新北师大版九年级数学上册第三章概率的进一步认识复习课

合集下载

九年级数学上册第三章概率的进一步认识单元复习课件北师大版

九年级数学上册第三章概率的进一步认识单元复习课件北师大版

第5 次
第6 次
第7 次
第8 次
第9 第10 次次
数字 3 5 2 3 3 4 3 5
(1)求前8次的指针所指数字的平均数; (2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字 的平均数不小于3.3,且不大于3.5”的结果?若有可能, 计算发生此结果的概率,并写出计算过程;若不可能,说明理由. (指针指向盘面等分线时为无效转次.)
发芽m 频率 n
0.9333
0.9600
0.9615
0.9524
0.9521
0.9509
0.9496
0.9500
依据上面的数据可以估计, 这种植物种子在该实验条件下发芽的概率约是___0_.9(结5 果精确到0.01).
13.王强与李刚两位同学在学习概率时,做抛骰子(均匀正方体形状)试验,
他们共抛了54次,出现向上点数的次数如下表:
A.12

B.13
C.14
D.15
7.如图所示,小明、小刚利用两个转盘进行游戏, 规则为小明将两个转盘各转一次,如配成紫色(红与蓝)得 5 分, 否则小刚得 3 分,此规则( A )
A.公平 C.对小刚有利
B.对小明有利 D.公平性不可预测
8.(2019·襄阳)从2,3,4,6中随机选取两个数记作a和b(a<b), 1
由树状图知共有 12 种等可能的结果, 恰好选到的是一名思政研究生和一名历史本科生的结果有 2 种,
∴恰好选到的是一名思政研究生和一名历史本科生的概率为122 =16
6.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形, 同时转动两个转盘,转盘停止后,
指针所指区域内的数字之和为 4 的概率是( B )

北师大版九年级数学上册《3概率的进一步认识回顾与思考》教学课件

北师大版九年级数学上册《3概率的进一步认识回顾与思考》教学课件
积等有关运算时,用列表显得更加清晰、明确。
再见
(2)假如你摸一次,估计摸到白球的概率P是多少?
(3)试估计盒子里黑、白两种颜色的球各有多少个?
专题二 用频率估计概率
(1)请估计:当n很大时,摸到白球的频率是多少? (2)假如你摸一次,估计摸到白球的概率P是多少? (3)试估计盒子里黑、白两种颜色的球各有多少个?
解:(1)白球的频率是0.6 (2)P(摸到白球)=0.6
第三章 概率的进一步认识
概率的进一步认识 回顾与思考
复习目标
1. 建立概率知识框架图,掌握利用画树状图、列表求概 率。(重点) 2.进一步理解试验频率和概率的关系,发展学生的随机观 念和数据分析观念,会用所学概率知识解决实际 问题。(难点) 3. 形成一定的解决问题的策略,进一步发展学生 合作交流的能力,培养探索和创新精神。
小颖
小明
专题一 用树状图或列表求随机事件的概率
解:(1) 转盘B
转盘A 红 蓝
红 黄



(红,红) (红,蓝) (红,黄)
(蓝,红) (蓝,蓝) (蓝,黄)
(红,红) (红,蓝) (红,黄) (黄,红) (黄,蓝) (黄,黄)
所有可能出现的结果数共12种情况。
小颖
小明
专题一 用树状图或列表求随机事件的概率
(3)40 0.6=24(个) 40—24=16(个)
盒子里白球有24个,黑球有16个。
总结提升:
1.通过本节课的学习,你获得了哪些知识、方法? 你认为这节课的重点是什么?
2.所学知识能解决哪些实际问题? 3.本节课所运用的学习方法对你今后有什么启示?
方法总结:
用树状图或列表分析是计算等可能事件概率的常用方 法(1)当事件要经过两步完成时,特别是三步及以上完成 的试验,用画树状图分析很有效,(2)一次试验要涉及 两步,并且可能出现的结果数目较多时,通常采用列表法 分析所有等可的结果。当结果要求进行数的和、

九年级数学上册第三章概率的进一步认识复习教案2新版北师大版

九年级数学上册第三章概率的进一步认识复习教案2新版北师大版

九年级数学上册第三章概率的进一步认识复习教案2新版北师大版教学目标1、运用树状图和列表法计算简单事件发生的概率,用试验或模拟试验的方法估计一些复杂随机事件发生的概率;2、体会频率与概率之间的关系。

知识梳理1、频率与概率的含义频数:在数据统计中,每个对象出现的次数为频数。

频率:每个对象出现的次数与总次数的比值为频率,即总次数频数频率 。

概率:表示某事件发生的可能性大小,即一个事件发生的可能性大小的数值。

2、频率与概率的关系当试验次数很大时,某个事件发生的频率稳定在相应的概率附近。

3、运用树状图或列表法求概率(1)树状图法是将试验中的第一步的结果写在第一层,第二步的结果写在第二层,以此类推……把事件所有可能的结果一一列出,有利于帮助我们分析问题,既形象直观又条理分明。

(2)列表法,当一次试验涉及两个步骤时,将其中一个步骤作为行,另一个步骤作为列,列为表格,将事件所有可能的结果列在表格里。

注意:各种结果出现的可能性相同;涉及3个或更多因素时,用树状图较简便本章中运用列表法或画树状图法求随机事件发生的概率是历年中考的热点内容,运用随机事件发生的频率估计概率在中考中也经常考查,这两类考题多以解答题的形式出现。

例题学习例1、一个透明的袋子装了三个小球,他们除了分别标有1、3、5不同外,其他完全相同,从袋子中摸出一球后放回,再摸出一球,则两次摸出的球数字之和为6的概率为跟踪练习:如图1转盘被等分成三个扇形,并分别标上1,2,3和6,7,8,若同时转动两个转盘各一次,转盘停止后,指针指向的数字和为偶数的概率为例2、现有四张完全相同的卡片,上面分别标有数字-1、-2、3、4,把这些卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上的数字之积为负数的概率是跟踪练习:某校决定从三名男生和两名女生中选出两名同学担任艺术节文艺演出的主持人,则选出的恰为一男一女的概率为例3、某运动员在同一条件下射击,结果如下表:(2)这个运动员射击一次击中靶心的概率为多少跟踪练习:在一个黑暗的箱子里面放有a个除颜色外完全相同的球,这a个球中有3个红球,若每次搅匀后任意摸出一球记下颜色再放回箱子,通过大量反复试验,摸到红球的频率稳定在20%,那么可以推算a 的值为当堂检测:1、下列说法正确的有()①掷一枚均匀硬币,正面朝上的概率可能为0②某事件发生的概率为1/2,说明在重复两次实验中,必有一次发生③一个袋子里有100个球,小明摸了8次,每次都摸到白球,结论:袋子里面只有白球④将两枚一元硬币同时抛下,可能出现的情形有:两枚均为正面、两枚均为反面、一正一反,所以出现一正一反的概率为1/3A、0个B、1个C、2个D、4个2、甲乙两名同学在一次实验中得到的频率图如图所示,则符合这一结果的实验可能是()A、掷一枚正六面体的骰子,出现1点的概率B、从一个装有2个白球和一个红球的袋子中任取一个红球的概率C、抛一枚硬币,出现正面的概率D、任意写一个整数,能被2整除的概率3、如图2,两个可自由转动的转盘做配紫色游戏,分别旋转两个转盘,若其中一个转出红色一个转出蓝色则可配成紫色,那么配成紫色的概率为4、某校考试要求考生先在三个笔试题B1、B2、B3中抽取一个,再在三个上机题J1、J2、J3中抽取一个进行考试,小亮在看不到题的情况下在笔试题和上机题中随机各抽取一个题。

2017年秋季新版北师大版九年级数学上学期第3章、概率的进一步认识单元复习课件1

2017年秋季新版北师大版九年级数学上学期第3章、概率的进一步认识单元复习课件1
▲考点一 ▲考点二 ▲考点三
▲考点四
▲考点五
◆考前过三关
第一关 第二关
§基础题抓分训练
§能力题夺分训练
第三关
§易错题争分训练
◆知识网络
◆考点突破
▲考点一 ▲考点二 ▲考点三
▲考点四
▲考点五
◆考前过三关
第一关 第二关
§基础题抓分训练
§能力题夺分训练
第三关
§易错题争分训练
◆知识网络
◆考点突破
▲考点一 ▲考点二 ▲考点三
◆知识网络
◆考点突破
▲考点一 ▲考点二 ▲考点三
▲考点四
▲考点五
◆考前过三关
第一关 第二关
§基础题抓分训练
§能力题夺分训练
第三关
§易错题争分训练
◆知识网络
◆考点突破
▲考点一 ▲考点二 ▲考点三
▲考点四
▲考点五
◆考前过三关
第一关 第二关
§基础题抓分训练
§能力题夺分训练
第三关
§易错题争分训练
◆知识网络
§基础题抓分训练
§能力题夺分训练
第三关
§易错题争分训练
◆知识网络
◆考点突破
▲考点一 ▲考点二 ▲考点三
▲考点四
▲考点五
◆考前过三关
第一关 第二关
§基础题抓分训练
§能力题夺分训练
第三关
§易错题争分训练
◆知识网络
◆考点突破
▲考点一 ▲考点二 ▲考点三
▲考点四
▲考点五
◆考前过三关
第一关 第二关
§基础题抓分训练
◆考前过三关
第一关 第二关
§基础题抓分训练
§能力题夺分训练
第三关

第三章 概率的进一步认识 课件 北师大版数学九年级上册(20张PPT)

第三章 概率的进一步认识 课件 北师大版数学九年级上册(20张PPT)
第三章 概率的进一步认识
第三章 复习课
复习目标
1.回顾本章的内容,梳理本章的知识结构,建立有关概率知
识的框架图.
2.知道求概率的一般方法——树状图和列表法.
3.知道试验频率与理论概率的关系;会合理运用概率的思想,
解决生活中的实际问题.
◎重点:会用树状图或列表法计算简单事件的概率,以及用
试验或模拟试验的方法估计复杂事件发生的概率.
时,用列表法.
(3)用树状图或表格求概率的关键:
①各种情况出现的可能性 一定要相同 ;
事件发生的次数 )
②P(A)= 各种情况出现的次数 ;
(
③在统计各种情况出现的次数和某一事件发生的次数时,
要做到不重不漏.
预习导学
4.估计总体数目.
通过试验法估计总体数目的方法:(1) 抽取 法估算总体
数目;(2)用 放入 法估算总体数目.
预习导学
·导学建议·
本节可通过问题的形式引导学生,梳理知识结构,重点关
注以下几个问题:(1)频率与概率的区别;(2)计算概率的两种方
法;(3)概率与统计之间的内在的联系.
合作探究
随机事件的概率计算
1.某市体育中考现场考试内容有三项:50米跑为必测项目,
另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二
(2)小国同学的父亲认为,如果到A处不买,到B处发现比A
处便宜就马上购买,否则到C处购买,这样更有希望买到最低价
格的礼物.这个想法是否正确?试通过树状图分析说明.
解:(1)∵在每一处都有价格最低,最高,较高的可能,

∴P(A处买到最低价格礼物)= .

合作探究
(2)作出树状图如下:

北师大版九年级上册数学《用频率估计概率》概率的进一步认识说课研讨复习教学课件

北师大版九年级上册数学《用频率估计概率》概率的进一步认识说课研讨复习教学课件

正面,则正面向上的概率是1
错误
(2)小明掷硬币10000次,则正面向上的频率在0.5附近 正确
(3)设一大批灯泡的次品率为0.01,那么从中抽取1000
只灯泡,一定有10只次品.
错误
课堂小结
频率与概 率的关系
频率稳定时可看作是概 率但概率与频率无关
一种关系
求非等可能 列举法 大量重 频率稳定 频率估 性事件概率 不能适应 复试验 常数附近 计概率
方案__投__掷__硬__币__,__若__正__面__朝__上__,__小__强__获__得__球__票__;__若__ __反__面__朝__上__,__小__明__获__得__球__票__._________________
问 题 3
为什么要用投掷硬币的方法呢? 理由: _这__样__做_公__平___._能___保__证__小__强__和__小__明__得__到__球__票__的__可__能__性__一__样__大__,___ _即_得__票__概___率__相_同___._______________________________________
小球,其中有6个黄球.每次摸球前先将盒子里的球摇
匀,任意摸出一个球记下颜色后再放回盒子,通过大量
重复摸球试验后发现,摸到黄球的频率稳定在30%,那
么可以推算出n大约是( D )
A.6
B.10
C.18
D.20
3.周琦是我国篮坛冉冉升起的一颗新星,他在某段时 间内进行定点投篮训练,其成绩如下表:
投篮次数 10 100 10000 投中次数 9 89 9012
对于问题(2), “不一定”的答案.
对于问题(3),表示怀疑,不太相信.
典例讲解

北师大版本九年级上册第三章概率的进一步认识知识点解析含习题练习

北师大版本九年级上册第三章概率的进一步认识知识点解析含习题练习

第01讲_概率的进一步认识知识图谱概率的计算知识精讲一.用列表法和树状图法求事件的概率1.列表法:当试验中存在两个元素且出现的所有可能的结果较多时,为了不重不漏地列举出所有可能的结果,我们采用列表法来求出某事件的概率.2.树状图法:当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图法来求出某事件的概率.树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的树丫形式,最末端的树丫个数就是总的可能的结果.二.用频率估计概率实际上,从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个时间出现的频率,总在一个固定的数附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.三点剖析一.考点:概率的计算二.重难点:用列表法和树状图法求事件概率三.易错点:(1)两步以及两步以上的简单事件求概率的方法:利用树状或者列表表示各种等可能的情况与事件的可能性的比值;(2)复杂事件求概率的方法运用频率估算概率。

判断是否公平的方法运用概率是否相等,关注频率与概率的整合。

求简单事件的概率例题1、在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.1 3B.23C.16D.34【答案】B【解析】分母含有字母的式子是分式,整式a+1,a+2,2中,抽到a+1,a+2做分母时组成的都是分式,共有3×2=6种情况,其中a+1,a+2为分母的情况有4种,所以能组成分式的概率=46=23.北师大版本九年级上册第三章概率的进一步认识例题2、围棋盒子中有x颗白色棋子和y颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是2 3.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是12,则原来盒子中有白色棋子()A.4颗B.6颗C.8颗D.12颗【答案】C【解析】由题意得14223xx yxx y⎧=⎪++⎪⎨⎪=⎪+⎩;解得48yx=⎧⎨=⎩,由此可得,原来盒子中有白色棋子8颗例题3、某厂为新型号电视机上市举办促销活动,顾客购买一台该型号电视机,可获得一次抽奖机会,该厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10个黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出两个球,摸到都是黄球的顾客获得大奖,摸到不全是黄球的顾客获得小奖.(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;(2)下图是一个可以自由转动的转盘,请你讲转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(友情提醒:转盘上用文字注明颜色和扇形的圆心角的度数,结合转盘简述获奖方式,不需要说明理由).【答案】见解析【解析】(1)符合,一共出现20种可能性,并且每种可能性都相同,所有的结果中,满足摸到的2个球都是黄球(记为事件A)的结果有2种,即(黄1,黄2)或(黄2,黄1),所以P(两黄球)212010==,即顾客获得大奖的概率为10%,获得小奖的概率为90%;(2)本题答案不唯一,下列解法供参考.如图,将转盘中圆心角为36︒的扇形区域涂上黄色,其余的区域涂上白色,顾客每购买一台该型号电视机,可获得一次转动转盘的机会,任意转动这个转盘,当转盘停止时,指针指向黄色区域获得大奖,指向白色区域获得小奖.随练1、如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A.B.C. D.【答案】C【解析】列表如下:共有6种情况,必须闭合开关S 3灯泡才亮,即能让灯泡发光的概率是=.故选C .随练2、在围棋盒中有x 颗白色棋子和y 颗黑色棋子,它们除颜色外全部相同,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗【答案】B【解析】解:由题意得:25134x x y x x y ⎧=⎪+⎪⎨⎪=⎪++⎩,解得23x y =⎧⎨=⎩故选:B .随练3、有一盒子中装有3个白色乒乓球,2个黄色乒乓球,1个红色乒乓球,6个乒乓球除颜色外形状和大小完全一样,李明同学从盒子中任意摸出一乒乓球.(1)你认为李明同学摸出的球,最有可能是______颜色;(2)请你计算摸到每种颜色球的概率;(3)李明和王涛同学一起做游戏,李明或王涛从上述盒子中任意摸一球,如果摸到白球,李明获胜,否则王涛获胜.这个游戏对双方公平吗?为什么?【答案】(1)白(2)16(3)公平【解析】(1)因为白色的乒乓球数量最多,所以最有可能是白色(2)摸出一球总共有6种可能,它们的可能性相等,摸到白球有3种、黄球有2种、红球有1种.所以P (摸到白球)=3162=,P (摸到黄球)=2163=,P (摸到红球)=16;(3)答:公平.因为P (摸到白球)=12,P (摸到其他球)=21162+=,所以公平.列表法和树状图法求概率例题1、如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是__________.【答案】715【解析】列表得(1,8)(1,7)(1,6)(1,5)(1,4);(2,8)(2,7)(2,6)(2,5)(2,4);(3,8)(3,7)(3,6)(3,5)(3,4);其中为偶数的有7种,故数字和为偶数的概率是715例题2、一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,1-,2-,3-四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为__________.【答案】38【解析】画树状图,得因为共有16种可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况所以两次摸出的小球上两个数字乘积是负数的概率63168==.例题3、有十张正面分别标有数字3-,2-,1-,0,1,2,3,4,5,6的不透明卡片,他们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,将该卡片上的数字加1记为b .则数字a ,b 使得关于x 的方程210ax bx +-=有解的概率为___________.【答案】710【解析】列表得:一共有(3,2)--、(2,1)--、(1,0)-、(0,1)、(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7);数字a ,b 使得关于x 的方程210ax bx +-=有解的情况有:(0,1)、(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7)七种,则710P =.例题4、在平面直角坐标系中给定以下五个点A (2-,0)、B (1,0)、C (4,0)、D (2-,92)、E (0,6-),在五个形状、颜色、质量完全相同的乒乓球上标上A 、B 、C 、D 、E 代表以上五个点.玩桌球游戏,每次摸三个球,摸一次,三球代表的点恰好能确定一条抛物线(对称轴平行于y 轴)的概率是()A.12B.35C.710D.45【答案】B【解析】所有的摸球情况有:ABC 、ABD 、ABE 、ACD 、ACD 、ACE 、ADE 、BCD 、BCE 、BCE 、BDE 、CDE 共有10种情况;其中,ABC 时,三点都在x 轴上,共线,不能确定一条抛物线;而ABD 、ACD 、ADE 时,A 、D 的横坐标都是2-,不复合函数的定义;所以能确定一条抛物线的情况有:10136--=,所以35P =.随练1、把一个转盘平均分成三等份,依次标上数字1、2、3.自由转动转盘两次,把第一次转动停止后指针指向的数字记作x ,把第二次转动停止后指针指向的数字的2倍记作y ,以长度分别为x 、y 、5的三条线段能构成三角形的概率为__________.【答案】49【解析】列表可得因此,点(),A x y 的个数共有9个;则x 、y 、5的三条线段能构成三角形的有4组,可得49P =.随练2、在不透明的口袋中,有五个形状、大小、质地完全相同的小球,五个小球分别标有数字2-、1-、0、2、3,现从口袋中任取一个小球,并将该小球上的数字作为点C 的横坐标,然后放回摇匀,再从口袋中人去一个小球,并将该小球上的数字作为点C 的纵坐标,则点C 恰好与点A (2-,2)、B (3,2)构成直角三角形的概率是_________.【答案】25【解析】画树状图如下:共有25种情况,当点C的坐标为(2-,2-)、(2-,1-)、(2-,0)、(2-,3)、(1-,0)、(2,0)、(3,2-)、(3,1-)、(3,0)、(3,3)共10种情况时,构成直角三角形,P(直角三角形)102 255 ==.用频率估计概率例题1、在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【答案】D【解析】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.例题2、某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:40075015003500700090003696621335320363358073根据表中数据,估计这种幼树移植活率的概率为__________(精确到0.1).【答案】0.9【解析】(0.9230.8830.8900.9150.9050.8970.902)70.9x=++++++÷≈例题3、在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球模拟.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球次数(n)100150200500摸到白球次数(m)5896116295摸到白球的频率(0.580.640.580.59(1)请你估计,当n很大时,摸到白球的频率将会接近_________(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是_________,摸到黑球的概率是_________.(3)试估算口袋中黑、白两种颜色的球有多少只.【答案】(1)0.6;(2)35;25;(3)黑球8个,白球12个.【解析】(1)根据题意可得当n很大时,摸到白球的概率将会接近0.6.(2)由(1)可得,摸到白球的概率是35,摸到黑球的概率是25;(3)由(2)可得,口袋中白球的个数320125=⨯=个;黑球的个数22085=⨯=个.随练1、如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).【答案】0.5【解析】由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:7961550≈0.5.随练2、某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:的次数n 100150200500800”的次数m 68111136345564的频率m(2)请估计,当n 很大时,频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?(精确到1)【答案】(1)见解析;(2)0.7;(3)0.7;(4)252 【解析】(1)的次数n 100150200500800”的次数68111136345564的频(2)当n 很大时,频率将会接近681111363455647010.71001502005008001000+++++=+++++(3)获得铅笔的概率约是0.7(4)扇形的圆心角约是0.7360252⨯=拓展1、一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.4 9B.13C.16D.19【答案】D【解析】列表得:黑白白黑(黑,黑)(黑,白)(黑,白)白(黑,白)(白,白)(白,白)白(黑,白)(白,白)(白,白)∵共9种等可能的结果,两次都是黑色的情况有1种,∴两次摸出的球都是黑球的概率为1 9.2、在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?【答案】(1)嘉嘉抽取一张卡片上的数是勾股数的概率P1=3 4(2)淇淇与嘉嘉抽到勾股数的可能性不一样【解析】(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=3 4;(2)列表法:由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,∴P2=612=12,∵P1=34,P2=12,P1≠P2∴淇淇与嘉嘉抽到勾股数的可能性不一样.3、从﹣4、3、5这三个数中,随机抽取一个数,记为a,那么,使关于x的方程x2+4x+a=0有解,且使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形面积恰好为4的概率____.【答案】13【解析】由关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4,可求得a 的值,由关于x 的方程x 2+4x+a=0有解,可求得a 的取值范围,继而求得答案.∵一次函数y=2x+a 与x 轴、y 轴的交点分别为:(﹣2a,0),(0,a ),∴|﹣2a|×|a|×12=4,解得:a=±4,∵当△=16﹣4a ≥0,即a ≤4时,关于x 的方程x 2+4x+a=0有解,∴使关于x 的方程x 2+4x+a=0有解,且使关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4的概率为:13.故答案为:134、王红和刘芳两人在玩转盘游戏,如图,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘停止后,指针所指的两个数字之和为7时,王红胜;数字之和为8时,刘芳胜.那么这二人中获胜可能性较大的是__________.【答案】王红【解析】共9种情况,和为7的情况数有3种,王红获胜的概率为39;和为8的情况数有2种,刘芳获胜的概率为29; 王红获胜的可能性较大.5、在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球模拟.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球次数(n )100150200500摸到白球次数(m )5896116295摸到白球的频率(0.580.640.580.59(1)请你估计,当n 很大时,摸到白球的频率将会接近_________(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是_________,摸到黑球的概率是_________.(3)试估算口袋中黑、白两种颜色的球有多少只.【答案】(1)0.6;(2)35;25;(3)黑球8个,白球12个.【解析】(1)根据题意可得当\(n\)很大时,摸到白球的概率将会接近\(0.6\).(2)由(1)可得,摸到白球的概率是\(\frac{3}{5}\),摸到黑球的概率是\(\frac{2}{5}\);(3)由(2)可得,口袋中白球的个数\(=20\times \frac{3}{5}=12\)个;黑球的个数\(=20\times \frac{2}{5}=8\)个.6、在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.【答案】(1)见解析;(2);(3).【解析】(1)画树状图:共有9种等可能的结果数,它们是:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)在直线y=﹣x+1的图象上的点有:(1,0),(2,﹣1),所以点M(x,y)在函数y=﹣x+1的图象上的概率=;(3)在⊙O上的点有(0,﹣2),(2,0),在⊙O外的点有(1,﹣2),(2,﹣1),(2,﹣2),所以过点M(x,y)能作⊙O的切线的点有5个,所以过点M(x,y)能作⊙O的切线的概率=.。

北师大版数学九年级上册课件第三章概率的进一步认识复习

北师大版数学九年级上册课件第三章概率的进一步认识复习

┃知识归纳┃
1.频率与概率 (1)当试验次数很大时,试验频率稳定在相应的 概率 附近. 因此,我们可以通过多次试验,用一个事件发生的 频率 来估计 这一事件发生的概率 .
(2) 涉及两步试验的随机事件发生的概率,有两种基本的计 算方法,它们分别是 树状图法 、 列表法 .
[注意] 用列表法或树状图法求概率时应注意各种情况发生的 可能性务必相同.
2.投针试验 (1)获得复杂随机事件发生的概率的方法是试验估计.
(2)投针试验可以用来估计圆周率π的值.
(3) 具有广泛应用性的蒙特卡罗方法主要应用了概率和统计
两部分知识.
3.试验估算 估计复杂的随机事件发生的概率常用的方法是 试验估算 但有时试验和调查既费时又费力,个别的试验和调查 , 根本无法进行.此时我们可采用 模拟实验 的方法.
解:将两次抽取卡片记为第1个和第2个,用表格列出所有可 能出现的情况,如图所示,共有36种情况。
则将第1个数字能整除第2个数字事件记为事件A,满足情况的有(1,1), (2,1),(2,2),(3,1),(3,3),(4,1),(4,2), (4,4),(5,1),(5,5),(6,1)(6,2),(6,3),(6,6)。
解得: x ≈20 答:口袋中的白球大约有20个. 用频率估计概率:试验频率 ≈ 理论概率.
小亮的做法:
利用抽样调查方法,从口袋中一次摸出 10个球,求出黑球数与10的比值,再把球放回 袋中.不断重复上述过程,共摸了20次,黑球数 与10的比值的平均数为0.26,因此估计口袋中 大约有24个白球.
每次摸取一组球: 每次黑球数与总球数比值的平均 8 近似于 数 8 x
建构方法:
1 假设口袋中有x个白棋,通过多次实验 可估计出从口袋中随机摸出一棋,它为黑棋的概

北师大版九年级数学上册教师设计:第三章复习课

北师大版九年级数学上册教师设计:第三章复习课

第三章概率的进一步认识回顾与思考一、学生知识状况分析在以前概率学习的基础上,本章进一步研究了理论概率与实验概率之间的关系,并通过几个现实生活模型介绍了随机事件的概率的实验估算方法和涉及两步及两步以上实验的随机事件理论概率计算的又一种方法——列表法.本节引导学生回顾本章内容,梳理知识结构,同时,到本章为止,学生基本完成了义务教育阶段有关概率知识的学习.二、教学任务分析在学生充分思考和交流的基础上,教师可引导学生共同回忆有关概率的知识框架图. 本节课的任务是在本章知识讲完后,需要学生将知识系统化,进一步理解概率与频率的关系;能进一步体会应用试验的方法估计一些事件的概率;归纳总结求概率的一般方法;合理运用概率的思想,解决生活中的实际问题.三、教学过程分析本节课设计了五个教学环节. 第一环节:出示学习目标;第二环节:重点知识回顾,建立知识架构;第三环节:小组合作,总结方法;第四环节:课堂小结;第五环节:当堂检测.第一环节:出示学习目标1.清楚本章知识结构,不同事件知道用何种方法来求概率;2.会用列表法或树状图解决等可能事件中的两种或多种因素的概率;3.会利用概率的大小对实际问题进行决策.第二环节:重点知识回顾,建立知识架构活动一:小组合作活动目的:通过本环节的学习使学生的知识系统化条理化. 实现知识目标,使学生系统地掌握本章所学的知识,建立有关概率知识的框架图.活动要求:5分钟的时间小组讨论,你们能概括出本章的知识结构吗?同时总结出常考、易错题型吗?活动效果:学生通过对本环节能够对本章知识有整体的框架.最后将整个初中学段概率知识进行串联.第三环节:小组合作,总结方法活动内容:分小组解答下列问题.活动要求:10分钟独立思考6种常考题型.通过摸球,随机选择本组需要讲解题型.将自己组的智慧展示在黑板上,与他人分享.题1.(2017静安二模)布袋里有三个红球和两个白球,它们除了颜色外其他都相同,从布袋里摸出两个球,摸到两个红球的概率是.题2(2019.河南)现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同. 从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是.题3.一只不透明的袋子中,装有2个白球和一个红球,这些球除颜色不同外其余都相同. 搅匀后从中任意摸出一个球,要使摸出红球的概率为23,应如何添加红球?题4为了估计不透明袋子中红球的数量(箱内只有红球),将5个白球放进去,随机摸1个球,记下颜色,并放回,多次重复后发现白球出现的频率约为0.2,那么可以估计暗箱里红球的数量为个.题5.图3-Z-2是一个转盘,转盘被平均分成4份,即被分成4个大小相等的扇形,4个扇形分别标有数字1,2,3,4,指针的位置固定,转动转盘后任其自由停止,每次指针落在每一扇形的机会均等(若指针恰好落在分界线上则重转).现有本故事书,姐妹俩商定通过转盘游戏定输赢(赢的一方先看). 游戏规则:姐妺俩各转动一次转盘,两次转动后,若指针所指扇形上的数字之积为偶数,则姐姐赢;若指针所指扇形上的数字之积为奇数,则妹妹赢.这个游戏规则对双方公平吗?请利用画树状图或列表法说明理由.题6.(2014·江西模拟)小明、小亮、小强三人准备下象棋,他们约定用“抛硬币” 的游戏方式来决定哪两人先下棋,规则如下:三人手中各持有一枚质地均匀的硬币,同时将手中硬币抛落到水平地面为一个回合,落地后,三枚硬币中恰有两枚正面向上或者两枚反面向上的两人先下棋;若三枚硬币均为正面向上或反面向上,则不能确定其中两人先下棋.(1)请用树形图表示一个回合所有可能出现的结果;(2)求一个回合不能确定两人先下棋的概率.活动目的:为学生设置真实的问题背景,用所学的知识解决生活中的数学问题. 学生共同参与,学生用数学的意识在活动中潜移默化的得到培养.第四环节:课堂小结学生尝试概括总结,继续体验.第五环节:当堂检测l.(2017·西城区一模)下表记录了一名球员在罚球线上罚篮的结果:投篮次数n1001503005008001000投中次数m5896174302484601投中频率mn0.5800.6400.5800.6040.6050.601投篮次数这名球员投篮一次,投中的概率约是.2.(2017·娄底)在如图所示的电路中,随机闭合开关S1,S2,S3中的两个,能让灯泡L1发光的概率是.3.(2017·郑州二模)为了进一步贯彻落实习近平总书记关于弘扬中华优秀传统文化的指示精神,央视推出了一系列爱国益智竞赛节目,如《中国谜语大会》、《中国成语大会》、《中国汉字听写大会》、《中国诗词大会》,节目受到了广大观众的普遍欢迎,我市某校拟举行语文学科节,校语文组打算模拟其中一个节目开展一次竞赛活动,在全校范围内随机抽取了部分学生就“在这四个节目中,你最喜欢的节目是哪一个?” 的问题进行了调查,要求只能从“A:《中国谜语大会》,B:《中国成语大会》,C:《中国汉字听写大会》,D:《中国诗词大会》” 中选择一个选项,他们根据调查结果,绘制成了如下两幅不完整的统计图:请你根据图中信息,解答下列问题:(1)扇形统计图中,m= ,D选项所对应的圆心角度数为 ;(2)请你补全条形统计图;(3)若该校共有2000名学生,请你估计其中选择D选项的学生有多少名?(4)若九年级一班准备从甲、乙、丙、丁四名同学中选择2名同学代表班级参加学校的比赛,请用表格或树状图分析甲和乙同学同时被选中的概率.。

北师大版数学九年级上册第三章《概率的进一步认识》单元复习课件

北师大版数学九年级上册第三章《概率的进一步认识》单元复习课件
14. 假设鸟卵孵化后,雏鸟为雌与为雄的概率相同,如
果3枚鸟卵全部成功孵化,则3只雏鸟都为雄鸟的概
1
率为____8___.
课后作业
1.(2023·禅城区校级月考)将分别标有“最”“美”“中 ”“国”四个汉字的小球装在一个不透明的口袋中,
这些小球除汉字以外其他完全相同,每次摸球前先搅
匀,随机摸出一球,不放回,再随机摸出一球,两次
1
是乡村公路A的概率为____2___;
(2)用列表或画树状图的方法,求小华两段路程都选 省级公路的概率.
解:(2)画树状图如图:
共有6种等可能的结果,其中小华两段路程都选省级 公路的结果有1种,
∴小华两段路程都选省级公路的概率为
1 6
.
9. 甲、乙、丙三位好朋友随机站成一排拍合影,甲没有
2
站在中间的概率为____3___.
发展历程和文化价值.
1
(1)小明选择“B.雨花石彩绘”项目的概率是___4__;
(2)用画树状图或列表的方法,求小明和小刚恰好选
择同一项目采访的概率. 解:(2)依题意,列表如下:
共有16种等可能的结果,其中小明和小刚恰好选择同
一项目采访的结果有4种, ∴小明和小刚恰好选择同一项目采访的概率为
4 =1 16 4
摸出的球上的汉字组成“中国”的概率是
()
A
A. 1 B.1
6
8
C.1 4
D.5 16
2.(2023·电白区期中)学校组织学生外出集体劳动时,
为九年级学生安排了三辆车,九年级的小明与小亮都
可以从这三辆车中任选一辆搭乘,则他俩搭乘同一辆
车的概率为
A.
1 3
B.
2 3

2024年北师大版九年级上册教学第三章 概率的进一步认识用树状图或表格求概率

2024年北师大版九年级上册教学第三章 概率的进一步认识用树状图或表格求概率

第1课时用树状图或表格求概率课时目标1.经历猜测、设计试验方案、试验、收集试验数据、分析试验结果等活动过程,进一步体验数据的随机性,积累数学活动经验.2.通过试验进一步感受随机事件发生的频率的稳定性,理解事件发生的频率与概率的关系,并能用试验频率估计事件发生的概率,加深对概率意义的理解.3.能运用画树状图法和列表法计算涉及两步试验的随机事件发生的概率.学习重点能运用画树状图法和列表法计算涉及两步试验的随机事件发生的概率.学习难点理解两步试验中“两步”之间的相互独立性,进而认识两步试验所有可能出现的结果及每种结果出现的等可能性.正确运用画树状图法和列表法计算涉及两步试验的随机事件发生的概率.课时活动设计复习回顾1.小明和小凡一起做游戏.在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一个球,摸到红球小明获胜,摸到白球小凡获胜.(1)这个游戏对双方公平吗?解:不公平.(2)在一个双人游戏中,你是怎样理解游戏对双方是否公平?如果是你,你会设计一个什么样的游戏活动判断胜负?解:双方获胜的概率相同才算公平.我会设计一个袋中装有2个红球和2个白球的游戏,每个球除颜色外都相同,从袋中任意摸出一个球,摸到红球小明获胜,摸到白球小凡获胜.(设计游戏不唯一)2.小明、小凡和小颖周末都想去看电影,但只有一张电影票.三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:连续抛掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜;若两枚反面朝上,则小颖获胜;若一枚正面朝上、一枚反面朝上,则小凡获胜.你认为这个游戏公平吗?如果不公平,猜猜谁获胜的可能性更大.引导学生展开讨论.设计意图:使学生再次体会“游戏对双方是否公平”的意义,并由学生用自己的语言描述出“游戏公平”的含义是游戏的双方获胜的概率要相同.同时,巧妙的利用一个“如果是你,你会设计一个什么样的游戏活动判断胜负?”的问题,引发学生的思考,激发学生参与的热情,如果学生说出“掷硬币”的方法,自然引出本节课的内容.探究新知(1)每人抛掷硬币20次,并记录每次试验的结果,根据记录填写下面的表格:抛掷的结果两枚正面朝上两枚反面朝上一枚正面朝上、一枚反面朝上频数频率(2)5个同学为一个小组,依次累计各组的试验数据,相应得到试验200次、300次、400次、500次……时的试验结果,填写下表,并绘制成相应的折线统计图.试验次数200300400500…两枚正面朝上的次数两枚正面朝上的频率两枚反面朝上的次数两枚反面朝上的频率一枚正面朝上、一枚反面朝上的次数一枚正面朝上、一枚反面朝上的频率(3)由上面的数据,请你分别估计“两枚正面朝上”“两枚反面朝上”“一枚正面朝上、一枚反面朝上”这三个事件的概率.由此,你认为这个游戏公平吗?深入探究:在上面抛掷硬币的试验中,(1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?(2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?请将各自的试验数据汇总后,填写下面的表格:抛掷第一枚硬币抛掷第二枚硬币正面朝上的次数正面朝上的次数反面朝上的次数反面朝上的次数正面朝上的次数反面朝上的次数通过上面的试验可以发现抛掷第一枚硬币时出现“正面朝上”的概率约为0.50,抛掷第二枚硬币时出现“正面朝上”的概率约为0.50.表格中的数据支持你的猜测吗?探究体会:由于硬币是均匀的,因此抛掷第一枚硬币时出现“正面朝上”和“反面朝上”的概率相同;无论抛掷第一枚硬币出现怎样的结果,抛掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率也是相同的.所以,连续抛掷两枚均匀的硬币,出现的(正,正)(正,反)(反,正)(反,反)四种情况是等可能的.因此,我们可以用下面的树状图或表格表示所有可能出现的结果:第二枚硬币第一枚硬币正反正(正,正)(正,反)反(反,正)(反,反)总共有4种结果,每种结果出现的可能性相同.14;14;24=12.因此,这个游戏对三人是不公平的.设计意图:让学生亲自经历对随机现象的探索过程,亲自经历猜测、设计试验方案、试验、收集试验数据、分析试验结果等活动过程,以获得事件发生的概率,进一步体验数据的随机性.巩固训练活动1:小颖有两件上衣,分别为红色和白色,有两条裤子,分别为黑色和白色,她随机拿出一件上衣和一条裤子穿上,恰好是白色上衣和白色裤子的概率是多少?解:(方法一)在一次试验中,上衣和裤子搭配有4种等可能的情况:红色上衣+黑色裤子;红色上衣+白色裤子;白色上衣+黑色裤子;白色上衣+白色裤子.而白色上衣和白色裤子的情况有1种,因此,恰好是白色上衣和白色裤子的14.(方法二)可以用树状图来表示.总共有4种可能的结果,每种结果出现的可能性相同.其中恰好是白色上衣和白色裤子的结果有1种:(白,白).因此,恰好是白色上衣和白色裤子的概率为14.(方法三)上衣和裤子颜色搭配有4种等可能的情况,可以列表来表示.上衣的颜色红白裤子的颜色黑(红,黑)(白,黑)白(红,白)(白,白)总共有4种结果,每种结果出现的可能性相同,其中,恰好是白色上衣和白色裤子的结果有1种:(白,白).14.活动2:一个盒子中装有一个红球、一个白球.这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球.求:(1)两次都摸到红球的概率;(2)两次摸到不同颜色球的概率;(3)只有一张电影票,小明和小颖通过做这样一个游戏,谁获胜谁就去看电影.如果是你,你如何选择?解:由题意,画树状图如下:总共有4种可能的结果,每种结果出现的可能性相同.(1)两次都摸到红球的结果有1种:(红,红).所以两次都摸到红球的概率为14.(2)两次都摸到不同颜色球的结果有两种:(红,白)(白,红).所以两次都摸到24=12.(3)两次摸到相同颜色球则小明去,两次摸到不同颜色球则小颖去(答案不唯一).设计意图:通过上面两个活动,分别用列表法和画树状图法分析上衣和裤子搭配的可能的情况,两次在盒中摸球可能的情况,计算涉及两步试验的随机事件发生的概率,巩固所学的知识.课堂小结1.本节课你有哪些收获?有何感想?2.用列表法求概率时应注意什么情况?设计意图:通过对本节课的回顾反思,培养学生反思的习惯,加深学生对本节知识的理解和熟练应用.课堂8分钟.1.教材第62页习题3.1第1,3题.2.七彩作业.第1课时用树状图或表格求概率分析方法:1.列表法.2.画树状图法.教学反思第2课时利用概率判断游戏的公平性课时目标1.通过两种求概率方法的选择使用,理解两种方法各自的特点,并能根据不同情境选择适当的方法.2.能利用概率解决一些简单的实际问题,理解概率对日常生活和生产实践的指导作用,体会概率是描述随机现象的数学模型,发展应用意识.3.让学生掌握一定的判断游戏公平性的方法,提高其决策能力.学习重点利用概率判断游戏的公平性.学习难点用适当的方法求事件发生的概率.课时活动设计复习回顾上节课,你学会了用什么方法求某个事件发生的概率?设计意图:回顾上节课所学内容,为这节课计算概率作铺垫.情境引入“石头、剪刀、布”是广为流传的游戏,游戏时,小明每次做“石头”“剪刀”“布”三种手势中的一种,他做出“石头”手势的概率为13.设计意图:通过学生熟悉的游戏引入本课的学习主题,借助计算概率分析游戏的公平性,感受概率的应用价值.探究新知小明、小颖和小凡做“石头、剪刀、布”的游戏,游戏规则如下:由小明和小颖玩“石头、剪刀、布”的游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?解:因为小明和小颖每次出这三种手势的可能性相同,所以可以利用树状图列出所有可能出现的结果:总共有9种可能的结果,每种结果出现的可能性相同.其中,两人手势相同的结果有339=13;小明胜小颖的结果有3种:(石头,剪刀)(剪刀,布)(布,石头),所以小明获胜39=13;小颖胜小明的结果也有3种:(剪刀,石头)(布,剪刀)(石头,布),所以小颖获39=13.因此,这个游戏对三人是公平的.设计意图:通过利用画树状图法检验游戏是否公平,提高学生对求概率方法的熟练程度,规范书写步骤.典题精讲小明和小军两人一起做游戏.游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次质地均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.如果你是游戏者,你会选择哪个数?解:选择7,理由:列表如下:第二次掷得的点数123456第一次掷得的点数123456723456783456789456789105678910116789101112由表格可知,共有36种可能的结果,每种结果出现的可能性相同,其中点数之和为7的有6种,是最多的,∴P(点数之和为7)=636=16.所以游戏者事先选择数字7获胜的可能性较大.设计意图:本环节的设置,开放性更强,让学生在问题中寻找解决方案.加强用列表法和画树状图求概率的能力,从中也体会出本题因为结果较多,使用列表法更好一些,感受这两种求概率方法的优劣.巩固训练有三张大小一样而画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率.解:用A,a分别表示第1张的上、下部分,用B,b分别表示第2张的上、下部分,用C,c分别表示第3张的上、下部分.画树状图如下:共有9种可能的结果,每种结果出现的可能性相同,其中恰好能拼成原来一幅画的结果有3种:(A,a)(B,b)(C,c).因此两张恰好能拼成原来一幅画的概率为39=13.设计意图:让学生自主选择合适的方式求事件发生的概率,加强对利用画树状图法和列表法求概率的理解.进一步感受概率存在的普遍性,消除对新知的恐惧感.课堂小结今天这节课学习了什么?你掌握了什么?设计意图:帮助学生掌握求概率的方法,掌握数学知识.课堂8分钟.1.教材第64页习题3.2第1,2,3题.2.七彩作业.第2课时利用概率判断游戏的公平性利用概率判断游戏的公平性的一般方法:1.运用列表法或画树状图法分析事件发生的可能情况;2.计算事件发生的概率;3.比较概率的大小关系;4.作出判断.教学反思第3课时利用概率玩转盘游戏课时目标1.经历利用画树状图法和列表法求概率的过程,在活动中进一步发展学生的合作交流意识及培养学生及时反思的习惯.2.鼓励学生思维的多样性,提高运用所学知识解决实际问题的能力.学习重点借助画树状图、列表法计算随机事件的概率.学习难点在利用画树状图法或列表法求概率时,各种结果出现的可能性必须相同.课时活动设计情境引入“配紫色”游戏.小颖为学校联欢会设计了一个“配紫色”游戏:如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)利用画树状图或列表的方法表示游戏所有可能出现的结果.(2)游戏者获胜的概率是多少?解:(1)所有可能出现的结果共有6种,树状图和表格分别如下(选择其中一种即可):B盘黄色蓝色绿色A盘红色(红,黄)(红,蓝)(红,绿)白色(白,黄)(白,蓝)(白,绿)(2)由(1)可得,共有6种结果.每种结果出现的可能性相同.其中游戏者获胜的结果有116.设计意图:通过这个转盘“配紫色”游戏,让学生再次经历利用画树状图或列表法求出概率的过程,并体会求概率时必须使每种事件发生的可能性相同,培养学生运用所学知识解决问题的能力.探究新知如果把转盘变成如图所示的转盘进行“配紫色”游戏.(1)利用画树状图或列表法表示游戏所有可能出现的结果.(2)游戏者获胜的概率是多少?12;小亮则先把转盘A的红色区域分成2等份,分别记作“红色1”“红色2”,12.B盘红色蓝色A盘红色1(红1,红)(红1,蓝)红色2(红2,红)(红2,蓝)蓝色(蓝,红)(蓝,蓝)你认为谁做得对?说说你的理由.(小组合作交流)小颖的做法不正确,小亮的做法正确.通过合作交流,学生会发现A盘中蓝色区域和红色区域的面积不同,因而指针落在这两个区域的可能性不同.而用列表法或画树状图法求随机事件发生的概率时,应注意各种情况出现的可能性务必相同.而小亮的做法把左边转盘中的红色区域分成2等份,分别记作“红色1”“红色2”,保证了左边转盘中指针落在“蓝色”“红色1”“红色2”三个区域的等可能性,因此是正确的.设计意图:通过辨析小亮和小颖方法的正确性,加深学生对等可能性的认识,明确在利用画树状图或列表的方法求概率时,各种结果出现的可能性必须相同.典例精讲例一个盒子中装有两个红球、两个白球和一个蓝球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球.求两次摸到的球的颜色能配成紫色的概率.解:把两个红球分别记为“红1”“红2”,两个白球分别记为“白1”“白2”,则列表如下:第二次红1红2白1白2蓝第一次红1(红1,红1)(红1,红2)(红1,白1)(红1,白2)(红1,蓝)红2(红2,红1)(红2,红2)(红2,白1)(红2,白2)(红2,蓝)白1(白1,红1)(白1,红2)(白1,白1)(白1,白2)(白1,蓝)白2(白2,红1)(白2,红2)(白2,白1)(白2,白2)(白2,蓝)蓝(蓝,红1)(蓝,红2)(蓝,白1)(蓝,白2)(蓝,蓝)总共有25种可能的结果,每种结果出现的可能性相同,两次摸到的球的颜色能配成紫色的结果共4种:(红1,蓝)(红2,蓝)(蓝,红1)(蓝,红2),所以P(能配425.设计意图:通过对典型例题的分析,进一步让学生体会等可能事件概率的求法,突破了本节课的难点.巩固训练1.用如图所示的两个转盘做“配紫色”游戏,每个转盘都被分成面积相等的三个扇形.请求出配成紫色的概率.解:列表如下,A盘红蓝白B盘红(红,红)(红,蓝)(红,白)黄(黄,红)(黄,蓝)(黄,白)蓝(蓝,红)(蓝,蓝)(蓝,白)由表格可得,一共有9种结果,每种结果出现的可能性相同,其中可以配成紫色的结果有2种:(红,蓝)(蓝,红),所以P(配成紫色)=29.2.设计两个转盘做“配紫色”游戏,使游戏者获胜的概率为13.(答案不唯一,老师引导学生做一做)设计意图:通过这两个课堂练习检验学生上课掌握情况,特别是第2题有一定难度,在设计时注意指针指向每种颜色的可能性是一样的.课堂小结1.利用画树状图法和列表法求概率时应注意什么?2.你还有哪些收获和疑惑?设计意图:培养学生及时反思的习惯,归纳本节课的收获.这种习惯不仅有助于学生深入理解课堂内容,而且能够提高他们独立思考和自主学习的能力.课堂8分钟.1.教材第68页习题3.3第1,2,3题.2.七彩作业.第3课时利用概率玩转盘游戏转盘游戏:1.转盘被分成面积相等的扇形.2.转盘被分成面积不相等扇形.教学反思。

北师大版九年级上册数学《用树状图或表格求概率》概率的进一步认识说课教学复习课件

北师大版九年级上册数学《用树状图或表格求概率》概率的进一步认识说课教学复习课件

卡片标记的数字之和为偶数,则按照小明的想法参加敬老服 务活动,若抽出的两张卡片标记的数字之和为奇数,则按照 小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平 吗?请说明理由.
解:不公平.
理由如下:列表得
小亮

4
小明
4
8
5
9
6
10
5
6
9
10
10
11
11
12
由表可知,共有 9 种等可能的结果,其中和为偶数的有 5 种结 果,和为奇数的有 4 种结果,
2. 能够借助概率的大小判断游戏的公平性.(难点)
课前预习
(一)知识探究 当事件涉及多种可能的结果时,可选择 画画树树状状图图 或 列表 列出所有等可能出现的结果.当事件涉及三个或更多 的因素时,为了不重不漏地列出所有可能的结果,通常采用 树树状状图图 列出所有可能出现的结果.
(二)预习反馈
1. 用 2,3,4 三个数字排成一个三位数,则排出的数是
知识点 2 判断游戏公平性 例2 小石和小丁利用盒子里的三张卡片做游戏,卡片上分别写有 A, A,B,这些卡片除了字母外完全相同.从中随机摸出一张卡片记下字母, 放回盒子后充分搅匀,再从中随机摸出一张卡片记下字母.如果两次摸 到的卡片字母相同则小石获胜,否则小丁获胜,这个游戏公平吗?请用 画树状图或列表的方法说明理由.
【思路点拨】用 A,a 表示第 1 张的上下部分,用 B,b 表示第 2 张的上下部分,用 C,c 表示第 3 张的上下部分,画 树状图展示所有 9 种等可能的结果数,再找出这两张恰好能 拼成原来的一幅画的结果数,然后根据概率公式求解.
解:用 A,a 表示第 1 张的上下部分, 用 B,b 表示第 2 张的上下部分, 用 C,c 表示第 3 张的上下部分,

北师大版九年级上册数学《用频率估计概率》概率的进一步认识培优说课教学复习课件

北师大版九年级上册数学《用频率估计概率》概率的进一步认识培优说课教学复习课件

B. 0.60
C. 0.64
D. 0.55
800 484 0.605
1 000 601 0.601
3. 在一个不透明的口袋中放着红色、黑色、黄色的橡皮 球共有 30 个,它们除颜色外其他全相同.小刚通过多次摸球 试验后发现从中摸到红色球、黄色球的频率稳定在 0.15 和 0.45 之间,则摸到黑色球的概率约为 0.4 .
归纳总结
一般地,在大量重复试验中,随机事件A发生的
频率
m n
(这里n是实验总次数,它必须相当大,m是在
n次试验中随机事件A发生的次数)会稳定到某个常
数p.于是,我们用P这个常数表示事件A发生的概率
,即
P(A)=p.
合作探究
《红楼梦》第62回中有这样的情节:当下又值宝玉生日 已到,原来宝琴也是这日,二人相同……袭人笑道:“这是他 来给你拜寿.今儿也是他的生日,你也该给他拜寿.”宝玉听 了,喜的忙作下揖去,说:“原来今儿也是姐姐的芳诞.”平 儿还福不迭……探春忙问:“原来邢妹妹也是今儿,我怎么就 忘了.”……探春笑道:“倒有些意思,一年十二个月,月月 有几人生日.人多了,便这等巧了,也有三个一日,两个一日 的……”
问 题 4
如果掷硬币机会均等,若投掷10次硬币,是否一定是5次正面 向上?投掷50次、100次、400(1)抛掷一枚均匀硬币400次,每隔50次记录“正面朝上”的次数, 并算出“正面朝上”的频率,完成下表:
累计抛掷次数 50 100 150 200 250 300 350 400
(黄,白)
黄 (红 1,黄) (红 2,黄) (白,黄)
由表知共有 12 种等可能的结果,其中两次均摸到红球的 有 2 种,∴P(两次均摸到红球)=122=61.

北师大版九年级上册第三章概率的进一步认识知识点归纳及例题含答案

北师大版九年级上册第三章概率的进一步认识知识点归纳及例题含答案

北师大版九年级上册第三章概率的进一步认识知识归纳及例题【学习目标】1.进一步认识频率与概率的关系,加深对概率的理解;2.会用列表和画树状图等方法计算简单事件发生的概率;3.能利用重复试验的频率估计随机事件的概率;4.学会运用概率知识解决简单的实际问题. 【知识点梳理】要点一、用树状图或表格求概率 1.树状图当一次试验要涉及3个或更多个因素时,为了不重不漏地列出所有可能的结果,通常采用树形图,也称树形图、树图.树形图是用树状图形的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法. 知识点诠释:(1)树形图法适用于各种情况出现的总次数不是很大时,求概率的问题;(2)在用树形图法求可能事件的概率时,应注意各种情况出现的可能性务必相同. 2.列表法当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法. 知识点诠释:(1)列表法适用于各种情况出现的总次数不是很大时,求概率的问题; (2)列表法适用于涉及两步试验的随机事件发生的概率. 3.用列举法求概率的一般步骤(1)列举(列表、画树状图)事件所有可能出现的结果,并判断每个结果发生的可能性是否都相等; (2)如果都相等,再确定所有可能出现的结果的个数n 和其中出现所求事件A 的结果个数m ; (3)用公式计算所求事件A 的概率.即P (A )=. 知识点二、用频率估计概率 1.频率与概率的定义频率:在相同条件下重复n 次试验,事件A 发生的次数m 与试验总次数n 的比值.概率:事件A 的频率接近与某个常数,这时就把这个常数叫做事件A 的概率,记作P (A ). 2.频率与概率的关系事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.可见,概率是频率的稳定值,而频率是概率的近似值. 知识点诠释:(1)频率本身是随机的,在试验前不能确定,无法从根本上来刻画事件发生的可能性的大小,在大量nm nm重复试验的条件下可以近似地作为这个事件的概率;(2)频率和概率在试验中可以非常接近,但不一定相等;(3)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的. 3.利用频率估计概率当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.知识点诠释:用试验去估计随机事件发生的概率应尽可能多地增加试验次数,当试验次数很大时,结果将较为精确.类型一、用树状图或表格求概率1.同时抛掷两枚均匀硬币,正面都同时向上的概率是( )A .B .C .D .【答案】B.【解析】可能性有(正,正),(正,反),(反,正),(反,反)4种,正面都同时向上的占1种,所以概率为. 【总结升华】利用树状图法列出所有的可能,看符合题意的占多少. 举一反三:【变式1】袋中装有一个红球和一个黄球,它们除了颜色外其余均相同,随机从中摸出一球,记录下颜色放回袋中,充分摇匀后,再随机从中摸出一球,两次都摸到黄球的概率是( ) A .B .C .D .【答案】C.【变式2】随机地掷两次骰子,两次掷得的点数相同的概率是( ). A .BC D【答案】 D.2. (2016•大庆)一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( ) A .B .C .D .【思路点拨】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取到的是一个红球、一个白球的情况,再利用概率公式求解即可求得答案.13141234141312143413【答案】C.【解析】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况, ∴取到的是一个红球、一个白球的概率为:=.故选C .【总结升华】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.举一反三:【变式1】从分别标有1到9数字的9张卡片中任意抽取一张,抽到所标数字是3的倍数的概率为( )A .B .C .D . 【答案】D.【变式2】如图是地板格的一部分,一只蟋蟀在该地板格上跳来跳去,如果它随意停留在某一个地方,则它停留在阴影部分的概率是_____.【答案】P (停在阴影部分)=. 类型二、频率与概率3.关于频率和概率的关系,下列说法正确的是( ) A. 频率等于概率 B. 当试验次数很大时,频率稳定在概率附近 C. 当试验次数很大时,概率稳定在频率附近 D. 试验得到的频率与概率不可能相等【思路点拨】对于某个确定的事件来说,其发生的概率是固定不变的,而频率是随着试验次数的变化而变化的. 【答案】B.【解析】事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近. 【总结升华】概率是频率的稳定值,而频率是概率的近似值.1918291323类型三、利用频率估计概率4. 某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1)计算并完成表格:落在“铅笔”的频率(2)请估计,当很大时,频率将会接近多少?(3)转动该转盘一次,获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到 1°)【答案与解析】(1) 0.68、0.74、0.68、0.69、0.6825、0.701;(2) 0.70;(3) 由(1)的频率值可以得出P(获得铅笔)=0.70;(4) 0.70×360°=252°.【总结升华】(1)试验的次数越多,所得的频率越能反映概率的大小;(2)频数分布表、扇形图、条形图、直方图都能较好地反映频数、频率的分布情况,我们可以利用它们所提供的信息估计概率.5.(2015春•泰兴市期末)在一个暗箱里放有a个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%.(1)试求出a的值;(2)从中任意摸出一个球,下列事件:①该球是红球;②该球是白球;③该球是蓝球.试估计这三个事件发生的可能性的大小,并将三个事件按发生的可能性从小到大的顺序排列(用序号表示事件).【思路点拨】(1)根据频率估计概率,可得到摸到红球的概率为20%,然后利用概率公式计算a的值;(2)根据概率公式分别计算出摸出一个球是红球或白球或蓝球的概率,然后根据概率的大小判断这三个事件发生的可能性的大小.【答案与解析】解:(1)a=4÷20%=20;(2)在一个暗箱里放有20个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,蓝求有6个,所以从中任意摸出一个球,该球是红球的概率=20%;该球是白球的概率==50%;该球是蓝球的概率==30%,所以可能性从小到大排序为:①③②.【总结升华】用频率估计概率,强调“同样条件,大量试验”. 举一反三:【变式1】为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼______________条. 【答案】条 .【变式2】一只箱子里原有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出两个球,用树状图或列表法列举出所有可能并求两次摸出球的都是白球的概率. (2)若从箱子中任意摸出一个球是红球的概率为,则需要再加入几个红球? 【答案】类型四、概率的简单应用6. 把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5)洗匀后正面朝下放在桌面上.(1)如果从中随机抽取一张牌,那么牌面数字是的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当张牌面数字相同时,小王胜;当张牌面数字不相同时,小李胜.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.【思路点拨】(1)问属于古典概型;(2)问可以采用列表法或树状图法列出所有的可能,计算小王和小李各自取胜的概率,再去做判断. 【答案与解析】(1)P (抽到牌面数字4)=;(2)游戏规则对双方不公平,理由如下:53一共有9种可能的结果,每种结果发生的可能性相等,∴P(牌面数字相同)=;P(牌面数字不相同)=,∴小李胜的概率要大,游戏不公平.【总结升华】列表法可以不重不漏地列出所有可能的结果.举一反三:【变式】(2015•漳州)在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.【答案】解:(1)根据题意画图如下:∵从表中可以看出所有可能结果共有12种,其中数字之和小于9的有4种,∵P(小明获胜)==;(2)∵P(小明获胜)=,∵P(小东获胜)=1﹣=,∵这个游戏不公平.23。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率的进
一步认识》
复习
单元知识结构:
考点一:事件的类型
事件包括确定事件和不确定事件,确定事件包括必然事件和不可能事件,必然事件发生的概率是1,不可能事件发生的概率为0,而不确定事件发生的概率在0和1之间. 1、下列事件为必然事件的是( )
A .小王参加本次数学考试,成绩是150分
B .某射击运动员射靶一次,正中靶心
C .打开电视机,CCTV 第一套节目正在播放新闻
D .口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球 2. 下列事件中,属于确定事件的个数是( )
⑴打开电视,正在播广告; ⑵投掷一枚普通的骰子,掷得的点数小于10; ⑶射击运动员射击一次,命中10环; ⑷在一个只装有红球的袋中摸出白球.
考点二:概率的意义
在理解概率的定义时,有一点必须注意:即使某事件发生的概率是2
1
,也并不意味着做m 次随机试验,概率
事件的概念
概率的计算方法
用频率估计概率
与统计知识的综合应用
利用概率
模型解决相关的
实际问题P (必然
事件)
=1
确定事件
不确定事件
概率
必然事件
不可能事件
0<P (不
确定事
件)<
1
列举法
树状图
列表格
概率的简单应用
利用概率设计
游戏P (不可能事件)=
事件就一定会发生一次,当试验次数很大时,试验频率接近理论概率,但是不一定等于理论概率.
3、下列说法中错误的是【 】
A .某种彩票的中奖率为1%,买100张彩票一定有1张中奖
B .从装有10个红球的袋子中,摸出1个白球是不可能事件
C .为了解一批日光灯的使用寿命,可采用抽样调查的方式
D .掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是
6
1 4、在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片 上的图形是中心对称图形的概率是( ) A.
41 B. 21 C. 4
3
考点三:用列举法求概率
考查简单事件概率计算.一般地,如果某个试验共有n 种可能出现结果,某种事件A 包含的结果共有m 种,那么事件A 发生概率P (A )=
n
m
(0≤P (A )≤1). 5、现有4根小木棒,长度分别为:2,3,4,5(单位:cm),从中任意取出3根.(1)列出所选的3根小木棒的所有可能情况;(2)如果用这3根小木棒首尾顺次相接,求它们能搭成三角形的概率. 考点四:用列表法或树状图求概率
一般地,对于两次或两次以上的随机事件,采用树状图或列表的方式来表示所有可能的情况.注意:要关注两次试验时有放回还是无放回.
6、口袋内装有大小、质量和材质都相同的红1、红2、黄1、黄2、黄3的5个小球,从中摸出两球,这 两球都是红色的概率是________
7、现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”、“2”,“3”,第一次从这三张卡 片中随机抽取一张,记下数字后放回,第二次再从这三张卡片中随机抽取一张并记下数字,请用列表 或画树状图的方法表示出上述试验所有可能的结果,并求第二次抽取的数字大于第一次抽取的数字的 概率.
8、为了决定谁将获得仅有的一张科普报告入场券,甲和乙设计了如下的一个游戏:口袋中有编号分别为1、 2、3的红球三个和编号为4的白球一个,四个球除了颜色或编号不同外,没有任何别的区别,摸球之 前将小球搅匀,摸球的人都蒙上眼睛.先甲摸两个球;把甲摸出的两个球放回口袋后,乙再摸,乙只
摸一个球.如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分;如果乙摸出的球是白色,乙 得1分,否则,乙得0分 ;得分高的获得入场券,如果得分相同,游戏重来.
(1)运用列表或画树状图求甲得1分的概率;(2)这个游戏是否公平?请说明理由. 频率与概率检测题
一、填空题:(30分)
1.一个袋子中装有3个红球和2个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到 红球的概率为 .
2.小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是 . 3、有七张正面分别标有数字3-,2-,1-,0,l ,2,3的卡片,它们除数字不同外其余全部相同.现将 它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程 2
2(1)(3)0x a x a a --+-=有两个不相等的实数根的概率是________.
4、连续郑一枚均匀的硬币3次,3次都是正面朝上的概率是___________.
5、在一个不透明的袋中装有4个红球和m 个白球,它们除颜色外都相同,从中任意摸出一球,摸到白球 的概率为
5
4
,则m=________. 二、选择题:(30分)
1.小颖将一枚质地均匀的硬币连续掷了2次,你认为2次都是正面朝上的概率是( ) A.
21 B.31 C.4
1 D.81
2.一个不透明的布袋中有分别标着数字1、2、3、4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这 两个乒乓球上的数字之和大于5的概率为( ) A.
16 B.1
3
C.12
D.23
3、如图,A 、B 是数轴上的点,在线段AB 上任取一点C , 则点C 到表示-1的点的距离不大于2的概率( )
A.21
B.32
C.43
D.5
4
4、小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记 甲立方体朝上一面上的数字为x 、乙立方体朝上一面朝上的数字为y ,这样就确定点P 的一个坐标 (x y ,),那么点P 落在一次函数y=x+2上的概率为( ) A .
118 B .1
12
C .19
D .
1
6
5、一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的 球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定 在30%,那么可以推算出n 大约是( ) 三、解答题:(10+15+15)
1、在一个不透明的口袋里装有分别标注
2、4、6的3个小球(小球除数字外,其余都相同),另有3张背面完全一样、正面分别写有数字6、7、8的卡片.现从口袋中任意摸出一个小球,再从这3张背面朝上的卡片中任意摸出一张卡片.小红和小莉做游戏,制定了两个游戏规则: 规则1:若两次摸出的数字,至少有一次是“6”,小红赢;否则,小莉赢.
规则2:若摸出的卡片上的数字是球上数字的整数倍时,小红赢;否则,小莉赢. 小红想要在游戏中获胜,她会选择哪一条规则,并说明理由. 速度与正确
的完美训练
A B
-3 -1
1 2
2、“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整). 请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人? (2)将两幅不完整的图补充完整; (3)若居民区有8000人,请估计爱吃D 粽的人数; (4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.
3. 据某市2012年国民经济和社会发展统计公报显示,2012年某市新开工的住房有商品房、廉租房、经济适用房和公共租赁房四种类型.老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题: (1)求经济适用房的套数,并补全频数分布直方图;
(2)假如申请购买经济适用房的对象中共有950人符号购买条件,老王是其中之一.由于购买人数超过
房子套数,购买者必须通过电脑摇号产生.如果对2012年新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?
(3)如果2014年新开工廉租房建设的套数为605套,那么2013年、2014年两年的廉租房的年增长率是多少?
A D C
B 人数
A D C
B 0 60
120 180
240 300 40% 10%。

相关文档
最新文档