旋风除尘器设计公式
旋风除尘器设计说明
旋风除尘器设计计算说明书1、旋风除尘器简介旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的,用来分离粒径大于5—10μm以上的的颗粒物。
工业上已有100多年的历史。
特点:结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。
优点:效率80%左右,捕集<5μm颗粒的效率不高,一般作预除尘用。
旋风除尘器的结构形式按进气方式可分为直入式、蜗壳式和轴向进入式;按气流组织分类有回流式、直流式、平流式和旋流式多种1.1 工作原理(1)气流的运动普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。
图1(2)尘粒的运动:切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。
1.2 影响旋风器性能的因素(2)二次效应-被捕集粒子的重新进入气流在较小粒径区间,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率;在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率;通过环状雾化器将水喷淋在旋风除尘器壁上,能有效地控制二次效应;临界入口速度。
(2)比例尺寸在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降;锥体适当加长,对提高除尘效率有利;排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加,一般取排出管直径d e =(0.6~0.8)D ;特征长度(natural length )-亚历山大公式:21/3e 2.3()=D l d A排气管的下部至气流下降的最低点的距离旋风除尘器排出管以下部分的长度应当接近或等于l ,筒体和锥体的总高度以不大于5倍的筒体直径为宜。
旋风除尘器cad结构图纸设计及技术参数
七、旋风除尘器的效率检验
• 已知处理烟气温度T=180℃,查表或用公式可得常 压下烟气密度ρg=0.8kg/m3,动力黏度μ=2.5×10-5 Pa·s。
由几何尺寸,可得自然返回长
L 2 . 3 D 0 ( D e 2 / H i ) 1 / 3 2 W . 3 0 . 8 ( 0 . 4 4 2 / 0 . 4 2 0 . 1 2 ) 1 / 3 8 2 m
明细表
总质量
311kg
切流式旋风除尘器
图号
外形图
比例 日期
设计 制图 校对 审核
LX-0
1:10 2006年1月
十、零件图的画法
A.蜗壳的画法
1)蜗壳出口断面尺寸确定 出口风速:v=12~15m/s abv=Q,取a=b; a=(Q/v)1/2=〔5000/(15×3600)〕 1/2 =
0.304~0.340 取a=b=320mm 2)确定偏心距 考虑焊接方便,蜗壳出口内壁距旋风出气管20mm, 于是中心线到出口蜗壳出口内壁距半径:r=230mm, 中心线距蜗壳外壁半径:R=210+20+320=550mm。 偏心距:e=320/4=8mm
1020 320
80 480
1030
550
蜗壳
设计 制图 校对 审核
图号
LX-06
比例
1:2
日期
2006年1月
A.法兰的画法
1)法兰材料的确定
采用角钢,查手册:选不等边角钢40×25×4 还可选等边角钢:36×4 2)螺栓孔距确定 需满足JB/ZQ4248-86。如螺栓直径为8mm,孔距大于28mm。对于旋风除尘
实际风速为:Vc=Q/(3600×0.42×0.18)= 19.5m/s 4. 由尺寸比确定筒体直径和高:
气溶胶力学旋风除尘器计算公式
旋风除尘器图 4-4 旋风除尘器图4—5考虑一位于点(r,θ)处的流体微元,如图4—5所示,在不考虑阻力的情况下,只有正压力作用在微元上,流动是二维的,单位厚度微元的质量为:ρrdrdθdm=而粒子的加速度为:r va 2=则 dp rd r v rdrd θθρ=⋅2收集效率公式为⎥⎦⎤⎢⎣⎡--=-=ϕπηθn v v N N r 2exp 1101 (1)极限粒径p d dc ≤= (2)径向速度rv d v p p r2218θμρ= (3)p p rd rv v 5.115.05.02)152(μρρθ= (4) 切向速度21ln()Qv v ra r r θ== (5)n=h/a (6)φ=b/r 2 (7)r 2为筒体的半径式(2)是收集效率公式的应用条件, 计算旋风器的收集效率时,对小于极限粒径的粒子径向运动速度v r 按式(3)计算,对大于极限粒径的粒子运动速度v r 按(4)计算,这样,对任何粒径的粒子,均可按式(1)计算收集效率。
例.已知D=120mm ,进口切线速度v θ=15m/s,n=2.5,φ=0.40,μ=1.8x10-5Pas; ρp =2500kg/m 3; ρp =1.2kg/ m 3。
计算旋风器的收集效率。
解:由式(1)计算的分级效率见图4-8中曲线3,而图4-8中的实线为实测曲线。
由图4-8可知,对于细小粒子,实际效率高于理论效率;对于较大粒子,实际效率低于理论效率。
前者是由于细小粒子发生凝并的缘故,后者是由于大粒子的回跳,降低了收集的效率。
旋风除尘器的主要几何尺寸对其阻力影响很大,正确选择旋风器的主要尺寸,可以大大降低阻力从而减小能量消耗。
要做到正确选择,必须首先搞清楚旋风器的主要几何尺寸与其阻力之间的内在规律。
旋风除尘器内部气流的运动是比较复杂的,目前我们还不能准确地从理论上推导出描述旋风器阻力的公式,因而不得不采用半经验的方法来加以解决。
图 4-8 旋风器的分级效率旋风除尘器的阻力与其进口速度之间的关系可用下式描述:△P=ξv 2ρ/2 (8)式中 ζ——阻力系数;ρ——空气的密度。
旋风除尘器的设计说明书
一、旋风除尘器的结构 旋风除尘器由进气管、
筒体、锥体、出气管、下 灰管、灰斗、卸灰阀组成。
二、旋风除尘器的效率
1. 转圈理论 分级效率
1 exp[ Vt (ND0 )]
Vc Wi
所转圈数
N 2H1 H2 2H
离心沉降速度
Vt
a
pd p2 18
• 第二组:
原始资料: 有一台锅炉,处理烟气量: Q=5000m3/h,排烟温度常温,入口浓度 C0=10g/m3,要求出口浓度C=1.5g/m3。 粉尘密度ρp=2500kg/m3,粒度分布见原表, 设计旋风除尘器。
• 第三组:
有一台锅炉,处理烟气量:Q=8000m3/h, 其它条件同第二组,设计旋风除尘器。
由筛分理论,其粉尘分割径为
dc
18Q / 2 pLVc2
18 2.5105 5000
2 3600 2000 219.52
8 m
将分割径代入筛分理论效率公式,将所计算的 分级效率填入表中。其总效率为
n
T Di 0.06 0.268 0.12 0.542 0.22 0.876 i 1 0.29 0.991 0.18 0.999 0.131 0.871 87.1%
VC 2 r
2. 筛分理论 分级效率
1 exp[0.693 d p ]
dc
粉尘分割径 dc 18Q / 2 p LVc2
自然返回长
L 2.3D0( De2 / HWi )1/ 3
三、旋风除尘器的阻力
经验公式
p k gVc2
2
阻力系数 k =6~9。
四、旋风除尘器的尺寸比
• 因ηT >85%,故满足设计要求。
大气设计旋风除尘器系统设计
XLP/A 型旋风除尘器系统设计一 、设计原始资料XLP/A 型旋风除尘器已知烟气量Q=5000m3/h,烟气密度为1.1kg/m3,允许压力损失为2000Pa二 、设计内容(一)根据原始数据设计XLP/A 型旋风除尘器的主要部分尺寸,设计详细过程如下: 1.烟气进口气速V 1=P P ε/2∆ =)1.10.8/(20002⨯⨯m/s=21.32m/s (ε查表得:8.0) V 1值与查得的气速与压力降数据基本一致 2.进口截面积A=q v /(3600V 1) =5000/(3600 X 21.32)m 2=0.0651m 2 3.入口高度h =A 3=0651.03⨯m=0.44m=440mm 4.入口宽度b=3/A =3/0651.0m=0.147m=147mm 5.筒体直径上:D=3.85b=3.85×0.147m=0.566m=566mm 参考XLP/A 品系列:XLP/A--5.4,取D=540mm规格 φ1 HLWCC 1C 2C 3a 1b 2n 1Fa 2XLP/A -3.0 300 1380406 390 190 190 620 340 80 240 1110 110XLP/A -4.2 420 1880556 545 260 265 845 445 110 330 270 140XLP/A -5.4540 2350711 700 350 340 1060540 140 400 288 176下: D'=0.7D=0.7×540mm=378mm 6.排出管直径de=0.6D=0.6×540mm=324mm 7.筒体长度上:1.35D=1.35×540mm=729mm 下:1.0D=1.0×540mm=540mm 8.锥体长度上:0.50D=0.50×540mm=270mm 下:1.0DD=1.0×540mm=540mm 9.排灰口直径d1=0.0296D=0.0296×540mm=16mm将上面数据总结成下表尺寸名称 计算公式尺寸(mm )入口宽度b 3/A147 入口高度h A 3 440 筒体直径D上 b 85.3540 下0.7D378XLP/A -7.0 700 3040 911 910 440 440 1370690 180 402 108 216XLP/A -8.2 820 354010171065500 515 1595795 210 630 2 128 256XLP/A -9.4 910 4055 12261223590 593 1828908 245 735 2 146 291XLP/A-10.6 1060 454513761378670 668 20531013275 825 3107 321参考型号XLP/A-5.4的旋风除尘器,将筒体直径D 修正540mm 排出筒直径e d D 6.0324 筒体长度L上 1.35D 729 下1.0D 540 椎体长度H上 0.50D 270 下1.0D540 灰口直径1dD 296.0160(二)设计验证:1.为防止粒子短路,漏到出口管,h ≤s,其中s 为排气管插入深度, 理论为:s ≥440mm;2.为避免过高的压力损失,b ≤(D-e d )/2 理论为:(566-324)/2=121mm, 实际设计为 :147mm结论: 147>121,不符合要求,压力损失过大; 3.为保证涡流的终端在锥体内部,(H+L )≥3D, 实际设计:H+L=729+540+270+540=2079mm 3D=3⨯566=1698, 结论:2079≥1698,符合要求; 4.为利于粉尘易于滑动,锥角=7º~8º,实际设计:锥角=arctan{[(566-378)/(2⨯270)]}=19.1º, 结论:19.1º不属于7º~8º范围,角度过大,不符合要求; 5.为获得最大的除尘效率,e d /D ≈0.4~0.5,(H+L )/e d ≈8~10,实际设计:e d /D ≈324/566=0.57,结论:0.57不属于0.4~0.5范围,不符合要求; 实际设计:(H+L )/e d =2079/324 ≈6.4,.结论:6.4,属于8~10范围,符合要求;(三)XLP/A旋风除尘器简介1.XLP/A的工作原理既含尘气体进入除尘器后,气体获得旋转运动的同时,上下分开。
旋风除尘器的设计与计算
一、实习目的1、进一步了解旋风除尘器的有关计算2、熟悉用CAD画效果图3、查阅和整理各方面资料,了解旋风除尘器各方面性能及影响因素;二、设计题目设计一台处在常温(20°C),常温下含尘空气的旋风除尘器。
已知条件为:处理气量Q=1300m³/h,粉尘密度ρp=1960kg/m³,空气密度ρ=1.29 kg/m,空气粘度μ=1.8x10-5Pa.s,进入的粉尘粒度分布见下表:设计要求:XLT旋风除尘器,最后实现污染物的达标排放,且除尘效率为85%,压力损失不高于2000Pa。
提交文件:设计说明+旋风除尘器图(CAD制图),图纸输出A4纸。
三、旋风除尘器的工作原理1.1 工作原理(1)气流的运动普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:内涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。
(2)尘粒的运动:切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。
1.2特点(1)旋风除尘器与其他除尘器相比,具有结构简单、占地面积小、投资低、操作维修方便以及适用面宽的优点。
(2)旋风除尘器的除尘效率一般达85%左右,高效的旋风除尘器对于输送、破碎、卸料、包装、清扫等工业生产过程产生的含尘气体除尘效率可达95%-98%,对于燃煤炉窑产生烟气的除尘效率可以达到92%-95%。
(3)XLT 旋风除尘器的主要特点(4)旋风除尘器捕集<5μm 颗粒的效率不高,一般可以作为高浓度除尘系统的预除尘器,与其他类型高效除尘器合用。
可用于10μm 以上颗粒的去除,符合此题的题设条件。
旋风除尘器的设计
旋风除尘器的设计二.说明书2.1图形设计:旋风除尘器图(图1)2.2设计数据:2.3旋风除尘器的参数计算许多学者都致力于旋风除尘器的研究,通过各种假设,他们提出了许多不同的计算方法。
由于旋风除尘器内实际的气、尘两相流动非常复杂,因此根据某些假设条件得出的理论公式目前还不能进行较精确的计算。
1.分割粒径(dc50)计算旋风除尘器的分割粒径(dc50)是确定除尘器效率的基础。
在计算时,因假设条件和选用系数不同,计算分割粒径的公式也各不同。
下面简要介绍一种计算方法,以说明旋风除尘器的除尘原理。
处于外涡旋的尘粒在径向会受到两个力的作用:惯性离心力(2-3-1)式中 vt——尘粒的切线速度,可以近似认为等于该点气流的切线速度,m/s;r——旋转半径,m。
向心运动的气流给予尘粒的作用力(2-3-2)式中 w——气流与尘粒在径向的相对运动速度,m/s。
这两个力方向相反,因此作用在尘粒上的合力(2-3-3)由于粒径分布是连续的,必定存在某个临界粒径dk作用在该尘粒上的合力之和恰好为零,即F=Fl-P=0。
这就是说,惯性离心力的向外推移作用与径向气流造成的向内飘移作用恰好相等。
对于粒径dc >dk的尘粒,因Fl>P,尘粒会在惯性离心力推动下移向外壁。
对于dc <dk的尘粒,因Fl<P,尘粒会在向心气流推动下进入内涡旋。
如果假想在旋风除尘器内有一张孔径为dk 的筛网在起筛分作用,粒径dc>dk的被截留在筛网一面,d c <dk的则通过筛网排出。
那么筛网置于什么位置呢?在内、外涡旋交界面上切向速度最大,尘粒在该处所受到的惯性离心力也最大,因此可以设想筛网的位置应位于内、外涡旋交界面上。
对于粒径为dk 的尘粒,因Fl=P,它将在交界面不停地旋转。
实际上由于气流紊流等因素的影响,从概率统计的观点看,处于这种状态的尘粒有50%的可能被捕集,有50%的可能进入内涡旋,这种尘粒的分离效率为50%。
因此d k =dc50。
根据公式(5-4-7),在内外涡旋交界面上,当Fl=P时,旋风除尘器的分割粒径:(2-3-4)式中 r——交界面的半径,m;w——交界面上的气流径向速度,m/s;v0t——交界面上的气流切向速度,m/s。
旋风除尘器设计方案.doc
旋风除尘器设计方案.doc设计原始资料:锅炉型号:DLP2-13即,单锅筒纵置式抛煤机炉,蒸发量2t/h,出口蒸汽压力13MPa设计耗煤量: 360kg/h( 按学号增加 5)Y Y Y Y Y Y Y设计煤成分: C=60.5% H =3% O=4% N =1% S =1.5% A =18% W=12%; V Y= 15%;属于中硫烟煤排烟温度:165℃空气过剩系数= 1.4飞灰率= 21%烟气在锅炉出口前阻力650Pa污染物排放按照锅炉大气污染物排放标准中2 类区新建排污项目执行。
连接锅炉、净化设备及烟囱等净化系统的管道假设长度50m,90°弯头 10 个。
1.燃烧计算1.1实际耗空气量的计算在标准状况下,以1Kg应用煤为基准进行计算,结果见表1-1 。
1Kg 该煤完全燃烧时所需要标准状况下的氧气的体积V o为:V o=(50.4+7.5+0.47-1.25)× 22.4=1279.448 L(1-1)假设空气中氮氧的摩尔数之比为N/O=3.78,则1Kg 低硫煤完全燃烧时所需要的空气体积 V k为:V k =( 1+3.78 )× 1279.448=6115.953 L (1-2 )实际消耗的空气体积V k为:V k=1.4 V k=1.4×6115.953=8562.333 L ( 1-3 )表 1-1 1Kg应用煤的相关计算质量摩尔数燃烧耗氧量生成气体量生成气体体积成分( g)(mol )(mol )( mol)( L )C 605 50.4 50.4 50.4 1128.96H 30 15 7.5 15 336O40 1.25————28N100.36——0.367.84S 15 0.47 0.47 0.47 10.528水分120 6.67————149.408 灰分180————————1.2产生烟气量的计算1Kg 该煤完全燃烧后生成的烟气量V y =149.408+10.528+7.84+336+1128.96+8562.333=10195.069 L =10.195 m3 ( 1-4 )则,在160℃时的实际烟气体积为V y为:V y=10.195×(160+273.15)=16.17 m3 ( 1-5 )273.15该锅炉一小时产生的烟气流量Q 为:Q =16.17×360=5821.2m3/h=1.617 m3/s(1-6)1.3灰分浓度及二氧化硫浓度的计算烟气中灰分的质量M h为:M h =180× 21%=37.8g=37800mg (1-7 )烟气中灰分的浓度h 为:h =37800/16.17=2337.662mg/ m3 ( 1-8 )烟气中 SO2质量 M S为:M S =0.47 ×64=30.08g=30080mg ( 1-9 )烟气中 SO2的浓度s 为:s =30080/16.17=1860.235mg/ m3 (1-10 )2.净化方案设计及运行参数选择本设计中采用旋风除尘设备进行净化处理。
旋风除尘器设计计算
1.1、工作原理⑴气流的运动普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:内涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。
图1⑵尘粒的运动:切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。
1.2、影响旋风器性能的因素⑴二次效应-被捕集粒子的重新进入气流在较小粒径区间内,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率;在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率;通过环状雾化器将水喷淋在旋风除尘器内壁上,能有效地控制二次效应;临界入口速度。
⑵比例尺寸在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降;锥体适当加长,对提高除尘效率有利;排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加,一般取排出管直径d e=(0.6~0.8)D;特征长度(natural length)-亚历山大公式:排气管的下部至气流下降的最低点的距离旋风除尘器排出管以下部分的长度应当接近或等于l ,筒体和锥体的总高度以不大于5倍的筒体直径为宜。
⑶运行系统的密闭性,尤其是除尘器下部的严密性:特别重要,运行中要特别注意。
在不漏风的情况下进行正常排灰 ⑷ 烟尘的物理性质气体的密度和粘度、尘粒的大小和比重、烟气含尘浓度 ⑸操作变量提高烟气入口流速,旋风除尘器分割直径变小,除尘器性能改善 ;入口流速过大,已沉积的粒子有可能再次被吹起,重新卷入气流中,除尘效率下降;效率最高时的入口速度,一般在10-25m/s 范围。
旋风除尘器的设计与计算
一、实习目的1、进一步了解旋风除尘器的有关计算2、熟悉用CAD 画效果图3、查阅和整理各方面资料,了解旋风除尘器各方面性能及影响因素;二、设计题目设计一台处在常温(20°C ),常温下含尘空气的旋风除尘器。
已知条件为:处理气量Q=1300m3/h ,粉尘密度ρp=1960kg/m3,空气密度ρ=1.29kg/m ,空气粘度μ=1.8x10-5Pa.s ,进入的粉尘粒度分布见下表:设计要求:XLT 旋风除尘器,最后实现污染物的达标排放,且除尘效率为85%,压力损失不高于2000Pa 。
提交文件:设计说明+旋风除尘器图(CAD 制图),图纸输出A4纸。
三、旋风除尘器的工作原理1.1工作原理(1)气流的运动普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:内涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。
(2)尘粒的运动:切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。
1.2特点(1)旋风除尘器与其他除尘器相比,具有结构简单、占地面积小、投资低、操作维修方便以及适用面宽的优点。
(2)旋风除尘器的除尘效率一般达85%左右,高效的旋风除尘器对于输送、破碎、卸料、包装、清扫等工业生产过程产生的含尘气体除尘效率可达95%-98%,对于燃煤炉窑产生烟气的除尘效率可以达到92%-95%。
(3)XLT 旋风除尘器的主要特点(4)旋风除尘器捕集<5μm 颗粒的效率不高,一般可以作为高浓度除尘系统的预除尘器,与其他类型高效除尘器合用。
可用于10μm 以上颗粒的去除,符合此题的题设条件。
(完整版)除尘器选型计算
我国环保部门采用的的mg/m3,把它转换成PPM 时,两者转换时 查到下面的公式mg/m3=M/22.4·ppm·[273/(273+T)]*(Ba/101325) 上式中:M----为气体分子量 ppm----测定的体积浓度值 T----温度 Ba----压力袋 除尘计算1、工况风量Q)1(*324.101*15.273)15.273(*K Pat Q Q S ++=Q S —标况气量,m 3/h ,按锅炉烟气工况量的110%计算 t —工况温度,℃ Pa —当地大气压, kPa K —漏风率(3~5%) 2、过滤面积S ,m 2vQS 60=v —过滤速度,m/min即过滤速度SQ v 60=实际过滤速度ps vv ε=εp —粉尘层的平均空隙率,一般为0.8~0.95. 3、滤袋数nDLS n π=D —滤袋直径mm (外滤式110~180mm ,内滤式200~300mm ) L —袋长m (2~10mm )4、进出口参数 进口尺寸:S1136001v QS =V 1—进口风速m/s为了不让粒径大的颗粒积于管道内,使得管道堵塞,在进除尘器之前的管道中采用大风速,一般进气口风速15—25m/s ,根据不同粉尘采用不同风速(除尘器后的排气管道内由于不存在粉尘沉淀问题,气体流速取8~12m/s 。
大型除尘系统采用砖或混凝土制管道时,管道内的气速常采用6~8m/s,垂直管道如烟囱出口气速取10~20m/s。
那么进出气口尺寸可由截面积算出,一般截面形状为圆形或方形。
含尘气体在管道内的速度也可采用下述的经验计算方法求得。
(1)在垂直管道内,气速应大于管道内粉尘粒子的悬浮速度,考虑到管道内的气流速度分布的不均匀性和能够带走贴近管壁的尘粒,管道内的气速应为尘粒悬浮速度的1.3~1.7倍。
对于管路比较复杂和管壁粗糙度较大的取上限,反之取下限。
(2)在水平管道内,气速应按照能够吹走沉积在管道底部的尘粒的条件来确定。
旋风除尘器效率计算公式
旋风除尘器效率计算公式
旋风除尘器的效率通常通过收集器效率和分离器效率来计算。
收集器效率是指除尘器中集尘器收集颗粒物的能力,分离器效率是指除尘器中分离颗粒物与气体的能力。
收集器效率(ηc)可以通过下列公式计算:
ηc = (1 - x/y) * 100%
其中,x是除尘器出口处的颗粒物质量浓度,y是进口处的颗粒物质量浓度。
分离器效率(ηs)可以通过下列公式计算:
ηs = (1 - u/v) * 100%
其中,u是除尘器出口处的颗粒物体积浓度,v是进口处的颗粒物体积浓度。
综合效率可以通过收集器效率和分离器效率来计算:
η = ηc * ηs
除了以上的效率计算公式,还可以根据除尘器的气体流速、颗粒物大小和形状、设备的设计规格和操作参数等因素来拓展效率计算公式。
例如,根据颗粒物在除尘器内的沉降速度、离心力等因素来计算除尘器的效率,或者根据颗粒物与气体的相对速度来计算效率等。
不同的除尘器类型和工作条件可能需要不同的效率计算方法。
《大气污染物控制工程》旋风除尘器
收集设计资料,选择除尘器的型式
气体流量:Q 粉尘的物理性质:含尘浓度、粒径分布、密度 气体的物理性质:温度、湿度等 净化要求:根据排放标准(C2), ΔP <某值
Q, η, ΔP
旋风除尘器的设计选型
选择除尘器的型式 根据允许的压力降确定进口气速,或取为12-25 m/s
Vr
Q 2πr0h0
r0和h0分别为交界圆柱面的 半径和高度,m
轴向速度
外涡旋的轴向速 度向下
内涡旋的轴向速 度向上
在内涡旋,轴向 速度向上逐渐增大, 在排出管底部达到 最大值
(1)旋风除尘器内气流的切向速度和压力分布
压力:外侧高,中心低,轴心处为负压。
除尘器下部必须保持严密,否则会有空气渗入,把已分离的粉尘重新卷入内涡旋。
4.9b 0.58D 1.6D 1.3D 0.145D 440(490) 440(490) 990(1110)
例题: 已知烟气处理量Q=5000m3/h,烟气密度ρ=1.2kg/ m3,允许压力
损失为900Pa ,若选用XLP/B型旋风除尘器,试求其主要尺寸。
解:由式(6-26)
v1
2P
XLP/B
A/2 2A 3.33b (b=0.3D)
0.6D
1.7D
2.3D 0.43D 5000(420)
890(700) 1450(1150)
XLT/A A / 2.5 2.5 A
3.85b 0.6D 2.26D 2.0D 0.3D 860(770)
1350(1210) 1950(1740)
XLT A /1.75 1.75 A
在内、外涡旋交界面上,离心力FC、阻力FD
除尘器计算公式
除尘器计算公式好的,以下是为您生成的关于“除尘器计算公式”的文章:在工业生产和环境保护的领域中,除尘器可是个大功臣。
要让除尘器高效地工作,准确的计算公式那是必不可少的。
咱们先来说说最常见的重力除尘器。
它的分离效率计算公式就像是一个小秘密,藏在复杂的公式背后。
分离效率 = (颗粒沉降速度 ×设备停留时间)/ 设备高度。
这当中,颗粒沉降速度又跟颗粒的大小、形状、密度,还有气体的流速、粘度等等因素有关系。
比如说,有一次我在工厂里观察重力除尘器的运行,发现那些较大较重的颗粒就像着急回家的孩子,迅速地沉降下去;而那些细小轻盈的颗粒则像是调皮的小精灵,在空中逗留许久。
再来讲讲旋风除尘器。
旋风除尘器的处理风量计算公式是:Q = A ×V 。
这里的 Q 表示处理风量,A 是进口截面积,V 是进口风速。
有一回,我在一家工厂看到技术人员正在调试旋风除尘器,他们仔细地测量着进口的尺寸,然后根据计算出来的风速来调整设备,那专注的神情仿佛在对待一件珍贵的艺术品。
还有电除尘器,它的除尘效率计算公式稍微复杂一点:η = (1 - exp(-Aω / Q))× 100% 。
这里的η 是除尘效率,A 是集尘极面积,ω 是驱进速度,Q 是处理风量。
我曾经在一个大型电厂看到电除尘器在轰鸣运转,那闪烁的电火花就像夜空中的繁星,而这个复杂的公式则像是掌控这一切的神秘密码。
袋式除尘器的过滤风速计算公式是:V = Q / (60 × A)。
其中 V 是过滤风速,Q 是处理风量,A 是过滤面积。
记得有一次,我在一个水泥厂,看到工人们正在更换袋式除尘器的滤袋,他们一边忙碌,一边嘴里念叨着这个公式,以确保新换上的滤袋能够达到最佳的过滤效果。
总之,这些除尘器的计算公式就像是一把把神奇的钥匙,能够帮助我们打开高效除尘的大门。
只有准确地运用这些公式,我们才能让除尘器发挥出最大的作用,让我们的环境更加清洁,让蓝天白云常伴我们左右。
旋风除尘器设计
精心整理旋风除尘器设计计算说明书1、旋风除尘器简介旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的,用来分离粒径大于5—10μm以上的的颗粒物。
工业上已有100多年的历史。
特点:结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。
1.1(1气流(21.2(2(2排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加,一般取排出管直径d e=(0.6~0.8)D;特征长度(naturallength)-亚历山大公式:排气管的下部至气流下降的最低点的距离旋风除尘器排出管以下部分的长度应当接近或等于l,筒体和锥体的总高度以不大于5倍的筒体直径为宜。
(3)运行系统的密闭性,尤其是除尘器下部的严密性:特别重要,运行中要特别注意。
在不漏风的情况下进行正常排灰(4)烟尘的物理性质气体的密度和粘度、尘粒的大小和比重、烟气含尘浓度(5)操作变量提高烟气入口流速,旋风除尘器分割直径变小,除尘器性能改善;入口流速过大,已沉积的粒子有可能再次被吹起,重新卷入气流中,除尘效率下降;效率最高时的入口速度,一般在10~25m/s 范围。
2、设计资料(1)所处理的粉尘为某水泥干燥窑的排烟,主要成分为水泥粉尘;(2)平均烟气量为2300m 3/h ,最大烟气量为3450m 3/h(3)烟气日变化系数K 日=1.5(4(5(6)2500Pa.3④ 排气管直径d 0.5=0.4d D m =⑤ 卸灰口直径x d 0.250.2x d D m ==⑥ 筒体长度1l 12 1.6l D m ==⑦ 锥体长度2l 2=2 1.6l D m =⑧ 排气管长度3l 30.625D 0.5l m ==3.3 选择旋风除尘器的前后连接管道通风管选择:选用材料为Q235钢板,内径为300mm,壁厚2.0mm;排气管的选择:选用材料为Q235钢板,内径为300mm,壁厚1.5mm。
旋风除尘器设计计算
大气污染控制工程实习设计说明书学院:资源环境学院姓名:学号:2014011321旋风除尘器设计计算1、前言介绍:尘器是利用旋转气流产生的离心力使尘粒从气流中分离的,用来分离粒径大于5—10μm以上的的颗粒物。
工业上已有100多年的历史。
特点:结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。
优点:效率80%左右,捕集<5μm颗粒的效率不高,一般作预除尘用。
类型:除尘器的结构形式按进气方式可分为直入式、蜗壳式和轴向进入式;按气流组织分类有回流式、直流式、平流式和旋流式多种2、工作原理旋风除尘器是利用旋转气流所产生的离心力将尘粒从合尘气流中分离出来的除尘装置。
旋风除尘器内气流与尘粒的运动概况:旋转气流的绝大部分沿器壁自圆简体,呈螺旋状由上向下向圆锥体底部运动,形成下降的外旋含尘气流,在强烈旋转过程中所产生的离心力将密度远远大于气体的尘粒甩向器壁,尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和自身的重力沿壁面下落进入集灰斗。
旋转下降的气流在到达圆锥体底部后.沿除尘器的轴心部位转而向上.形成上升的内旋气流,并由除尘器的排气管排出。
自进气口流人的另一小部分气流,则向旋风除尘器顶盖处流动,然后沿排气管外侧向下流动,当达到排气管下端时,即反转向上随上升的中心气流一同从诽气管排出,分散在其中的尘粒也随同被带走。
3、影响旋风器性能的因素⑴二次效应-被捕集粒子的重新进入气流在较小粒径区间内,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率;在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率;通过环状雾化器将水喷淋在旋风除尘器内壁上,能有效地控制二次效应;临界入口速度。
⑵比例尺寸在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降;锥体适当加长,对提高除尘效率有利;排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加,一般取排出管直径de=(0.6~0.8)D;特征长度-亚历山大公式:排气管的下部至气流下降的最低点的距离,旋风除尘器排出管以下部分的长度应当接近或等于l,筒体和锥体的总高度以不大于5倍的筒体直径为宜。
旋风除尘器的设计与计算
一、实习目的1、进一步了解旋风除尘器的有关计算2、熟悉用CAD画效果图3、查阅和整理各方面资料,了解旋风除尘器各方面性能及影响因素;二、设计题目设计一台处在常温(20°C),常温下含尘空气的旋风除尘器。
已知条件为:处理气量Q=1300m³/h,粉尘密度ρp=1960kg/m³,空气密度ρ=1.29 kg/m,空气粘度μ=1.8x10-5Pa.s,进入的粉尘粒度分布见下表:设计要求:XLT旋风除尘器,最后实现污染物的达标排放,且除尘效率为85%,压力损失不高于2000Pa。
提交文件:设计说明+旋风除尘器图(CAD制图),图纸输出A4纸。
三、旋风除尘器的工作原理1.1 工作原理(1)气流的运动普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:内涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。
(2)尘粒的运动:切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。
1.2特点(1)旋风除尘器与其他除尘器相比,具有结构简单、占地面积小、投资低、操作维修方便以及适用面宽的优点。
(2)旋风除尘器的除尘效率一般达85%左右,高效的旋风除尘器对于输送、破碎、卸料、包装、清扫等工业生产过程产生的含尘气体除尘效率可达95%-98%,对于燃煤炉窑产生烟气的除尘效率可以达到92%-95%。
(3)XLT 旋风除尘器的主要特点(4)旋风除尘器捕集<5μm 颗粒的效率不高,一般可以作为高浓度除尘系统的预除尘器,与其他类型高效除尘器合用。
可用于10μm 以上颗粒的去除,符合此题的题设条件。
旋风除尘器设计
旋风除尘器设计计算说明书1、旋风除尘器简介旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的,用来分离粒径大于5—10μm以上的的颗粒物。
工业上已有100多年的历史。
特点:结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。
优点:效率80%左右,捕集<5μm颗粒的效率不高,一般作预除尘用。
旋风除尘器的结构形式按进气方式可分为直入式、蜗壳式和轴向进入式;按气流组织分类有回流式、直流式、平流式和旋流式多种1.1 工作原理(1)气流的运动普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:内涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。
图1(2)尘粒的运动:切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。
1.2 影响旋风器性能的因素(2)二次效应-被捕集粒子的重新进入气流在较小粒径区间内,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率;在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率;通过环状雾化器将水喷淋在旋风除尘器内壁上,能有效地控制二次效应;临界入口速度。
(2)比例尺寸在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降;锥体适当加长,对提高除尘效率有利;排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加,一般取排出管直径d e=(0.6~0.8)D;特征长度(natural length)-亚历山大公式:排气管的下部至气流下降的最低点的距离旋风除尘器排出管以下部分的长度应当接近或等于l,筒体和锥体的总高度以不大于5倍的筒体直径为宜。