pi$C. $36\pi$D. $48\pi$43. 一个圆柱的底面半径是13,高是13,那么这个圆柱的侧面积是:A. $40\pi$B. $80\pi$C. $120\pi$D. $160\pi$44. 一个圆台的上下底圆半径分别是13和14,高是13,那么这个圆台的侧面积是:A. $40\pi$B. $80\pi$C. $120\pi$D. $160\pi$45. 一个圆锥的底面半径和高分别是13和13,那么这个圆锥的侧面积是:A. $20\pi$B. $40\pi$D. $80\pi$46. 一个圆柱的底面半径是14,高是14,那么这个圆柱的体积是:A. $24\pi$B. $48\pi$C. $72\pi$D. $96\pi$47. 一个圆台的上下底圆半径分别是14和15,高是14,那么这个圆台的体积是:A. $24\pi$B. $48\pi$C. $72\pi$D. $96\pi$48. 一个圆锥的底面半径和高分别是14和14,那么这个圆锥的体积是:A. $12\pi$B. $24\pi$C. $36\pi$49. 一个圆柱的底面半径是15,高是15,那么这个圆柱的侧面积是:A. $40\pi$B. $80\pi$C. $120\pi$D. $160\pi$50. 一个圆台的上下底圆半径分别是15和16,高是15,那么这个圆台的侧面积是:A. $40\pi$B. $80\pi$C. $120\pi$D. $160\pi$。

2018 年全国各地高考数学试题--立体几何

2018 年全国各地高考数学试题--立体几何

2018 年全国各地高考数学试题及解答分类汇编大全(13立体几何 )一、解答题1.(2018北京文)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E ,F 分别为AD ,PB 的中点.(1)求证:PE BC ⊥;(2)求证:平面PAB ⊥平面PCD ;(3)求证:EF ∥平面PCD .2. (2018北京理)如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点,AB=BC ,AC =1AA =2.(Ⅰ)求证:AC ⊥平面BEF ;(Ⅱ)求二面角B−CD −C 1的余弦值;(Ⅲ)证明:直线FG 与平面BCD 相交.3. (2018上海)已知圆锥的顶点为P ,底面圆心为O ,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO =4,OA ,OB 是底面半径,且∠AOB =90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.4.(2018江苏)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)11AB A B C 平面∥;(2)111ABB A A BC ⊥平面平面.5.(2018江苏)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.6.(2018浙江)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.7.(2018天津文)如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°.(Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD所成角的余弦值;(Ⅲ)求直线CD 与平面ABD 所成角的正弦值.8.(2018天津理) 如图,AD BC ∥且AD =2BC ,AD CD ⊥,EG AD ∥且EG =AD ,CD FG ∥且CD =2FG ,DG ABCD ⊥平面,DA =DC =DG =2.(I )若M 为CF 的中点,N 为EG 的中点,求证:MN CDE ∥平面;(II )求二面角E BC F --的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.9.(2018全国新课标Ⅰ文)如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点, 且23BP DQ DA ==,求三棱锥Q ABP -的体积.10.(2018全国新课标Ⅰ理)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.11.(2018全国新课标Ⅱ文) 如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.12.(2018全国新课标Ⅱ理)如图,在三棱锥P ABC -中,AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.13.(2018全国新课标Ⅲ文)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.14.(2018全国新课标Ⅲ理)如图,边长为2的正方形ABCD所在的平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.Array(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.。

立体几何测试题(多面体与旋转体)

立体几何测试题(多面体与旋转体)

(多面体与旋转体)1、一个四棱柱是长方体的充要条件是()A、底面是矩形B、侧面是正方形C、侧面和底面都是矩形D、侧面和底面都是正方形2、长方体共顶点的三个面的面积分别是2cm2,6cm2和9cm2,那么这个长方体的体积为()A、3j6cm3B、6*3cm3C、7cm3D、8cm33、对角线长为d的正方体的棱长为()A、1dB、忌C、(再€i)dD、申4、长方体的12条棱的总长度为56m,表面积为112m2,那么长方体的对角线长为()A、3、14mB、7、.6mC、2*21mD、9m5、如果直棱柱的底面是菱形,它的高是9cm,它的两条对角线分别与底面成60。

角和45。

角,那么这个棱柱的体积是()A>3v3a2B、2v'3a2C、(、.:3+1)a2D、(冬3+1)a27、已知正六棱柱底面的边长和高都等于a,那么最大对角截面的面积是()A、2a2B、*3a28、三棱锥的三条侧棱两两互相垂直,各侧棱与底面所成的角彼此相等,那么顶点在底面的射影是底面三角形的A 、243打cm3B、243v'3cm3C、步cm32D、729,3cm36、在斜三棱柱中,各棱长都是a,且有一组共顶点的三条棱A、垂心但不是内心B、内心但不是垂心C、外心但不是重心D、垂心又是重心9、三棱锥P-ABC的侧棱两两互相垂直,且PA=1,PB^3,PC=.J6,那么Z ABC=()A、30。

B、60。

C、45。

D、75。

10、如果正三棱锥的侧棱长为2a,底面周长为9a,那么这个棱锥的高为()A、aB、2aC、aD、3a2211、已知三棱锥各侧面与底面所成二面角彼此相等,那么立体几何测试题两两夹角都等于60°,那么这个棱柱的全面积是()B 、 a 3D 、角之最大值是()顶点在底面上的射影,一定是底面三角形的()A 、内心B 、外心C 、垂心D 、重心12、一个棱锥被平行于底面的平面截成两部分,截面的面积恰好是棱锥底面面积的一半,那么截得的两部分的体积比为() 那么该棱截面面积是()A 、1600€cm 2B 、6724€2cm 2C 、81€cm 2D 、324€cm 218、一圆柱的高为8cm ,底面半径为5cm ,一平面截该圆柱得到的截面是正方形,则这个截面与轴的距离是()A 、1B 、1C 、D 、竺242413、正四棱锥底面边长为a ,侧棱长也是a ,那么它的体积是() A 、4cmB 、3cmC 、2cmD 、1cm19、已知圆柱的轴截面相邻边长之比是2:3,侧面积是24€cm 2,则圆柱的体积是()A 、14、沿长方体的三个面的对角线截去一个三棱锥,剩下的几何体的体积与原长方体体积之比是()A 、1:6B 、2:3C 、1:3D 、5:615、球面面积膨胀为原来的3倍,那么体积变为原来的() A 、9倍B 、打倍C 、3•訂倍D 、27倍16、一个正方体的顶点都在球面上,它的棱长为4cm ,那么这 A 、24€cm 3B 、36€cm 3C 、24€cm 3或36€cm 3D 、54€cm 320、将半径为r 的圆形薄铁板沿三条半径裁成全等的三个扇形,做成三个圆锥筒(无底),则圆锥筒的高(不计接头)是()A 、土rB 、土2rC 、兰3rD 、2迈r323'21、圆锥的侧面母线长为3,侧面展开所成的扇形的中心角等于60o ,那么这个圆锥的底面积是()A 、64cm 3B 、32^3兀cm 3C 、48兀cm 3D 、256^3兀cm 317、如果球的半径为41cm ,一个球的截面与球心的距离为9cm,个球的体积是()A 、4€B 、2€ C 、1€ D 、1€22、将一个半圆围成一个圆锥面,则该圆锥两条母线的夹A、120oB、90oC、60oD、45o23、体积为8的正方体的外接球的体积为()A、4^3兀B、2—兀C、2_6兀D、4(忖3+1)兀3324、下列命题中①底面边长都相等,侧棱也都相等的棱锥是正棱锥;②底面是正多边形,侧面是等腰三角形的棱锥是正棱锥;③底面是正多边形,侧面是全等的等腰三角形的棱锥是正棱锥;④底面边长都相等,侧面是全等的三角形的棱锥是正棱锥;⑤底面是正多边形,顶点的射影是底面的中心的棱锥是正棱锥;⑥侧棱都相等的棱锥是正棱锥;⑦侧面都是等腰三角形的棱锥是正棱锥;⑧侧棱与底面所成的角都相等的棱锥是正棱锥;⑨侧面与底面所成的角都相等的棱锥是正棱锥;⑩斜高都相等的棱锥是正棱锥;正确的是()A、①③⑤⑨⑩B、②④⑤⑥C、②③⑤⑦⑧D、③⑤25、下列命题中①有两个面是互相平行的多边形,其余各面是平行四边形的多面体是棱柱;②有两个面是互相平行的多边形,其余各面每相邻两面的公共边互相平行的多面体是棱柱;③有两个面是互相平行的多边形,其余各面每相邻两面的公共边都等长的多面体是棱柱;④有两个面是互相平行的多边形,其余各面每相邻两面所成的二面角大小都相等的多面体是棱柱正确的是()A、①②③④B、②④C、②D、②③④26、下列命题中①有一个侧面是矩形的棱柱是直棱柱;②有两个侧面是矩形的棱柱是直棱柱;③有两个相邻的侧面都是矩形的棱柱是直棱柱;④有一个侧面与底面垂直的棱柱是直棱柱;⑤有两个侧面与底面垂直的棱柱是直棱柱;⑥有两个相邻的侧面都与底面垂直的棱柱是直棱柱;正确的是()A、①②③④B、③⑥C、②⑤⑥D、②③④⑤27、已知边长为3、4、5的直角三角形,分别以它的三条边为轴转一周,所得到的几何体的表面积之比是()A、15:10:7B、18:15:7C、13:12:5D>25:16:928、把一个圆心角为120°的扇形卷成一个圆锥的侧面,则此圆锥底面圆的半径与这个圆锥的高之比是()A、1:4B、迈:2C、迈:込D、迈:429、把一个圆心角为a弧度(0V a V2n)的扇形卷成一个圆锥的侧面,则此圆锥底面圆的半径与这个圆锥的母线长之比是()A、a:2€B、a:兀C、a:\:2兀D、a:4兀30、已知三棱锥各侧面与底面所成二面角彼此相等,那么顶点在底面上的射影,一定是底面三角形的()A、内心B、外心C、垂心D、重心31、下列命题中①底面的边长都相等,侧面都是矩形的棱柱是正棱柱;②底面的边长都相等,侧面都是全等的矩形的棱柱是正棱柱;③底面是正多边形,侧面都是矩形的棱柱是正棱柱;④底面是正多边形,侧棱都相等的棱柱是正棱柱;⑤底面正多边形,侧棱与底面垂直的棱柱是正棱柱;正确的是()A、①②③④⑤B、②⑤C、③⑤D、③④⑤32、正方体每条棱长都增加2cm,则它的体积就扩大到原来的8倍,那么正方体原来的棱长是()A、1cmB、2cmC、1.5cmD、3cm33、圆柱的轴截面面积为S,则该圆柱的侧面积是()A、€SB、2€SC、1€SD、1€S24二、填空题34、如果正方体的对角线长为4j3cm,则它的体积是___cm3;35、有两个面是的多边形,其余各面每都的多面体叫棱柱;36、与_垂直的棱柱叫做直棱柱;的直棱柱叫正棱柱;37、有一个面是多边形,其余各面是的多面体叫做棱锥;38、正棱锥是指的棱锥;正棱锥斜高是扌旨;39、用一个平行于底面的平面截棱锥,所得的截面与底面_, 截面面积与底面面积之比等于;40、如果两个锥体的底面积相等,高也相等,那么它们的体积。

高考数学多面体与旋转体选择题

高考数学多面体与旋转体选择题

高考数学多面体与旋转体选择题1. 下列关于多面体的说法正确的是()A. 棱柱的底面和顶面都是平行四边形B. 棱柱的底面和顶面是矩形时,其侧面都是矩形C. 圆柱的侧面展开图是矩形D. 圆柱的侧面展开图是梯形2. 已知长方体的长、宽、高分别为a、b、c,则该长方体的对角线长度d为()A. $\sqrt{a^2 + b^2 + c^2}$B. $\sqrt{a^2 + b^2 - c^2}$C. $\sqrt{a^2 + b^2 + 2ac}$D. $\sqrt{a^2 + b^2 - 2ac}$3. 已知圆锥的底面半径为r,高为h,母线长为l,则该圆锥的体积V为()A. $\frac{1}{3}\pi r^2h$B. $\frac{1}{3}\pi l^2h$C. $\frac{1}{3}\pi r^2l$D. $\frac{1}{3}\pi l^2r$4. 已知球的半径为R,则该球的表面积S为()A. $4\pi R^2$B. $2\pi R^2$C. $4\pi R^3$D. $2\pi R^3$5. 已知圆台的上下底圆半径分别为r1和r2,高为h,则该圆台的体积V为()A. $\pi (r1^2 + r2^2)h$B. $\pi (r1^2 - r2^2)h$C. $\pi (r1^2 + r2^2)^2$D. $\pi (r1^2 - r2^2)^2$6. 已知圆锥的底面半径为r,母线长为l,则该圆锥的侧面积S 为()A. $\pi rl$B. $\pi l^2r$C. $\pi r^2l$D. $\pi l^2$7. 已知圆台的上下底圆半径分别为r1和r2,高为h,则该圆台的侧面积S为()B. $\pi (r1^2 - r2^2)h$C. $\pi (r1^2 + r2^2)^2$D. $\pi (r1^2 - r2^2)^2$8. 已知球的半径为R,则该球的体积V为()A. $\frac{4}{3}\pi R^3$B. $\frac{1}{3}\pi R^3$C. $\frac{4}{3}\pi R^2$D. $\frac{1}{3}\pi R^2$9. 已知圆锥的底面半径为r,高为h,则该圆锥的侧面积S为()A. $\pi r^2h$B. $\pi rh^2$C. $\pi rl^2$D. $\pi l^2r$10. 已知圆台的上下底圆半径分别为r1和r2,高为h,则该圆台的侧面积S为()A. $\pi (r1^2 + r2^2)h$B. $\pi (r1^2 - r2^2)h$C. $\pi (r1^2 + r2^2)^2$11. 已知球的半径为R,则该球的表面积S为()A. $4\pi R^2$B. $2\pi R^2$C. $4\pi R^3$D. $2\pi R^3$12. 已知圆锥的底面半径为r,高为h,母线长为l,则该圆锥的体积V为()A. $\frac{1}{3}\pi r^2h$B. $\frac{1}{3}\pi l^2h$C. $\frac{1}{3}\pi r^2l$D. $\frac{1}{3}\pi l^2r$13. 已知长方体的长、宽、高分别为a、b、c,则该长方体的对角线长度d为()A. $\sqrt{a^2 + b^2 + c^2}$B. $\sqrt{a^2 + b^2 - c^2}$C. $\sqrt{a^2 + b^2 + 2ac}$D. $\sqrt{a^2 + b^2 - 2ac}$14. 已知圆台的上下底圆半径分别为r1和r2,高为h,则该圆台的体积V为()A. $\pi (r1^2 + r2^2)h$B. $\pi (r1^2 - r2^2)h$C. $\pi (r1^2 + r2^2)^2$D. $\pi (r1^2 - r2^2)^2$15. 已知圆锥的底面半径为r,高为h,则该圆锥的侧面积S为()A. $\pi r^2h$B. $\pi rh^2$C. $\pi rl^2$D. $\pi l^2r$16. 已知圆台的上下底圆半径分别为r1和r2,高为h,则该圆台的侧面积S为()A. $\pi (r1^2 + r2^2)h$B. $\pi (r1^2 - r2^2)h$C. $\pi (r1^2 + r2^2)^2$D. $\pi (r1^2 - r2^2)^2$17. 已知球的半径为R,则该球的体积V为()A. $\frac{4}{3}\pi R^3$B. $\frac{1}{3}\pi R^3$C. $\frac{4}{3}\pi R^2$D. $\frac{1}{3}\pi R^2$18. 已知圆锥的底面半径为r,高为h,母线长为l,则该圆锥的体积V为()A. $\frac{1}{3}\pi r^2h$B. $\frac{1}{3}\pi l^2h$C. $\frac{1}{3}\pi r^2l$D. $\frac{1}{3}\pi l^2r$19. 已知长方体的长、宽、高分别为a、b、c,则该长方体的对角线长度d为()A. $\sqrt{a^2 + b^2 + c^2}$B. $\sqrt{a^2 + b^2 - c^2}$C. $\sqrt{a^2 + b^2 + 2ac}$D. $\sqrt{a^2 + b^2 - 2ac}$20. 已知圆台的上下底圆半径分别为r1和r2,高为h,则该圆台的体积V为()A. $\pi (r1^2 + r2^2)h$B. $\pi (r1^2 - r2^2)h$C. $\pi (r1^2 + r2^2)^2$D. $\pi (r1^2 - r2^2)^2$21. 已知圆锥的底面半径为r,高为h,则该圆锥的侧面积S为()A. $\pi r^2h$B. $\pi rh^2$C. $\pi rl^2$D. $\pi l^2r$22. 已知圆台的上下底圆半径分别为r1和r2,高为h,则该圆台的侧面积S为()A. $\pi (r1^2 + r2^2)h$B. $\pi (r1^2 - r2^2)h$C. $\pi (r1^2 + r2^2)^2$D. $\pi (r1^2 - r2^2)^2$23. 已知球的半径为R,则该球的体积V为()A. $\frac{4}{3}\pi R^3$B. $\frac{1}{3}\pi R^3$C. $\frac{4}{3}\pi R^2$D. $\frac{1}{3}\pi R^2$24. 已知圆锥的底面半径为r,高为h,母线长为l,则该圆锥的体积V为()A. $\frac{1}{3}\pi r^2h$B. $\frac{1}{3}\pi l^2h$C. $\frac{1}{3}\pi r^2l$D. $\frac{1}{3}\pi l^2r$25. 已知长方体的长、宽、高分别为a、b、c,则该长方体的对角线长度d为()A. $\sqrt{a^2 + b^2 + c^2}$B. $\sqrt{a^2 + b^2 - c^2}$C. $\sqrt{a^2 + b^2 + 2ac}$D. $\sqrt{a^2 + b^2 - 2ac}$26. 已知圆台的上下底圆半径分别为r1和r2,高为h,则该圆台的体积V为()A. $\pi (r1^2 + r2^2)h$B. $\pi (r1^2 - r2^2)h$C. $\pi (r1^2 + r2^2)^2$D. $\pi (r1^2 - r2^2)^2$27. 已知圆锥的底面半径为r,高为h,则该圆锥的侧面积S为()A. $\pi r^2h$B. $\pi rh^2$C. $\pi rl^2$D. $\pi l^2r$28. 已知圆台的上下底圆半径分别为r1和r2,高为h,则该圆台的侧面积S为()A. $\pi (r1^2 + r2^2)h$B. $\pi (r1^2 - r2^2)h$C. $\pi (r1^2 + r2^2)^2$D. $\pi (r1^2 - r2^2)^2$29. 已知球的半径为R,则该球的体积V为()A. $\frac{4}{3}\pi R^3$B. $\frac{1}{3}\pi R^3$C. $\frac{4}{3}\pi R^2$D. $\frac{1}{3}\pi R^2$30. 已知圆锥的底面半径为r,高为h,母线长为l,则该圆锥的体积V为()A. $\frac{1}{3}\pi r^2h$B. $\frac{1}{3}\pi l^2h$C. $\frac{1}{3}\pi r^2l$D. $\frac{1}{3}\pi l^2r$31. 已知长方体的长、宽、高分别为a、b、c,则该长方体的对角线长度d为()A. $\sqrt{a^2 + b^2 + c^2}$B. $\sqrt{a^2 + b^2 - c^2}$C. $\sqrt{a^2 + b^2 + 2ac}$D. $\sqrt{a^2 + b^2 - 2ac}$32. 已知圆台的上下底圆半径分别为r1和r2,高为h,则该圆台的体积V为()A. $\pi (r1^2 + r2^2)h$B. $\pi (r1^2 - r2^2)h$C. $\pi (r1^2 + r2^2)^2$D. $\pi (r1^2 - r2^2)^2$33. 已知圆锥的底面半径为r,高为h,则该圆锥的侧面积S为()A. $\pi r^2h$B. $\pi rh^2$C. $\pi rl^2$D. $\pi l^2r$34. 已知圆台的上下底圆半径分别为r1和r2,高为h,则该圆台的侧面积S为()A. $\pi (r1^2 + r2^2)h$B. $\pi (r1^2 - r2^2)h$C. $\pi (r1^2 + r2^2)^2$D. $\pi (r1^2 - r2^2)^2$35. 已知球的半径为R,则该球的体积V为()A. $\frac{4}{3}\pi R^3$B. $\frac{1}{3}\pi R^3$C. $\frac{4}{3}\pi R^2$D. $\frac{1}{3}\pi R^2$36. 已知圆锥的底面半径为r,高为h,母线长为l,则该圆锥的体积V为()A. $\frac{1}{3}\pi r^2h$B. $\frac{1}{3}\pi l^2h$C. $\frac{1}{3}\pi r^2l$D. $\frac{1}{3}\pi l^2r$37. 已知长方体的长、宽、高分别为a、b、c,则该长方体的对角线长度d为()A. $\sqrt{a^2 + b^2 + c^2}$B. $\sqrt{a^2 + b^2 - c^2}$C. $\sqrt{a^2 + b^2 + 2ac}$D. $\sqrt{a^2 + b^2 - 2ac}$38. 已知圆台的上下底圆半径分别为r1和r2,高为h,则该圆台的体积V为()A. $\pi (r1^2 + r2^2)h$B. $\pi (r1^2 - r2^2)h$C. $\pi (r1^2 + r2^2)^2$D. $\pi (r1^2 - r2^2)^2$39. 已知圆锥的底面半径为r,高为h,则该圆锥的侧面积S为()A. $\pi r^2h$B. $\pi rh^2$C. $\pi rl^2$D. $\pi l^2r$40. 已知圆台的上下底圆半径分别为r1和r2,高为h,则该圆台的侧面积S为()A. $\pi (r1^2 + r2^2)h$B. $\pi (r1^2 - r2^2)h$C. $\pi (r1^2 + r2^2)^2$D. $\pi (r1^2 - r2^2)^2$41. 已知球的半径为R,则该球的体积V为()A. $\frac{4}{3}\pi R^3$B. $\frac{1}{3}\pi R^3$C. $\frac{4}{3}\pi R^2$D. $\frac{1}{3}\pi R^2$42. 已知圆锥的底面半径为r,高为h,母线长为l,则该圆锥的体积V为()A. $\frac{1}{3}\pi r^2h$B. $\frac{1}{3}\pi l^2h$C. $\frac{1}{3}\pi r^2l$D. $\frac{1}{3}\pi l^2r$43. 已知长方体的长、宽、高分别为a、b、c,则该长方体的对角线长度d为()A. $\sqrt{a^2 + b^2 + c^2}$B. $\sqrt{a^2 + b^2 - c^2}$C. $\sqrt{a^2 + b^2 + 2ac}$D. $\sqrt{a^2 + b^2 - 2ac}$44. 已知圆台的上下底圆半径分别为r1和r2,高为h,则该圆台的体积V为()A. $\pi (r1^2 + r2^2)h$B. $\pi (r1^2 - r2^2)h$C. $\pi (r1^2 + r2^2)^2$D. $\pi (r1^2 - r2^2)^2$45. 已知圆锥的底面半径为r,高为h,则该圆锥的侧面积S为()A. $\pi r^2h$B. $\pi rh^2$C. $\pi rl^2$D. $\pi l^2r$46. 已知圆台的上下底圆半径分别为r1和r2,高为h,则该圆台的侧面积S为()A. $\pi (r1^2 + r2^2)h$B. $\pi (r1^2 - r2^2)h$C. $\pi (r1^2 + r2^2)^2$D. $\pi (r1^2 - r2^2)^2$47. 已知球的半径为R,则该球的体积V为()A. $\frac{4}{3}\pi R^3$B. $\frac{1}{3}\pi R^3$C. $\frac{4}{3}\pi R^2$D. $\frac{1}{3}\pi R^2$48. 已知圆锥的底面半径为r,高为h,母线长为l,则该圆锥的体积V为()A. $\frac{1}{3}\pi r^2h$B. $\frac{1}{3}\pi l^2h$C. $\frac{1}{3}\pi r^2l$D. $\frac{1}{3}\pi l^2r$49. 已知长方体的长、宽、高分别为a、b、c,则该长方体的对角线长度d为()A. $\sqrt{a^2 + b^2 + c^2}$B. $\sqrt{a^2 + b^2 - c^2}$C. $\sqrt{a^2 + b^2 + 2ac}$D. $\sqrt{a^2 + b^2 - 2ac}$50. 已知圆台的上下底圆半径分别为r1和r2,高为h,则该圆台的体积V为()A. $\pi (r1^2 + r2^2)h$B. $\pi (r1^2 - r2^2)h$C. $\pi (r1^2 + r2^2)^2$D. $\pi (r1^2 - r2^2)^2$。

多面体和旋转体(附答案)

多面体和旋转体(附答案)

第八章多面体和旋转体一、考纲要求1.理解棱柱、棱锥、棱台、圆柱、圆台、球及其有关概念和性质.2.掌握直棱柱、正棱锥、正棱台和圆柱、圆锥、圆台、球的表面积和体积公式(球缺体积公式不要求记住),并能运用这些公式进行计算.3.了解多面体和旋转体的概念,能正确画出直棱柱、正棱住、正棱台、圆柱、圆锥、圆台的直观图.4.对于截面问题,只要求会解决与几种特殊的截面(棱柱、棱锥、棱台的对角面,棱柱的直截面,圆柱、圆锥、圆台的轴截面和平行于底面的截面,球的截面)以及已给出图形或它的全部顶点的其他截面的有关问题.二、知识结构1.几种常凸多面体间的关系2.棱柱、棱锥、棱台的基本概念和主要性质名称棱柱直棱柱正棱柱图形定义有两个面互相平行,而其余每相邻两个面的交线都互相平行的多面体侧棱垂直于底面的棱柱底面是正多边形的直棱柱侧棱平行且相等平行且相等平行且相等侧面的形状平行四边形矩形全等的矩形对角面平行四边形矩形矩形的形状平行于底面的截面的形状与底面全等的多边形与底面全等的多边形与底面全等的正多边形名称棱锥正棱锥棱台正棱台图形定义有一个面是多边形,其余各面是有一个公共顶点的三角形的多面体底面是正多边形,且顶点在底面的射影是底面的射影是底面和截面之间的部分用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分由正棱锥截得的棱台侧棱相交于一点但不一定相等相交于一点且相等延长线交于一点相等且延长线交于一点侧面的形状三角形全等的等腰三角形梯形全等的等腰梯形对角面的形状三角形等腰三角形梯形等腰梯形平行于底的截面形状与底面相似的多边形与底面相似的正多边形与底面相似的多边形与底面相似的正多边形其他性质高过底面中心;侧棱与底面、侧面与底面、相邻两侧面所成角都相等两底中心连线即高;侧棱与底面、侧面与底面、相邻两侧面所成角都相等名称特殊性质平行六面体底面和侧面都是平行四边行;四条对角线交于一点,且被该点平分直平行六面体侧棱垂直于底面,各侧面都是矩形;四条对角线交于一点,且被该点平分长方体底面和侧面都是矩形;四条对角线相等,交于一点,且被该点平分正方体棱长都相等,各面都是正方形四条对角线相等,交于一点,且被该点平分4.面积和体积公式下表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长 .名称侧面积(S侧) 全面积(S全) 体积(V) 棱棱柱直截面周长×l S侧+2S底S底·h=S直截面·l(1)全面积 S 全=3a 2;(2)体积 V=122a 3; (3)对棱中点连线段的长 d=22a ; (4)相邻两面所成的二面角 α=arccos31 (5)外接球半径 R=46a ; (6)内切球半径 r=126a. (7)正四面体内任意一点到四个面的距离之和为定值(等于正四面体的高). 6.旋转体 圆柱、圆锥、圆台、球的公式表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径. (2)圆锥、圆台某些数量关系②圆锥 圆锥轴截面两腰的夹角叫圆锥的顶角.②圆台 如图,圆台母线与下底面所成角为α,母线为l ,高为h ,上、下底面半径分别为r ′、r ,则h=lsin α r-r ′=lcos α.③球的截面 用一个平面去截一个球,截面是圆面.(1)过球心的截面截得的圆叫做球的大圆;不经过球心的截面截得的圆叫做球的小圆. (2)球心与截面圆圆心的连线垂直于截面.(3)球心和截面距离d,球半径R ,截面半径r 有关系:r=22d R .(3)球冠、球带和球缺①球缺 球面被平面所截得的一部分叫做球冠,截得的圆(圆周)叫做球冠的底,垂直于截面 的直径被截得的一段叫做相应球冠的高.球冠也可以看作一段圆弧绕经过它的一个端点的直径旋转一周所成的曲面. 球冠的面积公式 若球的半径为R ,球冠的高为h ,则S 球冠=2πRh其中h 表示球冠的高,R 是球冠所在的球的半径. ②球带 球面在两个平行截面之间的部分叫做球带.球带也可以看作一段圆弧绕它所在的半圆的直径旋转一周所成的曲面. 球带的面积公式 若球的半径为R ,球带的高为h ,则S 球带=2πRh③球缺 用一个平面截球体所得的部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径 被截得的线段长叫做球缺的高.球缺的体积公式 若球的半径为R ,球缺的高h ,底面半径为r ,则V 球缺=31πh 2(3R-h)=61πh(3r 2+h 2)三、知识点、能力点提示 (一)多面体例1 如图,三棱柱ABC —A 1B 1C 1中,若E 、F 分别为AB 、AC 的中点,平面EB 1C 1将三棱柱分成体积为V 1、V 2的两部分,那么V 1∶V 2= .解:设三棱柱的高为h ,上下底的面积为S ,体积为V ,则V=V 1+V 2=Sh. ∵E 、F 分别为AB 、AC 的中点, ∴S △AEF =41S,V 1=31h(S+41S+41⋅S S)=127ShV 2=Sh-V 1=125Sh , ∴V 1∶V 2=7∶5.例2 一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:⎩⎨⎧=++=++② ①24)(420)(2Z y x zx yz xy由②2得:x 2+y 2+z 2+2xy+2yz+2xz=36 ③由③-①得 x 2+y 2+z 2=16即l 2=16 ∵l=4(cm).例3 正四棱锥S-ABCD 中,高SO =26,两相邻侧面所成角为γ ,tg 3322=γ,(1)求侧棱与底面所成的角。

旋转体与多面体概念综合题习题训练含详解

旋转体与多面体概念综合题习题训练含详解

试卷第1页,共2页 旋转体与多面体概念综合题习题训练
1.已知正六棱台的上、下底面边长分别为2、8,侧棱长等于9,求这个棱台的高和斜高.
2.已知圆台的一个底面周长是另一个底面周长的3
倍,它的轴截面的面积等于母线与轴的夹角是3
π,求该圆台的高与母线长. 3.如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1:16,截得圆台的圆锥的母线长为12cm ,求圆台O O '的母线长.
4.一个圆锥的母线长为20cm ,母线与轴的夹角为30,求圆锥的高.
5.求下列值:
(1)圆柱的轴截面是正方形,它的面积为9,求圆柱的高与底面的周长.
(2)圆台的轴截面中,上、下底面边长分别为2cm 、10cm 、高为3cm ,求圆台的母线的长.
6.把一个圆锥截成圆台,已知圆台的上、下底面积之比是1:16,圆台的母线长为15,求圆锥的母线长.
7.已知四棱锥V ABCD -的底面是面积为16的正方形ABCD ,侧面是全等的等腰三角
形,一条侧棱长为
8.如图所示,圆台母线AB 长为20cm ,上、下底面半径分别为5cm 和10cm ,从母线AB 的中点M 拉条绳子绕圆台侧面转到B 点,求这条绳长的最小值.。

考点38多面体旋转体及有关计算

考点38多面体旋转体及有关计算

例题分析
显示答案
变式练习
考点38 多面体、旋转体及有关计算
典例剖析 【例1】【例2】 【例3】 【例4】【例5】 方法总结
【例1】已知正四棱锥的高等于3 cm,底面边长为8 cm,求侧面积以及侧面与底面所 成二面角的正切值.
【解】如图所示,连接AC,BD交于点O,取BC的中点E,
连接VO,VE,OE,则VO 平面ABCD,VE BC,OE BC,
( C)
( C)
A. 1 πQ B. 1 πQ C.πQ D.2πQ
3
2
【提示】轴截面Q 2rl,则S侧 2 rl Q.
基础过关
考点38 多面体、旋转体及有关计算
5.已知球的表面积为144π,则球的体积为
A.48πB.192πC.162πD.288π
【提示】 S球 4 R2 144 , R 6,
【分析】圆柱的侧面积就是矩形ABCD 的面积,求圆柱的体积,关键是求出圆 柱的底面半径.
例题分析
显示答案
变式练习
考点38 多面体、旋转体及有关计算
典例剖析 【例1】【例2】 【例3】 【例4】【例5】 方法总结
【例3】已知圆柱的侧面展开图是一个矩形ABCD,其中AD是一条母线, 且矩形的对角线AC 8cm,BAC 30,求该圆柱的侧面积和体积. 【解】设圆柱底面半径为r.
典例剖析 【例1】 【例2】【例3】 【例4】【例5】 方法总结
【变式训练3】已知圆柱的轴截面的面积为4,高为2,求圆柱的侧面积和体积.
解:设圆柱的底面半径为r, 由题意得2r 2 4,解得r 1,
S侧 2 rl 2 1 2 4 , V r 2h 12 2 2 .
显示答案
考点38 多面体、旋转体及有关计算

高三数学多面体与旋转体复习题66

高三数学多面体与旋转体复习题66

66.体积计算及其应用(2)一、典型例题1. 四面体ABCD 中;M 、P 、N 、Q 分别是其两组对棱的中点;求截面MNPQ 分四面体ABCD所成两部分体积的比。

[1∶1]2. 在正四棱台中;侧棱AA 1=3;下底边AB =5;侧面对角线A 1B =4;求A 1到底面的距离及三棱锥A 1-ABD 的体积。

[753、725] 3. 已知双曲线12222=+by a x ;用直线y=h(h>0)截y 轴、这双曲线及其渐近线;交点为B 、C 、D ;由x 轴、直线y=h ;双曲线及其渐近线在第一象限内围成平面图形OACD ;将这平面图形绕y 轴旋转一周生成的旋转体;试完成下列填空;求出这旋转体的体积V 。

①双曲线一段弧AC 的方程是 ;渐近线上线段OD 的方程是 ;[x=y ba 0≤y ≤h] ②设M 是OB 上任意一点;且OM =t (0≤t ≤h );过M 作y 轴的垂线交双曲线弧AC 于N ;交OD 于P ;则|MN|= ,|MP|= 。

[22b t b a +、t b a ] ③线段PN 绕y 轴旋转一周所截得圆环的面积为 。

[πa 2]④根据祖暅原理;找出一个与旋转体体积相等的;而且能求出其体积的几何体;从而得V= 。

[πa 2h]4. 降水量是指水平地面上单位面积所降雨水的深度;用上口直径为38cm ;底面直径为24cm ;深为35cm 圆台形水桶来测量降水量;如果在一次降雨过程中;用此桶盛得的雨水正好是桶深的71;则此下雨的降雨量是多少?(精确到1mm )[22mm] 5. 设SA 、SB 是圆锥SO 的两条母线;O 是底面圆心;底面半径为10cm ;底面半径为10cm ;C 是SB 上一点;①求证:AC 与平面SOB 不垂直;②若∠AOB =60°;C 是SB 的中点;AC 与底面成45°角;求这个圆锥的体积。

[π331000cm 3] 6. 四面体的一条棱长是x ;其它各条棱长都是1;①把四面体的体积表示成x 的函数f(x);②求f(x)的值域;③求f(x)的单调区间。

2018高考数学立体几何含答案(最新整理)

2018高考数学立体几何含答案(最新整理)

2018高考数学立体几何答案1.(本小题14分)如图,在三棱柱ABC −中,平面ABC ,D ,E ,F ,G 分别为111A B C 1CC ⊥,AC ,,的中点,AB=BC,AC ==2.1AA 11A C 1BB 1AA(Ⅰ)求证:AC ⊥平面BEF ;(Ⅱ)求二面角B−CD −C 1的余弦值;(Ⅲ)证明:直线FG 与平面BCD 相交.【解析】(1)在三棱柱111ABC A B C -中,1CC ⊥Q 平面ABC ,∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点,AC EF ∴⊥,AB BC =Q ,AC BE ∴⊥,AC ∴⊥平面BEF .(2)由(1)知AC EF ⊥,AC BE ⊥,1EF CC ∥.又1CC ⊥平面ABC ,EF ∴⊥平面ABC .BE ⊂Q 平面ABC ,EF BE ∴⊥.如图建立空间直角坐称系E xyz -.由题意得()0,2,0B ,()1,0,0C -,()1,0,1D ,()0,0,2F ,()0,2,1G ,()=2,01CD ∴u u u r ,,()=1,2,0CB u u r ,设平面BCD 的法向量为(),a b c =,n ,00CD CB ⎧⋅=⎪∴⎨⋅=⎪⎩u u u r u u r n n ,2020a c a b +=⎧∴⎨+=⎩,令2a =,则1b =-,4c =-,∴平面BCD 的法向量()2,14=--,,n ,又Q 平面1CDC 的法向量为()=0,2,0EB u u r ,cos =EB EB EB⋅∴<⋅>=-u u r u u r u u r n n n .由图可得二面角1B CD C --为钝角,所以二面角1B CD C --的余弦值为.(3)平面BCD 的法向量为()2,1,4=--n ,()0,2,1G Q ,()0,0,2F ,()=02,1GF ∴-u u u r ,,2GF ∴⋅=-u u u r n ,∴n 与GF u u u r 不垂直,GF ∴与平面BCD 不平行且不在平面BCD 内,GF ∴与平面BCD 相交2.(本小题14分)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E ,F 分别为AD ,PB 的中点.(1)求证:PE BC ⊥;(2)求证:平面PAB ⊥平面PCD ;(3)求证:EF ∥平面PCD .【解析】(1)PA PD =Q ,且E 为AD 的中点,PE AD ∴⊥,Q 底面ABCD 为矩形,BC AD ∴∥,PE BC ∴⊥.(2)Q 底面ABCD 为矩形,AB AD ∴⊥,Q 平面PAD ⊥平面ABCD ,AB ∴⊥平面PAD ,AB PD ∴⊥.又PA PD ⊥,PD ⊥Q 平面PAB ,∴平面PAB ⊥平面PCD .(3)如图,取PC 中点G ,连接FG ,GD .F Q ,G 分别为PB 和PC 的中点,FG BC ∴∥,且12FG BC =,Q 四边形ABCD 为矩形,且E 为AD 的中点,ED BC ∴∥,12DE BC =,ED FG ∴∥,且ED FG =,∴四边形EFGD 为平行四边形,EF GD ∴∥,又EF ⊄平面PCD ,GD ⊂平面PCD ,EF ∴∥平面PCD .3.(12分)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.解答:(1),E F 分别为,AD BC 的中点,则//EF AB ,∴EF BF ⊥,又PF BF ⊥,EF PF F ⋂=,∴BF ⊥平面PEF ,BE ⊂平面ABFD ,∴平面PEF ⊥平面ABFD .(2)PF BF ⊥,//BF ED ,∴PF ED ⊥,又PF PD ⊥,ED DP D ⋂=,∴PF ⊥平面PED ,∴PF PE ⊥,设4AB =,则4EF =,2PF =,∴PE =,过P 作PH EF ⊥交EF 于H 点,由平面PEF ⊥平面ABFD ,∴PH ⊥平面ABFD ,连结DH ,则PDH ∠即为直线DP 与平面ABFD 所成的角,由PE PF EF PH ⋅=⋅,∴PH ==,而4PD =,∴sin PH PDH PD ∠==,∴DP 与平面ABFD .4.(12分)如图,在三棱锥P ABC -中,AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.C【解析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =,连结OB.因为AB BC ==,所以ABC △为等腰直角三角形,且OB AC ⊥,122OB AC ==,由222OP OB PB +=知PO OB ⊥,由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB u u u r 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得()0,0,0O ,()2,0,0B ,()0,2,0A -,()0,2,0C,(P,(AP =u u u r ,取平面PAC 的法向量()2,0,0OB =u u u r ,设()(),2,002M a a a -<≤,则(),4,0AM a a =-u u u r ,设平面PAM 的法向量为(),,x y z =n .由0AP ⋅=u u u r n ,0AM ⋅=u u u r n ,得()2040y ax a y ⎧+=⎪⎨+-=⎪⎩,可取))4,a a =--n ,cos ,OB ∴<>=u u u rn ,由已知得cos ,OB <>=u u u r n,,解得4a =-(舍去),43a =,43⎛⎫∴=- ⎪⎪⎝⎭n ,又(0,2,PC =-u uu r Q ,所以cos ,PC <>=u u u r n .所以PC 与平面PAM .5.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧A CD所在平面垂直,M 是A CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M ABC-体积最大时,求面MAB与面MCD所成二面角的正弦值.解答:(1)∵正方形半圆面,ABCD⊥CMD∴半圆面,∴平面.AD⊥CMD AD⊥MCD∵在平面内,∴,又∵是半圆弧上异于的点,∴CM MCD AD CM⊥M CD,C D .又∵,∴平面,∵在平面内,∴平面CM MD⊥AD DM D=I CM⊥ADM CM BCM平面.BCM⊥ADM(2)如图建立坐标系:∵面积恒定,ABCS∆∴,最大.MO CD⊥M ABCV-,,,,,(0,0,1)M(2,1,0)A-(2,1,0)B(0,1,0)C(0,1,0)D-设面的法向量为,设面的法向量为,MAB111(,,)m x y z=u rMCD222(,,)n x y z=r,,(2,1,1)MA=--(2,1,1)MB=-,,(0,1,1)MC=-(0,1,1)MD=--,11111120(1,0,2)20x y zmx y z--=⎧⇒=⎨+-=⎩同理,,(1,0,0)n=∴,∴.cosθ==sinθ=6.(本题满分14分,第1小题满分6分,第2小题满分8分)已知圆锥的顶点为P,底面圆心为O,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO =4,OA ,OB 是底面半径,且∠AOB =90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.7.(本小题满分13分)如图,且AD =2BC ,,且EG =AD ,且AD BC ∥AD CD ⊥EG AD ∥CD FG ∥CD =2FG ,,DA =DC =DG =2.DG ABCD ⊥平面(I )若M 为CF 的中点,N 为EG 的中点,求证:;MN CDE ∥平面(II )求二面角的正弦值;E BCF --(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【解析】依题意,可以建立以D 为原点,分别以DA ,DC ,DG 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得()0,0,0D ,()2,0,0A ,()1,2,0B ,()0,2,0C ,()2,0,2E ,()0,1,2F ,()0,0,2G ,30,,12M ⎛⎫ ⎪⎝⎭,()1,0,2N .(1)依题意()0,2,0DC = ,()2,0,2DE = .设()0,,x y z =n 为平面CDE 的法向量,则0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩ n n 即20220y x z =+=⎧⎨⎩,不妨令–1z =,可得()01,0,1=-n .又31,,12MN ⎛⎫= ⎪⎝⎭-,可得00MN ⋅= n ,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得()–1,0,0BC = ,()1,2,2BE =- ,()0,1,2CF =- .设(),,x y z =n 为平面BCE 的法向量,则00BC BE ⎧⋅=⎪⎨⋅=⎪⎩ n n 即0220x x y z -=-+=⎧⎨⎩,不妨令1z =,可得()0,1,1=n .设(),,x y z =m 为平面BCF 的法向量,则00BC BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即020x y z -=-+=⎧⎨⎩,不妨令1z =,可得()0,2,1=m .因此有cos ,⋅<>==m n m n m n,于是sin ,m n <>=.所以,二面角––E BC F.(3)设线段DP 的长为[]()0,2h h ∈,则点P 的坐标为()0,0,h ,可得()1,2,BP h =-- .易知,()0,2,0DC = 为平面ADGE 的一个法向量,故cos BP DC BP DC BP DC ⋅<⋅>== ,sin 60=︒=,解得[]0,2h =.所以线段DP.8.(本题满分15分)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.解答:(1)∵,且平面,12AB B B ==1B B ⊥ABC∴,∴.1B B AB ⊥1AB =同理,1AC ===过点作的垂线段交于点,则且,∴.1C 1B B 1B B G 12C G BC ==11B G =11B C =在中,,11AB C ∆2221111AB B C AC +=∴,①111AB B C ⊥过点作的垂线段交于点.1B 1A A 1A A H则,,∴.12B H AB ==12A H =11A B =在中,,11A B A ∆2221111AA AB A B =+∴,②111AB A B ⊥综合①②,∵,平面,平面,11111A B B C B ⋂=11A B ⊂111A B C 11B C ⊂111A B C ∴平面.1AB ⊥111A B C (2)过点作的垂线段交于点,以为原点,以所在直线为轴,B AB AC I B AB x 以所在直线为轴,以所在直线为轴,建立空间直角坐标系.BI y 1B B z B xyz -则,,,,(0,0,0)B (2,0,0)A -1(0,0,2)B 1C 设平面的一个法向量,1ABB (,,)n a b c = 则,令,则,1020200n AB a c n BB ⎧⋅==⎧⎪⇒⎨⎨=⋅=⎩⎪⎩ 1b =(0,1,0)n = 又∵,.1AC =1cos ,n AC <>== 由图形可知,直线与平面所成角为锐角,设与平面夹角为.1AC 1ABB 1AC 1ABB α∴.sin α=9.(本小题满分14分)在平行六面体中,.1111ABCD A B C D -1111,AA AB AB B C =⊥求证:(1);11AB A B C 平面∥(2).111ABB A A BC ⊥平面平面【解析】(1)在平行六面体1111ABCD A B C D -中,11AB A B ∥.因为AB ⊄平面11A B C ,11A B ⊂平面11A B C ,所以AB ∥平面11A B C .(2)在平行六面体1111ABCD A B C D -中,四边形11ABB A 为平行四边形.又因为1AA AB =,所以四边形11ABB A 为菱形,因此11AB A B ⊥.又因为111AB B C ⊥,11BC B C ∥,所以1AB BC ⊥.又因为1A B BC B = ,1A B ⊂平面1A BC ,BC ⊂平面1A BC ,所以1AB ⊥平面1A BC .因为1AB ⊂平面11ABB A ,所以平面11ABB A ⊥平面1A BC .。

2018全国高考立体几何(完整答案)

2018全国高考立体几何(完整答案)

2018全国高考立体几何(完整答案)一.解答题(共40小题)1.已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.2.如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.3.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.4.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA ⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.5.如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM 折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q ﹣ABP的体积.6.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,BD交AC 于点E,F是线段PC中点,G为线段EC中点.(Ⅰ)求证:FG∥平面PBD;(Ⅱ)求证:BD⊥FG.7.如图所示,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AD∥BC,AD=2BC,∠DAB=∠ABP=90°.(Ⅰ)求证:AD⊥平面PAB;(Ⅱ)求证:AB⊥PC;(Ⅲ)若点E在棱PD上,且CE∥平面PAB,求的值.8.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求三棱锥P﹣BEC的体积.9.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥CB,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,,M是棱PC上的点.(Ⅰ)求证:平面PQB⊥平面PAD;(Ⅱ)若PA=PD=2,BC=1,,异面直线AP与BM所成角的余弦值为,求的值.10.如图,梯形ABCD中,AD=BC,AB∥CD,AC⊥BD,平面BDEF⊥平面ABCD,EF∥BD,BE⊥BD.(1)求证:平面AFC⊥平面BDFE;(2)若AB=2CD=2,BE=EF=2,求BF与平面DFC所成角的正弦值.11.如图,在三棱锥P﹣ABC中,AB⊥PC,CA=CB,M是AB的中点.点N在棱PC上,点D是BN的中点.求证:(1)MD∥平面PAC;(2)平面ABN⊥平面PMC.12.如图,已知PA垂直于矩形ABCD所在的平面,M,N分别是AB,PC的中点,若∠PDA=45°,(1)求证:MN∥平面PAD;(2)求证:MN⊥平面PCD.13.如图,正三棱柱ABC﹣A1B1C1中,AA1=AB,D为BB1的中点.(1)求证:A1C⊥AD;(2)若点P为四边形ABB1A1内部及其边界上的点,且三棱锥P﹣ABC的体积为三棱柱ABC﹣A1B1C1体积的,试在图中画出,P点的轨迹.并说明理由.14.如图,在三棱柱ABC﹣A1B1C1中,底面ABC为边长为2等边三角形,BB1=4,A1C1⊥BB1,且∠A1B1B=45°.(I)证明:平面BCC1B1⊥平面ABB1A1;(Ⅱ)求B﹣AC﹣A1二面角的余弦值.15.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,∠BAC=90°,AB=AA1=2,AC=1,M,N分别是A1B1,BC的中点.(Ⅰ)证明:MN∥平面ACC1A1;(II)求二面角M﹣AN﹣B的余弦值.16.已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出详细证明;(2)求三棱锥E﹣ABC的体积.17.如图,在四棱锥P﹣ABCD中,∠ADB=90°,CB=CD,点E为棱PB的中点.(1)若PB=PD,求证:PC⊥BD;(2)求证:CE∥平面PAD.18.如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.19.如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形∠BAD=60°.已知PB=PD=2,PA=.(Ⅰ)证明:PC⊥BD;(Ⅱ)若E为PA上一点,记三棱锥P﹣BCE的体积和四棱锥P﹣ABCD的体积分别为V1和V2,当V1:V2=1:8时,求的值.20.如图,正方体ABCD﹣A1B1C1D1的棱长为2,E,F分别是CB,CD的中点,点M在棱CC1上,CM=tCC1(0<t<1).(Ⅰ)三棱锥C﹣EFM,C1﹣B1D1M的体积分别为V1,V2,当t为何值时,V1•V2最大?最大值为多少?(Ⅱ)若A1C∥平面B1D1M,证明:平面EFM⊥平面B1D1M.21.如图,直角梯形ABEF中,∠ABE=∠BAF=90°,C、D分别是BE、AF上的点,且DA=AB=BC=a,DF=2CE=2a.沿CD将四边形CDFE翻折至CDPQ,连接AP、BP、BQ,得到多面体ABCDPQ,且AP=a.(Ⅰ)求多面体ABCDPQ的体积;(Ⅱ)求证:平面PBQ⊥平面PBD.22.如图,已知四棱锥P﹣ABCD的底面ABCD是菱形,∠BAD=60°,PA=PD,O 为AD边的中点.(1)证明:平面POB⊥平面PAD;(2)若,求四棱锥P﹣ABCD的体积.23.如图,在四棱锥P﹣ABCD中.底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD.Q为AD的中点,M是棱PC上的点,PA=PD=2.BC=AD=1,CD=.(I)求证:平面PBC⊥平面PQB;(Ⅱ)若平面QMB与平面PDC所成的锐二面角的大小为60°,求PM的长.24.在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,,AB=2BC=2,AC⊥FB.(Ⅰ)求证:AC⊥平面FBC;(Ⅱ)求四面体FBCD的体积;(Ⅲ)线段AC上是否存在点M,使EA∥平面FDM?证明你的结论.25.如图所示的几何体中,平面PAD⊥平面ABCD,△PAD是直角三角形,∠APD=90°,四边形ABCD是直角梯形,AB∥DC,AB⊥AD,PQ∥DC,PQ=PD=DC=1,PA=AB=2.(I)求证:PD∥平面QBC;(Ⅱ)求证:QC⊥平面PABQ;(Ⅲ)在线段QB上是否存在点M,使得AM⊥BC,若存在,求QM的值;若不存在,请说明理由.26.如图1,△ABC是边长为3的等边三角形,D在边AC上,E在边AB上,且AD=BE=2AE.将△ADE沿直线DE折起,得四棱锥A'﹣BCDE,如图2(1)求证:DE⊥A'B;(2)若平面AD'E⊥底面BCDE,求三棱锥D﹣A'CE的体积.27.如图,在三棱锥P﹣ABC中,PA⊥AC,AB⊥BC,PA=BC=2,PB=AC=2,D 为线段AC的中点,将△CBD折叠至△EBD,使得平面EDB⊥平面ABC且PC交平面EBD于F.(1)求证:平面BDE⊥平面PAC.(2)求三棱锥P﹣EBC的体积.28.如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:PB⊥平面PEC;(Ⅱ)求三棱锥D﹣PEC的高.29.如图1,ABCD是一个直角梯形,∠ABC=∠BAD=90,E为BC边上一点,AE、BD相交于O,AD=EC=3,BE=1,AB=.将△ABE沿AE折起,使平面ABE⊥平面ADE,连接BC、BD,得到如图2所示的四棱锥B﹣AECD.(Ⅰ)求证:CD⊥平面BOD;(Ⅱ)求直线AB与面BCD所成角的余弦值.30.如图,四棱柱ABCD﹣A1B1C1D1为长方体,点P是CD中点,Q是A1B1的中点.(I)求证:AQ∥平面PBC1;(l)若BC=CC1,求证:平面A1B1C⊥平面PBC1.31.如图,在四棱锥P﹣ABCD中,AD∥BC,AD=3BC=6,,点M在线段AD上,且DM=4,AD⊥AB,PA⊥平面ABCD.(1)证明:平面PCM⊥平面PAD;(2)当∠APB=45°时,求四棱锥P﹣ABCM的表面积.32.已知等腰梯形ABCD中,AD∥EC,EC=2AD=2AE=4,B为EC的中点,如图1,将三角形ABE沿AB折起到ABE′(E′⊄平面ABCD),如图2.(1)点F为线段AE′的中点,判断直线DF与平面BCE′的位置关系,并说明理由;(2)当平面ABE′与平面DE′C所成的二面角的大小为时,证明:平面ABE′⊥平面ABCD.33.如图,在四棱锥P﹣ABCD中,△PAD和△BCD都是等边三角形,平面PAD ⊥平面ABCD,且AD=2AB=4,.(I)求证:CD⊥PA;(II)E,F分别是棱PA,AD上的点,当平面BEF∥平面PCD时,求四棱锥C﹣PEFD的体积.34.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,AB=AC=2,AD=2,PB=,PB⊥AC.(1)求证:平面PAB⊥平面PAC;(2)若∠PBA=45°,试判断棱PA上是否存在与点P,A不重合的点E,使得直线CE与平面PBC所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.35.如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为直角梯形,AD ∥BC,∠BAD=∠CBA=90°,PA=AB=BC=1,AD=2,E,F,G分别为BC,PD,PC的中点.(1)求EF与DG所成角的余弦值;(2)若M为EF上一点,N为DG上一点,是否存在MN,使得MN⊥平面PBC?若存在,求出点M,N的坐标;若不存在,请说明理由.36.如图所示,在多面体ABC﹣A1B1C1中,D,E,F分别是AC,AB,CC1的中点,AC=BC=4,,CC1=2,四边形BB1C1C为矩形,平面ABC⊥平面BB1C1C,AA1∥CC1(1)求证:平面DEF⊥平面AA1C1C;(2)求直线EF与平面ABC所成的角的正切值.37.如图,在三棱柱ABC﹣A1B1C1中,BC⊥平面AA1B1B,AB=AA1=2,∠A1AB=60°.(Ⅰ)证明:平面AB1C⊥平面A1BC;(Ⅱ)若四棱锥A﹣BB1C1C的体积为,求该三棱柱的侧面积.38.如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD为正方形,E,F,G分别是AB,PB,PC的中点.(1)求证:CD∥平面PAB;(2)求证:CD⊥平面EFG.39.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,平面ABP⊥平面BCP,∠APB=90°,BP=BC,M为CP的中点.求证:(1)AP∥平面BDM;(2)BM⊥平面ACP.40.已知梯形ABCD中,AD∥BC,,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).G是BC的中点,以F、B、C、D为顶点的三棱锥的体积记为f (x).(1)当x=2时,求证:BD⊥EG;(2)求f(x)的最大值;(3)当f(x)取得最大值时,求异面直线AE与BD所成的角的余弦值.2018全国高考立体几何(完整答案)参考答案与试题解析一.解答题(共40小题)1.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.2.【解答】(1)证明:矩形ABCD所在平面与半圆弦所在平面垂直,所以AD⊥半圆弦所在平面,CM⊂半圆弦所在平面,∴CM⊥AD,M是上异于C,D的点.∴CM⊥DM,DM∩AD=D,∴CM⊥平面AMD,CM⊂平面CMB,∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:连接BD交AC于O,取AM的中点P,连接OP,可得MC∥OP,MC⊄平面BDP,OP⊂平面BDP,所以MC∥平面PBD.3.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,AB∥A1B1,AB⊄平面A1B1C,A1B1⊂∥平面A1B1C⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.4.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH=BC,由DE∥BC,DE=BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.5.【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,又AB⊥DA.且AD∩AC=A,∴AB⊥面ADC,∴AB⊂面ABC,∴平面ACD⊥平面ABC;(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3,∴BP=DQ=DA=2,由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,∴三棱锥Q﹣ABP的体积V==××==1.6.【解答】证明:(Ⅰ)连接PE,G、F为EC和PC的中点,∴FG∥PE,FG⊄平面PBD,PE⊂平面PBD,∴FG∥平面PBD…(6分)(Ⅱ)∵菱形ABCD,∴BD⊥AC,又PA⊥面ABCD,BD⊂平面ABCD,∴BD⊥PA,∵PA⊂平面PAC,AC⊂平面PAC,且PA∩AC=A,∴BD⊥平面PAC,FG⊂平面PAC,∴BD⊥FG…(14分)7.【解答】(Ⅰ)证明:因为∠DAB=90°,所以AD⊥AB.……………………(1分)因为平面PAB⊥平面ABCD,……………………(2分)且平面PAB∩平面ABCD=AB,……………………(3分)所以AD⊥平面PAB.……………………(4分)(Ⅱ)证明:由已知得AD⊥AB因为AD∥BC,所以BC⊥AB.……………………(5分)又因为∠ABP=90°,所以PB⊥AB.……………………(6分)因为PB∩BC=B……………………(7分)所以AB⊥平面PBC……………………(8分)所以AB⊥PC.……………………(9分)(Ⅲ)解:过E作EF∥AD交PA于F,连接BF.……………………(10分)因为AD∥BC,所以EF∥BC.所以E,F,B,C四点共面.……………………(11分)又因为CE∥平面PAB,且CE⊂平面BCEF,且平面BCEF∩平面PAB=BF,所以CE∥BF,……………………(13分)所以四边形BCEF为平行四边形,所以EF=BC.在△PAD中,因为EF∥AD,所以,……………………(14分)即.8.【解答】证明:(1)∵D,E分别为AB,AC的中点,∴DE∥BC,又DE⊄平面PBC,BC⊂平面PBC,∴DE∥平面PBC.(2)连接PD,∵DE∥BC,又∠ABC=90°,∴DE⊥AB,又PA=PB,D为AB中点,∴PD⊥AB,又PD∩DE=D,PD⊂平面PDE,DE⊂平面PDE,∴AB⊥平面PDE,又PE⊂平面PDE,∴AB⊥PE.(3)∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,PD⊥AB,PD⊂平面PAB,∴PD⊥平面ABC,∵△PAB是边长为2的等边三角形,∴PD=,∵E是AC的中点,∴.9.【解答】证明:(Ⅰ)∵AD∥BC,,Q为AD的中点∴四边形BCDQ为平行四边形,∴CD∥BQ.∵∠ADC=90°,∴∠AQB=90°,即QB⊥AD.又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.∵BQ⊥平面PAD∵BQ⊂平面PQB,∴平面PQB⊥平面PAD.解:(Ⅱ)∵PA=PD,Q为AD的中点,∴PQ⊥AD.∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.∵PQ⊥平面ABCD.以Q为原点分别以、、为x轴、y轴、z轴的正方向建立空间直角坐标系,则Q(0,0,0),A(1,0,0),,,,设M(x0,y0,z0),∴,,.由M是PC上的点,设,化简得.设异面直线AP与BM所成角为θ,则.∴,解得或,故或.10.【解答】解:(1)证明:∵平面BDFE⊥平面ABCD,平面BDFE∩平面ABCD=BD,AC⊂平面ABCD,AC⊥BD,∴AC⊥平面BDFE.又AC⊂平面AFC,∴平面AFC⊥平面BDFE.(2)设AC∩BD=O,∵四边形ABCD为等腰梯形,AC⊥BD,AB=2CD=2,∴OD=OC=1,OB=OA=2,∵EF∥OB且EF=OB,∴四边形FEBO为平行四边形,∴OF∥BE,且OF=BE=2,又∵BE⊥平面ABCD,∴OF⊥平面ABCD.以O为原点,向量的方向分别为x轴,y轴,z轴的正方向,建立如图所示的空间直角坐标系,则B(0,2,0),D(0,﹣1,0),F(0,0,2),C(﹣1,0,0),∴=(0,1,2),=(1,﹣1,0),=(0,﹣2,2),设平面DFC的一个法向量为=(x,y,z),则有,即,不妨设z=1,得x=y=﹣2.即=(﹣2,﹣2,1),于是cos<,>===.设BF与平面DFC所成角为θ,则sinθ=|cos<,>|=.∴BF与平面DFC所成角的正弦值为.11.【解答】证明:(1)在ABN中,∵M是AB的中点,D是BN的中点,∴MD∥AN,又AN⊂平面PAC,MD⊄平面PAC,∴MD∥平面PAC.(2)在△ABC中,∵CA=CB,M是AB的中点,∴AB⊥MC,又∵AB⊥PC,PC⊂平面PMC,MC⊂平面PMC,PC∩MC=C,∴AB⊥平面PMC.又∵AB⊂平面ABN,∴平面ABN⊥平面PMC.12.【解答】证明:(1)如图,取PD的中点E,连接AE,NE.∵E、N分别为PD,PC的中点,∴EN CD,又M为AB的中点,∴AM CD,∴EN AM,∴四边形AMNE为平行四边形.∴MN∥AE,∴MN∥平面PAD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)∵PA⊥平面ABCD,∠PDA=45°,∴△PAD为等腰直角三角形,∴AE⊥PD,又∵CD⊥AD,CD⊥PA,AD∩PA=A,∴CD⊥平面PAD,∵AE⊂平面PAD,∴CD⊥AE,又CD∩PD=D,∴AE⊥平面PCD,∴MN⊥平面PCD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)13.【解答】(1)证明:取AB的中点F,连接CF,A1F,∵A1A⊥平面ABC,CF⊂平面ABC,∴所以A1A⊥CF.∵△ABC为正三角形,F为AB的中点,∴BA⊥CF,又∵AA1,AB⊂平面AA1B1B,AA1∩AB=A,∴CF⊥平面AA1B1B,又∵AD⊂平面AA1B1B,所以CF⊥AD,正方形AA1B1B中,∵Rt△A1AF≌Rt△ABD,∴∠DAB=∠FA1A,又∵∠AFA1+∠FA1A=90°,∴∵∠AFA1+∠DAB=90°,,故AD⊥A1F,又∵CF∩A1F=F,CF,A1F⊂平面A1FC,∴AD⊥平面A1FC,又∵A1C⊂平面A1FC,∴A1C⊥AD.(2)取AA1中点E,连接DE,则线段DE为点P的运动轨迹.理由如下:∵DE∥AB,DE⊄平面ABC,AB⊂平面ABC,∴ED∥平面ABC,∴P到平面ABC的距离为.所以V==.14.【解答】证明:(Ⅰ)过点A1在平面ABB1A1内作BB1的垂线,垂足为O,连结C1O,∵A1C1⊥B1B,A1O⊥B1B,A1C1∩A1O=A1,∴B1B⊥平面A1OC1,∵OC1⊂平面A1OC1,∴B1B⊥OC1,由题可知A1B1=A1C1=B1C1=2,在B△A1OB1中,∵A1O⊥OB1,∠A1B1B=45°,A1B1=2,∴OA1=OB1=2,在△OB1C1中,∵C1O⊥OB1,B1C1=2,OB1=2,∴OC1=2,∴=A1C12,∴OC1⊥OA1,∵OA1∩OB1=O,∵OC1⊂平面BCC1B1,∴平面BCC1B1⊥平面ABB1A1.解:(Ⅱ)由(Ⅰ)知OC1、OA1、OB1两两垂直,以O为坐标原点,OA1为x轴,OB1为y轴,OC1为z轴,建立空间直角坐标系,∵AB=2,BB1=4,OC1=2,OA1=2,OB1=2,∴A1(2,0,0),B1(0,2,0),C1(0,0,2),B(0,﹣2,0),A(2,﹣4,0),C(0,﹣4,2),=(2,﹣2,0),=(0,﹣2,2),=(﹣2,0,2),=(0,4,0),设=(x,y,z)是平面ABC的法向量,则,取x=1,得=(1,1,1),设=(x,y,z)是平面A1AC的法向量,则,取x=1,得=(1,0,1),∴cos<>==.∴二面角B﹣AC﹣A1的余弦值为.15.【解答】解:解法一:依条件可知AB、AC,AA1两两垂直,如图,以点A为原点建立空间直角坐标系A﹣xyz.根据条件容易求出如下各点坐标:A(0,0,0),B(0,2,0),C(﹣1,0,0),A1(0,0,2),B1(0,2,2),C1(﹣1,0,2),M(0,1,2),(I)证明:∵是平面ACCA1的一个法向量,且,所以又∵MN⊄平面ACC1A1,∴MN∥平面ACC1A1(II)设=(x,y,z)是平面AMN的法向量,因为,由得解得平面AMN的一个法向量=(4,2,﹣1)由已知,平面ABC的一个法向量为=(0,0,1)∴二面角M﹣AN﹣B的余弦值是解法二:(I)证明:设AC的中点为D,连接DN,A1D∵D,N分别是AC,BC的中点,∴又∵,∴,∴四边形A 1DNM是平行四边形∴A1D∥MN∵A1D⊂平面ACC1A1,MN⊄平面ACC1A1∴MN∥平面ACC1A1(II)如图,设AB的中点为H,连接MH,∴MH∥BB1∵BB1⊥底面ABC,∵BB1⊥AC,BB1⊥AB,∴MH⊥AC,MH⊥AB∴AB∩AC=A∴MH⊥底面ABC在平面ABC内,过点H做HG⊥AN,垂足为G 连接MG,AN⊥HG,AN⊥MH,HG∩MH=H ∴AN⊥平面MHG,则AN⊥MG∴∠MGH是二面角M﹣AN﹣B的平面角∵MH=BB1=2,由△AGH∽△BAC,得所以所以∴二面角M﹣AN﹣B的余弦值是16.【解答】解:(1)∵平面CDE⊥平面BCD,平面ABC⊥平面BCD.∴过E作EQ⊥平面BCD,交CD于Q,过A作AP⊥平面BCD,交BC于P,∴EQ∥AP,过Q作QO∥BC,交BD于O,则直线OQ就是在平面BCD内所求的直线,使得直线OQ上任意一点F与E的连线EF均与平面ABC平行.证明如下:∵EQ∥AP,QO∥BC,EQ∩QO=Q,AP∩BC=P,EQ、QO⊂平面EQO,AP、BC⊂平面ABC,∴平面EQO∥平面ABC,∴直线OQ上任意一点F与E的连线EF均与平面ABC平行.(2)∵△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD,∴AP==2,∴S==2,△ABC点E到平面ABC的距离d===,∴三棱锥E﹣ABC的体积V E===.﹣ABC17.【解答】证明:(1)取BD的中点O,连结CO,PO,因为CD=CB,所以△CBD为等腰三角形,所以BD⊥CO.因为PB=PD,所以△PBD为等腰三角形,所以BD⊥PO.又PO∩CO=O,所以BD⊥平面PCO.因为PC⊂平面PCO,所以PC⊥BD.解:(2)由E为PB中点,连EO,则EO∥PD,又EO⊄平面PAD,所以EO∥平面PAD.由∠ADB=90°,以及BD⊥CO,所以CO∥AD,又CO⊄平面PAD,所以CO∥平面PAD.又CO∩EO=O,所以平面CEO∥平面PAD,而CE⊂平面CEO,所以CE∥平面PAD.18.【解答】解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,∴AA1⊥平面ABCD,AC==2,∴∠A1CA是A1C与底面ABCD所成的角,∵A1C与底面ABCD所成的角为60°,∴∠A1CA=60°,∴AA1=AC•tan60°=2•=2,=AB×BC=2×2=4,∵S正方形ABCD∴四棱锥A1﹣ABCD的体积:V===.(2)∵BD∥B1D1,∴∠A1BD是异面直线A1B与B1D1所成角(或所成角的补角).∵BD=,A1D=A1B==2,∴cos∠A1BD===.∴∠A1BD=arccos.∴异面直线A1B与B1D1所成角是arccos.19.【解答】证明:(Ⅰ)连接BD、AC交于O点,∵PB=PD,∴PO⊥BD,又∵ABCD是菱形,∴BD⊥AC,而AC∩PO=O,∴BD⊥平面PAC,且PC⊂平面PAC,∴BD⊥PC.解:(Ⅱ)由条件可知△ABD≌△PBD,∴AO=PO=,∵PA=,∴PA2=OA2+OP2,∴PO⊥AC,由(Ⅰ)知,BD⊥平面PAC,PO⊂平面PAC,∴PO⊥BD,∴PO⊥平面ABCD,∴平面APC⊥平面ABCD,过E点作EF⊥AC,交AC于F,则EF⊥平面ABCD,∴EF∥PO,∴EF、PO分别是三棱锥E﹣ABC和四棱锥P﹣ABCD的高.又V1=V P﹣ABC﹣V E﹣ABC=,,由=,得4(PO﹣EF)=PO,∴,又由△AEF∽△APO,=,∴=.20.【解答】解:(Ⅰ)由题可知,CM=2t,C1M=2﹣2t,∴V1=S△ECF•CM==,=S•C1M=(2﹣2t)=(1﹣t),V2∴V1•V2=≤•()2=.当且仅当t=1﹣t,即t=时等号成立.所以当t=时,V1•V2最大,最大值为.(Ⅱ)连接A1C1交B1D1于点O,则O为A1C1的中点,∵A1C∥平面B1D1M,平面A1CC1∩平面B1D1M=OM,∴A1C∥OM,∴M为CC1的中点,连接BD,∵E,F为BC、CD的中点,∴EF∥BD,又AC⊥BD,∴AC⊥EF.∵AA1⊥平面ABCD,EF⊂平面ABCD,∴AA1⊥EF,又AA1∩AC=A,∴EF⊥平面A1AC,又A1C⊂平面A1AC,∴EF⊥A1C.同理可得:EM⊥A1C,又EF∩EM=E,∴A1C⊥平面EFM.又A1C∥平面B1D1M,∴平面EFM⊥平面B1D1M.21.【解答】解:(Ⅰ)∵DA=AB=BC=a,∠ABE=∠BAF=90°,∴四边形ABCD是正方形,∴CD⊥AD,CD⊥DP,又AD∩DP=D,∴CD⊥平面ADP.∵AD2+DP2=AP2,∴AD⊥DP,又CD⊥AD,CD∩DP=D,∴AD⊥平面CDPQ,又AD∥BC,∴BC⊥平面CDPQ.∴V B﹣CDPQ==(a+2a)×a×a=a3,V B﹣ADP===.∴多面体ABCDPQ的体积为V B﹣CDPQ +V B﹣ADP=.(Ⅱ)取BP的中点G,连接GQ、DG、DQ,在△ABP中,BP==2a,∴BG=BP=a,在△BCQ中,BQ==a,PQ==a,∴PQ=BQ,∴GQ⊥BP.∴QG==a,又BD==2a=DP,∴DG⊥BP,∴DG==a,又DQ==a,∴DQ2=QG2+DG2,即QG⊥DG.又BP∩DG=G,∴QG⊥平面PBD,又QG⊂平面PBQ,∴平面PBQ⊥平面PBD.22.【解答】(1)证明:连接BD,因为底面ABCD是菱形,∠BAD=60°,所以△ABD 是正三角形,所以AD⊥BO,因为O为AD的中点,PA=PD,所以AD⊥PO,且PO∩BO=O,所以AD⊥平面POB,又AD⊂平面PAD,所以平面POB⊥平面PAD;(2)解:因为是正三角形,所以OB=3,在Rt△PAO中,,所以PO=2,又,所以OB2+PO2=PB2,所以∠POB=90°,即PO⊥OB,又AD⊥PO,且OB∩AD=O,所以PO⊥平面ABCD,因为,所以四棱锥P﹣ABCD的体积为.23.【解答】(I)证明:∵PA=PD,Q是AD的中点,∴PQ⊥AD,又平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,PQ⊂平面PAD,∴PQ⊥平面ABCD,∴BC⊥PQ,∵BC=AD=DQ,BC∥AD,∠ADC=90°,∴四边形BCDQ是矩形,∴BC⊥BQ,又PQ∩BQ=Q,∴BC⊥平面PBQ,又BC⊂平面PBC,∴平面PBC⊥平面PQB.(II)过M作MN∥CD交PD与N,则平面BMQ∩平面PCD=MN,∵平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,BQ⊥AD,BQ⊂平面PAD,∴BQ⊥平面PAD,又BQ∥CD∥MN,∴MN⊥平面PAD,∴MN⊥NQ,MN⊥PD,∴∠DNQ为平面BMQ与平面PCD所成角,即∠DNQ=60°,∵PD=PA=2,AD=2BC=2,∴∠PDO=60°,∴△DNQ是等比三角形,∴DN=DQ=1,即N是PD的中点,∴M是PC的中点,∵PD=2,CD=,∴PC=,∴PM==.24.【解答】(Ⅰ)证明:在△ABC中,∵,AB=2,BC=1,∴AC2+BC2=AB2.∴AC⊥BC.又∵AC⊥FB,BF∩CB=B,∴AC⊥平面FBC.(Ⅱ)解:∵AC⊥平面FBC,∴AC⊥FC.∵CD⊥FC,∴FC⊥平面ABCD.在Rt△ACB中,,∴∠CAB=30°,∴在等腰梯形ABCD中可得∠ABD=∠CDB=∠CBD=30°,∴CB=DC=1,∴FC=1.∴△BCD的面积S==.∴四面体FBCD的体积为:.(Ⅲ)解:线段AC上存在点M,且M为AC中点时,有EA∥平面FDM,证明如下:连接CE与DF交于点N,连接MN.由CDEF为正方形,得N为CE中点.∴EA∥MN.∵MN⊂平面FDM,EA⊄平面FDM,∴EA∥平面FDM.所以线段AC上存在点M,使得EA∥平面FDM成立.25.【解答】(Ⅰ)证明:∵PQ∥DC,PQ=PD=DC=1,∴四边形PQCD是平行四边形,∴PD∥CQ,∵PD⊄平面QBC,CQ⊂平面QBC,∴PD∥平面QBC.(Ⅱ)证明:∵∠APD=90°,∴PD⊥PA,∵平面PAD⊥平面ABCD,△PAD是直角三角形,四边形ABCD是直角梯形,AB ∥DC,AB⊥AD,∴AB⊥平面PAD,∴AB⊥PD,∵PD∥QC,∴PA⊥QC,AB⊥QC,∵PA∩AB=A,∴QC⊥平面PABQ.(Ⅲ)解:存在.由(Ⅱ)可知QC⊥平面PABQ;作AM⊥BQ,交BQ于M,可知AM⊥CQ,BQ∩CQ=Q,所以AM⊥平面BCQ,BC⊂平面BCQ,∴AM⊥BC.QB=,cosB=,BM=2=,QM==.26.【解答】解:(1)证明:在图1中,由题意知AE=1,AD=BE=2,在△ADE中,由余弦定理知:DE2=AE2+AD2﹣AE×AD=12+22﹣1×2=3,所以:AE2+DE2=AD2,所以:DE⊥AE,DE⊥BE,在△ADE沿直线DE折起的过程中,DE与AE,BE的垂直关系不变,故在图2中有DE⊥A'E,DE⊥BE,又A'E∩BE=E,所以DE⊥平面A'EB,所以DE⊥A'B.(2)如图2,因为平面A'DE⊥底面BCDE,由(1)知DE⊥A'E,且平面A'DE∩底面BCDE=DE,所以A'E⊥底面BCDE,所以A'E为三棱锥A'﹣EDC的高,且A'E=AE=1,又因为在图1中,S△ECD=S△ABC﹣S△AED﹣S△BEC=,所以:,故三棱锥D﹣A'CE的体积为.27.【解答】(1)证明:∵PA⊥AC,PA=2,AC=2,∴,又∵,BC=2,∴PB2+BC2=PC2,则BC⊥PB.又∵AB⊥BC,∴BC⊥平面PAB,则BC⊥PA,又PA⊥AC,AC∩BC=C,∴PA⊥平面ABC.又∵BD⊂平面PAC,∴PA⊥BD,在Rt△ABC中,由BC=2,AC=2,可得AB=2,又∵D为AC的中点,∴BD⊥AC,而PA∩AC=A,∴BD⊥平面PAC,则平面BDE⊥平面PAC;=V E﹣PBC=V B﹣APCE﹣V P﹣ABC.(2)解:V P﹣EBC由已知,DE∥AP,∴.∴=,.∴.28.【解答】解:(Ⅰ)证明:∵AD=2AB,E为线段AD的中点,∴AB=AE,取BE中点O,连接PO,则PO⊥BE,又平面PEB⊥平面BCDE,平面PEB∩平面BCDE=BE,∴PO⊥平面BCDE,则PO⊥EC,在矩形ABCD中,∴AD=2AB,E为AD的中点,∴BE⊥EC,则EC⊥平面PBE,∴EC⊥PB,又PB⊥PE,且PE∩EC=E,∴PB⊥平面PEC.(Ⅱ)以OB所在直线为x轴,以平行于EC所在直线为y轴,以OP所在直线为z轴建立空间直角坐标系,∵PB=PE=2,则B(,0,0),E(﹣,0,0),P(0,0,),D(﹣2,,0),C(﹣,2,0),∴=(﹣,0,﹣),=(﹣,2,﹣),∴cos∠EPC===,可得:sin∠EPC==,可得:S△EPC=||•||•sin∠EPC=2×2×=2,=V D﹣EPC,设三棱锥D﹣PEC的高为h,则可得:S△ECD•OP=S△EPC•h,可∵V P﹣ECD得:=2×h,∴解得:三棱锥D﹣PEC的高h=1.29.【解答】解:(Ⅰ)在Rt△BEB中,BE=1,AB=,所以∠BAE=30°……(1分)同理∠BDA=30°,从而∠AOD=90°,AF⊥BD……(2分)又因为AD∥EC,AD=EC,所以ADCE是平行四边形,∠CDO=∠AOD=90°,CD⊥DO……(3分)因为平面ABE⊥平面ADE,平面ABE∩平面ADE=AE,BO⊥AE,所以BO⊥平面ADE……(4分)又CD⊂平面ADE,所以BO⊥CD,BO∩DO=O,BO⊂平面BOD,OD平面BOD.所以CD⊥平面BOD……(6分)(Ⅱ)由(Ⅰ)可知,四边形AECD的面积S=CD•OD=3……(7分)连接AC,则△ACD的面积S1=,三棱锥B=ACD的体积V=……(9分)△BCD的面积S2=……(10分)设A到平面BCD的距离为h,则h=,h=……(11分)直线AB与面BCD所成角的正弦值为,余弦值为……(12分)30.【解答】证明:(1)取AB中点为R,连接PR,B1R∵点P是CD中点,Q是A1B1的中点,∴四边形AQB1R,PRB1C1都为平行四边形,∴AQ∥B1R,B1R∥PC1,∴AQ∥PC1.∵AQ⊄平面PBC1,PC1⊂平面PBC1,∴AQ∥平面PBC1.(Ⅱ)∵四棱柱ABCD﹣A1B1C1D1为长方体,BC=CC1,∴B1C⊥BC1.∵A1B1⊥平面BB1C1C,∴A1B1⊥BC1.∵A1B1∩B1C=B1,A1B1⊂平面A1B1C,B1C⊂平面A1B1C,∴BC1⊥平面A1B1C,BC1⊂平面PBC1,∴平面A1B1C⊥平面PBC1.31.【解答】(1)证明:由AD=6,DM=4可得AM=2,则BC=AM,又AD∥BC,则四边形ABCM是平行四边形,则CM∥AB,∵AD⊥AB,∴CM⊥AD.又PA⊥平面ABCD,CM⊂平面ABCD,∴PA⊥CM,∵PA∩AD=A,PA,AD⊂平面PAD,∴CM⊥平面PAD,又CM⊂平面PCM,∴平面PCM⊥平面PAD.(2)解:∵PA⊥平面ABCD,∴PA⊥AB,∵∠APB=45°,∴AP=AB=6.∵,∴.∴四棱锥P﹣ABCM的表面积为.32.【解答】(本小题满分12分)解:(1)直线DF与平面BCE'相交,理由如下:因为E'⊄平面ABCD,所以D⊄平面BCE'.若DF∥平面BCE',设平面DCE'∩平面BCE'=CM,则DF∥CM.CM与CB不重合.又因为AD∥BC,所以平面ADE'∥平面BCE',矛盾.所以直线DF与平面BCE'相交.…………………………(4分)证明:(2)取AB的中点O,连接E'O,BD,由等腰梯形ADCE中,AD∥EC,EC=2AD=2AE=4,,所以E'O⊥AB,DO⊥AB,…………………………(6分)分别以BA,OD所在的直线为x轴,y轴,过O垂直于平面ABCD的直线为z轴建立如图所示的空间直角坐标系,设二面角E'﹣AB﹣D的大小为α.则.过E'作E'G⊥OD于点G.因为E'O⊥AB,DO⊥AB,所以AO⊥平面E'OD,∠E'OD=α.所以E'G⊥AO.所以E'G⊥平面ABCD.…………………………(8分)所以.设平面E'AB的法向量为n=(x,y,z),则,即令y=1,得平面E'AB的一个法向量为n=(0,1,﹣cotα).…………………………(10分)同理可求平面E'DC的一个法向量为.所以.解得:.所以二面角E'﹣AB﹣D的大小为,即平面ABE'⊥平面ABCD.…………………………(12分)33.【解答】证明:(I)因为AD=4,AB=2,,所以AB2+BD2=AD2,AB⊥BD,且∠ADB=30°.又△BCD是等边三角形,所以∠ADC=90°,即CD⊥AD.…(3分)因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD.所以CD⊥PA.……(6分)解:(II)因为平面BEF∥平面PCD,所以BF∥CD,EF∥PD,且BF⊥AD.……(8分)又在直角三角形ABD中,DF=,所以AE=AF=1.所以.……(10分)由(I)知CD⊥平面PAD,故四棱锥C﹣PEFD的体积.…(12分)34.【解答】解:(1)四边形ABCD是平行四边形,AD=2,∴BC=AD=2,又AB=AC=2,∴AB2+AC2=BC2,∴AC⊥AB,又PB⊥AC,且AB∩PB=B,∴AC⊥平面PAB,∵AC⊂平面PAC,∴平面PAB⊥平面PAC;(2)由(1)知AC⊥AB,AC⊥平面PAB,分别以AB、AC所在直线为x轴、y轴,平面PAB内过点A且与直线AB垂直的直线为z轴,建立空间直角坐标系A﹣xyz,如图所示;则A(0,0,0),B(2,0,0),C(0,2,0),=(0,2,0),=(﹣2,2,0);由∠PBA=45°,PB=,可得P(1,0,1),∴=(1,0,1),=(﹣1,0,1);假设棱PA上存在点E,使得直线CE与平面PBC所成角的正弦值为,设=λ(0<λ<1),则=λ=(λ,0,λ),=﹣=(λ,﹣2,λ),设平面PBC的法向量为=(x,y,z),则,即,令z=1,可得x=y=1,∴平面PBC的一个法向量为=(1,1,1),设直线CE与平面PBC所成的角为θ,则sinθ=|cos<,>|===,解得λ=或λ=(不合题意,舍去),∴存在=,使得直线CE与平面PBC所成角的正弦值为.35.【解答】解:(1)以A为坐标原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1),∵E、F、G分别为BC、PD、PC的中点,∴,F(0,1,),G(),∴=(﹣1,),=(),设EF与DG所成角为θ,则cosθ==.∴EF与DG所成角的余弦值为.(2)设平面PBC的法向量为=(x,y,z),∵=(0,1,0),=(1,0,﹣1),∴,取x=1,得=(1,0,1),M为EF上一点,N为DG上一点,若存在MN,使得MN⊥平面PBC,则∥,设M(),N(x2,y2,z2),则,①∵点M,N分别是线段EF与DG上的点,∴,∵=(),=(x2,y2﹣2,z2),∴,且,②把②代入①,得,解得,∴M(),N().36.【解答】解:(1)∵D,E分别是AC,AB的中点,∴DE∥BC,∵四边形BB1C1C为矩形,∴BC⊥CC1.∵AC=BC=4,AB=4,∴AC2+BC2=AB2,∴BC⊥AC,又AC∩CC1=C,∴BC⊥平面AA1C1C,∴DE⊥平面AA1C1C.。

高三数学测试题—多面体和旋转体

高三数学测试题—多面体和旋转体

高三数学测试题—多面体和旋转体一、选择题(本题每小题5分,共60分)1.三棱锥的三个侧面与底面所成的角都相等,则顶点在底面上的射影一定是底面三角形的 ( )A .内心B .外心C .重心D .垂心2.正三棱锥S —ABC 的侧棱SA 、SB 、SC 两两垂直,体积为V ,A ′、B ′、C ′分别是SA 、 SB 、SC 上的点,且SC C S SB B S SA A S 41,31,21='='=',则三棱锥S —A ′B ′C ′的体 积为( )A .V 91B .V 121C .V 241 D .V 7213.如果正四棱锥的侧面积等于底面积的2倍,则侧面与底面所成的角等于 ( )A .30°B .45°C .60°D .75°4.把边长为4和2的一个矩形绕其一边卷成一个圆柱的侧面,则圆柱的体积为 ( )A .16πB .8πC .16π或8πD .16π或32π5.正四棱台的上、下底面边长分别为1cm ,3cm ,侧棱长为2cm ,则棱台的侧面积为( )A .64B .68C .34D .386.圆台上、下底面边长分别为1和7,作与两底平行的截面,且截面与上、下两底距离之比 为1∶2,则截面的面积为( )A .π37B .π73C .π964 D .π387.圆锥的顶角为120°,高为a ,用过顶点的截面去截圆锥,则截面的最大面积为( )A .a 2B .2a 2C .23aD .4a 28.若四棱锥P —ABCD 的底面是边长为a 的正方形,侧棱PA=a ,PB=PD=a 2,则在它的 五个面中,互相垂直的面共有 ( )A .3对B .4对C .5对D .6对9.已知:圆柱的底面半径为1,高为4,则它的内接正三棱柱的体积等于( )A .233 B .23 C .33 D .4310.一个正四面体外切于球O 1,同时内接于球O 2,则球O 1与球O 2的体积之比为( )A .1∶27B .1∶66C .1∶8D .1∶3311.三棱锥的三条侧棱两两垂直,其长分别是1,3,2,则此三棱锥的外接球面积是( )A .6πB .12πC .18πD .24π12.三棱柱ABC —A 1B 1C 1的体积为1,P 是侧棱BB 1上的一点,则四棱锥P —ACC 1A 1的体积是( )A .31B .32 C .41 D .43 二、填空题(本题每小题4分,共16分) 13.正四面体的棱长为a ,对棱之距为b ,则ba= . 14.如图,在Rt △ABC 中,∠C=90°,∠A=30°,AB=4,直线l与平面△ABC 在同一平面内,且过B 点,l ⊥AB ,△ABC 绕直 线l 旋转一周所得几何体的体积为 .15.如图,直三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且AP=C 1Q ,则四棱锥B —APQC 的体积为 . 16.圆台母线与底面成α角,半径为R 的球内切于圆台,则球面被圆台分成的两部分面积之比是 . 三、解答题17.(本题满分12分)如图,四棱锥ABCD 的底面是正方形,侧棱SA ⊥底面ABCD ,截面AEKH ⊥SC.求证:E 、H 在以AK 为直径的圆上.18.(本题满分12分)斜三棱柱ABC —A 1B 1C 1的底面是边长为a 的正三角形,侧棱长为b ,侧棱AA 1和AB 、AC 都成45°的角,求棱柱的侧面积和体积.lA 1B 1C 119.(本题满分12分)如图在四面体ABCD 中,AB=AC=AD=2a ,且AB 、AC 、AD 两两互相垂直,E 、F 分别是AB 、AC 的中点.求平面BCD 与平面EFD 所成二面角的正切值.20.(本题满分12分)过半径为R 的球面上一点P 引三条长度相等的弦PA 、PB 、PC ,它们间两两夹角相等.(Ⅰ)若∠APB=2α,求弦长:(Ⅱ)求三棱锥P —ABC 体积的最大值. 21.(本题满分12分)圆锥底面半径为R ,母线与底面夹角为2α,第一个球与圆锥底面和侧面都相切,第二个球与第一个球和圆锥侧面都相切,如此继续下去,当这些球的个数 无限增多时,求所有球的体积之和. 22.(本题满分14分)正三棱台有一内切球,若内切球的面积与这棱台的全面积之比为π32∶39,求棱台的侧面与底面所成角的大小.高三数学测试题参考答案十一、多面体和旋转体一、1.A 2.C 3.C 4.D 5.D 6.C 7.B 8.B 9.C 10.A 11.A 12.B 二、13.2 ; 14.π3320 ; 15.V 31; 16.)cos 1(:)cos 1(αα+-三、17.(1)证明:∵SA ⊥底面ABCD ,底面ABCD 是正方形,∴BC ⊥侧面SAB ,AE ⊂侧面SAB ,∴AE ⊥BC ,又∵SC ⊥截面AEKH. ∴AE ⊥SC ,∴AE ⊥侧面SBC ,∴AE ⊥KE ,同理AH ⊥HK.F∴A 、E 、K 、H 四点共同,且AK 是圆的直径.18.解:如图,过B 作BM ⊥AA 1,垂足为M ,连结CM. ∵侧棱AA 1和AB 、AC 都成45°,∴△AMB ≌△CMA ,∴CM ⊥AA 1,于是截面 MBC 是斜三棱柱的直截面.由已知a CM BM 22==. ∴斜棱柱的侧面积.41.)12()222(2b a V ab b a a S =+=⋅+⋅=体积侧 19.解:∵E 、F 分别是AB 、AC 的中点,∴EF ∥底面BCD.设平面EFD ∩平面BCD=l ,取EF 、BC 的中点分别为M 、N ,连结DM 、DN.∵AB=AC=AD=2a ,且AB 、AC 、AD 两两重直,∴BC=CD=BD=a 22, DE=DF=a 5,且DM ⊥EF ,DN ⊥BC. 又∵EF ∥BC ∥l ,∴DM ⊥l ,DN ⊥l . ∴∠MDN 就是平面BCD与平面EFD 所成二面角的平面角. 在△MND 中,aa a FM DF DM 2232152222⋅=-=-=,a BC DN 623==. 连结AN ,则AN 必过M 且.2221a AN MN ==.3352cos 222=⋅-+=∠∴DN DM MN DN DM MDN .52=∠∴MDN tg20.(1)如图(见题图),由PA=PB=PC ,且∠APB=∠BPC=∠CPA ,知三棱锥P —ABC 是一个正三棱锥,作其高PO ′则O ′为正△ABC 的中心,显然球心O 也在PO ′所在的直线上. 设,..sin 2,2,,O P O B m AB APB m PB h O P '⊥'=∴=∠==' αα且αsin 23333m AB O B ==' 又222222)sin 332(,m h m PB O O B O =+='+'α即 ① 又∵过PO ′与PB 的平面截球的截面为球的大圆,延长PO ′交球面于Q ,则PB ⊥BQ..2,22R h m PQ O P PB ⋅=⋅'=∴即 ② 把②代入①消去h ,整理得224224sin 34m Rm m =+α,).sin 43(34)sin 341(422222αα-=-=∴R R m .sin 433322α-=∴R m 此即为所求的弦PA 、PB 、PC 的长. (2)22433)3(43,,31n n S n O B h S V ABC ABC ABC P ==='=∆∆-则设, h h R h h n V ABC P )2(43432-==∴- 332738)324(83)24(83R h R h h h h R h =-++≤⋅-= 当且仅当h R h24-= 即R h 34=时取等号. ∴当圆锥的高等于R 34时,其体积取得最大值32738R21.解:作出满足题条件的轴截面图形(如图),圆锥的高SO 通过球心O 1、O 2、O 3…,设它们与圆锥侧面相切的切点分别是E 、F 、G ….球的半径分别是r 1、r 2、r 3….于是便有:r 1=Rtg α,在Rt △SO 2F 中, r 2=SO 2cos2α,又∵SO 2=SO -OO 2=Rtg2α-2r 1-r 2,∴r 2=(R ·tg2α-2Rtg α-r 2)·cos2α,∴r 2=Rtg 3α. 同理r 3=Rtg 5α…∴ααπαααπ63315933134)(34tg tg R tg tg tg R V -⋅=+++⋅=.)1(34633ααπtg tg R -=22.解:如图,球O 内切于三棱台ABC —A 1B 1C 1,O 1、 O 2为棱台上下底面中心, O 1、O 、O 2三点共线,过 A 1A 、O 1O 作截面交B 1C 1BC 于D 1、D ,则球的大圆O 切AD 、D 1D 、A 1D 1于O 2、E ,O 1,设棱台上、下底面边长分为3a 、3b ,则O 1D 1=2)3(63a a =,2)3(632bb D O ==,).(212111b a D O D O D D +=+=过D 1作D 1F ⊥O 2D 于F ,则)(21a b DF -=ab a b b a DF D D F D O O =--+=-==∴22221121)(41)(41 设棱台的侧面与底面所成 的角为α,则.sin 4)(.)(4sin ,2sin 222211αααab b a b a ab b a ab D D F D =+∴+=∴+==ab ab O O S πππ===∴2221)2(4)2(4球. )33(43)(21)33(21322b a b a b a S ++++=棱台全 ]2)(2[433)]()[(4332222ab b a b a b a -+=+++=)1sin 4(233]sin 4[23322-=-=ααab ab ab .3932sin sin 4233.sin sin 42332222πααπαα=-=∴-=ab ab S S ab 棱台全球 13sin sin 4322=-∴αα,由此解得︒=∴=∴︒<<=60.23sin ,900.43sin 2αααα .即棱台的侧面与底面所成的角为60°21题图 22题图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学多面体与旋转体练习题
一. 选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 一个长方体共一个顶点的三个面的面积分别为236
,,,这个长方体对角线的长是()
A. 23
B. 32
C. 6
D. 6
2. 设正六棱锥的底面边长为1,侧棱长为5,则此棱锥的体积为()
A. 63
B. 23
C. 3
D. 2
3. 圆锥轴截面顶角为α,那么它的侧面展开图扇形的圆心角为()
A. πα
sin B. 2πα
sin C. π
α
sin
2
D. 2
2
π
α
sin
4. 已知圆台上、下底面半径分别为1,2,侧面积等于上、下底面积的和,那么该圆台的高为()
A. 3
4
B.
4
3
C.
4
3
π
D.
3
4
5. 将一张圆形纸片沿其两条半径剪开,得到两个扇形,它们的圆心角的比为1:2,再将这两个扇形卷成两个圆锥筒(不计损耗和接缝用料),那么这两个圆锥筒的容积之比为
()
A.
10
10
B.
40
5
C.
2
2
D.
1
2
6. 设O是矩形ABCD的边CD上一点,以直线CD为轴旋转这个矩形所得圆柱的体积
为V,其中以OA为母线的圆锥的体积为V
4
,则以OB为母线的圆锥的体积等于()
A. V
4
B.
V
9
C.
V
12
D.
V
15
B C
O
A D
7. 若一个正方体所有顶点都在一个球面上,则该球与正方体的体积之比为( )
A. 223π
B. 3π
C. 32π
D. 23
π 8. 若干毫升水倒入底面半径为2cm 的圆柱形器皿中,量得水面高度为6cm ,若将这些水倒入轴截面是正三角形的侧圆锥形器皿中,则水面的高度是( )
A. 63cm
B. 6cm
C. 2183cm
D. 3123cm
9. 已知长方体的对角线长为2cm ,则长方体全面积的最大值是( )
A. 82cm
B. 42cm
C. 222cm
D. 22cm
10. 球面上三点,任意两点的球面距离都等于此球大圆周长的
14,若经过这三点的小圆面积为2π,则该球的体积为( )
A. 3π
B. 43π
C. 83π
D. 32
π 11. 把边长为1的正方形ABCD 沿其对角线AC 折起,使二面角B AC D ——为60︒,那么三棱锥D ABC —的体积为( )
A. 6
B. 63
C. 68
D. 624
12. 母线长为l 的圆锥体积最大时,其侧面展开图圆心角ϕ等于( )
A.
263π B. 2π C. 233
π D. 223π
二. 填空题:本大题共4小题,每小题4分,共16分。

把答案填在题中横线上。

13. 正四棱锥底面边长为3,体积为932,则它的侧面与底面所成角的大小为_______。

14. 半径为10cm 的球内有二个平行截面,其面积分别为366422ππcm cm 和,那么这
两个平行截面之间的距离为____________。

15. 把一个大金属球表面涂漆,共需油漆24.kg 。

若把这个大金属球熔化,制成64个大小都相同的小金属球,不计损耗,将这些小金属球表面都涂漆,需要用漆
_________kg 。

16. 圆台的母线与底面成45︒角,侧面积为32π,则它的轴截面面积为___________。

三. 解答题:本大题共6小题,共74分。

解答应写出文字说明、证明过程或演算步骤。

17. (本小题满分12分)
如图,S —ABCD 是正四棱锥,高SO =26,相邻两侧面所成角为α,且tg α
2233
=,求 (I )侧棱与底面所成角的大小;
(II )侧棱和底面边长。

C
18. (本小题满分12分)
斜三棱柱ABC A B C —111的底面是边长为a 的正三角形,侧棱长为2a ,侧棱AA 1与底面两边AB AC 、所成的角都是60︒。

求这斜三棱柱的侧面积。

19. (本小题满分12分)
设SA SB 、是圆锥SO 的两条母线,O 是底面圆心,底面积为100π,C 是SB 中点,AC 与底面所成角为4560︒∠=︒,AOB 。

求这圆锥的体积。

20. (本小题满分12分)
在三棱锥P ABC —中,PA BC PA BC m PA ⊥==,,和BC 的公垂线段ED h =(如图)。

求三棱锥P ABC —的体积。

相关文档
最新文档